
Android 2.3 Compatibility Definition

Copyright 2010 Google Inc All rights reserved

compatibiIityiandroid.com

Table of Contents

Introduction

Resources

Software

3.1 Managed API Compatibility

3.2 Soft API Compatibility

3.2.1 Permissions

3.2.2 Build Parameters

3.2.3 Intent Compatibility

3.2.3.1 Core Application Intents

3.2.3.2 Intent Overrides

3.2.3.3 Intent Namespaces

3.2.3.4 Broadcast Intents

3.3 Native API Compatibility

3.4 Web Compatibility

3.4.1 WebView Compatibility

3.4.2 Browser Compatibility

3.5 API Behavioral Compatibility

3.6 API Namespaces

3.7 Virtual Machine Compatibility

3.8 User Interface Compatibility

3.8.1 Widgets

3.8.2 Notifications

3.8.3 Search

3.8.4 Toasts

3.8.5 Live Wallpapers

Application Packaging Compatibility

Multimedia Compatibility

5.1 Media Codecs

5.1.1 Media Decoders

5.1.2 Media Encoders

5.2 Audio Recording

5.3 Audio Latency

Developer Tool Compatibility

Hardware Compatibility

7.1 Display and Graphics

7.1.1 Screen Configurations

7.1.2 Display Metrics

7.1.3 Declared Screen Support

7.1.4 Screen Orientation

7.1.5 3D Graphics Accleration

7.2 Input Devices

Oracle America Inc Google Inc

31 O-cv-03561 -WHA

UNITED STATES DISTRIcT COURT

NoRThERN DISTRIcT OF CALIFORNIA

TRIAL EXHIBIT 3346

CASE NO 10-03561 WHA
DATE ENTERED

BY

DEFUTY CLERK

GOOGLE-OO-00000628

7.21 Keyboard

7.2.2 Non-touch Navigation

7.2.3 Navigation keys

7.2.4 Touchscreen iiput

7.3 Sensors

7.3.1 Accelerometer

7.3.2 Magnetometer

7.3.3 GPS

7.3.4 Gyroscope

7.3.5 Barometer

7.3.6 Thermometer

7.3.7 Photometer

7.3.8 Proximity Sensor

7.4 Data Connectivity

7.4.1 Tephony

7.4.2 DEEE 802.11 WF
7.4.3 Bluetooth

7.4.4 Near-Field Commurfcations

7.4.5 Mftmum Network Capabtity

7.5 Canieras

7.5.1 Rear-Fadng Caniera

7.5.2 Front-Facing Camera

7.5.3 Camera API 8ehavor

7.5.4 Camera Ohentatiori

7.6 Memory and Storage

7.6.1 Minimum Memory and Storage

7.6.2 Apptcation Shared Storage

7.7 USB

Performance Compatibtty

Security ModeD CompatibiDity

9.1 Permissions

9.2 UID and Process Isolation

9.3 Filesystem Permissions

9.4 Alternate Execution Environments

10 Software Compatibility Testing

10.1 Compatibility Test Suite

10.2 CTS Verifier

10.3 Reference Apptcations

11 Updatable Software

12 Contact Us

Appendix Bluetooth Test Procedure

Oracle America Inc Google Inc GOOGLE-OO-00000629

31 O-cv-03561 -WHA

Introduction

This document enumerates the requirements that must be met in order for mobile phones to be compatible with Android 2.3

The use of must must not required shaH shall not should should not recommended may and optional is per the IETF standard

defined in RFC2119 11

As used in this document device implementer or implementer is person or organization developing hardware/software solution running

Android 2.3 device implementation or implementation is the hardware/software solution so developed

To be considered compatible with Android 2.3 device implementations MUST meet the requirements presented in this Compatibility Definition

including any documents incorporated via reference

Where this definition or the software tests described in Section 10 is silent ambiguous or incomplete it is the responsibility of the device implementer

to ensure compatibility with
existing implementations For this reason the Android Open Source Project 31 is both the reference and

preferred implementation of Android Device implementers are strongly encouraged to base their implementations to the greatest extent possible on the

upstream source code available from the Android Open Source Project While some components can hypothetically be replaced with alternate

implementations this practice is strongly discouraged as passing the software tests will become substantially more difficult It is the imnplemnenters

responsibility to ensure full behavioral
compatibility

with the standard Android implementation including and beyond the Compatibility Test Suite

Finally note that certain component substitutions and modifications are explicitly forbidden by this document

Please note that this Compatibility Definition is issued to correspond with the 2.3.3 update to Android which is API level 10 This Definition obsoletes

and replaces the Compatibility Definition for Android 2.3 versions prior to 2.3.3 That is versions 2.3.1 and 2.3.2 are obsolete Future

Android-compatible devices running Android 2.3 MUST ship with version 2.3.3 or later

Resources

IETF RFC21 19 Requirement Levels http//www.ietf.org/rfc/rfc2l19.txt

Android Compatibility Program Overview http//source.android.com/compatibiIity/index.html

Android Open Source Project http//source.android.com/

API definitions and documentation http//deveIoper.android.com/reference/packages.htmI

Android Permissions reference http//developer.android.com/reference/android/Manifest.permission.html

android.os.Build reference http//deveIoper.android.com/reference/android/os/BuiId.htmI

Android 2.3 allowed version strings http//source.android.com/compatibiIity/2.3/versions.html

android.webkit.WebView class http//developer.android.com/reference/android/webkitiWebView.html

HTML5 http//www.whatwq.org/specs/web-apps/current-work/multipagel

10 HTML5 offline capabilities http//dev.w3.orq/html5/spec/Overview.htmloffline

11 HTML5 video tag http//dev.w3.org/htmI5/spoc/Overview.htmI/fvideo

12 HTML5/W3C geolocation API http//www.w3.org/TR/geolocation-API/

13 HTML5/W3C webdatabase API http//www.w3.org/TR/webdatabase/

14 HTML5/W3C lndexedDB API http//www.w3.org/TR/IndexedDB/

15 Dalvik Virtual Machine specification available in the Android source code at dalvik/docs

16 AppWidgets http//deveIoper.android.com/guide/practices/ui guidelines/widget design.html

17 Notifications http//develeper.aridroid.com/guide/topics/ui/notifiers/notifications.html

18 Application Resources http//code.google.coni/android/reference/available-resources.html

19 Status Bar icon style guide http//deveIoper.ondroid.com/quide/practices/ui guideline /ican desiqn.htmlstatusbarstructure

20 Search Manager http//developer.android.com/reference/android/app/SearchManager.html

21 Toasts http//developer.android.com/reference/android/widgetToast.html

22 Live Wallpapers http//developer.android.com/resources/articles/live-wallpapers.html

23 Reference tool documentation for adb aapt ddms http//developer.android.com/guide/developing/tools/index.html

24 Android apk file description http//deveIoper.android.com/guide/topics/fundamentaIs.htmI

25 Manifest files http//developer.android.com/guide/topics/manifest/manifest-intro.html

Oracle America Inc Google Inc GOOGLE-OO-00000630

31 O-cv-03561 -WHA

26 Monkey testing tool http//developer.android.com/guide/developing/tools/monkey.html

27 Android Hardware Features List http//developer.android.com/reference/android/content/pm/PackaqeManaqer.html

28 Supporting Multiple
Screens http//developer.android.com/quido/practices/screens support.html

29 android.util.DisplayMetrics http//developer.android.com/reference/android/util/DisplayMetrics.html

30 android.content.res.Configuration http//developer.android.com/reference/android/content/res/Confiquration.html

31 Sensor coordinate space http//developer.android.com/reference/android/hardware/SensorEvent.html

32 Bluetooth API http//developer.android.com/reference/android/bluetooth/packaqe-summary.html

33 NDEF Push Protocol http//source.android.com/compatibility/ndef-push-prctocol.pdf

34 MIFARE MEl 5503X http//www.nxp.com/documents/data sheet/MEl S583x.pdf

35 MIFARE MEl S703X http//www.nxp.com/documents/data sheet/MEl S703x.pdf

36 MIFARE MF0ICU http//www.nxp.com/documents/data sheet/MFOICU .pdf

37 MIFARE MFOICU2 http//www.nxp.com/documents/short data sheet/MF0ICU2 SDS.pdf

38 MIFARE AN 130511 http//www.nxp.com/documents/appIication note/AN 130511 .pdf

39 MIFARE AN 130411 http//www.nxp.com/documents/application note/AN 130411 .pdf

40 Camera orientation API http//developor.android.com/reference/android/hardware/Caniera.htmlsetDisplayOrientationint

41 android.hardware.Camera http//developer.android.com/reference/android/hardware/Carnera.html

42 Android Security and Permissions reference http//developer.android.com/quide/topics/security/security.html

43 Apps for Android http//code.google.com/p/apps4or-android

Many of these resources are derived directly or indirectly from the Android 2.3 SDK and will be functionally identical to the information in that SDKs

documentation In any cases where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK documentation the SDK

documentation is considered authoritative Any technical details provided in the references included above are considered by inclusion to be part of this

Compatibility Definition

Software

The Android platform includes set of managed APIs set of native APIs and body of so-called soft APIs such as the Intent system and

web-application APIs This section details the hard and soft APIs that are integral to compatibility as well as certain other relevant technical and user

interface behaviors Device implementations MUST comply with all the requirements in this section

3.1 Managed API Compatibility

The managed Dalvik-based execution environment is the primary vehicle for Android applications The Android application programming interface

API is the set of Android platform interfaces exposed to applications running in the managed VM environment Device implementations MUST provide

complete implementations including all documented behaviors of any documented API exposed by the Android 2.3 SDK IResources

Device implementations MUST NOT omit any managed APIs alter API interfaces or signatures deviate from the documented behavior or include

no-ops except where specifically allowed by this Compatibility Definition

This Compatibility Definition permits some types of hardware for which Android includes APIs to be omitted by device implementations In such cases

the APIs MUST still be present and behave in reasonable way See Section for specific requirements for this scenario

3.2 Soft API Compatibility

In addition to the managed APIs from Section 3.1 Android also includes
significant runtime-only soft API in the form of such things such as Intents

permissions and similar aspects of Android applications that cannot be enforced at application compile time This section details the soft APIs and

system behaviors required for compatibility with Android 2.3 Device implementations MUST meet all the requirements presented in this section

3.2.1 Permissions

Device implementers MUST support and enforce all permission constants as documented by the Permission reference page FResources Note that

Section 10 lists additional requirements related to the Android security model

Oracle America Inc Google Inc GOOGLE-OO-00000631

31 O-cv-03561 -WHA

3.2.2 Build Parameters

The Android APIs include number of constants on the undo id Build class that are intended to describe the current device To

provide consistent meaningful values across device implementations the table below includes additional restrictions on the formats of these values to

which device implementations MUST conform

Parameter Comments

The version of the currently-executing Android system in

android.os.Build.VERSION.RELEASE human-readable format This field MUST have one of the string values

defined in

The version of the currently-executing Android system in format

android.os.Build.VERSION.SDK accessible to third-party application code For Android 2.3 th field

MUST have the integer value

value chosen by the device implementer designating the specitic

build of the currently-executing Android system in human-readable

format This value MUST NOT be re-used for different builds made

android.os.Build.VERSION.INCREMENTAL available to end users typical use of this field is to indicate which

build number or source-control change identifier was used to generate

the build There are no requirements on the specific format of this field

except that it MUST NOT be null or the empty string

value chosen by the device implementer identifying the specific

internal hardware used by the device in human-readable format

possible use of this field is to indicate the specific revision of the board

android.os.Build.BOARD

powenng the device The value of this field MUST be encodable as

7-bit ASCII and match the regular expression

tazAZ09
value chosen by the device implementer identifying the name of the

company organization individual etc who produced the device in

human-readable format possible use of this field is to indicate the

android.os.Build.BRAND
OEM and/or carner who sold the device The value of this field MUST

be encodable as 7-bit ASCII and match the regular expression

toZAZ09
value chosen by the device implementer identifying the specific

configuration or revision of the body sometimes called industrial

android.os.Build.DEVICE design of the device The value of this field MUST be encodable as

7-bit ASCII and match the regular expression

tazAZ09
str og Ira UrIqO ly

iaantitas ho hula chIOULO ha raasrrably irumar-raaaahl Mccl tallow irs templa

android.os.Build.FINGERPRINT

Fa eaarn r.ucu
et gerpriot MUS NOT olude tespaccharactas It other lotUs ladU in th tantplate above ave wIitaapac

cha torn th MUS No oplaced the baud
flog rpritrt

with airothor cha act roach an the cadoracarn u_ character The

value hit fold MAO ha arcadablo as T-bit AhTtt

stnng that uniquely identities the host the build was built on in

human readable format There are no requirements on the specific
android.os.Build.HOST

format of this field except that it MUST NOT be null or the empty stnng

An identifier chosen by the device implementer to refer to specific

release in human readable format This field can be the same as

android.os.Build.VERSION.INCREMENTAL but SHOULD be value

android.os.Build.ID

sufficiently meaningful for end users to distinguish between software

builds The value of this field MUST be encodable as 7-bit ASCII and

match the regular expression 09 .5

value chosen by the device implementer containing the name of the

device as known to the end user This SHOULD be the same name

android.os.Build.MODEL under which the device is marketed and sold to end users There are

no requirements on the specific format of this field except that it MUST

NOT be null or the empty string

Oracle America InC Google InC GOOGLE-OO-00000632

31 O-cv-03561 -WHA

value chosen by the device implementer containing the development

name or code name of the device MUST be human-readable but is

android.os.Build.PRODUCT not necessarily intended for view by end users The value of this field

MUST be encodable as 7-bit ASCII and match the regular expression

azAZO9
comma-separated list ot tags chosen by the device implementer that

further
distinguish

the build For example unsigneddebug The value

android.os.Build.TAGS

of this field MUST be encodable as 7-bit ASCII and match the regular

expression

android.os.Build.TIME value representing the timestamp of when the build occurred

value chosen by the device implementer specifying the runtime

configuration of the build This field SHOULD have one of the values

corresponding tc the three typical Android runtime configurations
android.os.Build.TYPE

user userdebug or eng The value of this field MUST be

encodable as 7-bit ASCII and match the regular expression

name or user ID of the user or automated user that generated the

android.os.Build.USER build There are no requirements on the specific format of this field

except that it MUST NOT be null or the empty string

3.2.3 Intent Compatibility

Android uses Intents to achieve loosely-coupled integration between applications This section describes requirements related to the Intent patterns

that MUST be honored by device implementations By honored it is meant that the device implementer MUST provide an Android Activity or Service

that specifies matching Intent filter and binds to and implements correct behavior for each specified Intent pattern

3.2.3.1 Core Application Intents

The Android upstream project
defines number of core applications such as phone dialer calendar contacts book music player and so on Device

implernenters MAY replace these applications with alternative versions

However any such alternative versions MUST honor the same Intent patterns provided by the upstream project For example if device contains an

alternative music player it must still honor the Intent pattern issued by third-party applications to pick song

The following applications are considered core Android system applications

Desk Clock

Browser

Calendar

Calculator

Contacts

Email

Gallery

Globalsearch

Launcher

Music

Settings

The core Android system applications include various Activity or Service components that are considered public That is the attribute

androidexported may be absent or may have the value true

For every Activity or Service defined in one of the core Android system apps that is not marked as non-public via an androidexported attribute with the

value false device implementations MUST include compontent of the same type implementing the same Intent filter patterns as the core Android

system app

In other words device implementation MAY replace core Android system apps however if it does the device implementation MUST support all

Intent patterns defined by each core Android system app being replaced

3.2.3.2 Intent Overrides

Oracle America Inc Google Inc GOOGLE-OO-00000633

31 O-cv-03561 -WHA

As Android is an extensible platform device implementers MUST allow each Intent pattern referenced in Section 3.2.3.1 to be overridden by third-party

applications The upstream Android open source project allows this by default device implementers MUST NOT attach special privileges to system

applications use of these Intent patterns or prevent third-party applications from binding to and assuming control of these patterns This prohibition

specifically includes but is not limited to disabling the Chooser user interface which allows the user to select between multiple applications which all

handle the same Intent pattern

3.2.3.3 Intent Namespaces

Device implementers MUST NOT include any Android component that honors any new Intent or Broadcast Intent patterns using an ACTION

CATEGORY or other key string in the android namespace Device implementers MUST NOT include any Android components that honor any new

Intent or Broadcast Intent patterns using an ACTION CATEGORY or other key string in package space belonging to another organization Device

implementers MUST NOT alter or extend any of the Intent patterns used by the core apps listed in Section 3.2.3.1

This prohibition is analogous to that specified for Java language classes in Section 3.6

3.2.3.4 Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify them of changes in the hardware or software environment

Andrcid-compatible devices MUST broadcast the public broadcast Intents in response to appropriate system events Broadcast Intents are described in

the SDK documentation

3.3 Native API Compatibility

Managed code running in Dalvik can call into native code provided in the application .apk file as an ELF so file compiled for the appropriate device

hardware architecture As native code is highly dependent on the underlying processor technology Android defines number of Application Binary

Interfaces ABI5 in the Android NDK in the file dccs/CPUARCHABIS txt If device implementation is compatible with one or more defined ABIs

it SHOULD implement compatibility with the Android NDK as below

If device implementation includes support for an Android ABI it

MUST include support for code running in the managed environment to call into native code using the standard Java Native Interface JNI

semantics

MUST be source-compatible i.e header compatible and binary-compatible for the ABI with each required library in the list below

MUST accurately report the native Application Binary Interface ABI supported by the device via the android Os Build CPU ABI API

MUST report only those ABIs documented in the latest version of the Android NDK in the file docs /CPUARCHABIS txt

SHOULD be built using the source code and header files available in the upstream Android open-source project

The following native code APIs MUST be available to apps that include native code

libc library

libm math library

Minimal support for

JNI interface

liblog Android logging

libz Zlib compression

libdl dynamic linker

IibGLESv1_CM.so OpenGL ES 1.0

libGLESv2.so OpenGL ES 2.0

libEGL.so native OpenGL surface management

libjnigraphics.so

libOpenSLES.so Open Sound Library audio support

libandroid.so native Android activity support

Support for OpenGL as described below

Note that future releases of the Android NDK may introduce support for additional ARk If device implementation is not compatible with an existing

predefined ABI it MUST NOT report support for any ABI at all

Oracle America Inc Google Inc GOOGLE-OO-00000634

31 O-cv-03561 -WHA

Native code compatibility is challenging For this reason it should be repeated that device implementers are VERY strongly encouraged to use the

upstream implementations of the libraries listed above to help ensure compatibility

3.4 Web Compatibility

Many developers and applications rely on the behavior of the android iebkit WebView class for their user interfaces so the

WebView implementation must be compatible across Android implementations Similarly complete modern web broswer is central to the Android

user experience Device implementations MUST include version of android webkit ..VehView consistent with the upstream Android software

and MUST include modern HTML5-capable browser as described below

3.4.1 WebView Compatibility

The Android Open Source implementation uses the WebKit rendering engine to implement the android webkit WebView Because it is not feasible

to develop comprehensive test suite for web rendering system device implementers MUST use the specific upstream build of WebKit in the

WebView implementation Specifically

Device implementations android.webkit.VebView implementations MUST be based on the 533.1 WebKit build from the upstream Android

Open Source tree for Android 2.3 This build includes specific set of functionality and security fixes for the WebView Device implementers MAY

include customizations to the WebKit implementation however any such customizations MUST NOT alter the behavior of the WebView including

rendering behavior

The user agent string reported by the WebView MUST be in this format

Moilla/5.O Linux Android $VERSTON $LGCALE $MODEL Build$UILD AppleWebKit/533 KHTML like

Gecko Vergion/4.O Mobile Safari/53

The value of the $VERSION string MUST be the same as the value for android os .Build.VERSION.RELE7SE

The value of the $LOCALE string SHOULD follow the ISO conventions for country code and language and SHOULD refer to the current

configured locale of the device

The value of the $MODEL string MUST be the same as the value for andi aid os Build MODEL

The value of the $BUILD string MUST be the same as the value for android Os Build ID

The WebView component SHOULD include support for as much of HTML5 91 as possible Minimally device implementations MUST

support each of these APIs associated with HTML5 in the WebView

application cache/offline operation IResources 10

the video tag IResources 11

geolocation 12

Additionally device implementations MUST support the HTML5/W3C webstorage API 13 and SHOULD support the HTML5/W3C

lndexedDB API 14 Note that as the wb development standards bodies are transitioning to favor IndexedDB over webstorag8

IndexedDB is expected to become required component in future version of Android

HTML5 APIs like all JavaScript APIs MUST be disabled by default in WebView unless the developer explicitly enables them via the usual Android

APIs

3.4.2 Browser Compatibility

Device implementations MUST include standalone Browser application for general user web browsing The standalone Browser MAY be based on

browser technology other than WebKit However even if an alternate Browser application is used the android webkit ebView component

provided to third-party applications MUST be based on WebKit as described in Section 3.4.1

Implementations MAY ship custom user agent string in the standalone Browser application

The standalone Browser application whether based on the upstream WebKit Browser application or third-party replacement SHOULD include

support for as much of HTML5 91 as possible Minimally device implementations MUST support each of these APIs associated with

HTML5

application cache/offline operation IResources 10

the video tag IResources 11

geolocation 12

Oracle America Inc Google Inc GOOGLE-OO-00000635

31 O-cv-03561 -WHA

Additionally device implementations MUST support the HTML5IW3C webstorage API 131 and SHOULD support the HTML5IW3C

lndexedDB API 14 Note that as the web development standards bodies are transitioning
to favor lndexedDR over webstorage

lndexedDB is expected to become required component in future version of Android

3.5 API Behavioral Compatibility

The behaviora of each of the API typea managed aoft native and web muat be conaiatent with the preferred implementation ot the upatream Android

open-source project Some specitic areas of compatibility are

Devices MUST NOT change the behavior or semantics of standard Intent

Devices MUST NOT alter the lifecycle or lifecycle semantics ot particular type of system component such as Service Activity ContentProvider

etc

Devices MUST NOT change the semantics of standard permission

The above list is not comprehensive The Compatibility Test Suite CTS tests significant portions of the platform for behavioral compatibility but not all

It is the responsibility of the implementer to ensure behavioral compatibility with the Android Open Source Project For this reason device implementers

SHOULD use the source code available via the Android Open Source Project where possible rather than re-implement significant parts of the system

3.6 API Namespaces

Android follows the package and class namespace conventions detined by the Java programming language To ensure compatibility with
third-party

applications device implementers MUST NOT make any prohibited modifications see below to these package namespaces

java

javax

sun

android

com.android

Prohibited modifications include

Device implementations MUST NOT modify the publicly exposed APIs on the Android plafform by changing any method or class signatures or by

removing classes or class fields

Device implementers MAY modify the underlying implementation of the APIs but such modifications MUST NOT impact the stated behavior and

Java-language signature of any publicly exposed APIs

Device implementers MUST NOT add any publicly exposed elements such as classes or interfaces or fields or methods to existing classes or

interfaces to the APIs above

publicly exposed element is any construct which is not decorated with the @hide marker as used in the upstream Android source code In other

words device implementers MUST NOT expose new APIs or alter existing APIs in the namespaces noted above Device implementers MAY make

internal-only modifications but those modifications MUST NOT be advertised or otherwise exposed to developers

Device implementers MAY add custom APIs but any such APIs MUST NOT be in namespace owned by or reterring to another organization For

instance device implementers MUST NOT add APIs to the com.google or similar namespace only Google may do so Similarly Google MUST NOT

add APIs to other companies namespaces Additionally if device implementation includes custom APIs outside the standard Android namespace

those APIs MUST be packaged in an Android shared
library so that only apps that

explicitly use them via the us slibsary mechanism are

affected by the increased memory usage of such APIs

It device implementer proposes to improve one of the package namespaces above such as by adding useful new functionality to an existing API or

adding new API the implementer SHOULD visit source.android.com and begin the process for contributing changes and code according to the

information on that site

Note that the restrictions above correspond to standard conventions for naming APIs in the Java programming language this section simply aims to

reinforce those conventions and make them binding through inclusion in this compatibility definition

3.7 Virtual Machine Compatibility

Oracle America Inc Google Inc G00GLE0000000636

31 O-cv-03561 -WHA

Device implementations MUST support the full Dalvik Executable DEX bytecode specification and Dalvik Virtual Machine semantics 15

Device implementations with screens classified as medium- or low-density MUST configure Dalvik to allocate at least 16MB of memory to each

application Device implementations with screens classified as high-density or extra-high-density MUST configure Dalvik to allocate at least 24MB of

memory to each application Note that device implementations MAY allocate more memory than these figures

3.8 User Interface Compatibility

The Android platform includes some developer APIs that allow developers to hook into the system user interface Device implementations MUST

incorporate these standard UI APIs into custom user interfaces they develop as explained below

3.8.1 Widgets

Android defines component type and corresponding API and
lifecycle

that allows applications to expose an AppWidget to the end user

jfi The Android Open Source reference release includes Launcher application that includes user interface elements allowing the user to add view

and remove AppWidgets from the home screen

Device implementers MAY substitute an alternative to the reference Launcher i.e home screen Alternative Launchers SHOULD include built-in

support for AppWidgets and expose user interface elements to add configure view and remove AppWidgets directly within the Launcher Alternative

Launchers MAY omit these user interface elements however if they are omitted the device implementer MUST provide separate application

accessible from the Launcher that allows users to add configure view and remove AppWidgets

3.8.2 Notifications

Android includes APIs that allow developers to notify users of notable events 17 Device implementers MUST provide support for each

class of notification so defined specifically sounds vibration light and status bar

Additionally the implementation MUST correctly render all resources icons sound files etc provided for in the APIs IResources 18 or in the Status

Bar icon style guide 19 Device implementers MAY provide an alternative user experience for notifications than that provided by the

reference Android Open Source implementation however such alternative notification systems MUST support existing notification resources as

above

3.8.3 Search

Android includes APIs 20 that allow developers to incorporate search into their applications and expose their applications data into the

global system search Generally speaking this functionality consists of single system-wide user interface that allows users to enter queries displays

suggestions as users type and displays results The Android APIs allow developers to reuse this interface to provide search within their own apps and

allow developers to supply results to the common global search user interface

Device implementations MUST include single shared system-wide search user interface capable of real-time suggestions in response to user input

Device implementations MUST implement the APIs that allow developers to reuse this user interface to provide search within their own applications

Device implementations MUST implement the APIs that allow third-party applications to add suggestions to the search box when it is run in global

search mode If no third-party applications are installed that make use of this functionality the default behavior SHOULD be to display web search

engine results and suggestions

Device implementations MAY ship alternate search user interfaces but SHOULD include hard or soft dedicated search button that can he used at

any time within any app to invoke the search framework with the behavior provided for in the API documentation

3.8.4 Toasts

Applications can use the Toast API defined in 211 to display short non-modal
strings

to the end user that disappear after brief period

of time Device implementations MUST display Toasts from applications to end users in some high-visibility manner

3.8.5 Live Wallpapers

Android defines component type and corresponding API and lifecycle that allows applications to expose one or more Live Wallpapers to the end

user 22 Live Wallpapers are animations patterns or similar images with limited
input capabilities

that display as wallpaper behind

other applications

10

Oracle America Inc Google Inc GOOGLE-OO-00000637

31 O-cv-03561 -WHA

Hardware is considered capable of
reliably running live wallpapers if it can run all live wallpapers with no limitations on functionality at reasonable

framerate with no adverse affects on other applications If limitations in the hardware cause wallpapers and/or applications to crash malfunction

consume excessive CPU or battery power or run at unacceptably low frame rates the hardware is considered incapable of running live wallpaper As

an example some live wallpapers may use an Open GL 1.0 or 2.0 context to render their content Live wallpaper will not run reliably on hardware that

does not support multiple OpenGL contexts because the live wallpaper use of an OpenGL context may conflict with other applications that also use an

OpenGL context

Device implementations capable of running live wallpapers reliably as described above SHOULD implement live wallpapers Device implementations

determined to not run live wallpapers reliably as described above MUST NOT implement live wallpapers

Application Packaging Compatibility

Device implementations MUST install and run Android apk files as generated by the aapt tool included in the official Android SDK 23

Devices implementations MUST NOT extend either the .apk 241 Android Manifest 25 or Dalvik bytecode 151

formats in such way that would prevent those files from installing and running correctly on other compatible devices Device implementers SHOULD

use the reference upstream implementation of Dalvik and the reference implementations package management system

Multimedia Compatibility

Device implementations MUST fully implement all multimedia APIs Device implementations MUST include support for all multimedia codecs described

below and SHOULD meet the sound processing guidelines described below Device implementations MUST include at least one form of audio output

such as speakers headphone jack external speaker connection etc

5.1 Media Codecs

Device implementations MUST support the rnultiniedia codecs as detailed in the following sections All of these codecs are provided as software

implementations in the preferred Android implementation from the Android Open-Source Project

Please note that neither Google nor the Open Handset Alliance make any representation that these codecs are unencumbered by third-party patents

Those intending to use this source code in hardware or software products are advised that implementations of this code including in open source

software or shareware may require patent licenses from the relevant patent holders

The tables below do not list specific bitrate requirements for most video codecs The reason for this is that in practice current device hardware does

not necessarily support bitrates that map exactly to the required bitrates specified by the relevant standards Instead device implementations SHOULD

support the highest bitrate practical on the hardware up to the limits defined by the specifications

5.1.1 Media Decoders

Device implementations MUST include an implementation of an decoder for each codec and format described in the table below Note that decoders

for each of these media types are provided by the upstream Android Open-Source Project

11

Oracle America Inc Google Inc GOOGLE-OO-00000638

31 O-cv-03561 -WHA

Audio

Name

AAC

HE-AACvI AAC
HE-AACv2 enhanced AAC

AMR-NB

AMR-WB

MP3

MIDI

Ogg Vorbis

PCM

Details

Mono/Stereo content in any

combination of standard bit rates

up to 160 kbps and sampling

rates between to 48kHz

4.75 to 12.2 kbps sampled

8kHz

rates trom 6.60 kbit/s to 23.85

kbit/s sampled 16kHz

Mono/Stereo 8-320kbps

constant CBR or variable

bit-rate VBR
MIDI Type and DLS Version

and XMF and Mobile XMF

Support for ringtone formats

RTTTL/RTX OTA and iMelody

8-and 16-bit linear -CM rates

up to limit of hardware

File/Container Format

3GPP .3gp and MPEG-4 .mp4

.m4a No support for raw AAC

.aac

3GPP .3gp

3GPP .3gp

MP3 .mp3

Type and mid .xmf .mxmf

Also RTTTL/RTX .rtttl .rtx OTA

.ota and iMelody .imy

Ogg .ogg

WAVE way

Image

JPEG

GIF

PNG

BMH

baseprogressive

3GPP .3gp tiles

3GPP .3gp and MPEG-4 .mp4

files

3GPP .3gp tile

Device implementations SHOULD include encoders for as many of the media formats listed in Section 5.1.1 as possible However some encoders do

not make sense for devices that lack certain optional hardware for instance an encoder for the H.263 video does not make sense if the device lacks

any cameras Device implementations MUST therefore implement media encoders according to the conditions described in the table below

See Section for details on the conditions under which hardware may be omitted by device implementations

Details

4.75 to 12.2 kbps

sampled 8kHz

rates from 6.60 kbit/s to

23.85 kbit/s sampled

16kHz

Mono/Stereo content in

any combination of

standard bit rates up to

160 kbps and sampling

rates between to 48kHz

Oracle America Inc Google Inc

31 O-cV-03561 -WHA

3GPP .3gp and

MPEG-4 .mp4 .m4a

GOOGLE-OO-00000639

Video

5.1.2 Media Encoders

H.263

H.264

MPEG4 Simple Profile

Name

AM S-N

AMS-WB

AAC

File/Container Format Conditions

3GPP .3gp

3GPP .3gp Oevice impiementations that inciude

microphone hardware and detine

MU5T ieciade encoders tsr these

sad is tormats

Audio

12

All device

implementations MUST

JPEG baseprogressive include encoders for

these image formats as

Android 2.3 includes

Image
APIs that applications

can use to

PNG programmatically

generate files cf these

types

Device inipienientations that inciude

camera hardware and detine either

Video H.263 3GPP .3gp files
err

MUST inciude encoders for these

video formats

In addition to the encoders listed above device implementations SHOULD include an H.264 encoder Note that the Compatibility Definition for future

version is planned to change this requirement to MUST That is H.264 encoding is optional in Android 2.3 but will be required by future version

Existing and new devices that run Android 2.3 are very strongly encouraged to meet this requirement in Android 2.3 or they will not be able to

attain Android compatibility when upgraded to the future version

5.2 Audio Recording

When an application has used the ndr id.rred a.Aud oRcord API to start recording an audio stream device implementations SHOULD sample

and record audio with each of these behaviors

Noise reduction processing if present SHOULD be disabled

Automatic gain control if present SHOULD be disabled

The device SHOULD exhibit approximately flat amplitude versus frequency characteristics specifically 3dB from 100 Hz to 4000 Hz

Audio input sensitivity SHOULD be set such that 90dB sound power level SPL source at 1000 Hz yields RMS of 5000 for 16-bit samples

PCM amplitude levels SHOULD linearly track input SPL changes over at least 30 dB rançe from -18dB to 12dB re 90 dB SPL at the

microphone

Total harmonic distortion SHOULD be less than 1% from 100 Hz to 4000 Hz at 90 dB SPL input level

Note while the requirements outlined above are stated as SHOULD for Android 2.3 the Compatibility Definition for future version is planned to

change these to MUST That is these requirements are optional in Android 2.3 but will be required by future version Existing and new devices

that run Android 2.3 are very strongly encouraged to meet these requirements in Android 2.3 or they will not be able to attain Android

compatibility when upgraded to the future version

5.3 Audio Latency

Audio latency is broadly defined as the interval between when an application requests an audio playback or record operation and when the device

implementation actually begins the operation Many classes of applications rely on shod latencies to achieve real-time effects such sound effects or

VOIP communication Device implementations that include microphone hardware and declare ax drc hardNar if crop -icr SHOULD meet all

audio latency requirements outlined in this section See Section for details on the conditions under which microphone hardware may be omitted by

device implementations

For the purposes of this section

cold output latency is defined to be the interval between when an application requests audio playback and when sound begins playing when the

audio system has been idle and powered down prior to the request

warm output latency is defined to be the interval between when an application requests audio playback and when sound begins playing when the

audio system has been recently used but is currently idle that is silent

continuous output latency is defined to be the interval between when an application issues sample to be played and when the speaker physically

plays the corresponding sound while the device is currently playing back audio

cold input latency is defined to be the interval between when an application requests audio recording and when the first sample is delivered to the

application via its callback when the audio system and microphone has been idle and powered down prior to the request

13

Oracle America Inc Google Inc GOOGLE-OO-00000640

31 O-cv-03561 -WHA

continuous
input latency is defined to be when an ambient sound occurs and when the sample corresponding to that sound is delivered to

recording application via its callback while the device is in recording mode

Using the above definitions device implementations SHOULD exhibit each of these properties

cold output latency of 100 milliseconds or less

warm output latency of 10 milliseconds or less

continuous output latency of 45 milliseconds or less

cold input latency of 100 milliseconds or less

continuous input latency of 50 milliseconds or less

Note while the requirements outlined above are stated as SHOULD for Android 2.3 the Conpatibility Definition for future version is planned to

change these to MUST That is these requirements are optional in Android 2.3 but will be required by future version Existing and new devices

that run Android 2.3 are very strongly encouraged to meet these requirements in Android 2.3 or they will not be able to attain Android

compatibility when upgraded to the future version

If device implementation meets the requirements of this section it MAY report support for low-latency audio by reporting the feature

android.hardware.audio.low-latency via the dndroid content pm PckdgeMdnager class IResources 27 Conversely if the device

implementation does not meet these requirements it MUST NOT report support for low-latency audio

Developer Tool Compatibility

Device implementations MUST support the Android Developer Tools provided in the Android SDK Specifically Android-compatible devices MUST be

compatible with

Android Debug Bridge known as adb 23

Device implementations MUST support all adb functions as documented in the Android SOK The device-side adb daemon SHOULD be inactive

by default but there MUST be user-accessible mechanism to turn on the Android Debug Bridge

Dalvik Debug Monitor Service known as ddms IResources 23

Device implementations MUST support all ddrns features as documented in the Android SDK As ddrns uses adb support for ddms SHOULD be

inactive by default but MUST be supported whenever the user has activated the Android Debug Bridge as above

Monkey 26

Device implementations MUST include the Monkey framework and make it available for applications to use

Most Linux-based systems and Apple Macintosh systems recognize Android devices using the standard Android SDK tools without additional support

however Microsoft Windows systems typically require driver for new Android devices For instance new vendor IDs and sometimes new device IDs

require custom USB drivers for Windows systems If device implementation is unrecognized by the adb tool as provided in the standard Android

SDK device implementers MUST provide Windows drivers allowing developers to connect to the device using the db protocol These drivers MUST

be provided for Windows XP Windows Vista and Windows in both 32-bit and 64-bit versions

Hardware Compatibility

Android is intended to enable device irnplementers to create innovative form factors and configurations At the same time Android developers write

innovative applications that rely on the various hardware and features available through the Android APIs The requirements in this section strike

balance between innovations available to device implementers and the needs of developers to ensure their apps are only available to devices where

they will run properly

If device includes particular hardware component that has corresponding API for third-party developers the device implementation MUST

implement that API as described in the Android SDK documentation If an API in the SDK interacts with hardware component that is stated to be

optional and the device implementation does not possess that component

complete class definitions as documented by the SDK for the components APIs MUST still be present

the APrs behaviors MUST be implemented as no-ops in some reasonable fashion

API methods MUST return null values where permitted by the SDK documentation

API methods MUST return no-op implementations of classes where null values are not permitted by the SDK documentation

14

Oracle America Inc Google Inc GOOGLE-OO-00000641

31 O-cv-03561 -WHA

API methods MUST NOT throw exceptions not documented by the SDK documentation

typical example of scenario where these requirements apply is the telephony API even on non-phone devices these APIs must be implemented as

reasonable no-ops

Device implementations MUST accurately report accurate hardware configuration information via the getSysternAvailableFeatures and

hassystemFeature String methods on the anthoid content.pm PackageManaqer class 271

7.1 Display and Graphics

Android 2.3 includes facilities that automatically adjust application assets and UI layouts appropriately for the device to ensure that third-party

applications run well on variety of hardware configurations 28 Devices MUST properly implement these APIs and behaviors as detailed

in this section

7.1.1 Screen Configurations

Device implementations MAY use screens of any pixel dimensions provided that they meet the following requirements

screens MUST be at least 2.5 inches in physical diagonal size

density MUST be at least 100 dpi

the aspect ratio MUST be between 1.333 43 and 1.779 169

the display technology used consists of square pixels

Device implementations with screen meeting the requirements above are considered compatible and no additional action is necessary The Android

framework implementation automatically computes display characteristics such as screen size bucket and density bucket In the majority of cases the

framework decisions are the correct ones If the default framework computations are used no additional action is necessary Device implernenters

wishing to change the defaults or use screen that does not meet the requirements above MUST contact the Android Compatibility Team for

guidance as provided for in Section 12

The units used by the requirements above are defined as follows

Physical diagonal size is the distance in inches between two opposing corners of the illuminated portion of the display

dpi meaning dots per inch is the number of pixels encompassed by linear horizontal or vertical span of Where dpi values are listed both

horizontal and vertical dpi must fall within the range

Aspect ratio is the ratio of the longer dimension of the screen to the shorter dimension For example display of 480x854 pixels would be 854

480 1.779 or roughly 169

Device implementations MUST use only displays with single static configuration That is device implementations MUST NOT enable multiple screen

configurations For instance since typical television supports multiple resolutions such as lOSOp 720p and so on this configuration is not compatible

with Android 2.3 However support for such configurations is under investigation and planned for future version of Android

7.1.2 Display Metrics

Device implementations MUST report correct values for all display metrics defined in andrcid.util DisplayMetrics IResources 29

7.1.3 Declared Screen Support

Applications optionally indicate which screen sizes they support via the supportsscreens attribute in the AndroidManifest.xml file Device

implementations MUST correctly honor applications stated support for small medium and large screens as described in the Android SDK

documentation

7.1.4 Screen Orientation

Compatible devices MUST support dynamic orientation by applications to either portrait or landscape screen orientation That is the device must

respect the applications request for specific screen orientation Device implementations MAY select either portrait or landscape orientation as the

default Devices that cannot be physically rotated MAY meet this requirement by letterboxing applications that request portrait mode using only

portion of the available display

15

Oracle America Inc Google Inc GOOGLE-OO-00000642

31 O-cv-03561 -WHA

Devices MUST report the correct value for the devices current orientation whenever queried via the android.content.res.Configuration.orientation

android.view.Display.getOrientation or other APIs

7.1.5 3D Graphics Acceleration

Device implementations MUST support OpenGL ES 1.0 as required by the Android 2.3 APIs For devices that lack 3D acceleration hardware

software implementation of OpenGL ES 1.0 is provided by the upstream Android Open-Source Project Device implementations SHOULD support

OpenGL ES 2.0

Implementations MAY omit Open GL ES 2.0 support however if support is ommitted device iniplementations MUST NOT report as supporting

OpenGL ES 2.0 Specifically if device implementations lacks OpenGL ES 2.0 support

the managed APIs such as via the GLES1O getstring method MUST NOT report support for OpenGL ES 2.0

the native C/C OpenGL APIs that is those available to apps via IibGLES_vl CM.so IibGLES_v2.so or IibEGL.so MUST NOT report support for

OpenGL ES 2.0

Conversely if device implementation does support OpenGL ES 2.0 it MUST accurately repcrt
that support via the routes just

listed

Note that Android 2.3 includes support for applications to optionally specify that they require specific OpenGL texture compression formats These

formats are typically vendor-specific Device implementations are not required by Android 2.3 to implement any specific texture compression format

However they SHOULD accurately report any texture compression formats that they do support via the getsti ing method in the OpenGL API

7.2 Input Devices

Android 2.3 supports number of modalities for user input Device implementations MUST support user input devices as provided for in this section

7.2.1 Keyboard

Device implementations

MUST include support for the Input Management Framework which allows third party developers to create Input Management Engines -- i.e soft

keyboard as detailed at developer.android.corn

MUST provide at least one soft keyboard implementation regardless of whether hard keyboard is present

MAY include additional soft keyboard implementations

MAY include hardware keyboard

MUST NOT include hardware keyboard that does not match one of the formats specified in

andrcid.ccntent res .Ccnfiguraticn ceyboard 301 that is OWERTY or 12-key

7.2.2 Non-touch Navigation

Device implementations

MAY omit non-touch navigation option that is may omit trackball d-pad or wheel

MUST report the correct value for android content res Configuration navigation IResources 30

MUST provide reasonable alternative user interface mechanism for the selection and editing of text compatible with Input Management Engines

The upstream Android Open-Source code includes selection mechanism suitable for use with devices that lack non-touch navigation inputs

7.2.3 Navigation keys

The Home Menu and Back functions are essential to the Android navigation paradigm Device implementations MUST make these functions available

to the user at all times regardless of application state These functions SHOULD be implemented via dedicated buttons They MAY be implemented

using software gestures touch panel etc but if so they MUST be always accessible and not obscure or interfere with the available application display

area

Device implementers SHOULD also provide dedicated search key Device implementers MAY also provide send and end keys for phone calls

7.2.4 Touchscreen input

Device implementations

16

Oracle America Inc Google Inc GOOGLE-OO-00000643

31 O-cv-03561 -WHA

MUST have touchscreen

MAY have either capacitive or resistive touchscreen

MUST report the value of android content res Configuration 30 reflecting corresponding to the type of the specific

touchscreen on the device

SHOULD support fully independently tracked pointers if the touchscreen supports multiple pointers

7.3 Sensors

Android 2.3 includes APIs for accessing variety of sensor types Devices implementations generally MAY omit these sensors as provided for in the

following subsections If device includes particular sensor type that has corresponding API for third-party developers the device implementation

MUST implement that API as described in the Android SDK documentation For example device implementations

MUST accurately report the presence or absence of sensors per the android content pm PackageManager class 271

MUST return an accurate list of supported sensors via the SensorManager getSensorList and similar methods

MUST behave reasonably for all other sensor APIs for example by returning true or false as appropriate when applications attempt to register

listeners not calling sensor listeners when the corresponding sensors are not present etc

The list above is not comprehensive the documented behavior of the Android SDK is to be considered authoritative

Some sensor types are synthetic meaning they can be derived from data provided by one or more other sensors Examples include the orientation

sensor and the linear acceleration sensor Device implementations SHOULD implement these sensor types when they include the prerequisite

physical sensors

The Android 2.3 APIs introduce notion of streaming sensor which is one that returns data continuously rather than only when the data changes

Device implementations MUST continuously provide periodic data samples for any API indicated by the Android 2.3 SDK documentation to be

streaming sensor

7.3.1 Accelerometer

Device implementations SHOULD include 3-axis accelerometer If device implementation does include 3-axis accelerometer it

MUST be able to deliver events at 50 Hz or greater

MUST comply with the Android sensor coordinate system as detailed in the Android APIs see 311

MUST be capable of measuring from freefall up to twice
gravity 2g or more on any three-dimensional vector

MUST have 8-bits of accuracy or more

MUST have standard deviation no greater than 0.05 m/sA2

7.3.2 Magnetometer

Device implementations SHOULD include 3-axis magnetometer i.e compass If device does include 3-axis magnetometer it

MUST be able to deliver events at 10 Hz or greater

MUST comply with the Android sensor coordinate system as detailed in the Android APIs see 311

MUST be capable of sampling range of field strengths adequate to cover the geomagnetic field

MUST have 8-bits of accuracy or more

MUST have standard deviation no greater than 0.5 iT

7.3.3 GPS

Device implementations SHOULD include GPS receiver If device implementation does include GPS receiver it SHOULD include some form of

assisted GPS technique to minimize GPS lock-on time

7.3.4 Gyroscope

Device implementations SHOULD include gyroscope i.e angular change sensor Devices SHOULD NOT include gyroscope sensor unless

3-axis accelerometer is also included If device implementation includes gyroscope it

MUST be capable of measuring orientation changes up to 5.5Pi radians/second that is approximately 1000 degrees per second

17

Oracle America Inc Google Inc GOOGLE-OO-00000644

31 O-cv-03561 -WHA

MUST be able to deliver events at 100 Hz or greater

MUST have 8-bits of accuracy or more

7.3.5 Barometer

Device implementations MAY include barometer i.e ambient air pressure sensor If device implementation includes barometer it

MUST be able to deliver events at Hz or greater

MUST have adequate precision to enable estimating altitude

7.3.7 Thermometer

Device implementations MAY but SHOULD NOT include thermometer i.e temperature sensor Ifs device implementation does include

thermometer it MUST measure the temperature of the device CPU It MUST NOT measure any other temperature Note that this sensor type is

deprecated in the Android 2.3 APIs

7.3.7 Photometer

Device implementations MAY include photometer i.e ambient light sensor

7.3.8 Proximity Sensor

Device implementations MAY include proximity sensor Ifs device implementation does include proximity sensor it MUST measure the proximity of

an object in the same direction as the screen That is the proximity sensor MUST be oriented to detect objects close to the screen as the primary

intent of this sensor type is to detect phone in use by the user Ifs device implementation includes proximity sensor with any other orientation it

MUST NOT be accessible through this API If device implementation has proximity sensor it MUST be have 1-bit of accuracy or more

7.4 Data Connectivity

Network connectivity and access to the Internet are vital features of Android Meanwhile device-to-device interaction adds significant vslue to Android

devices and applications Device implementations MUST meet the data connectivity requirements in this section

7.4.1 Telephony

Telephony as used by the Android 2.3 APIs and this document refers specifically to hardware related to placing voice calls and sending SMS

messages via GSM or CDMA network While these voice calls may or may not be packet-switched they are for the purposes of Android 2.3

considered independent of any data connectivity that may be implemented using the same network In other words the Android telephony

functionality and APIs refer specifically to voice calls and SMS for instance device implementations that cannot place calls or send/receive SMS

messages MUST NOT report the sndroid.hardwsre.telephony feature or sny sub-features regsrdless of whether they use cellulsr network for dsts

connectivity

Android 2.3 MAY be used on devices that do not include telephony hardware That is Android 2.3 is compatible with devices that are not phones

However ifs device implementation does include GSM or CDMA telephony it MUST implement full support for the API for that technology Device

implementations that do not include telephony hardware MUST implement the full APIs as no-ops

7.4.2 IEEE 802.11 WiFi

Android 2.3 device implementations SHOULD include support for one or more forms of 802.11 b/g/a/n etc If device implementation does include

support for 802.11 it MUST implement the corresponding Android API

7.4.3 Bluetooth

Device implementations SHOULD include Bluetooth transceiver Device implementations that do include Bluetooth transceiver MUST enable the

RFCOMM-based Bluetooth API as described in the SDK documentation IResources 321 Device implementations SHOULD implement relevant

Bluetooth
profiles

such as A2DP AVRCP OBEX etc as appropriate for the device

The Compatibility Test Suite includes cases that cover basic operation of the Android RFCOMM Bluetooth API However since Bluetooth is

communications protocol between devices it cannot be
fully

tested by unit tests running on single device Consequently device implementations

MUST also pass the human-driven Bluetooth test procedure described in Appendix

18

Oracle America Inc Google InC G00GLE0000000645

31 O-cv-03561 -WHA

7.4.4 Near-Field Communications

Device implementations SHOULD include transceiver and related hardware for Near-Field Communications NFC If device implementation does

include NFC hardware then it

MUST report the android.hardware.nfc feature from the android.content.pm PackageE4anager hassystemFeature method

IResources 271

MUST be capable of reading and writing NDEE messages via the following NEC standards

MUST be capable of acting as an NEC Eorum reader/writer as defined by the NEC Eorum technical specification

FCEorum-TS-DigitalProtocol-1 .0 via the following NEC standards

NfcA 1S014443-3A

NfcB 1S014443-3B

NfcFJ1S6319-4

NfcV ISO 15693

IsoDep ISO 14443-4

NEC Eorum Tag Types defined by the NEC Eorum

MUST be capable of transmitting and receiving data via the following peer-to-peer standards and protocols

ISO 18092

LLCP 1.0 defined by the NFC Forum

SDP 1.0 defined by the NFC Forum

NDEF Push Protocol 33

MUST scan for all supported technologies while in NEC discovery mode

SHOULD be in NEC discovery mode while the device is awake with the screen active

Note that publicly available links are not available for the JIS ISO and NFC Forum specifications cited above

Additionally device implementations SHOULD support the following widely-deployed MIEARE technologies

MIFARE Classic NXP MF1S5O3x IResources 34 MF1S7O3x 35

MIFARE
Ultralight NXF MFOICU1 361 MFOICU2 37

NDEF on MIFARE Classic NXP AN13USI 38 AN13041 IResources 391

Nate that Android 2.3.3 includes APIs for these MIEARE types If device implementation supports MIEARE it

MUST implement the corresponding Android APIs as documented by the Android SDK

MUST report the feature com.nxp.mifare from the android.content pm PackageManager hassystemFeature method

27 Note that this is not standard Android feature and as such does not appear as constant on the PackageManager class

MUST NOT implement the corresponding Android APIs nor report the com.nxp.mifare feature unless it also implements general NFC support as

described in this section

If device implementation does not include NEC hardware it MUST NOT declare the android.hardware.nfc feature from the

android.content pm Packagel4anager hasSysteraFeature method 271 and MUST implement the Android 2.3 NFC API as

no-op

As the classes android ft Nde fMes sage and android nfc tide fRecord represent protocol-independent data representation format

device implementations MUST implement these APIs even if they do not include support for NEC or declare the android.hardware.nfc feature

7.4.5 Minimum Network Capability

Device implementations MUST include support for one or more forms of data networking Specifically device implementations MUST include

support for at least one data standard capable of 200Kbit/sec or greater Examples of technologies that satisfy this requirement include EDGE

HSPA EV-DO 802.llg Ethernet etc

Device implementations where physical networking standard such as Ethernet is the primary data connection SHOULD also include support for

at least one common wireless data standard such as 802.11 WiFi

Devices MAY implement more than one form of data connectivity

19

Oracle America Inc Google Inc GOOGLE-OO-00000646

31 O-cv-03561 -WHA

7.5 Cameras

Device implementations SHOULD include rear-facing camera and MAY include front-facing camera rear-facing camera is camera located

on the side of the device opposite the display that is it images scenes on the far side of the device like traditional camera front-facing camera

is camera located on the same side of the device as the display that is camera typically used to image the user such as for video conferencing

and similar applications

7.5.1 Rear-Facing Camera

Device implementations SHOULD include rear-facing camera If device implementation includes rear-lacing camera it

MUST have resolution of at least megapixels

SHOULD have either hardware auto-focus or software auto-focus implemented in the camera driver transparent to application software

MAY have fixed-focus or EDOF extended depth of field hardware

MAY include flash If the Camera includes flash the flash lamp MUST NOT be lit while an android.hardware.Camera.PreviewCallhack

instance has been registered on Camera preview surface unless the application has explicitly enabled the flash by enabling the

FLASH MCCE AUTO or FLASH I4ODE ON attributes of Camera Paiarneters object Note that this constraint does not apply to the devices

built-in system camera application but only to third-party applications using Camera PreviewCallback

7.5.2 Front-Facing Camera

Device implementations MAY include front-facing camera If device implementation includes front-lacing camera it

MUST have resolution of at least VGA that is 640x480 pixels

MUST NOT use front-facing camera as the default for the Camera API That is the camera API in Android 2.3 has specific support for

front-facing cameras and device implementations MUST NOT configure the API to to treat front-facing camera as the default rear-facing

camera even if it is the only camera on the device

MAY include features such as auto-focus flash etc available to rear-facing cameras as described in Section 7.5.1

MUST horizontally reflect i.e mirror the stream displayed by an app in CameraPreview as follows

If the device implementation is capable of being rotated by user such as automatically via an accelerometer or manually via user input the

camera preview MUST be mirrored
horizontally

relative to the devices current orientation

If the current application has explicitly requested that the Camera display be rotated via call to the

android hardware Camera setflisplayCrientation IResources 40 method the camera preview MUST be mirrored horizontally

relative to the orientation specified by the application

Otherwise the preview MUST be mirrored along the devices default horizontal axis

MUST mirror the image data returned to any postview camera callback handlers in the same manner as the camera preview image stream If

the device implementation does not support postview callbacks this requirement obviously does not apply

MUST NOT mirror the final captured still image or video streams returned to application callbacks or committed to media storage

7.5.3 Camera API Behavior

Device implementations MUST implement the following behaviors for the camera-related APIs for both front- and rear-facing cameras

If an application has never called android.hardware.Camera.Parameters.setPreviewFormatOnt then the device MUST use

android.hardware.PixelFormat.YCbCr_420_SP for preview data provided to application callbacks

If an application registers an android.hardware.Camera.Previewcallback instance and the system calls the onPreviewFrame method when the

preview format is YCbCr_420_SP the data in the byte passed into onPreviewFrame must further be in the NV21 encoding format That is

NV21 MUST be the default

Device implementations SHOULD support the Wi format as denoted by the android graphics ImageForinat Y712 constant for

camera previews for both front- and rear-facing cameras Note that the Compatibility Definition for future version is planned to change this

requirement to MUST That is YVI2 support is optional in Android 2.3 but will be required by future version Existing and new devices that

run Android 2.3 are very strongly encouraged to meet this requirement in Android 2.3 or they will not be able to attain Android compatibility

when upgraded to the future version

Device implementations MUST implement the lull Camera API included in the Android 2.3 SDK documentation 41 regardless of

whether the device includes hardware autofocus or other capabilities For instance cameras that lack autofocus MUST still call any registered

android.hardware .Camera .AutoFocusCallback instances even though this has no relevance to non-autofocus camera Note that this

20

Oracle America Inc Google Inc GOOGLE-OO-00000647

31 O-cv-03561 -WHA

does apply to front-facing cameras for instance even though most front-facing cameras do not support autofocus the API callbacks must still be

faked as described

Device implementations MUST recognize and honor each parameter name defined as constant on the

andro hardware Carrera Pararieters class if the underlying hardware supports the feature If the device hardware does not support

feature the API must behave as documented Conversely Device implementations MUST NOT honor or recognize string constants passed to the

ci rdwre.Carre a.se ararr Ii sQ method other than those documented as constants on the

nda id hardware Cameta Paidni tet That is device implementations MUST support all standard Camera parameters if the hardware

allows and MUST NOT support custom Camera parameter types

7.5.4 Camera Orientation

Both front- and rear-facing cameras if present MUST be oriented so that the long dimension of the camera aligns with the screens long dimention

That is when the device is held in the landscape orientation cameras MUST capture images in the landscape orientation This applies regardless

of the devices natural orientation that is it applies to landscape-primary devices as well as portrait-primary
devices

7.6 Memory and Storage

The fundamental function of Android 2.3 is to run applications Device implementations MUST the requirements of this section to ensure adequate

storage and memory for applications to run properly

7.6.1 Minimum Memory and Storage

Device implementations MUST have at least 128MB of memory available to the kernel and userspace The 128MB MUST be in addition to any

memory dedicated to hardware components such as radio memory and so on that is not under the kernels control

Device implementations MUST have at least 150MB of non-volatile storage available for user data That is the cia partition
MUST be at least

150MB

Beyond the requirements above device implementations SHOULD have at least 1GB of non-volatile storage available for user data Note that this

higher requirement is planned to become hard minimum in future version of Android Device implementations are strongly encouraged to meet

these requirements now or else they may not be eligible for compatibility for future version of Android

The Android APIs include Download Manager that applications may use to download data files The Download Manager implementation MUST be

capable of downloading individual files 55MB in size or larger The Download Manager implementation SHOULD be capable of downloading files

100MB in size or larger

7.6.2 Application Shared Storage

Device implementations MUST offer shared storage for applications The shared storage provided MUST be at least 1GB in size

Device implementations MUST be configured with shared storage mounted by default out of the box If the shared storage is not mounted on the

Linux path sd aid then the device MUST include Linux symbolic link from scVard to the actual mount point

Device implementations MUST enforce as documented the androicLprm criWRI EXT RNAL STDRXGE permission on this shared

storage Shared storage MUST otherwise be writable by any application that obtains that permission

Device implementations MAY have hardware for user-accessible removable storage such as Secure Digital card Alternatively device

implementations MAY allocate internal non-removable storage as shared storage for apps

Regardless of the form of shared storage used device implementations MUST provide some mechanism to access the contents of shared storage

from host computer such as USB mass storage or Media Transfer Protocol

It is illustrative to consider two common examples If device implementation includes an SD card slot to satisfy the shared storage requirement

FAT-formatted SD card 1GB in size or larger MUST be included with the device as sold to users and MUST be mounted by default Alternatively if

device implementation uses internal fixed storage to satisfy this requirement that storage MUST be 1GB in size or larger and mounted on

sdcard or sdcarcl MUST be symbolic link to the physical location if it is mounted elsewhere

Device implementations that include
multiple

shared storage paths such as both an SD card slot and shared internal storage SHOULD modify the

core applications such as the media scanner and ContentProvider to transparently support files placed in both locations

21

Oracle America Inc Google Inc GOOGLE-OO-00000648

31 O-cv-03561 -WHA

7.7 USB

Device implementations

MUST implement USB client connectable to USB host with standard USB-A port

MUST implement the Android Debug Bridge over USB as described in Section

MUST implement the USB mass storage specification to allow host connected to the device to access the contents of the /sdcard volume

SHOULD use the micro USB form factor on the device side

MAY include non-standard port on the device side but if so MUST ship with cable capable of connecting the custom pinout to standard

USB-A port

Performance Compatibility

Compatible implementations must ensure not only that applications simply run correctly on the device but that they do so with reasonable

performance and overall good user experience Device implementations MUST meet the key performance metrics of an Android 2.3 compatible

device defined in the table below

Metric Performance Threshold Comments

The launch time is measured as the total

The following applications should launch

time to complete loading the default
within the specified time

activity for the application including the

Application Launch Time Browser less than l300ms
time it takes to start the Linux process

MMS/SMS less than 700ms
load the Android package into the Dalvik

AlarmClock less than 650ms
VM and call onCreate

When multiple applications have been

launched re-launching an already-running

Simultaneous Applications application after it has been launched

must take less than the original launch

time

Security Model Compatibility

Device implementations MUST implement security model consistent with the Android platform security model as defined in Security and

Permissions reference document in the APIs 42 in the Android developer documentation Device implementations MUST support

installation of self-signed applications without
requiring any additional permissions/certificates from any third parties/authorities Specifically

compatible devices MUST support the security mechanisms described in the follow sub-sections

9.1 Permissions

Device implementations MUST support the Android permissions model as defined in the Android developer documentation 421

Specifically implementations MUST enforce each permission defined as described in the SDK documentation no permissions may be omitted

altered or ignored Implementations MAY add additional permissions provided the new permission ID
strings are not in the android namespace

9.2 UID and Process Isolation

Device implementations MUST support the Android application sandbox model in which each application runs as unique Unix-style UID and in

separate process Device implementations MUST support running multiple applications as the same Linux user ID provided that the applications

are properly signed and constructed as defined in the Security and Permissions reference IResources 421

9.3 Filesystem Permissions

22

Oracle America Inc Google Inc GOOGLE-OO-00000649

31 O-cv-03561 -WHA

Device implementations MUST support the Android file access permissions model as defined in as defined in the Security and Permissions

reference 42

9.4 Alternate Execution Environments

Device implementations MAY include runtime environments that execute applications using some other software or technology than the Dalvik

virtual machine or native code However such alternate execution environments MUST NOT compromise the Android security model or the security

of installed Android applications as described in this section

Alternate runtimes MUST themselves be Android applications and abide by the standard Android security model as described elsewhere in

Section

Alternate runtimes MUST NOT be granted access to resources protected by permissions not requested in the runtimes AndroidManifest.xml file via

the usespeimission mechanism

Alternate runtimes MUST NOT permit applications to make use of features protected by Android permissions restricted to system applications

Alternate runtimes MUST abide by the Android sandbox model Specifically

Alternate runtimes SHOULD install apps via the PackageManager into separate Android sandboxes that is Linux user IDs etc

Alternate runtimes MAY provide single Android sandbox shared by all applications using the alternate runtime

Alternate runtimes and installed applications using an alternate runtime MUST NOT reuse the sandbox of any other app installed on the device

except through the standard Android mechanisms of shared user ID and signing certificate

Alternate runtimes MUST NOT launch with grant or be granted access to the sandboxes corresponding to other Android applications

Alternate runtimes MUST NOT be launched with be granted or grant to other applications any privileges of the superuser root or of any other

user ID

The .apk files of alternate runtimes MAY be included in the system image of device implementation but MUST be signed with key distinct from

the key used to sign other applications included with the device implementation

When installing applications alternate runtimes MUST obtain user consent for the Android permissions used by the application That is if an

application needs to make use of device resource for which there is corresponding Android permission such as Camera GPS etc the

alternate runtime MUST inform the user that the application will be able to access that resource If the runtime environment does not record

application capabilities in this manner the runtirne environment MUST list all permissions held by the runtime itself when installing any application

using that runtime

10 Software Compatibility Testing

The Android Open-Source Project includes various
testing

tools to
verify

that device implementations are compatible Device implementations

MUST pass all tests described in this section

However note that no software test package is fully comprehensive For this reason device implementers are very strongly encouraged to make

the minimum number of changes as possible to the reference and preferred implementation of Android 2.3 available from the Android Open-Source

Project This will minimize the risk of introducing bugs that create incompatibilities requiring
rework and

potential
device updates

10.1 Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite CTS IResources available from the Android Open Source Project

using the final shipping software on the device Additionally device implernenters SHOULD use the reference implementation in the Android Open

Source tree as much as possible and MUST ensure compatibility in cases of ambiguity in CTS and for any reimplementations of parts of the

reference source code

The CTS is designed to be run on an actual device Like any software the CTS may itself contain bugs The CTS will be versioned independently of

this Compatibility Definition and multiple revisions of the CTS may be released for Android 2.3 Device implementations MUST pass the latest CTS

version available at the time the device software is completed

23

Oracle America Inc Google Inc GOOGLE-OO-00000650

31 O-cv-03561 -WHA

MUST pass the most recent version of the Android Compatibility Test Suite CTS available at the time of the device implementations software is

completed The CTS is available as part of the Android Open Source Project The CTS tests many but not all of the components

outlined in this document

10.2 CTS Verifier

Device implementations MUST correctly execute all applicable cases in the CTS Verifier The CTS Verifier is included with the Compatibility Test

Suite and is intended to be run by human operator to test functionality
that cannot be tested by an automated system such as correct functioning

of camera and sensors

The CTS Verifier has tests for many kinds of hardware including some hardware that is optional Device implementations MUST pass all tests for

hardware which they possess for instance if device possesses an accelerometer it MUST correctly execute the Accelerometer test case in the

CTS Verifier Test cases for features noted as optional by this Compatibility Definition Document MAY be skipped or omitted

Every device and every build MUST correctly run the CS Verifier as noted above However since many builds are very similar device

implementers are not expected to explicitly run the CTS Verifier on builds that differ only in trivial ways Specifically device implementations that

differ from an implementation that has passed the CTS Verfier only by the set of included locales branding etc MAY omit the CTS Verifier test

10.3 Reference Applications

Device implementers MUST test implementation compatibility using the following open-source applications

The Apps for Android applications IResources 431

Replica Island available in Android Market only required for device implementations that support with OpenGL ES 2.0

Each app above MUST launch and behave
correctly on the implementation for the implementation to be considered compatible

11 Updatable Software

Device implementations MUST include mechanism to replace the entirety of the system software The mechanism need not perform live

upgrades -- that is device restart MAY be required

Any method can be used provided that it can replace the
entirety

of the software
preinstalled on the device For instance any of the following

approaches will satisfy this requirement

Over-the-air OTA downloads with offline update via reboot

Tethered updates over USB from host PC

Offline updates via reboot and update from file on removable storage

The update mechanism used MUST support updates without wiping user data Note that the upstream Android software includes an update

mechanism that satisfies this requirement

If an error is found in device implementation after it has been released but within its reasonable product lifetime that is determined in consultation

with the Android Compatibility Team to affect the compatibility of third-party applications the device implementer MUST correct the error via

software update available that can be applied per the mechanism just described

12 Contact Us

You can contact the document authors at compaub ityandrodcom for clarifications and to bring up any issues that you think the document does

not cover

24

Oracle America Inc Google Inc GOOGLE-OO-00000651

31 O-cv-03561 -WHA

Appendix Bluetooth Test Procedure

The Compatibility Test Suite includes cases that cover basic operation of the Android RFCOMM Bluetooth API However since Bluetooth is

communications protocol between devices it cannot be fully tested by unit tests running on single device Consequently device implementations

MUST also pass the human-operated Bluetooth test procedure described below

The test procedure is based on the BluetoothChat sample app included in the Android open-source project tree The procedure requires two

devices

candidate device implementation running the software build to be tested

separate device implementation already known to be compatible and of model from the device implementation being tested -- that is

known good device implementation

The test procedure below refers to these devices as the candidate and known good devices respectively

Setup and Installation

Build Bluetoothchat.apk via make samples from an Android source code tree

Install Bluetoothchat.apk on the known-good device

Install BluetoothChat.apk on the candidate device

Test Bluetooth Control by Apps

Launch BluetoothChat on the candidate device while Bluetooth is disabled

Verify that the candidate device either turns on Bluetooth or prompts the user with dialog to turn on Bluetooth

Test Pairing and Communication

Launch the Bluetooth Chat app on both devices

Make the known-good device discoverable from within Bluetoothchat using the Menu

On the candidate device scan for Bluetooth devices from within BluetoothChat using the Menu and pair with the known-good device

Send 10 or more messages from each device and verify that the other device receives them correctly

Close the BluetoothChat app on both devices by pressing Home

Unpair each device from the other using the device Settings app

Test Pairing and Communication in the Reverse Direction

Launch the Bluetooth Chat app on both devices

Make the candidate device discoverable from within BluetoothChat using the Menu

On the known-good device scan for Bluetooth devices from within BluetoothChat using the Menu and pair with the candidate device

Send 10 or messages from each device and
verify

that the other device receives them correctly

Close the Bluetooth Chat app on both devices by pressing Back repeatedly to get to the Launcher

Test Re-Launches

Re-launch the Bluetooth Chat app on both devices

Send 10 or messages from each device and verify that the other device receives them correctly

Note the above tests have some cases which end test section by using Home and some using Back These tests are not redundant and are not

optional the objective is to verify
that the Bluetooth API and stack works correctly both when Activities are explicitly

terminated via the user

pressing Back which calls finishQ and implicitly sent to background via the user pressing Home Each test sequence MUST be performed as

25

Oracle America Inc Google Inc GOOGLE-OO-00000652

31 O-cv-03561 -WHA

described

26

Oracle America Inc Google Inc GOOGLE-OO-00000653

31 O-cv-03561 -WHA

