Android Compatibility | Android Open Source Page | of 2

Horne Source Compatibility Tech Infe Community About

Getting Started Android Compatibility
Compatibility Overview
Current COD Android’s purpose is to establish an open platform for developers to
CTS Intreduction build innovative mobile apps. Three key components work together to
CTS Development realize this platform.

More Information The Android Compatibility Program defines the technical details of
Downloads Android platform and provides tools used by OEMs to ensure that
FAQES developers’ apps run on a variety of devices. The Android SDK
Contact Us provides built-in tools that Developers use to clearly state the device

features their apps require. And Android Market shows apps only to
those devices that can properly run them.

These pages describe the Android Compatibility Program and how to get access to compatibility information and
tools. The latest version of the Android source code and compatibility program is 2.3, which corresponded to the
Gingerbread branch.

Why build compatible Android devices?
Users want a customizable device.

A mobile phone is a highly personal, always-on, always-present gateway to the Internet. We haven't met a user
yet who didn't want to customize it by extending its functionality. That's why Android was desighed as a robust
platform for running after-market applications.

Developers outnumber us all.

No device manufacturer can hope to write all the software that a person could conceivably need. We need third-
party developers to write the apps users want, so the Android Open Source Project aims to make it as easy and
open as possible for developers to build apps.

Everyone needs a common ecosystem.

Every line of code developers write to wark around a particular phone's bug is a line of code that didn't add a
new feature. The more compatible phones there are, the more apps there will be. By building a fully compatible
Android device, you benefit from the huge pool of apps written for Android, while increasing the incentive for
developers to build more of those apps.

Android compatibility is free, and it's easy.

If you are building a mobile device, you can follow these steps to make sure your device is compatible with
Android. For more details about the Android compatibility program in general, see the pragram averview.

Building a compatible device is a three-step process:

1. Obtain the Android software source code. This is the source code for the Android platform, that you port
to your hardware.

2. Comply with Android Compatibility Definition Document (CDD). The CDD enumerates the software and

http://source.android.com/compatibility/
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000528
3:10-cv-03561-WHA

UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

TRIAL EXHIBIT 2802

CASE NO. 10-03561 WHA
DATE ENTERED

By

DEPUTY CLERK

Trial Exhibit 2802 Page 1 of 141

Android Compatibility | Android Open Source Page 2 of 2

hardware requirements of a compatible Android device.
3. Pass the Compalibility Test Suite (CTS). You can use the CTS (included in the Android source code) as
an ongoing aid to compatibility during the development process.

Joining the Ecosystem

Once you've built a compatible device, you may wish to include Android Market to provide your users access to
the third-party app ecosystem. Unfortunately, for a variety of legal and business reasons, we aren't able to
automatically license Android Market to all compatible devices. To inquire about access about Android Market,
you can contact us.

Site Terms of Service - Privacy Policy GotoTop

http://source.android.com/compatibility/

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000529
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 2 of 141

Compatibility Program Overview | Android Open Source Page 1 of 2

Android.com
Home Source Compatibility Tech info Community About
Getting Started Compatibility Program Overview
Compatibility Overview
Current CDD The Android compatibility program makes it easy for mobile device
CTS Introduction manufacturers to develop compatible Android devices.
CTS Development
Program goals
More Information
Downloads The Android compatibility program works for the benefit of the entire
FAQs Android community, including users, developers, and device

Contact Us manufacturers.

Each group depends on the others. Users want a wide selection of devices and great apps; great apps come
from developers motivated by a large market for their apps with many devices in users' hands; device
manufacturers rely on a wide variety of great apps to increase their products' value for consumers.

Our goals were designed to benefit each of these groups:

e Provide a consistent application and hardware environment to application developers. Without a strong
compatibility standard, devices can vary so greatly that developers must design different versions of their
applications for different devices. The compatibility program provides a precise definition of what
developers can expect from a compatible device in terms of APIs and capabilities. Developers can use
this information to make good design decisions, and be confident that their apps will run well on any
compatible device.

e Enable a consistent application experience for consumers. If an application runs well on one compatible
Android device, it should run well on any other device that is compatible with the same Android platform
version. Android devices will differ in hardware and software capabilities, so the compatibility program
also provides the tools needed for distribution systems such as Android Market to implement appropriate
filtering. This means that users can only see applications which they can actually run.

e Enable device manufacturers to differentiate while being compatible. The Android compatibility program
focuses on the aspects of Android relevant to running third-party applications, which allows device
manufacturers the flexibility to create unique devices that are nonetheless compatible.

e Minimize costs and overhead associated with compatibility. Ensuring compatibility should be easy and
inexpensive to device manufacturers. The testing tool (CTS) is free, open source, and available for
download. CTS is designed to be used for continuous self-testing during the device development process
to eliminate the cost of changing your workflow or sending your device to a third party for testing.
Meanwhile, there are no required certifications, and thus no corresponding costs and fees.

The Android compatibility program consists of three key components:

e The source code to the Android software stack
e The Compatilbility Definition Document, representing the "policy” aspect of compatibility
o The Compatilbility Test Suite, representing the "mechanism" of compatibility

http://source.android.com/compatibility/overview.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000530
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 3 of 141

Compatibility Program Overview | Android Open Source Page 2 of 2

Just as each version of the Android platform exists in a separate branch in the source code tree, there is a
separate CTS and CDD for each version as well. The CDD, CTS, and source code are -- along with your
hardware and your software customizations -- everything you need to create a compatible device.

Compatibility Definition Document (CDD)

For each release of the Android platform, a detailed Compatibility Definition Document (CDD) will be provided.
The CDD represents the "policy” aspect of Android compatibility.

No test suite, including CTS, can truly be comprehensive. For instance, the CTS includes a test that checks for
the presence and correct behavior of OpenGL graphics APIs, but no software test can verify that the graphics
actually appear correctly on the screen. More generally, it's impossible to test the presence of hardware features
such as keyboards, display density, WiFi, and Bluetooth.

The CDD's role is to codify and clarify specific requirements, and eliminate ambiguity. The CDD does not attempt
to be comprehensive. Since Android is a single corpus of open-source code, the code itself is the comprehensive
"specification" of the platform and its APls. The CDD acts as a "hub", referencing other content (such as SDK
AP| documentation) that provides a framework in which the Android source code may be used so that the end
result is a compatible system.

If you want to build a device compatible with a given Android version, start by checking out the source code for
that version, and then read the corresponding CDD and stay within its guidelines. For additional details, simply
examine the latest CDD.

Compatibility Test Suite (CTS)

The CTS is a free, commercial-grade test suite, available for download. The CTS represents the "mechanism" of
compatibility.

The CTS runs on a desktop machine and executes test cases directly on attached devices or an emulator. The
CTS is a set of unit tests designed to be integrated into the daily workflow (such as via a continuous build
system) of the engineers building a device. Its intent is to reveal incompatibilities early on, and ensure that the
software remains compatible throughout the development process.

For details on the CTS, consult the CTS introduction.

Site Terms of Service - Privacy Policy Go to Top

http://source.android.com/compatibility/overview.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000531
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 4 of 141

Compatibility Test Suite (CTS) Framework User
Manual

Android 1.6 CTS r4
Open Handset Alliance

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000532
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 5 of 141

Contents

1. Why be compatible?..........ccc e e e 3
2. How can | become compatible? ... 4
2.1. Comply with Android Compatibility Definition document................. 4
2.2. Pass the Compatibility Test Suite (CTS)........covciiiimiiiiiieeeeeeeees 4
2.3, SUDMIL FEPOIT .ttt e ee e e 4
3. How does the CTS WOrk?......ccoiiiiimmmemessssisnssnnssssssssss e snsssssssssssnssnssasass 5
3.1 WOIKIIOW .. a e e e e 5
3.2. TYpes Of tESt CASES ..o iviieiiiii e e 6
3.3. Areas CoVEredo e 6
4. Setting up and using the CTS..........or i s 8
4.1. Configuring the CTS ... 8
4.2, Setting UP YOUI dBVICEuvviiiiieiiiieiieiie et 8
4.3.UsINg the CTS. ... 9
4.4, Selecting CTS Plans ... 9
5. Interpreting the Test ReSults ... 11
6. Release NOLEScccviiiiiiiiececrceceresnssss s sn s s s s s s e s e 13
B.1. GENEIAI ...t 13
6.2. KNOWN FrameworK iSSUEScccuuueiieieee ettt 13
6.3. KNOWN TS ISSUBS ..cciiiiiiiiiiiiiciieie et 0
7. Appendix: CTS Console Command Reference.......cccccceevvrmrmennnnnnnns 14

Google Confidential
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000533
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 6 of 141

More
devices

The Android
More users Loosystem, ..

More
developers
& content

1. Give your users the best possible experience with the applications they run.
When a device is compatible with Android, users can choose from among many
high-quality applications. Applications that take full advantage of Android's
features are likely to perform best on compatible devices.

2. Make it easy for developers to write top-quality applications for your device.
Developers want to streamline their applications for Android, and this is easiest
for them when they are writing for a predictable platform.

3. Take advantage of the Android Market.

Compatible handsets can give users access to the Android Market.

Android compatibility is free, and it's easy.

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000534
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 7 of 141

Comply with Android Pass the Compatibility Submit CTS Report
Compatibility Definition Test Suite (CTS)

2.1. Comply with Android Compatibility Definition document

To start, read the Android compatibility definition for the Android platform version that
you want. This document enumerates the software and the hardware features in a
compatible Android device. Except where noted, the features are all required for
Android compliance. To learn more about Android compatibility definition in general,
and to locate and download a particular definitions document, see the current
Compatibility Definition. Archived versions of older Compatibility Definitions may be
found on the Downloads page.

2.2. Pass the Compatibility Test Suite (CTS)

The Compatibility Test Suite (CTS) is a downloadable open-source testing harness that
you can use in any way you like as you develop your handset; for example, you could
use the CTS to do continuous self-testing during your development work. For more
about the CTS and the compatibility report that it generates, see the Compatibility Test
Suite page. For instructions on using the CTS, see the CTS User Guide.

2.3. Submit report

When you are ready to claim compatibility for your device, you can submit the CTS-
generated report to cts@android.com. When you submit a CTS report, you can also
request access to the Android Market.

* This is an early preview of CTS. The compatibility site and the service to certify your
compatibility reports are work in progress - we will update you when these are ready.

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000535
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 8 of 141

On your machine

Download and
install the CTS.
Devices you attach

to your maching

Runthe CTE. Test
axanution e
Test
Store and view rasuls
resulis.

The CTS is an automated testing harness that includes two major software
components:
» The CTS test harness runs on your desktop machine and manages test
execution.
» Individual test cases are executed on attached mobile devices or on an
emulator. The test cases are written in Java as JUnit tests and packaged as
Android .apk files to run on the actual device target.

3.1. Workflow

1. Use the bundled CTS release or download the CTS from the Android Open
Source Project onto your desktop machine.
Install and configure the CTS.
Attach at least one device (or emulator) to your machine.
Launch the CTS. The CTS test harness loads the test plan onto the attached
devices. For each test in the test harness:
o The test harness pushes a .apk file to each device, executes the test
through instrumentation, and records test results.
> The test harness removes the .apk file from each device.
5. Once all the tests are executed, you can view the test results in your browser
and use the results to adjust your design. You can continue to run the CTS
throughout your development process.

B wN

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000536
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 9 of 141

When you are ready, you can submit the report generated by the CTS to
cts@android.com. The report is a .zip archived file that contains XML results and
supplemental information such as screen captures.

3.2. Types of test cases

The CTS includes the following types of test cases:
» Unit tests test atomic units of code within the Android platform; e.g. a single
class, such as java.util.LHashMap.
» Functional tests test a combination of APls together in a higher-level use-case.
» Reference application tests instrument a complete sample application to
exercise a full set of APIs and Android runtime services

Future versions of the CTS will include the following types of test cases:
* Robustness tests test the durability of the system under stress.
* Performance tests test the performance of the system against defined
benchmarks, for example rendering frames per second.

3.3. Areas Covered

The unit test cases cover the following areas to ensure compatibility

Area Description

For each Android release, there are XML files describing the
signatures of all public APIs contained in the release. The CTS
Signature tests contains a utility to check those API signatures against the APIs
available on the device. The results from signature checking are
recorded in the test result XML file.

Test the platform (core libraries and Android Application

Framework) APIs as documented in the SDK Class Index to ensure

API correctness:

Platform API Tests correct class, attribute and method signatures

 correct method behavior

* negative tests to ensure expected behavior for incorrect
parameter handling

Dalvik VM Tests The tests focus on testing the Dalvik VM

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000537
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 10 of 141

The CTS tests the core platform data model as exposed to
application developers through content providers, as documented in
the SDK android.provider package:

Platform Data Model » contacts

* browser

+ settings

* more...

The CTS tests the core platform intents, as documented in the SDK
Platform Intents Available Intents.

The CTS tests the core platform permissions, as documented in the
Platform Permissions ' SDK Available Permissions.

The CTS tests for correct handling of the core platform resource
types, as documented in the SDK Available Resource Types. This
includes tests for:

» simple values

+ drawables

* nine-patch

* animations

*+ layouts

+ styles and themes

+ loading alternate resources

Platform Resources

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000538
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 11 of 141

4.1. Configuring the CTS

To run CTS, make sure you have atleast the Android 1.6 r1 SDK installed on your
machine. **There are changes to adb in 1.6 that will cause CTS to not work
correctly with older versions of adb.**

To configure CTS, extract the contents of the zip file and edit the android-cts/
tools/startcts script - modify the variable SDK_ROOT to match your environment.

Example:
SDK_ROOT=/home/myuser/android-sdk-linux x86-1.6 rl
This should point to the top-level directory where you unzipped the Android 1.6 SDK to.

4.2. Setting up your device

CTS can be executed only on consumer device since Android 1.6 -- you can run CTS
only on developer builds for Android 1.0 and 1.5.

This section is important as not following these instructions will lead to test timeouts/
failures:

1. Please download and install the Android 1.6 SDK on your machine.

2. Your phone should be running a user build (Android 1.6 and later) from
source.android.com

3. Please refer to this link on the Android developer site and set up your device
accordingly.

4. Make sure that your device has been flashed with a user build (Android 1.6 and
later) before you run CTS.

5. You need to download the TTS files via Settings > Speech synthesis > Install
voice data before running CTS tests. (Note that this assumes you have Android
Market installed on the device, if not you will need to install the files manually via
adb)

6. Itis advisable to log in to the device with a test Google account, not an account
that you actually use.

7. Make sure the device has a SD card plugged in and the card is empty. Warning:
CTS may modify/erase data on the SD card plugged in to the device.

8. Do a factory data reset on the device (Settings > SD Card & phone storage >
Factory data reset). Warning: This will erase all user data from the phone.

9. Make sure no lock pattern is set on the device (Settings > Security & location >
Require Pattern should be unchecked.

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000539
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 12 of 141

10. Make sure the "Screen Timeout" is set to "Never Timeout" (Settings > Sound &
Display > Screen Timeout should be set to "Never Timeout".

11. Make sure the "Stay Awake" development option is checked (Settings >
Applications > Development > Stay awake).

12. Make sure Settings > Application > Development > Allow mock locations is set
to true.

13. Make sure the device is at the home screen at the start of CTS (Press the home
button).

14. While a device is running tests, it must not be used for any other tasks.

15. Do not press any keys on the device while CTS is running. Pressing keys or
touching the screen of a test device will interfere with the running tests and may
lead to test failures.

4.3. Using the CTS

To run a test plan:

1. Make sure you have at least one device connected (or the emulator running).
Launch the CTS console by running the startcts script which you modified to
match your environment, e.g.
$ bash android-cts/tools/startcts

2. You may start the default test plan (containing all of the test packages) by typing
start --plan CTS. This will kick off all the CTS tests required for
compatibility.

Type 1s -p to see a list of test packages in the repository.

Type 1s --plan to see a list of test plans in the repository.

See the CTS command reference or type help for a complete list of supported
commands.

3. Alternately, you can just run a CTS plan from the command line using
startcts start --plan <plan name>

4. You should test progress and results reported on the console.

4.4. Selecting CTS Plans

For this release the following 7 test plans are available.

1. CTS - contains all tests and will run ~21,000 tests on your device. These tests
are required for compatibility. At this point performance tests are not part of this
plan (this will change for future CTS releases).

Signature - contains the signature verification of all public APls
Android - contains tests for the android APIs

Java - contains tests for the Java core library

VM - contains tests for the Dalvik virtual machine

ok wn

Google Confidential
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000540
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 13 of 141

6. RefApp - contains reference application tests (more coming in future CTS
release)

7. Performance - contains performance tests for your implementation (more
coming in future CTS releases)

These can be executed with the start command as mentioned earlier.

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000541
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 14 of 141

The test results are placed in the file:

$CTS _ROOT/repository/results/<start time>.zip

Inside the zip, the testResult.xml file contains the actual results -- open this file in
any web browser (Firefox 3.x recommended) to view the test results.

Test Report for dream - HT851LZ01986

Device Wake dream

Bulld madel HIBE1LED1060

Frinware Yarsion b

Elrmware Buid Number CURCAKE Plan name CIs

Andrmia Flatfom Version 3 Starttime Wee Feb 17 18:20:68 PST 2004
Slpponied Locales Bn USeser USize doen; Endtime Weo Feb 11 154848 ¥ T ity
Gress sire 320xthn Nersion 18

=hone number it

w o fROBZ10Y

di 181 08814 Hoals Passed 1448

Touch finger Tesls Falled 40

Navigation frackbal Testatimedmt o

Hevpad gwerty Tosts Not Executad 0

Network

IME! 321876030 40828

IbASE full

Test Summary by Package

andraid net 55130
ancroid oz b
dndroid poviger 16110
androle Bt 147 1150
andr il ey eyl

The 'device information' section provides details about the device and the firmware
(make, model, firmware build, platform) and the hardware on the device (screen
resolution, keypad, screen type).

The details of the executed test plan are present in the ‘fest summary’ section which
provides the CTS plan nhame and execution start and end times. It also presents an
aggregate summary of the number of tests that passed, failed, time out or could not be
executed.

The next section also provides a summary of tests passed per package.

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000542
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 15 of 141

Compatibifity Test Package: android.widget

[:androbd widgebols.
- AbsSeslBlarTont
- iestGonsilicter
- testAccass ThumbOfiset
- testSetThurrh
~ festOnTouchtvent
- (estDrawableStateChanged
~testOnDraw
= 1estOnisasire
- testVeriyDrawanls

= testOnSireChanoed

= testAndroifTestDageSatup roparty
- ButtonTest

-~ iestCansiunior

- instAndroid TestlUaseSelinPpary
- Chronomeieries)

- tastConsiucior

= lesthccensBase

< estAccessFonnal

- testOnDetachediramWindow

= testOnWindowVisitiih Chanced

= estStarandsion

- CompoundButtonTest

= iestConstricior

« {esthccessChecked

- testSetOnChaovedChangst islerer
= lastipngie

- testPeriormClick

- testlawableSiateChanaed

= testSetButionDrawableBylirawabie
- testBetButionDrawableBild

< dasfOnCraate Urawanipdbate

= {estOnDraw

Lisethrirnsinatonsatiiata

This is followed by details of the the actual tests that were executed. The report lists the
test package, test suite, test case and the executed tests. It shows the result of the test
execution - pass, fail, timed out or not executed. In the event of a test failure details are
provided to help diagnose the cause. Further, the stack trace of the failure is available in
the XML file but is not included in the report to ensure brevity - viewing the XML file with
a text editor should provide details of the test failure (search for the <Test> tag
corresponding to the failed test and look within it for the <StackTrace> tag).

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000543
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 16 of 141

6.1. General

« This CTS release contains approximately 21,000 tests that you can execute on
the device.

» Please make sure all steps in section 4.2 "Setting up your device" have been
followed before you kick off CTS. Not following these instructions may cause
tests to timeout or fail.

6.2. Known Issues

+ The framework restarts the device periodically -- this is expected behavior.

» Concurrent devices are not supported in this release -- CTS can be executed on
only one device at a given time.

* The CTS console allows the user to derive a new test plan based on previous
results. This is useful for re-running tests that did not pass in a previous run.
Successive derivation of test plans (i.e. deriving a test plan from test results of
an already derived test plan) may result in the plan including extra tests -- this is
a known issue for this release.

+ Occasionally while running the tests, a system dialog may pop up informing the
user that process 'android.process.acore’ is not responding. The user is given
the option to Kill the process or wait for it to respond. This alert dialog interferes
with some tests by grabbing all key and pointer events, causing the tests to fail.
Re-running the tests usually fixes the problem.

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000544
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 17 of 141

Host
help
exit

Test Plan

Is --plan [<test_plan_name>]

add --plan <new_plan_name>

add --derivedplan <new_plan_name>
[-s <session_id>]
[-r [pass | fail | timeout | notExecuted]]

rm --plan <test_plan_name | all>

start
--plan <test_plan_name>

Google Confidential

Oracle America, Inc. v. Google Inc.

Display the list of available commands.

Exit the CTS console.

Displays the contents of the specified test
plan. If no plan is specified, a list of all
plans is displayed.

Create a new test plan. The console will
guide you through the test packages to
select the tests you want to include in your
plan. Note that the plan name must be
unique.

Create a new test plan from an existing
result. This test plan will consist of all test
with the specified result type in the
specified session. If no result type is
given, all but the passed tests are
included. If no session is given, the latest
results are used.

Remove the specified plan from the plan
repository. all removes all test plans

Start the specified test plan and displays
progress information. The console will
only prompt for further commands when
the plan has run to completion.

If there are available test sessions for the
specified test plan, the CTS console will
prompt user to choose between two
options:

(1) Choose a session from the existing
sessions;

3:10-cv-03561-WHA

Trial Exhibit 2802 Page 18 of 141

GOOGLE-00-00000545

-d, --device <device_id>

-1, --test <test_name>

-p, --package <java_package_name>
Test Package

Is
-p, --package [<package name>]

add -p, --package <zip_file_path>

rm -p, --package [<package_name> | all]

Test Result
Is
-r, --result

[pass | fail | timeout | notExecuted]
[-s <session_id>]

History

history | h [<count>] [-e <num>]

Device

Is -d, --device

Google Confidential

Oracle America, Inc. v. Google Inc.

(2) Create a new session.

If more than one device connected, CTS
host will prompt user to choose one
device.

Start the specified test plan using the
specified device.

Start to run the specified test contained in
the specified test plan

Start to run the specified Java package
contained in the specified plan.

List all available test packages in the
repository. If package name is specified
then lists all its test suites/test cases.

Add new packages to the case repository.

Remove the specified package from the
case repository. all removes all packages

List the results for all available sessions. If
session_id is specified, then lists results
for that specific session.

If pass, fail, etc. is specified then filters
test results based on the specified results.

List all commands in history.

If count is specified, last count commands
in history are shown

-e allows the command with number num
to be executed directly from history

List all attached devices.

3:10-cv-03561-WHA

Trial Exhibit 2802 Page 19 of 141

GOOGLE-00-00000546

Google Confidential

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000547
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 20 of 141

Android Compatibility Definition: Android 1.6

Android 1.6 r2
Google Inc.
compatibility@android.com

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000548
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 21 of 141

Table of Contents

1 INErOAUCHION . s e e 4
R T o LT = 4
B T 1 - 5
3.1. Managed APl Compatibilitycccccoeoemmriecrcrcrer e e e 5
3.2. Soft APl Compatibilityccccevieerrir e sr e e 6
B R =1 4 3 T E=] o L 6
3.2.2. Build Parametersoo s ssss s s s s 6
3.2.3. Intent Compatibility.........ccoiiiiimri s ——— 8
3.2.3.1. Core Application INtents..........cccccccermmmemecececc e s e 8
3.2.3.2. INtent OVerrides. ..o s s e 8
3.2.3.3. Intent NameSPacCeS.....c.cucumucmrermmmmmnnrees e e s crnmncnmn s s s smsmsmsmams s snsnsmsmsnssnsnnnns 8
3.2.3.4. Broadcast Intents ... 9
3.3. Native APl Compatibilityccoccmmiinrmmririsr s 9
3.4. Web API Compatibilityccccoeecmmiismrir s 9
3.5. APl Behavioral Compatibility......ccccccemiiiiiiismmiiiicccr e 10
3.6. APl NamMESPACES ..uuiiiirrrmmsusisinrmnmmsssssssssnrnssnsssssssssssssnnasssssssssnsnmsssssssssessnsnsssssssnsnnnes 10
3.7. Virtual Machine Compatibilityccccoveiiiiommiiiicccc e 11
3.8. User Interface Compatibilityccceemiiiiiiiisii e 11
BT TR T T o - £ 11
3.8.2. Notificationscccemiiiii i ———_—— 12
3.8.3. SAICH ... —————————— 12
3.8.4. TOASES...co i ———————— 12
4. Reference Software Compatibilityccoovmmmmiiicies e 12
5. Application Packaging Compatibilitycccceivrmmmiiiiiiiicir s 13
6. Multimedia Compatibility.......cccccoiiiiiiiii e ——— 13
7. Developer Tool Compatibility.........cccceesmrimirmmmmrrnnnrr 14
8. Hardware Compatibilitycccccvisirinissmmmiiir s 15
= 0 R T o 15
8.1.1. Standard Display Configurationscc.ccccrirssmimnissnnniss s s 15
8.1.2. Non-Standard Display Configurationsccccceiiiiissnninssssnnissnnnnneesnnnnens 16
8.1.3. Display MetriCSccccmiiiirsmmiiemr s sss s s s s s s nn s s 16
L TR -V o T - 1 N 16
8.3. Non-touch Navigation ... s snses 16
8.4. Screen OrientatioN..........c.cccciiirrinniis s r s s s annnnanns 17
8.5. TOUCKSCreen INPUL......c.cociiiiiececece et cececeeee e eer s s s s er s e s e e e e nenmnmnesmsmsmsmsnsnsnsnnsnsnnes 17
B.6. USB ...ttt e s e e an e e e mnnennnnns 17
8.7. Navigation KEYScccciiiriiiiiismmmrmririsssssssssmssssssssssnsnmssnssssssssssnsnmssenssns snssssnsmmnnssnsnns 17
2 T 1T OO P PR 17
LR T 02 111 -1 - 18
8.9.1. NON-AUtofOoCUS CaAMErascccccmmrririrssssnnrssssssssssmasensssnssnsssssmmssmssssssnssssssnannnss 18
8.10. ACCEIErOMELEN.....cueciiiiiiiiiessinmmarer e e ssss s s manss s s s ssnms e r e s s essn s smmmsmn e e e sn s snsmannnsnsnns 18
30 B I 00Ty 1 T'o T= L= PP 19
2 R] 2 OSSP 19
20t o T Y 1= s 5 T 4 19
8.14. Volume CONLIOIS........coiiiiiiicincrmrrr s mss s s sss s s nr s s s s smar r s e s e s s mmnnn s nnans 19
9. Performance Compatibility.........ccccoiiiiiiiissrmri s e 19
10. Security Model Compatibilityccccciiiiiiiicissmmirrns s e 20
10.1. PErMISSIONS ..o cccccr i s s ses s s s s s s e s s s mmn n e e e s s s mmnmn e 20
10.2. User and Process ISolationcccciiiiiniinniisscsscccr s 20
10.3. Filesystem PermisSSions... ... s s smsn s s s s s ssssnes 21
11. Compatibility Test SUItecoiiiiiiirirr e s e 21
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000549
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 22 of 141

177 Y 1 = Lot G 21

Appendix A: Required Application Intents e 22
Appendix B: Required Broadcast Intentsccociimrirecciinninin s s s s se s sssssssens 0
Appendix C: Future Considerations...........ceriiiisecsir s s e e e e e e s ss s s 0
1. Non-telephone DeviCes.......cccco e iiiiiisrsrssr s s srrrrs s s ssssssssss s sserereressn e e s e s e s e se s erenensnsnnees 30
2. Bluetooth Compatibilityccccoimiiii i e 30
3. Required Hardware Components.............mmiemeeece e e e e e 30
4. Sample ApplicatioNs ... e s e 30
5. TOUCK SCIEENS ...ttt s s e e s mn e e e 30
6. PerformanCe. ... s s e 31
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000550
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 23 of 141

1. Introduction

This document enumerates the requirements that must be met in order for mobile phones to be
compatible with Android 1.6. This definition assumes familiarity with the Android Compatibility Program

[Resources, 1].

The use of "must", "must not", "required”, "shall", "shall not", "should", "should not", "recommended"”,
"may" and "optional" is per the IETF standard defined in RFC2119 [Resources, 2].

As used in this document, a "device implementer" or "implementer" is a person or organization developing
a hardware/software solution running Android 1.6. A "device implementation" or "implementation" is the
hardware/software solution so developed.

To be considered compatible with Android 1.6, device implementations:
1. MUST meet the requirements presented in this Compatibility Definition, including any documents
incorporated via reference.
2. MUST pass the Android Compatibility Test Suite (CTS) available as part of the Android Open
Source Project [Resources, 3]. The CTS tests most, but not all, components outlined in this
document.

Where this definition or the CTS is silent, ambiguous, or incomplete, it is the responsibility of the device
implementer to ensure compatibility with existing implementations. For this reason, the Android Open
Source Project [Resources, 4] is both the reference and preferred implementation of Android. Device
implementers are strongly encouraged to base their implementations on the "upstream" source code
available from the Android Open Source Project. While some components can hypothetically be replaced
with alternate implementations this practice is strongly discouraged, as passing the CTS tests will become
substantially more difficult. It is the implementer's responsibility to ensure full behavioral compatibility with
the standard Android implementation, including and beyond the Compatibility Test Suite.

2. Resources

This Compatibility Definition makes reference to a number of resources that can be obtained here.

1. Android Compatibility Program Overview: hitps:/siles.google.com/a/android.com/compatibility/

how-it-works

IETF RFC2119 Requirement Levels: http://www.ietf.org/rfe/rfc2119.1xt

3. Compatibility Test Suite: hitp://sites.google.com/a/android.com/compatibility/compatibility-test-
suite--cts

o

4. Android Open Source Project: http://source.android.com/

5. API definitions and documentation: hiip://developer.android.com/reference/packages.htmi

6. Content Providers: http://code.google.com/android/reference/android/provider/package-
summary.html

7. Available Resources: htip://code.google.com/android/reference/available-resources.html

8. Android Manifest files: hitp://code.google.com/android/devel/bblocks-manifest.html

9. Android Permissions reference: http://developer.android.com/reference/android/
Manifest.permission.html
10. Build Constants: http://developer.android.com/reference/android/os/Build.html
11. WebView: http://developer.android.com/reference/android/webkit/\WebView. html
12. Gears Browser Extensions: http://code.google.com/apis/gears/

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000551
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 24 of 141

13. Dalvik Virtual Machine specification, found in the dalvik/docs directory of a source code
checkout; also available at http://android.git.kernel.org/?p=platform/
dalvik.gita=treef=docs:h=3e2ddbcaf7{370246246f9f03620a7 cacchich12:hb=HEAD

14. AppWidgets: http://developer.android.com/guide/practices/ui_guidelines/widget design.html

15. Notifications: hiip://developer.android.com/guideftopics/uinotifiers/notifications. htmi

16. Status Bar icon style guide: http://developer.android.com/guide/practices/ui_guideline
ficon_design.htmi#statusbarstructure

17. Search Manager: hittp://developer.android.com/reference/android/app/SearchManager.htmi

18. Toast: http://developer.android.com/reference/android/widget/Toast.html

19. Apps For Android: http://code.google.com/p/apps-for-android

20. Android apk file description: http://developer.android.com/guide/topics/fundamentals.html

21. Android Debug Bridge (adb): http://code.qoogle.com/android/reference/adb.himi

22. Dalvik Debug Monitor Service (ddms): hitp://code.google.com/android/reference/ddms.html

23. Monkey: http://developer.android.com/guide/developing/tools/monkey.html

24. Display-Independence Documentation:

25. Configuration Constants: http://developet.android.com/reference/android/content/res/
Configuration.html

26. Display Metrics: htip:/developer.android.com/reference/android/util/DisplayMetrics.html

27. Camera: hitp:/developer.android.com/reference/android/hardware/Camera.html

28. Sensor coordinate space: hiip://developer.android.com/reference/android/hardware/
Sensorkvent.himl

29. Android Security and Permissions reference: http://developer.android.com/guide/topics/security/

security.himl

Many of these resources are derived directly or indirectly from the Android 1.6 SDK, and will be
functionally identical to the information in that SDK's documentation. In any cases where this
Compatibility Definition disagrees with the SDK documentation, the SDK documentation is considered
authoritative. Any technical details provided in the references included above are considered by inclusion
to be part of this Compatibility Definition.

3. Software

The Android platform includes both a set of managed ("hard") APIs, and a body of so-called "soft" APIs
such as the Intent system, native-code APIs, and web-application APIs. This section details the hard and
soft APIs that are integral to compatibility, as well as certain other relevant technical and user interface
behaviors. Device implementations MUST comply with all the requirements in this section.

3.1. Managed APl Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for Android applications. The
Android application programming interface (API) is the set of Android platform interfaces exposed to
applications running in the managed VM environment. Device implementations MUST provide complete
implementations, including all documented behaviors, of any documented API exposed by the Android
1.6 SDK, such as:

1. Core Android Java-language APIs [Resources, 5].

2. Content Providers [Resources, 6].

3. Resources [Resources, 7].

4. AndroidManifest.xml attributes and elements [Resources, 8].

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000552
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 25 of 141

Device implementations MUST NOT omit any managed APIs, alter API interfaces or signatures, deviate
from the documented behavior, or include no-ops, except where specifically allowed by this Compatibility
Definition.

3.2. Soft APl Compatibility

In addition to the managed APlIs from Section 3.1, Android also includes a significant runtime-only "soft"
API, in the form of such things such as Intents, permissions, and similar aspects of Android applications
that cannot be enforced at application compile time. This section details the "soft" APIs and system
behaviors required for compatibility with Android 1.6. Device implementations MUST meet all the
requirements presented in this section.

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as documented by the
Permission reference page [Resources, 9]. Note that Section 10 lists addtional requirements related to
the Android security model.

3.2.2. Build Parameters

The Android APIs include a number of constants on the android.os.Build class [Resources, 10] that are
intended to describe the current device. To provide consistent, meaningful values across device
implementations, the table below includes additional restrictions on the formats of these values to which
device implementations MUST conform.

Parameter Comments]

The version of the currently-executing Android system, in human-

android.os.Build. VERSION.RELEASE readable format. For Android 1.6, this field MUST have the string value
||1 .6“.
The version of the currently-executing Android system, in a format
android.os.Build. VERSION.SDK accessible to third-party application code. For Android 1.6, this field

MUST have the integer value 4.

A value chosen by the device implementer designating the specific build
of the currently-executing Android system, in human-readable format.
This value MUST NOT be re-used for different builds shipped to end
android.os.Build. VERSION.INCREMENTAL |users. A typical use of this field is to indicate which build number or
source-control change identifier was used to generate the build. There
are no requirements on the specific format of this field, except that it
MUST NOT be null or the empty string ("").

A value chosen by the device implementer identifying the specific internal
hardware used by the device, in human-readable format. A possible use
android.os.Build.BOARD of this field is to indicate the specific revision of the board powering the
device. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string (™).

A value chosen by the device implementer identifying the name of the
android.os.Build.BRAND company, organization, individual, etc. who produced the device, in
human-readable format. A possible use of this field is to indicate the OEM

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000553
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 26 of 141

and/or carrier who sold the device. There are no requirements on the
specific format of this field, except that it MUST NOT be null or the empty
string (™).

A value chosen by the device implementer identifying the specific
configuration or revision of the body (sometimes called "industrial
design") of the device. There are no requirements on the specific format
of this field, except that it MUST NOT be null or the empty string (").

A string that uniquely identifies this build. It SHOULD be reasonably
human-readable. It MUST follow this template:
$(PRODUCT_BRAND)/$(PRODUCT_NAME)/$(PRODUCT_DEVICE)/
$(TARGET_BOOTLOADER_BOARD_NAME):$(PLATFORM_VERSION)/
$(BUILD_ID)/$(BUILD_NUMBER):${(TARGET_BUILD_VARIANT)/
android.os.Build.FINGERPRINT $(BUILD_VERSION_TAGS)

For example: acme/mydevicel/generic/generic:Donut/ERC77/
3359:userdebug/test-keys

The fingerprint MUST NOT include spaces. If other fields included in the
template above have spaces, they SHOULD be replaced with the ASCII
underscore ("_") character in the fingerprint.

android.os.Build.DEVICE

A string that uniquely identifies the host the build was built on, in human
android.os.Build.HOST readable format. There are no requirements on the specific format of this
field, except that it MUST NOT be null or the empty string (™).

An identifier chosen by the device implementer to refer to a specific
release, in human readable format. This field can by the same as
android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value
intended to be somewhat meaningful for end users. There are no
requirements on the specific format of this field, except that it MUST NOT
be null or the empty string (™).

android.os.Build.ID

A value chosen by the device implementer containing the hame of the
device as known to the end user. This SHOULD be the same name
android.os.Build. MODEL under which the device is marketed and sold to end users. There are no
requirements on the specific format of this field, except that it MUST NOT
be null or the empty string (™).

A value chosen by the device implementer containing the development
name or code name of the device. MUST be human-readable, but is not
android.os.Build. PRODUCT necessarily intended for view by end users. There are no requirements
on the specific format of this field, except that it MUST NOT be null or the
empty string (™).

A comma-separated list of tags chosen by the device implementer that
further distinguish the build. For example, "unsigned,debug". This field
MUST NOT be null or the empty string ("), but a single tag (such as
"release") is fine.

android.os.Build. TAGS

android.os.Build.TIME A value representing the timestamp of when the build occurred.

A value chosen by the device implementer specifying the runtime
configuration of the build. This field SHOULD have one of the values
corresponding to the three typical Android runtime configurations: "user”,
"userdebug", or "eng".

android.os.Build. TYPE

A name or user ID of the user (or automated user) that generated the
android.os.Build.USER build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string (™).

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000554
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 27 of 141

3.2.3. Intent Compatibility

Android uses Intents to achieve loosely-coupled integration between applications. This section describes
requirements related to the Intent patterns that MUST be honored by device implementations. By
"honored", it is meant that the device implementer MUST provide an Android Activity, Service, or other
component that specifies a matching Intent filter and binds to and implements correct behavior for each
specified Intent pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as a phone dialer, calendar,
contacts book, music player, and so on. Device implementers MAY replace these applications with
alternative versions.

However, any such alternative versions MUST honor the same Intent patterns provided by the upstream
project. (For example, if a device contains an alternative music player, it must still honor the Intent pattern
issued by third-party applications to pick a song.) Device implementions MUST support all Intent patterns

listed in Appendix A.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementers MUST allow each Intent pattern described in
Appendix A to be overridden by third-party applications. The upstream Android open source project
allows this by default; device implementers MUST NOT attach special privileges to system applications'
use of these Intent patterns, or prevent third-party applications from binding to and assuming control of
these patterns. This prohibition specifically includes disabling the "Chooser" user interface which allows
the user to select between multiple applications which all handle the same Intent pattern.

3.2.3.3. Intent Namespaces

Device implementers MUST NOT include any Android component that honors any new Intent or
Broadcast Intent patterns using an ACTION, CATEGORY, or other key string in the android.* namespace.
Device implementers MUST NOT include any Android components that honor any new Intent or
Broadcast Intent patterns using an ACTION, CATEGORY, or other key string in a package space
belonging to another organization. Device implementers MUST NOT alter or extend any of the Intent
patterns listed in Appendices A or B.

This prohibition is analogous to that specified for Java language classes in Section 3.6.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000555
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 28 of 141

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify them of changes in the
hardware or software environment. Android-compatible devices MUST broadcast the public broadcast
Intents in response to appropriate system events. A list of required Broadcast Intents is provided in
Appendix B; however, note that the SDK may define additional broadcast intents, which MUST also be
honored.

3.3. Native APl Compatibility

Managed code running in Dalvik can call into native code provided in the application .apk file as an ELF
.so file compiled for the appropriate device hardware architecture. Device implementations MUST include
support for code running in the managed environment to call into native code, using the standard Java
Native Interface (JNI) semantics. The following APls must be available to native code:

« libc (C library)

+ libm (math library)

* JNlinterface

+ libz (Zlib compression)
+ liblog (Android logging)
* Minimal support for C++
* OpenGLES 1.1

These libraries MUST be source-compatible (i.e. header compatible) and binary-compatible (for a given
processor architecture) with the versions provided in Bionic by the Android Open Source project. Since
the Bionic implementations are not fully compatible with other implementations such as the GNU C
library, device implementers SHOULD use the Android implementation. If device implementers use a
different implementation of these libraries, they must ensure header and binary compatibility.

Native code compatibility is challenging. For this reason, we wish to repeat that device implementers are
VERY strongly encouraged to use the upstream implementations of the libraries listed above, to help
ensure compatibility.

3.4. Web API Compatibility

Many developers and applications rely on the behavior of the android.webkit. WebView class [Resources,
11] for their user interfaces, so the WebView implementation must be compatible across Android
implementations. The Android Open Source implementation uses the WebKit rendering engine version to
implement the WebView.

Because it is not feasible to develop a comprehensive test suite for a web browser, device implementers
MUST use the specific upstream build of WebKit in the WebView implementation. Specifically:
* WebView MUST use the 528.5+ WebKit build from the upstream Android Open Source tree for
Android 1.6. This build includes a specific set of functionality and security fixes for the WebView.
« The user agent string reported by the WebView MUST be in this format:
Mozilla/5.0 (Linux; U; Android 1.6; <language>-<country>; <device
name>; Build/<build ID>) AppleWebKit/528.5+ (KHTML, like Gecko)
Version/3.1.2 Mobile Safari/525.20.1

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000556
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 29 of 141

o The "<device name>" string MUST be the same as the value for
android.os.Build.MODEL

o The "<build ID>" string MUST be the same as the value for android.os.Build.ID.

o The "<language>" and "<country>" strings SHOULD follow the usual conventions for
country code and language, and SHOULD refer to the curent locale of the device at the
time of the request.

Implementations MAY ship a custom user agent string in the standalone Browser application. What's
more, the standalone Browser MAY be based on an alternate browser technology (such as Firefox,
Opera, etc.) However, even if an alternate Browser application is shipped, the WebView component
provided to third-party applications MUST be based on WebKit, as above.

The standalone Browser application SHOULD include support for Gears [Resources, 12] and MAY
include support for some or all of HTMLS.

3.5. APl Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the
preferred implementation of Android available from the Android Open Source Project.

Some specific areas of compatibility are:
= Devices MUST NOT change the behavior or meaning of a standard Intent
= Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of system
component (such as Service, Activity, ContentProvider, etc.)
= Devices MUST NOT change the semantics of a particular permission

The above list is not comprehensive, and the onus is on device implementers to ensure behavioral
compatibility. For this reason, device implementers SHOULD use the source code available via the
Android Open Source Project where possible, rather than re-implement significant parts of the system.

The Compatibility Test Suite (CTS) tests significant portions of the platform for behavioral compatibility,
but not all. It is the responsibility of the implementer to ensure behavioral compatibility with the Android
Open Source Project.

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java programming
language. To ensure compatibility with third-party applications, device implementers MUST NOT make
any prohibited modifications (see below) to these package namespaces:

* java.*

* javax.*

* sun.*

* android.”

* com.android.”

Prohibited modifications include:
» Device implementations MUST NOT modify the publicly exposed APIs on the Android platform
by changing any method or class signatures, or by removing classes or class fields.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000557
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 30 of 141

» Device implementers MAY modify the underlying implementation of the APls, but such
modifications MUST NOT impact the stated behavior and Java-language signature of any
publicly exposed APIs.

» Device implementers MUST NOT add any publicly exposed elements (such as classes or
interfaces, or fields or methods to existing classes or interfaces) to the APIs above.

A "publicly exposed element" is any construct which is not decorated with the "@hide" marker in the
upstream Android source code. In other words, device implementers MUST NOT expose new APIs or
alter existing APIs in the namespaces noted above. Device implementers MAY make internal-only
modifications, but those modifications MUST NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APIs, but any such APIs MUST NOT be in a hamespace owned
by or referring to another organization. For instance, device implementers MUST NOT add APIs to the
com.google.* or similar namespace; only Google may do so. Similarly, Google MUST NOT add APIs to
other companies' namespaces.

If a device implementer proposes to improve one of the package namespaces above (such as by adding
useful new functionality to an existing API, or adding a new API), the implementer SHOULD visit
source.android.com and begin the process for contributing changes and code, according to the
information on that site.

Note that the restrictions above correspond to standard conventions for naming APIs in the Java
programming language; this section simply aims to reinforce those conventions and make them binding
through inclusion in this compatibility definition.

3.7. Virtual Machine Compatibility

A compatible Android device must support the full Dalvik Executable (DEX) bytecode specification and
Dalvik Virtual Machine semantics [Resources, 13].

3.8. User Interface Compatibility

The Android platform includes some developer APls that allow developers to hook into the system user
interface. Device implementations MUST incorporate these standard Ul APls into custom user interfaces
they develop, as explained below.

3.8.1. Widgets

Android defines a component type and corresponding API and lifecycle that allows applications to expose
an "AppWidget" to the end user [Resgurces, 14]. The Android Open Source reference release includes a
Launcher application that includes user interface elements allowing the user to add, view, and remove
AppWidgets from the home screen.

Device implementers MAY substitute an alternative to the reference Launcher (i.e. home screen).
Alternative Launchers SHOULD include built-in support for AppWidgets, and expose user interface
elements to add, view, and remove AppWidgets directly within the Launcher. Alternative Launchers MAY
omit these user interface elements; however, if they are omitted, the device implementer MUST provide a
separate application accessible from the Launcher that allows users to add, view, and remove
AppWidgets.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000558
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 31 of 141

3.8.2. Notifications

Android includes APlIs that allow developers to notify users of notable events [Resources, 15]. Device
implementers MUST provide support for each class of notification so defined; specifically: sounds,
vibration, light and status bar.

Additionally, the implementation MUST correctly render and all resources (icons, sound files, etc.)
provided for in the APls [Resources, 7], or in the Status Bar icon style guide [Resources, 16]. Device
implementers MAY provide an alternative user experience for notifications than that provided by the
reference Android Open Source implementation; however, such alternative notification systems MUST
support existing notification resources, as above.

3.8.3. Search

Android includes APIs [Resources, 17] that allow developers to incorporate search into their applications,
and expose their application's data into the global system search. Generally speaking, this functionality
consists of a single, system-wide user interface that allows users to enter queries, displays suggestions
as users type, and displays results. The Android APIs allow developers to reuse this interface to provide
search within their own apps, and allow developers to supply results to the common global search user
interface.

Device implementations MUST include a single, shared, system-wide search user interface capable of
real-time suggestions in response to user input. Device implementations MUST implement the APIs that
allow developers to reuse this user interface to provide search within their own applications.

Device implementations MUST implement the APIs that allow third-party applications to add suggestions
to the search box when it is run in global search mode. If no third-party applications are installed that
make use of this functionality, the default behavior SHOULD be to display web search engine results and
suggestions.

Device implementations MAY ship alternate search user interfaces, but SHOULD include a hard or soft
dedicated search button, that can be used at any time within any app to invoke the search framework,
with the behavior provided for in the APl documentation.

3.8.4. Toasts

Applications can use the "Toast" API (defined in [Resources, 18]) to display short non-modal strings to the
end user, that disappear after a brief period of time. Device implementations MUST display Toasts from
applications to end users in some high-visibility manner.

4. Reference Software Compatibility

Device implementers MUST test implementation compatibility using the following open-source
applications:

» Calculator (included in SDK)

* Lunar Lander (included in SDK)

» ApiDemos (included in SDK)

« The "Apps for Android" applications [Resources, 19]

Each app above MUST launch and behave correctly on the implementation, for the implementation to be

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000559
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 32 of 141

considered compatible.

5. Application Packaging Compatibility

Device implementations MUST install and run Android ".apk" files as generated by the "aapt" tool
included in the official Android SDK [Resources, 20].

Devices implementations MUST NOT extend either the .apk, Android Manifest, or Dalvik bytecode
formats in such a way that would prevent those files from installing and running correctly on other
compatible devices. Device implementers SHOULD use the reference upstream implementation of Dalvik,
and the reference implementation's package management system.

6. Multimedia Compatibility

A compatible Android device must support the following multimedia codecs. All of these codecs are
provided as software implementations in the preferred Android implementation from the Android Open
Source Project [Resources, 4].

Please note that neither Google nor the Open Handset Alliance make any representation that these
codecs are unencumbered by third-party patents. Those intending to use this source code in hardware or
software products are advised that implementations of this code, including in open source software or
shareware, may require patent licenses from the relevant patent holders.

[Audio

Name Encoder|Decoder|Details Files Supported

Mono/Stereo content in any 3GPP (.3gp) and
combination of standard bit rates [MPEG-4 (.mp4, .m4a)

AACLCLTP X up to 160 kbps and sampling rates [files. No support for raw
between 8 to 48kHz AAC (.aac)
Mono/Stereo content in any 3GPP (.3gp) and
HE-AACv1 X combination of standard bit rates [MPEG-4 (.mp4, .m4a)
(AACH) up to 96 kbps and sampling rates [files. No support for raw
between 8 to 48kHz AAC (.aac)
Mono/Stereo content in any
HE-AACv2 combination of standard bit rates 3GPP (.3gp) and
(enhanced . MPEG-4 (.mp4, .m4a)
X up to 96 kbps and sampling rates |,.
AACH+) files. No support for raw
between 8 to 48kHz
AAC (.aac)
AMR-NB 4.75 to 12.2 kbps sampled @ 3GPP (.3gp) files
X X
8kHz
AMR-WB X 9 rates from 6.60 kbit/s to 23.85 |-3GPP (.3gp) files
kbit/'s sampled @ 16kHz
MP3 X Mono/Stereo 8-320Kbps constant [MP3 (.mp3) files
(CBR) or variable bit-rate (VBR)
. Type 0 and 1 (.mid, .xmf,
MIDI X gﬂr:?'zTé’(ﬁ’\‘ZFoaan” dd,\jlébDi'l'eSXV,\;;S'O” 1| mxmf). Also RTTTL/RTX
) ’ (.rtttl, .rtx), OTA (.ota),
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000560

3:10-cv-03561-WHA

Trial Exhibit 2802 Page 33 of 141

Support for ringtone formats and iMelody (.imy)
RTTTL/RTX, OTA, and iMelody

Ogg Vorbis X .ogg

8- and 16-bit linear PCM (rates up

PCM X to limit of hardware)

WAVE

Name Encoder|Decoder | Details Files
Supported

JPEG X X base+progressive

GIF X

PNG X X

BMP X

lVideo |

Name Encoder|Decoder | Details Files
Supported
3GPP (.3gp)

H.263 X X files
3GPP (.3gp)

H.264 X and MPEG-4
(.mp4) files

g"F'f EG4 X 3GPP (.3gp) file

7. Developer Tool Compatibility

Device implemenations MUST support the Android Developer Tools provided in the Android SDK.
Specifically, Android-compatible devices MUST be compatible with:

« Android Debug Bridge or adb [Resources, 21]
Device implementations MUST support all adb functions as documented in the Android
SDK. The device-side adb daemon SHOULD be inactive by default, but there MUST be a user-
accessible mechanism to turn on the Android Debug Bridge.

« Dalvik Debug Monitor Service or ddms [Resources, 22]
Device implementations MUST support all ddms features as documented in the Android SDK.
As ddms uses adb, support for ddms SHOULD be inactive by default, but MUST be supported
whenever the user has activated the Android Debug Bridge, as above.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000561
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 34 of 141

« Monkey [Resources, 23]
Device implementations MUST include the Monkey framework, and make it available for
applications to use.

8. Hardware Compatibility

Android is intended to support device implementers creating innovative form factors and configurations.
At the same time Android developers expect certain hardware, sensors and APls across all Android
device. This section lists the hardware features that all Android 1.6 compatible devices must support. In
Android 1.6, the majority of hardware features (such as WiFi, compass, and accelerometer) are required.

If a device includes a particular hardware component that has a corresponding API for third-party

developers, the device implementation MUST implement that API as defined in the Android SDK
documentation.

8.1. Display

Android 1.6 includes facilities that perform certain automatic scaling and transformation operations under
some circumstances, to ensure that third-party applications run reasonably well on hardware
configurations for which they were not necessarily explicitly designed [Resources, 24]. Devices MUST
properly implement these behaviors, as detailed in this section.

8.1.1. Standard Display Configurations

This table lists the standard screen configurations considered compatible with Android:

QVGA 240 320 26-3.0 Small Low
WQVGA 240 400 3.2-3.5 Normal Low
FWQVGA 240 432 3.5-3.8 Normal Low
HVGA 320 480 3.0-3.5 Normal Medium
WVGA 480 800 3.3-4.0 Normal High
FWVGA 480 854 3.5-4.0 Normal High
WVGA 480 800 48-55 Large Medium
FWVGA 480 854 5.0-5.8 Large Medium

Device implementations corresponding to one of the standard configurations above MUST be configured
to report the indicated screen size to applications via the android.content.res.Configuration [Resources,
25] class.

Some .apk packages have manifests that do not identify them as supporting a specific density range.
When running such applications, the following constraints apply:

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000562

3:10-cv-03561-WHA

Trial Exhibit 2802 Page 35 of 141

= Device implementations MUST interpret any resources that are present as defaulting to
"medium" (known as "mdpi" in the SDK documentation.)

= When operating on a "low" density screen, device implementations MUST scale down medium/
mdpi assets by a factor of 0.75.

= When operating on a "high" density screen, device implementations MUST scale up medium/
mdpi assets by a factor of 1.5.

» Device implementations MUST NOT scale assets within a density range, and MUST scale
assets by exactly these factors between density ranges.

8.1.2. Non-Standard Display Configurations

Display configurations that do not match one of the standard configurations listed in Section 8.2.1 require
additional consideration and work to be compatible. Device implementers MUST contact Android
Compatibility Team as provided for in Section 12 to obtain classifications for screen-size bucket, density,
and scaling factor. When provided with this information, device implementations MUST implement them
as specified.

Note that some display configurations (such as very large or very small screens, and some aspect ratios)
are fundamentally incompatible with Android 1.6; therefore device implementers are encouraged to
contact Android Compatibility Team as early as possible in the development process.

8.1.3. Display Metrics

Device implementations MUST report correct values for all display metrics defined in
android.util.DisplayMetrics [Resources, 26].

8.2. Keyboard

Device implementations:

* MUST include support for the Input Management Framework (which allows third party
developers to create Input Management Engines -- i.e. soft keyboard) as detailed at
developer.android.com

* MUST provide at least one soft keyboard implementation (regardless of whether a hard
keyboard is present)

* MAY include additional soft keyboard implementations

* MAY include a hardware keyboard

* MUST NOT include a hardware keyboard that does not match one of the formats specified
in android.content.res.Configuration [Resources, 25] (that is, QWERTY, or 12-key)

8.3. Non-touch Navigation

Device implementations:
= MAY omit non-touch navigation options (that is, may omit a trackball, 5-way directional pad, or
wheel)
= MUST report via android.content.res.Configuration [Resources, 25] the correct value for the
device's hardware

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000563
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 36 of 141

8.4. Screen Orientation

Compatible devices MUST support dynamic orientation by applications to either portrait or landscape
screen orientation. That is, the device must respect the application's request for a specific screen
orientation. Device implementations MAY select either portrait or landscape orientation as the default.

Devices MUST report the correct value for the device's current orientation, whenever queried via the
android.content.res.Configuration.orientation, android.view.Display.getOrientation(), or other APlIs.

8.5. Touchscreen input

Device implementations:
*» MUST have a touchscreen
» MAY have either capacative or resistive touchscreen
+ MUST report the value of android.content.res.Configuration [Resources, 25] reflecting
corresponding to the type of the specific touchscreen on the device

8.6. USB

Device implementations:

= MUST implement a USB client, connectable to a USB host with a standard USB-A port

» MUST implement the Android Debug Bridge over USB (as described in Section 7)

» MUST implement a USB mass storage client for the removable/media storage is present in the
device

» SHOULD use the micro USB form factor on the device side

» SHOULD implement support for the USB Mass Storage specification (so that either removable
or fixed storage on the device can be accessed from a host PC)

» MAY include a non-standard port on the device side, but if so MUST ship with a cable capable of
connecting the custom pinout to standard USB-A port

8.7. Navigation keys

The Home, Menu and Back functions are essential to the Android navigation paradigm. Device
implementations MUST make these functions available to the user at all times, regardless of application
state. These functions SHOULD be implemented via dedicated buttons. They MAY be implemented
using software, gestures, touch panel, etc., but if so they MUST be always accessible and not obscure or
interfere with the available application display area.

Device implementers SHOULD also provide a dedicated search key. Device implementers MAY also
provide send and end keys for phone calls.

8.8. WiFi

Device implementations MUST support 802.11b and 802.11g, and MAY support 802.11a.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000564
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 37 of 141

8.9. Camera

Device implementations MUST include a camera. The included camera:

+ MUST have a resolution of at least 2 megapixels

« SHOULD have either hardware auto-focus, or software auto-focus implemented in the camera
driver (transparent to application software)

« MAY have fixed-focus or EDOF (extended depth of field) hardware

* MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be lit while an
android.hardware.Camera.PreviewCallback instance has been registered on a Camera preview
surface.

Device implementations MUST implement the following behaviors for the camera-related APls
[Resources, 27]:

1. If an application has never called android.hardware.Camera.Parameters.setPreviewFormat(int),
then the device MUST use android.hardware.PixelFormat.YCbCr_420_SP for preview data
provided to application callbacks.

2. If an application registers an android.hardware.Camera.PreviewCallback instance and the
system calls the onPreviewFrame() method when the preview format is YCbCr_420_SP, the
data in the byte[] passed into onPreviewFrame() must further be in the NV21 encoding format.
(This is the format used natively by the 7k hardware family.) That is, NV21 MUST be the default.

8.9.1. Non-Autofocus Cameras

If a device lacks an autofocus camera, the device implementer MUST meet the additional requirements in
this section. Device implementations MUST implement the full Camera API included in the Android 1.6
SDK documentation in some reasonable way, regardless of actual camera hardware's capabilities.

For Android 1.6, if the camera lacks auto-focus, the device implementation MUST adhere to the following:

1. The system MUST include a read-only system property named "ro.workaround.noautofocus”
with the value of "1". This value is intended to be used by applications such as Android Market to
selectively identify device capabilities, and will be replaced in a future version of Android with a
robust API.

2. If an application calls android.hardware.Camera.autoFocus(), the system MUST call the
onAutoFocus() callback method on any registered
android.hardware.Camera.AutoFocusCallback instances, even though no focusing actually
happened. This is to avoid having existing applications break by waiting forever for an autofocus
callback that will never come.

3. The call to the AutoFocusCallback.onAutoFocus() method MUST be triggered by the driver or
framework in a new event on the main framework Looper thread. That is, Camera.autoFocus()
MUST NOT directly call AutoFocusCallback.onAutoFocus() since this violates the Android
framework threading model and will break apps.

8.10. Accelerometer

Device implementations MUST include a 3-axis accelerometer and MUST be able to deliver events at at
least 50 Hz. The coordinate system used by the accelerometer MUST comply with the Android sensor
coordinate system as detailed in the Android APIs [Resources, 28].

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000565
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 38 of 141

8.11. Compass

Device implementations MUST include a 3-axis compass and MUST be able to deliver events at at least
10 Hz. The coordinate system used by the compass MUST comply with the Android sensor coordinate
system as defined in the Android API [Resources, 28].

8.12. GPS

Device implementations MUST include a GPS, and SHOULD include some form of "assisted GPS"
technique to minimize GPS lock-on time.

8.13. Telephony

Device implementations:
« MUST include either GSM or CDMA telephony
« MUST implement the appropriate APIs as detailed in the Android SDK documentation at
developer.android.com

Note that this requirement implies that non-phone devices are not compatible with Android 1.6; Android
1.6 devices MUST include telephony hardware. Please see Appendix C for information on non-phone
devices.

8.14. Volume controls

Android-compatible devices MUST include a mechanism to allow the user to increase and decrease the
audio volume. Device implementations MUST make these functions available to the user at all times,
regardless of application state. These functions MAY be implemented using physical hardware keys,
software, gestures, touch panel, etc., but they MUST be always accessible and not obscure or interfere
with the available application display area (see Display above).

When these buttons are used, the corresponding key events MUST be generated and sent to the
foreground application. If the event is not intercepted and sunk by the application then device
implementation MUST handle the event as a system volume control.

9. Performance Compatibility

One of the goals of the Android Compatibility Program is to ensure a consistent application experience for
consumers. Compatible implementations must ensure not only that applications simply run correctly on
the device, but that they do so with reasonable performance and overall good user experience.

Device implementations MUST meet the key performance metrics of an Android 1.6 compatible device,
as in the table below:

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000566
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 39 of 141

This is tested by CTS.

The following applications
should launch within the
Application specified time.

Launch Time [Browser: less than 1300ms
MMS/SMS: less than 700ms
AlarmClock: less than 650ms

The launch time is measured as the total time to
complete loading the default activity for the
application, including the time it takes to start the
Linux process, load the Android package into the
Dalvik VM, and call onCreate.

Multiple applications will be This is tested by CTS.
launched. Re-launching the
first application should
complete taking less than the
original launch time.

Simultaneous
Applications

10. Security Model Compatibility

Device implementations MUST implement a security model consistent with the Android platform security
model as defined in Security and Permissions reference document in the APIs [Resources, 29] in the
Android developer documentation. Device implementations MUST support installation of self-signed
applications without requiring any additional permissions/certificates from any third parties/authorities.

Specifically, compatible devices MUST support the following security mechanisms:

10.1. Permissions

Device implementations MUST support the Android permissions model as defined in the Android
developer documentation [Resources, 9]. Specifically, implementations MUST enforce each permission
defined as described in the SDK documentation; no permissions may be omitted, altered, or ignored.

Implementations MAY add additional permissions, provided the hew permission ID strings are not in the
android.* namespace.

10.2. User and Process Isolation

Device implementations MUST support the Android application sandbox model, in which each application
runs as a unigue Unix-style UID and in a separate process.

Device implementations MUST support running multiple applications as the same Linux user ID, provided
that the applications are properly signed and constructed, as defined in the Security and Permissions
reference [Resources, 29].

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000567

3:10-cv-03561-WHA

Trial Exhibit 2802 Page 40 of 141

10.3. Filesystem Permissions

Device implementations MUST support the Android file access permissions model as defined in as
defined in the Security and Permissions reference [Resources, 29].

11. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS) [Resources, 3] available
from the Android Open Source Project, using the final shipping software on the device. Additionally,
device implementers SHOULD use the reference implementation in the Android Open Source tree as
much as possible, and MUST ensure compatibility in cases of ambiguity in CTS and for any
reimplementations of parts of the reference source code.

The CTS is designed to be run on an actual device. Like any software, the CTS may itself contain bugs.
The CTS will be versioned independently of this Compatibility Definition, and multiple revisions of the
CTS may be released for Android 1.6. However, such releases will only fix behavioral bugs in the CTS
tests and will not impose any new tests, behaviors or APls for a given platform release.

12. Contact Us

You can contact the Android Compatibility Team at compatibility@android.com for clarifications related to
this Compatibiltiy Definition and to provide feedback on this Definition.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000568
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 41 of 141

Appendix A: Required Application Intents

NOTE: this list is provisional, and will be updated in the future.

Application | Actions MIME Types
(none)
text/plain
- . http text/html
Browser android.intent.action.VIEW https application/xhtml+xml
application/
vhd.wap.xhtml+xml
(none)
android.intent.action.WEB_SEARCH http (none)
https
android.media.action.IMAGE_CAPTURE
Camer android.media.action.STILL_IMAGE_CAMERA
amerd | android.media.action.VIDEO_CAMERA
android.media.action.VIDEO_CAPTURE
vnd.android.cursor.dir/
android.intent.action.VIEW image
android.intent.action.GET_CONTENT vnd.android.cursor.dir/
android.intent.action.PICK video
android.intent.action.ATTACH_DATA image/*
video/*
android.intent.action.VIEW rtsp
video/mp4
android.intent.action.VIEW http video/3gp
video/3gpp
video/3gpp2
Phone / android.intent.action.DIAL
android.intent.action.VIEW tel
Contacts

android.intent.action.CALL

android.intent.action.DIAL

android.intent.action.VIEW

vnd.android.cursor.dir/
person

Oracle America, Inc. v. Google Inc.

3:10-cv-03561-WHA
Trial Exhibit 2802 Page 42 of 141

GOOGLE-00-00000569

android.intent.action.PICK

vnd.android.cursor.dir/
person
vnd.android.cursor.dir/
phone
vnd.android.cursor.dir/
postal-address

android.intent.action.GET_CONTENT

vnd.android.cursor.item/
person
vnd.android.cursor.item/
phone
vnd.android.cursor.item/
postal-address

text/plain
Email android.intent.action.SEND image/*
video/*
android.intent.action.VIEW mailto
android.intent.action.SENDTO
sms
android.intent.action.VIEW smsto
SMS 7 MMS android.intent.action.SENDTO mms
mmsto
audio/*

Music android.intent.action.VIEW file application/ogg
application/x-ogg
application/itunes
audio/mp3
audio/x-mp3

android.intent.action.VIEW http audio/mpeg
audio/mp4

audio/mp4a-latm

android.intent.action.PICK

vnd.android.cursor.dir/
artistalbum
vnd.android.cursor.dir/
album
vnd.android.cursor.dir/
nowplaying
vnd.android.cursor.dir/
track
nd.android.cursor.dir/
playlist
vnd.android.cursor.dir/
video

android.intent.action.GET_CONTENT

media/*

audio/*
application/ogg
application/x-ogg
video/*

Oracle America, Inc. v. Google Inc.

3:10-cv-03561-WHA

Trial Exhibit 2802 Page 43 of 141

GOOGLE-00-00000570

content
android.intent.action.VIEW file
package

Package
Installer

file
android.intent.action.PACKAGE_INSTALL http
https

android.intent.action.ALL_APPS

android.settings.SETTINGS
android.settings.WIRELESS_SETTINGS
android.settings.AIRPLANE_MODE_SETTINGS
android.settings.WIFI_SETTINGS
android.settings.APN_SETTINGS
android.settings.BLUETOOTH_SETTINGS
android.settings.DATE_SETTINGS
android.settings.LOCALE_SETTINGS
android.settings.INPUT_METHOD_SETTINGS
com.android.settings.SOUND_SETTINGS
com.android.settings.DISPLAY_SETTINGS
android.settings.SECURITY_SETTING
android.settings.LOCATION_SOURCE_SETTINGS
android.settings.INTERNAL_STORAGE_SETTINGS
android.settings.MEMORY_CARD_SETTINGS
android.intent.action.SET_WALLPAPER

Settings

Search android.intent.action.SEARCH query

android.intent.action.SEARCH_LONG_PRESS

Voice android.intent.action.VOICE_COMMAND

Contacts Management

Intent Action Description

Starts an Activity that lets the user pick
a contact to attach an image to.

Used
EXTRA_CREATE DESCRIPTION with SHOW_OR_CREATE_CONTACT to
specify an exact description to be

ATTACH_IMAGE

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000571
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 44 of 141

shown when prompting user about
creating a new contact.

Used

with SHOW_OR_CREATE_CONTACT to
force creating a new contact if no
matching contact found.

EXTRA FORCE CREATE

This is the intent that is fired when a

SEARCH SUGGESTION CLICKED f
- search suggestion is clicked on.

This is the intent that is fired when a
SEARCH SUGGESTION CREATE CONTACT CLICKED |search suggestion for creating a
contact is clicked on.

This is the intent that is fired when a
SEARCH SUGGESTION DIAL NUMBER CLICKED search suggestion for dialing a number
is clicked on.

Takes as input a data URI with a mailto:

SHOW OR CREATE CONTACT
or tel: scheme.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000572
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 45 of 141

Appendix B: Required Broadcast IntentSNOTE: this list is provisional, and will be
updated in the future.

ACTION BOOT COMPLETED Broadcast Agtlpn: This |slbroadcast once, after the
system has finished booting.

Broadcast Action: This is broadcast once, when a

ACTION CALL BUTTON . .
call is received.

ACTION CAMERA BUTTON Broadcast Action: The "Camera Button™ was

pressed.
Broadcast Action: The current

ACTION CONFIGURATION CHANGED device Configuration (orientation, locale, etc) has
changed.

ACTION_DATE CHANGED Broadcast Action: The date has changed.

Broadcast Action: Indicates low memory condition

ACTION_ DEVICE STORAGE _LOW .
on the device

Broadcast Action: Indicates low memory condition

ACTION DEVICE STORAGE_OK . .
on the device no longer exists

Broadcast Action: Wired Headset plugged in or

ACTION _HEADSET PLUG
unplugged.

Broadcast Action: An input method has been

ACTION_INPUT METHOD CHANGED
changed.

Broadcast Action: External media was removed
ACTION_MEDIA_BAD REMOVAL from SD card slot, but mount point was not
unmounted.

Broadcast Action: The "Media Button" was

ACTION_MEDIA BUTTON
pressed.

Broadcast Action: External media is present, and
being disk-checked The path to the mount point for
the checking media is contained in the
Intent.mData field.

ACTION_MEDIA_CHECKING

Broadcast Action: User has expressed the desire to

ACTION_MEDIA_EJECT :
remove the external storage media.

Broadcast Action: External media is present and

ACTION_MEDIA MOUNTED . .
mounted at its mount point.

Broadcast Action: External media is present, but is
using an incompatible fs (or is blank) The path to
the mount point for the checking media is
contained in the Intent.mData field.

ACTION _MEDIA NOFS

Broadcast Action: External media has been

ACTION MEDIA REMOVED
removed.

Broadcast Action: The media scanner has finished

ACTION MEDIA SCANNER_FINISHED . .
scanning a directory.

Broadcast Action: Request the media scanner o

ACTION MEDIA_SCANNER_SCAN_FILE scan a file and add it to the media database.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000573
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 46 of 141

Broadcast Action: The media scanner has staried

ACTION _MEDIA SCANNER _STARTED . :
scanning a directory.

Broadcast Action: External media is unmounted

ACTION MEDIA SHARED because it is being shared via USB mass storage.

Broadcast Action: External media is present but

ACTION MEDIA UNMOUNTABLE
cannot be mounted.

Broadcast Action: External media is present, but

ACTION _MEDIA UNMOUNTED . .
not mounted at its mount point.

Broadcast Action: An outgoing call is about to be

ACTION_NEW OUTGOING CALL
placed.

Broadcast Action: A new application package has

LU e LcS S been installed on the device.

Broadcast Action: An existing application package
ACTION_PACKAGE_CHANGED has been changed (e.g. a component has been
enabled or disabled.

Broadcast Action: The user has cleared the data of
a package. This should be preceded

by ACTION_PACKAGE_RESTARTED, after which
ACTION_ PACKAGE DATA_CLEARED all of its persistent data is erased and this
broadcast sent. Note that the cleared package
does nof receive this broadcast. The data contains
the name of the package.

Broadcast Action: An existing application package
has been removed from the device. The data
contains the name of the package. The package
that is being installed does not receive this Intent.

ACTION_PACKAGE_REMOVED

Broadcast Action: A new version of an application
ACTION_PACKAGE REPLACED package has been installed, replacing an existing
version that was previously installed.

Broadcast Action: The user has restarted a
package, and all of its processes have been killed.
All runtime state associated with it (processes,
ACTION_PACKAGE_RESTARTED alarms, nofifications, etc) should be removed. Note
that the restarted package does nof receive this
broadcast. The data contains the name of the
package.

Broadcast Action: Some content providers have
parts of their namespace where they publish new
events or items that the user may be especially
interested in.

ACTION SCREEN OFF Broadcast Action: Sent after the screen turns off.
ACTION SCREEN ON Broadcast Action: Sent after the screen turns on.

Broadcast Action: A user ID has been removed
from the system.

ACTION_PROVIDER CHANGED

ACTION_UID REMOVED

Broadcast Action: The device has entered USB

ACTION_UMS CONNECTED
Mass Storage mode.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000574
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 47 of 141

ACTION_UMS DISCONNECTED

Broadcast Action: The device has exited USB
Mass Storage mode.

ACTION USER PRESENT

Broadcast Action: Sent when the user is present
after device wakes up {e.g when the keyguard is
gone).

ACTION_WALLPAPER_CHANGED

Broadcast Action: The current system wallpaper
has changed.

ACTION_TIME_CHANGED

Broadcast Action: The time was set.

ACTION_TIME_TICK

Broadcast Action: The current time has changed.

ACTION_TIMEZONE CHANGED

Broadcast Action: The timezone has changed.

ACTION BATTERY CHANGED

Broadcast Action: The charging state, or charge
level of the battery has changed.

ACTION BATTERY LOW

Broadcast Action: Indicates low battery condition
on the device. This broadcast corresponds to the
"Low battery warning" system dialog.

ACTION BATTERY OKAY

Broadcast Action: Indicates the battery is now okay
after being low. This will be sent

after ACTION BATTERY_LOW once the battery
has gone back up to an okay state.

Network State

Intent Action

NETWORK_STATE CHANGED ACTION

Broadcast intent action indicating that the
state of Wi-Fi connectivity has changed.

RSSI_CHANGED_ACTION

Broadcast intent action indicating that the
RSSI (signal strength) has changed.

SUPPLICANT STATE _CHANGED_ACTION

Broadcast intent action indicating that a
connection to the supplicant has been
established or lost.

WIFI_STATE_CHANGED_ ACTION

Broadcast intent action indicating that Wi-Fi
has been enabled, disabled, enabling,
disabling, or unknown.

NETWORK_IDS_CHANGED_ACTION

The network IDs of the configured networks
could have changed.

ACTION BACKGROUND DATA_SETTING CHANGED [setting for background data usage has

Broadcast intent action indicating that the

changed values.

CONNECTIVITY _ACTION

Broadcast intent indicating that a change in
network connectivity has occurred.

ACTION AIRPLANE _MODE_CHANGED

Broadcast Action: The user has switched the
phone into or out of Airplane Mode.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000575
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 48 of 141

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000576
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 49 of 141

Appendix C: Future Considerations This appendix clarifies certain portions of this Android
1.6 Compatibility Definition, and in some cases discusses anticipated or planned changes intended for a
future version of the Android platform. This appendix is for informational and planning purposes only, and
is not part of the Compatibility Definition for Android 1.6.

1. Non-telephone Devices

Android 1.6 is intended exclusively for telephones; telephony functionality is not optional. Future versions
of the Android platform are expected to make telephony optional (and thus allow for non-phone Android
devices), but only phones are compatible with Android 1.6.

2. Bluetooth Compatibility

The Android 1.6 release of Android does not support Bluetooth APls, so from a compatibility perspective
Bluetooth does not impose any considerations for this version of the platform. However, a future version
of Android will introduce Bluetooth APls. At that point, supporting Bluetooth will become mandatory for
compatibility.

Consequently, we strongly recommend that Android 1.6 devices include Bluetooth, so that they will be
compatible with future versions of Android that require Bluetooth.

3. Required Hardware Components

All hardware components in Section 8 (including WiFi, magnetometer/compass, accelerometer, etc.) are
required and may not be omitted. Future versions of Android are expected to make some (but not all) of
these components optional, in tandem with corresponding tools for third-party developers to handle these
changes.

4. Sample Applications

The Compatibility Definition Document for a future version of Android will include a more extensive and
representative list of applications than the ones listed in Section 4, above. For Android 1.6, the
applications listed in Section 4 must be tested.

5. Touch Screens

Future versions of the Compatibility Definition may or may not allow for devices to omit touchscreens.
However, currently much of the Android framework implementation assumes the existence of a
touchscreen; omitting a touchscreen would break substantially all current third-party Android applications,
so in Android 1.6 a touchscreen is required for compatibility.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000577
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 50 of 141

6. Performance

Future versions of CTS will also measure the CPU uitilization and performance of the following
components of an implementation:

» 2D graphics

« 3D graphics

» Video playback

» Audio playback

» Bluetooth A2DP playback

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000578
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 51 of 141

Android 2.1 Compatibility Definition

Copyright © 2010, Google Inc. All rights reserved.
compatibility@android.com

1. Introduction

This document enumerates the requirements that must be met in order for mobile
phones to be compatible with Android 2.1.

The use of "must"”, "must not", "required”, "shall", "shall not", "should", "should not",
"recommended", "may" and "optional" is per the IETF standard defined in RFC2119
[Resources, 1].

As used in this document, a "device implementer" or "implementer"” is a person or
organization developing a hardware/software solution running Android 2.1. A "device
implementation" or "implementation" is the hardware/software solution so
developed.

To be considered compatible with Android 2.1, device implementations:

e MUST meet the requirements presented in this Compatibility Definition,
including any documents incorporated via reference.

e MUST pass the most recent version of the Android Compatibility Test Suite (CTS)
available at the time of the device implementation's software is completed. (The
CTS is available as part of the Android Open Source Project [Resources, 2].) The
CTS tests many, but not all, of the components outlined in this document.

Where this definition or the CTS is silent, ambiguous, or incomplete, it is the
responsibility of the device implementer to ensure compatibility with existing
implementations. For this reason, the Android Open Source Project [Resources, 3] is
both the reference and preferred implementation of Android. Device implementers
are strongly encouraged to base their implementations on the "upstream" source
code available from the Android Open Source Project. While some components can
hypothetically be replaced with alternate implementations this practice is strongly
discouraged, as passing the CTS tests will become substantially more difficult. It is
the implementer's responsibility to ensure full behavioral compatibility with the
standard Android implementation, including and beyond the Compatibility Test Suite.
Finally, note that certain component substitutions and modifications are explicitly
forbidden by this document.

1 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000579
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 52 of 141

2.

. IETF RFC2119 Requirement Levels: http://www.ietf.org/rfc/rfc2119.txt
. Android Compatibility Program Overview: http://source.android.com/compatibility

[

W

11.

12.

13.

14.

15.

Resources

/index.html

. Android Open Source Project: http://source.android.com/
. APl definitions and documentation: http://developer.android.com/reference

/packages. html

. Android Permissions reference: http://developer.android.com/reference/android

/Manifest.permission.htmli

. android.os.Build reference: hitp://developer.android.com/reference/android

Jos/Build.html

. Android 2.1 allowed version strings: http://source.android.com/compatibility

[2.1/versions. xhtml

. android.webkit.WebView class: http://developer.android.com/reference/android

[webkit/WebView.html

. HTMLS: http://www.whatwg.org/specs/web-apps/current-work/multipage/
. Dalvik Virtual Machine specification: available in the Android source code, at

dalvik/docs

AppWidgets: http://developer.android.com/guide/practices/ui_guidelines
[/widget_design.html

Notifications: http://developer.android.com/guide/topics/ui/notifiers
[notifications.html

Application Resources: http://code.google.com/android/reference/available-
resources.html

Status Bar icon style guide: http://developer.android.com/guide/practices
[ui_guideline /icon_design.html#statusbarstructure

Search Manager: http://developer.android.com/reference/android
w

18.
19.

20.

21.

22,

23.

24,

25.

2 of 26

. Live Wallpapers htt:

wallpapers.html

Apps for Android: http: . .com -for-androi

Reference tool documentation (for adb, aapt, ddms):
http://developer.android.com/guide/developing/tools/index.html
Android apk file description: http://developer.android.com/guide/topics

fundamentals.htmi

Manifest files: http://developer.android.com/guide/topics/manifest/manifest-

intro.html

Monkey testing tool: http://developer.android.com/guide/developing/tools
[monkey.html

Supporting Multiple Screens: http://developer.android.com/guide/practices
[screens_support.html

android.content.res.Configuration: http://developer.android.com/reference
[android/content/res/Configuration.html

android.util.DisplayMetrics: http://developer.android.com/reference/android

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000580
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 53 of 141

[util/DisplayMetrics.html

26. android.hardware.Camera: http://developer.android.com/reference/android
/hardware/Camera.html

27. Sensor coordinate space: http://developer.android.com/reference/android
/hardware/SensorEvent.html

28. Android Security and Permissions reference: http://developer.android.com/guide
[topics/security/security.html

29. Bluetooth API: http://developer.android.com/reference/android/bluetooth
/package-summary.html

Many of these resources are derived directly or indirectly from the Android 2.1 SDK,
and will be functionally identical to the information in that SDK's documentation. In
any cases where this Compatibility Definition or the Compatibility Test Suite
disagrees with the SDK documentation, the SDK documentation is considered
authoritative. Any technical details provided in the references included above are
considered by inclusion to be part of this Compatibility Definition.

3. Software

The Android platform includes a set of managed APIs, a set of native APIs, and a
body of so-called "soft" APIs such as the Intent system and web-application APIs.
This section details the hard and soft APIs that are integral to compatibility, as well
as certain other relevant technical and user interface behaviors. Device
implementations MUST comply with all the requirements in this section.

3.1. Managed API Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for
Android applications. The Android application programming interface (API) is the set
of Android platform interfaces exposed to applications running in the managed VM
environment. Device implementations MUST provide complete implementations,
including all documented behaviors, of any documented APl exposed by the Android
2.1 SDK[Resources, 4].

Device implementations MUST NOT omit any managed APIs, alter APl interfaces or
sighatures, deviate from the documented behavior, or include no-ops, except where
specifically allowed by this Compatibility Definition.

3.2. Soft APl Compatibility

In addition to the managed APIs from Section 3.1, Android also includes a significant
runtime-only "soft" API, in the form of such things such as Intents, permissions, and
similar aspects of Android applications that cannot be enforced at application
compile time. This section details the "soft" APIs and system behaviors required for
compatibility with Android 2.1. Device implementations MUST meet all the

3 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000581
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 54 of 141

requirements presented in this section.
3.2.1. Permissions
Device implementers MUST support and enforce all permission constants as

documented by the Permission reference page [Resources, 5]. Note that Section 10
lists addtional requirements related to the Android security model.

3.2.2. Build Parameters

The Android APIs include a humber of constants on the android.os.Build class
[Resources, 6] that are intended to describe the current device. To provide
consistent, meaningful values across device implementations, the table below
includes additional restrictions on the formats of these values to which device
implementations MUST conform.

Parameter Comments

The version of the currently-executing
Android system, in human-readable
format. This field MUST have one of the
string values defined in [Resources, 7].

android.os.Build.VERSION.RELEASE

The version of the currently-executing
Android system, in a format accessible
android.os.Build.VERSION.SDK to third-party application code. For
Android 2.1, this field MUST have the
integer value 7.

A value chosen by the device
implementer designating the specific
build of the currently-executing Android
system, in human-readable format. This
value MUST NOT be re-used for different
builds shipped to end users. A typical
android.os.Build.VERSION.INCREMENTAL @ use of this field is to indicate which
build number or source-control change
identifier was used to generate the
build. There are no requirements on the
specific format of this field, except that
it MUST NOT be null or the empty string
(").

A value chosen by the device
implementer identifying the specific
android.os.Build.BOARD internal hardware used by the device, in
human-readable format. A possible use
of this field is to indicate the specific

4 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000582
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 55 of 141

revision of the board powering the
device. There are no requirements on
the specific format of this field, except
that it MUST NOT be null or the empty
string ("").

A value chosen by the device
implementer identifying the name of the
company, organization, individual, etc.
who produced the device, in human-
readable format. A possible use of this
field is to indicate the OEM and/or
carrier who sold the device. There are
no requirements on the specific format
of this field, except that it MUST NOT be
null or the empty string ("").

android.os.Build.BRAND

A value chosen by the device
implementer identifying the specific
configuration or revision of the body
(sometimes called "industrial design")
of the device. There are no
requirements on the specific format of
this field, except that it MUST NOT be
null or the empty string ("").

android.os.Build.DEVICE

A string that uniquely identifies this
build. It SHOULD be reasonably human-
readable. It MUST follow this template:
$(BRAND) /$ (PRODUCT) /$ (DEVICE)

/$(BOARD) : $ (VERSION . RELEASE) /$ (ID)
/$(VERSION.INCREMENTAL) : $ (TYPE) /$(TAGS)

For example:
android.os.Build.FINGERPRINT acme/mydevice/generic/generic:2.1-updatel/ERC77
/3359:userdebug/test-keys

The fingerprint MUST NOT include
spaces. If other fields included in the
template above have spaces, they
SHOULD be replaced with the ASCII
underscore ("_") character in the
fingerprint.

A string that uniquely identifies the host
the build was built on, in human
readable format. There are no
requirements on the specific format of
this field, except that it MUST NOT be
null or the empty string ("").

android.os.Build.HOST

5 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000583
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 56 of 141

An identifier chosen by the device
implementer to refer to a specific
release, in human readable format. This
field can be the same as
android.os.Build.VERSION.INCREMENTAL,
android.os.Build.ID but SHOULD be a value sufficiently
meaningful for end users to distinguish
between software builds. There are no
requirements on the specific format of
this field, except that it MUST NOT be
null or the empty string ("").

A value chosen by the device
implementer containing the name of
the device as known to the end user.
This SHOULD be the same name under
android.os.Build.MODEL which the device is marketed and sold
to end users. There are no
requirements on the specific format of
this field, except that it MUST NOT be
null or the empty string ("").

A value chosen by the device
implementer containing the
development name or code name of the
device. MUST be human-readable, but is
android.os.Build.PRODUCT not necessarily intended for view by end
users. There are no requirements on
the specific format of this field, except
that it MUST NOT be null or the empty
string ("").

A comma-separated list of tags chosen
by the device implementer that further
distinguish the build. For example,
"unsigned,debug". This field MUST NOT
be null or the empty string (""), but a
single tag (such as "release") is fine.

android.os.Build. TAGS

A value representing the timestamp of

android.os.Build.TIME when the build occurred.

A value chosen by the device
implementer specifying the runtime
configuration of the build. This field
android.os.Build. TYPE SHOULD have one of the values
corresponding to the three typical
Android runtime configurations: "user",

6 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000584
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 57 of 141

"userdebug"”, or "eng".

A name or user ID of the user (or
automated user) that generated the
build. There are no requirements on the
specific format of this field, except that
it MUST NOT be null or the empty string
(™).

android.os.Build.USER

3.2.3. Intent Compatibility

Android uses Intents to achieve loosely-coupled integration between applications.
This section describes requirements related to the Intent patterns that MUST be
honored by device implementations. By "honored", it is meant that the device
implementer MUST provide an Android Activity or Service that specifies a matching
Intent filter and binds to and implements correct behavior for each specified Intent
pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as a
phone dialer, calendar, contacts book, music player, and so on. Device
implementers MAY replace these applications with alternative versions.

However, any such alternative versions MUST honor the same Intent patterns
provided by the upstream project. For example, if a device contains an alternative
music player, it must still honor the Intent pattern issued by third-party applications
to pick a song.

The following applications are considered core Android system applications:

Desk Clock

Browser

Calendar

Calculator

Camera

Contacts

Email

Gallery

GlobalSearch

Launcher

LivePicker (that is, the Live Wallpaper picker application; MAY be omitted if the
device does not support Live Wallpapers, per Section 3.8.5.)
e Messaging (AKA "Mms")

e Music

e Phone

7 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000585
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 58 of 141

e Settings
e SoundRecorder

The core Android system applications include various Activity, or Service components
that are considered "public". That is, the attribute "android:exported" may be
absent, or may have the value "true".

For every Activity or Service defined in one of the core Android system apps that is
not marked as non-public via an android:exported attribute with the value "false",
device implementations MUST include a compontent of the same type implementing
the same Intent filter patterns as the core Android system app.

In other words, a device implementation MAY replace core Android system apps;
however, if it does, the device implementation MUST support all Intent patterns
defined by each core Android system app being replaced.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementers MUST allow each Intent
pattern defined in core system apps to be overridden by third-party applications.
The upstream Android open source project allows this by default; device
implementers MUST NOT attach special privileges to system applications' use of
these Intent patterns, or prevent third-party applications from binding to and
assuming control of these patterns. This prohibition specifically includes but is not
limited to disabling the "Chooser" user interface which allows the user to select
between multiple applications which all handle the same Intent pattern.

Note: this section was modified by Erratum EX6580.
3.2.3.3. Intent Namespaces

Device implementers MUST NOT include any Android component that honors any new
Intent or Broadcast Intent patterns using an ACTION, CATEGORY, or other key string
in the android.* namespace. Device implementers MUST NOT include any Android
components that honor any new Intent or Broadcast Intent patterns using an
ACTION, CATEGORY, or other key string in a package space belonging to another
organization. Device implementers MUST NOT alter or extend any of the Intent
patterns used by the core apps listed in Section 3.2.3.1.

This prohibition is analogous to that specified for Java language classes in Section
3.6.

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify
them of changes in the hardware or software environment. Android-compatible
devices MUST broadcast the public broadcast Intents in response to appropriate
system events. Broadcast Intents are described in the SDK documentation.

8 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000586
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 59 of 141

3.3. Native APl Compatibility

Managed code running in Dalvik can call into native code provided in the application
.apk file as an ELF .so file compiled for the appropriate device hardware
architecture. Device implementations MUST include support for code running in the
managed environment to call into native code, using the standard Java Native
Interface (JNI) semantics. The following APIs MUST be available to native code:

o libc (C library)

e libm (math library)

¢ |Nl interface

libz (Zlib compression)

liblog (Android logging)

Minimal support for C++

Support for OpenGL, as described below

Device implementations MUST support OpenGL ES 1.0. Devices that lack hardware
acceleration MUST implement OpenGL ES 1.0 using a software renderer. Device
implementations SHOULD implement as much of OpenGL ES 1.1 as the device
hardware supports. Device implementations SHOULD provide an implementation for
OpenGLES 2.0, if the hardware is capable of reasonable performance on those APIs.

These libraries MUST be source-compatible (i.e. header compatible) and binary-
compatible (for a given processor architecture) with the versions provided in Bionic
by the Android Open Source project. Since the Bionic implementations are not fully
compatible with other implementations such as the GNU C library, device
implementers SHOULD use the Android implementation. If device implementers use a
different implementation of these libraries, they MUST ensure header, binary, and
behavioral compatibility.

Device implementations MUST accurately report the native Application Binary
Interface (ABI) supported by the device, via the android.os.Build.cPu_ABI APl. The ABI
MUST be one of the entries documented in the latest version of the Android NDK, in
the file docs/cpu-ARcH-ABIS.txt. Note that additional releases of the Android NDK may
introduce support for additional ABIs.

Native code compatibility is challenging. For this reason, it should be repeated that
device implementers are VERY strongly encouraged to use the upstream
implementations of the libraries listed above, to help ensure compatibility.

3.4. Web API Compatibility

Many developers and applications rely on the behavior of the android.webkit.webview Class
[Resources, 8] for their user interfaces, so the WebView implementation must be
compatible across Android implementations. The Android Open Source
implementation uses the WebKit rendering engine to implement the WebView.

9 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000587
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 60 of 141

Because it is not feasible to develop a comprehensive test suite for a web browser,
device implementers MUST use the specific upstream build of WebKit in the WebView
implementation. Specifically:

e WebView MUST use the 530.17 WebKit build from the upstream Android Open
Source tree for Android 2.1. This build includes a specific set of functionality
and security fixes for the WebView.

e The user agent string reported by the WebView MUST be in this format:
Mozilla/5.8 (Linux; U; Android $(VERSION); $(LOCALE); $(MODEL) Build/$(BUILD)) AppleWebKit/530.17
(KHTML, like Gecko) Version/4.0 Mobile Safari/530.17

o The value of the $(VERSION) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE

o The value of the $(LOCALE) string SHOULD follow the ISO conventions for
country code and language, and SHOULD refer to the current configured
locale of the device

o The value of the $(MODEL) string MUST be the same as the value for
android.os.Build.MODEL

o The value of the $(BUILD) string MUST be the same as the value for
android.os.Build.ID

Implementations MAY ship a custom user agent string in the standalone Browser
application. What's more, the standalone Browser MAY be based on an alternate
browser technology (such as Firefox, Opera, etc.) However, even if an alternate
Browser application is shipped, the WebView component provided to third-party
applications MUST be based on WebKit, as above.

The WebView configuration MUST include support for the HTML5 database,
application cache, and geolocation APIs [Resources, 9]. The WebView MUST include
support for the HTML5 <video> tag in some form. The standalone Browser application
(whether based on the upstream WebKit Browser application or a third-party
replacement) MUST include support for the same HTML5 features just listed for
WebView.

3.5. APl Behavioral Compatibility

The behaviors of each of the APl types (managed, soft, native, and web) must be
consistent with the preferred implementation of the upstream Android open-source
project [Resources, 3]. Some specific areas of compatibility are:

e Devices MUST NOT change the behavior or meaning of a standard Intent

e Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of
system component (such as Service, Activity, ContentProvider, etc.)

e Devices MUST NOT change the semantics of a particular permission

The above list is not comprehensive, and the onus is on device implementers to
ensure behavioral compatibility. For this reason, device implementers SHOULD use
the source code available via the Android Open Source Project where possible,

10 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000588
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 61 of 141

rather than re-implement significant parts of the system.

The Compatibility Test Suite (CTS) tests significant portions of the platform for
behavioral compatibility, but not all. It is the responsibility of the implementer to
ensure behavioral compatibility with the Android Open Source Project.

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java
programming language. To ensure compatibility with third-party applications, device
implementers MUST NOT make any prohibited modifications (see below) to these
package namespaces:

e java.*

javax.*

sun.*
android.*
com.android.*

Prohibited modifications include:

e Device implementations MUST NOT modify the publicly exposed APIs on the
Android platform by changing any method or class signatures, or by removing
classes or class fields.

e Device implementers MAY modify the underlying implementation of the APIs, but
such modifications MUST NOT impact the stated behavior and Java-language
signature of any publicly exposed APIs.

e Device implementers MUST NOT add any publicly exposed elements (such as
classes or interfaces, or fields or methods to existing classes or interfaces) to
the APIs above.

A "publicly exposed element" is any construct which is not decorated with the
"@hide" marker in the upstream Android source code. In other words, device
implementers MUST NOT expose new APIs or alter existing APIs in the namespaces
noted above. Device implementers MAY make internal-only modifications, but those
modifications MUST NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APIs, but any such APIs MUST NOT be in a
namespace owned by or referring to another organization. For instance, device
implementers MUST NOT add APIs to the com.google.* or similar namespace; only
Google may do so. Similarly, Google MUST NOT add APIs to other companies'
namespaces.

If a device implementer proposes to improve one of the package namespaces above
(such as by adding useful new functionality to an existing API, or adding a new API),
the implementer SHOULD visit source.android.com and begin the process for
contributing changes and code, according to the information on that site.

11 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000589
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 62 of 141

Note that the restrictions above correspond to standard conventions for naming
APIs in the Java programming language; this section simply aims to reinforce those
conventions and make them binding through inclusion in this compatibility definition.

3.7. Virtual Machine Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) bytecode
specification and Dalvik Virtual Machine semantics [Resources, 10].

Device implementations MUST configure Dalvik to allocate at least 16MB of memory
to each application on devices with screens classified as medium- or low-density.
Device implementations MUST configure Dalvik to allocate at least 24MB of memory
to each application on devices with screens classified as high-density. Note that
device implementations MAY allocate more memory than these figures, but are not
required to.

3.8. User Interface Compatibility

The Android platform includes some developer APIs that allow developers to hook
into the system user interface. Device implementations MUST incorporate these
standard Ul APIs into custom user interfaces they develop, as explained below.

3.8.1. Widgets

Android defines a component type and corresponding APl and lifecycle that allows
applications to expose an "AppWidget" to the end user [Resources, 11]. The Android
Open Source reference release includes a Launcher application that includes user
interface elements allowing the user to add, view, and remove AppWidgets from the
home screen.

Device implementers MAY substitute an alternative to the reference Launcher (i.e.
home screen). Alternative Launchers SHOULD include built-in support for
AppWidgets, and expose user interface elements to add, configure, view, and
remove AppWidgets directly within the Launcher. Alternative Launchers MAY omit
these user interface elements; however, if they are omitted, the device implementer
MUST provide a separate application accessible from the Launcher that allows users
to add, configure, view, and remove AppWidgets.

3.8.2. Notifications
Android includes APIs that allow developers to notify users of notable events

[Resources, 12]. Device implementers MUST provide support for each class of
notification so defined; specifically: sounds, vibration, light and status bar.

Additionally, the implementation MUST correctly render all resources (icons, sound
files, etc.) provided for in the APIs [Resources, 13], or in the Status Bar icon style

12 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000590
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 63 of 141

guide [Resources, 14]. Device implementers MAY provide an alternative user
experience for notifications than that provided by the reference Android Open
Source implementation; however, such alternative notification systems MUST
support existing notification resources, as above.

3.8.3. Search

Android includes APIs [Resources, 15] that allow developers to incorporate search
into their applications, and expose their application's data into the global system
search. Generally speaking, this functionality consists of a single, system-wide user
interface that allows users to enter queries, displays suggestions as users type, and
displays results. The Android APIs allow developers to reuse this interface to provide
search within their own apps, and allow developers to supply results to the common
global search user interface.

Device implementations MUST include a single, shared, system-wide search user
interface capable of real-time suggestions in response to user input. Device
implementations MUST implement the APIs that allow developers to reuse this user
interface to provide search within their own applications. Device implementations
MUST implement the APIs that allow third-party applications to add suggestions to
the search boxwhen it is run in global search mode. If no third-party applications
are installed that make use of this functionality, the default behavior SHOULD be to
display web search engine results and suggestions.

Device implementations MAY ship alternate search user interfaces, but SHOULD
include a hard or soft dedicated search button, that can be used at any time within
any app to invoke the search framework, with the behavior provided for in the API
documentation.

3.8.4. Toasts

Applications can use the "Toast" APl (defined in [Resources, 16]) to display short
non-modal strings to the end user, that disappear after a brief period of time.
Device implementations MUST display Toasts from applications to end users in some
high-visibility manner.

3.8.5. Live Wallpapers

Android defines a component type and corresponding APl and lifecycle that allows
applications to expose one or more "Live Wallpapers" to the end user [Resources,
17]. Live Wallpapers are animations, patterns, or similar images with limited input
capabilities that display as a wallpaper, behind other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live
wallpapers, with no limitations on functionality, at a reasonable framerate with no
adverse affects on other applications. If limitations in the hardware cause
wallpapers and/or applications to crash, malfunction, consume excessive CPU or

13 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000591
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 64 of 141

battery power, or run at unacceptably low frame rates, the hardware is considered
incapable of running live wallpaper. As an example, some live wallpapers may use an
Open GL 1.0 or 2.0 context to render their content. Live wallpaper will not run reliably
on hardware that does not support multiple OpenGL contexts because the live
wallpaper use of an OpenGL context may conflict with other applications that also
use ah OpenGL context.

Device implemenations capable of running live wallpapers reliably as described
above SHOULD implement live wallpapers. Device implementations determined to not
run live wallpapers reliably as described above MUST NOT implement live wallpapers.

4. Reference Software Compatibility

Device implementers MUST test implementation compatibility using the following
open-source applications:

e Calculator (included in SDK)
e Lunar Lander (included in SDK)
e The "Apps for Android" applications [Resources, 18].

Each app above MUST launch and behave correctly on the implementation, for the
implementation to be considered compatible.

Additionally, device implementations MUST test each menu item (including all
sub-menus) of each of these smoke-test applications:

e ApiDemos (included in SDK)
e ManualSmokeTests (included in CTS)

Each test case in the applications above MUST run correctly on the device
implementation.

5. Application Packaging Compatibility

Device implementations MUST install and run Android ".apk" files as generated by
the "aapt" tool included in the official Android SDK[Resources, 19].

Devices implementations MUST NOT extend either the .apk [Resources, 20], Android
Manifest [Resources, 21], or Dalvik bytecode [Resources, 10] formats in such a way
that would prevent those files from installing and running correctly on other
compatible devices. Device implementers SHOULD use the reference upstream
implementation of Dalvik, and the reference implementation's package management
system.

6. Multimedia Compatibility

14 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000592
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 65 of 141

15 of 26

Device implemenations MUST support the following multimedia codecs. All of these
codecs are provided as software implementations in the preferred Android
implementation from the Android Open Source Project.

Please note that neither Google nor the Open Handset Alliance make any
representation that these codecs are unencumbered by third-party patents. Those
intending to use this source code in hardware or software products are advised that
implementations of this code, including in open source software or shareware, may
require patent licenses from the relevant patent holders.

Name Encoder Decoder Details File/Container
Format
AAC LC/LTP X Mono/Stereo
content in any
HE-AACv1 X combination of ggdpiaiaégﬂ
(AAC+) standard bit rates
(.mp4, .m4a).
up to 160 kbps
HE-AAC\V2 and sampling No support for
(enhanced X rates between 8 raw AAC (.aac)
AACH) to 48kHz
4.75 to 12.2 kbps
AMR-NB X X sampled @ 8kHz 3GPP (.3gp)
9 rates from 6.60
kbit/s to 23.85
AMR-WB X kbit/s sampled @ 3GPP (.3gp)
16kHz
Audio Mono/Stereo
8-320Kbps
MP3 X constant (CBR) or MP3 (.mp3)
variable bit-rate
(VBR)
MIDI Type 0 and 1. Type O and 1
DLS Version 1 and | (.mid, .xmf,
2. XMF and Mobile | .mxmf). Also
MIDI X XMF. Support for RTTTL/RTX
ringtone formats (.rtttl, .rtx), OTA
RTTTL/RTX, OTA, (.ota), and
and iMelody iMelody (.imy)
0Ogg Vorbis X 0Ogg (.0gQg)
8- and 16-bit
PCM X linear PCM (rates \\AvE (\wav)
up to limit of
hardware)

Trial Exhibit 2802 Page 66 of 141

Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA

GOOGLE-00-00000593

JPEG X X base+progressive

GIF X ’

PNG X X

BMP X

H.263 X X 3GPP (.3gp)
files
3GPP (.3gp)

Video H.264 X and MPEG-4

(.mp4) files

MPEG4

Simple X 3GPP (.3gp) file

Profile

Note that the table above does not list specific bitrate requirements for most video
codecs. The reason for this is that in practice, current device hardware does not
necessarily support bitrates that map exactly to the required bitrates specified by
the relevant standards. Instead, device implementations SHOULD support the
highest bitrate practical on the hardware, up to the limits defined by the
specifications.

7. Developer Tool Compatibility

Device implemenations MUST support the Android Developer Tools provided in the
Android SDK. Specifically, Android-compatible devices MUST be compatible with:

e Android Debug Bridge (known as adb) [Resources, 19]
Device implementations MUST support all ado functions as documented in the
Android SDK. The device-side ado daemon SHOULD be inactive by default, but
there MUST be a user-accessible mechanism to turn on the Android Debug
Bridge.

¢ Dalvik Debug Monitor Service (known as ddms) [Resources, 19]
Device implementations MUST support all ddms features as documented in the
Android SDK. As ddms uses adb, support for ddns SHOULD be inactive by default, but
MUST be supported whenever the user has activated the Android Debug Bridge,
as above.

e Monkey [Resources, 22]
Device implementations MUST include the Monkey framework, and make it
available for applications to use.

8. Hardware Compatibility

16 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000594
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 67 of 141

Android is intended to support device implementers creating innovative form factors
and configurations. At the same time Android developers expect certain hardware,
sensors and APIs across all Android device. This section lists the hardware features
that all Android 2.1 compatible devices must support.

If a device includes a particular hardware component that has a corresponding API
for third-party developers, the device implementation MUST implement that APl as
defined in the Android SDK documentation. If an APl in the SDK interacts with a
hardware component that is stated to be optional and the device implementation
does not possess that component:

e class definitions for the component's APIs MUST be present

e the API's behaviors MUST be implemented as no-ops in some reasonable
fashion

o APl methods MUST return null values where permitted by the SDK
documentation

e APl methods MUST return no-op implementations of classes where null values
are not permitted by the SDK documentation

A typical example of a scenario where these requirements apply is the telephony API:
even on non-phone devices, these APIs must be implemented as reasonable no-ops.

Device implementations MUST accurate report accurate hardware configuration
information via the getSystemAvailableFeatures() and hasSystemFeature(String) methods on the
android.content.pm.PackageManager class.

8.1. Display

Android 2.1 includes facilities that perform certain automatic scaling and
transformation operations under some circumstances, to ensure that third-party
applications run reasonably well on a variety of hardware configurations [Resources,
23]. Devices MUST properly implement these behaviors, as detailed in this section.

For Android 2.1, this are the most common display configurations:

Screen Width Height Diagonal Length = Screen Scregn
Type (Pixels) (Pixels) Range (inches) Size Group Density
Group
QVGA 240 320 2.6 -3.0 Small Low
WQVGA 240 400 3.2-35 Normal Low
FWQVGA 240 432 3.5-3.8 Normal Low
HVGA 320 480 3.0-3.5 Normal Medium
WVGA 480 800 3.3-4.0 Normal High
17 of 26
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000595

3:10-cv-03561-WHA
Trial Exhibit 2802 Page 68 of 141

FWVGA 480 . 854 3.5-4.0 Normal High
WVGA 480 800 4.8-5.5 Large Medium
FWVGA 480 - 854 5.0 -5.8 Large Medium

Device implementations corresponding to one of the standard configurations above
MUST be configured to report the indicated screen size to applications via the
android.content.res.Configuration [Resources, 24] class.

Some .apk packages have manifests that do not identify them as supporting a
specific density range. When running such applications, the following constraints

apply:

e Device implementations MUST interpret resources in a .apk that lack a density
qualifier as defaulting to "medium" (known as "mdpi" in the SDK
documentation.)

e When operating on a "low" density screen, device implementations MUST scale
down medium/mdpi assets by a factor of 0.75.

e When operating on a "high" density screen, device implementations MUST scale
up medium/mdpi assets by a factor of 1.5.

e Device implementations MUST NOT scale assets within a density range, and
MUST scale assets by exactly these factors between density ranges.

8.1.2. Non-Standard Display Configurations

Display configurations that do not match one of the standard configurations listed in
Section 8.1.1 require additional consideration and work to be compatible. Device
implementers MUST contact Android Compatibility Team as provided for in Section 12
to obtain classifications for screen-size bucket, density, and scaling factor. When
provided with this information, device implementations MUST implement them as
specified.

Note that some display configurations (such as verylarge or very small screens, and
some aspect ratios) are fundamentally incompatible with Android 2.1; therefore
device implementers are encouraged to contact Android Compatibility Team as early
as possible in the development process.

8.1.3. Display Metrics

Device implementations MUST report correct valuesfor all display metrics defined in
android.util.DisplayMetrics [Resources, 25].

8.2. Keyboard

Device implementations:

18 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000596
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 69 of 141

e MUST include support for the Input Management Framework (which allows third
party developers to create Input Management Engines -- i.e. soft keyboard) as
detailed at developer.android.com

e MUST provide at least one soft keyboard implementation (regardless of whether
a hard keyboard is present)

e MAY include additional soft keyboard implementations

e MAY include a hardware keyboard

e MUST NOT include a hardware keyboard that does not match one of the formats
specified in android.content.res.Configuration.keyboard [Resources, 24] (that is, QWERTY,
or 12-key)

8.3. Non-touch Navigation

Device implementations:

e MAY omit a non-touch navigation options (that is, may omit a trackball, d-pad,
or wheel)

e MUST report the correct value for android. content. res.Configuration.navigation
[Resources, 24]

8.4. Screen Orientation

Compatible devices MUST support dynamic orientation by applications to either
portrait or landscape screen orientation. That is, the device must respect the
application's request for a specific screen orientation. Device implementations MAY
select either portrait or landscape orientation as the default.

Devices MUST report the correct value for the device's current orientation, whenever
gueried via the android.content.res.Configuration.orientation,
android.view.Display.getOrientation(), or other APIs.

8.5. Touchscreen input

Device implementations:

e MUST have a touchscreen

e MAY have either capacative or resistive touchscreen

e MUST report the value of android.content.res.Configuration [Resources, 24] reflecting
corresponding to the type of the specific touchscreen on the device

8.6. USB

Device implementations:

e MUST implement a USB client, connectable to a USB host with a standard USB-A

19 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000597
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 70 of 141

port

e MUST implement the Android Debug Bridge over USB (as described in Section 7)

e MUST implement the USB mass storage specification, to allow a host connected
to the device to access the contents of the /sdcard volume

e SHOULD use the micro USB form factor on the device side

e MAY include a non-standard port on the device side, but if so MUST ship with a
cable capable of connecting the custom pinout to standard USB-A port

8.7. Navigation keys

The Home, Menu and Back functions are essential to the Android navigation
paradigm. Device implementations MUST make these functions available to the user
at all times, regardless of application state. These functions SHOULD be
implemented via dedicated buttons. They MAY be implemented using software,
gestures, touch panel, etc., but if so they MUST be always accessible and not
obscure or interfere with the available application display area.

Device implementers SHOULD also provide a dedicated search key. Device
implementers MAY also provide send and end keys for phone calls.

8.8. Wireless Data Networking

Device implementations MUST include support for wireless high-speed data
networking. Specifically, device implementations MUST include support for at least
one wireless data standard capable of 200Kbit/sec or greater. Examples of
technologies that satisfy this requirement include EDGE, HSPA, EV-DO, 802.11q, etc.

If a device implementation includes a particular modality for which the Android SDK
includes an API (that is, WiFi, GSM, or CDMA), the implementation MUST support the
APL.

Devices MAY implement more than one form of wireless data connectivity. Devices
MAY implement wired data connectivity (such as Ethernet), but MUST nonetheless
include at least one form of wireless connectivity, as above.

8.9. Camera

Device implementations MUST include a camera. The included camera:

e MUST have a resolution of at least 2 megapixels

e SHOULD have either hardware auto-focus, or software auto-focus implemented
in the camera driver (transparent to application software)

e MAY have fixed-focus or EDOF (extended depth of field) hardware

e MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be
lit while an android.hardware.Camera.PreviewCallback instance has been

20 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000598
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 71 of 141

registered on a Camera preview surface, unless the application has explicitly
enabled the flash by enabling the FLASH MoDE AUTO Or FLASH MoDE oN attributes of a
camera.Parameters Object. Note that this constraint does not apply to the device's
built-in system camera application, but only to third-party applications using
Camera.PreviewCallback.

Device implementations MUST implement the following behaviors for the camera-
related APlIs:

1. If an application has never called
android.hardware.Camera.Parameters.setPreviewFormat(int), then the device
MUST use android.hardware.PixelFormat.YCbCr_420_SP for preview data
provided to application callbacks.

2. If an application registers an android.hardware.Camera.PreviewCallback
instance and the system calls the onPreviewFrame() method when the preview
format is YCbCr_420_SP, the data in the byte[] passed into onPreviewFrame()
must further be in the NV21 encoding format. (This is the format used natively
by the 7k hardware family.) That is, NV21 MUST be the default.

Device implementations MUST implement the full Camera APl included in the Android
2.1 SDKdocumentation [Resources, 26]), regardless of whether the device includes
hardware autofocus or other capabilities. For instance, cameras that lack autofocus
MUST still call any registered android.hardware.Camera.AutoFocusCallback instances (even
though this has no relevance to a non-autofocus camera.)

Device implementations MUST recognize and honor each parameter name defined
as a constant on the android.hardware.Camera.Parameters class, if the underlying hardware
supports the feature. If the device hardware does not support a feature, the API
must behave as documented. Conversely, Device implementations MUST NOT honor
or recognize string constants passed to the android.hardware.Camera.setParameters() method
other than those documented as constants on the android.hardware.Camera.Parameters,
unless the constants are prefixed with a string indicating the name of the device
implementer. That is, device implementations MUST support all standard Camera
parameters if the hardware allows, and MUST NOT support custom Camera
parameter types unless the parameter names are clearly indicated via a string prefix
to be non-standard.

8.10. Accelerometer

Device implementations MUST include a 3-axis accelerometer and MUST be able to
deliver events at 50 Hzor greater. The coordinate system used by the
accelerometer MUST comply with the Android sensor coordinate system as detailed
in the Android APIs (see [Resources, 27]).

8.11. Compass

21 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000599
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 72 of 141

Device implementations MUST include a 3-axis compass and MUST be able to deliver
events 10 Hz or greater. The coordinate system used by the compass MUST comply
with the Android sensor coordinate system as defined in the Android API (see
[Resources, 271).

8.12. GPS

Device implementations MUST include a GPS, and SHOULD include some form of
"assisted GPS" technique to minimize GPS lock-on time.

8.13. Telephony

Android 2.1 MAY be used on devices that do not include telephony hardware. That
is, Android 2.1 is compatible with devices that are not phones. However, if a device
implementation does include GSM or CDMA telephony, it MUST implement the full
support for the API for that technology. Device implementations that do not include
telephony hardware MUST implement the full APIls as no-ops.

See also Section 8.8, Wireless Data Networking.

8.14. Memory and Storage

Device implementations MUST have at least 92MB of memory available to the kernel
and userspace. The 92MB MUST be in addition to any memory dedicated to
hardware components such as radio, memory, and so on that is not under the
kernel's control.

Device implementations MUST have at least 150MB of non-volatile storage available
for user data. That is, the /data partition must be at least 150MB.

Note: this section was modified by Erratum EX6580.

8.15. Application Shared Storage

Device implementations MUST offer shared storage for applications. The shared
storage provided MUST be at least 2GB in size.

Device implementations MUST be configured with shared storage mounted by
default, "out of the boX". If the shared storage is not mounted on the Linux path
/sdcard, then the device MUST include a Linux symbolic link from /sdcard to the actual
mount point.

Device implementations MUST enforce as documented the
android.permission.WRITE EXTERNAL STORAGE permission on this shared storage. Shared storage
MUST otherwise be writable by any application that obtains that permission.

22 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000600
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 73 of 141

Device implementations MAY have hardware for user-accessible removable storage,
such as a Secure Digital card. Alternatively, device implementations MAY allocate
internal (non-removable) storage as shared storage for apps.

Regardless of the form of shared storage used, the shared storage MUST implement
USB mass storage, as described in Section 8.6. As shipped out of the box, the
shared storage MUST be mounted with the FAT filesystem.

It is illustrative to consider two common examples. If a device implementation
includes an SD card slot to satisfy the shared storage requirement, a FAT-formatted
SD card 2GB in size or larger MUST be included with the device as sold to users, and
MUST be mounted by default. Alternatively, if a device implementation uses internal
fixed storage to satisfy this requirement, that storage MUST be 2GB in size or larger
and mounted on /sdcard (or /sdcard MUST be a symbolic link to the physical location if it
is mounted elsewhere.)

Note: this section was added by Erratum EX6580.

8.16. Bluetooth

Device implementations MUST include a Bluetooth transceiver. Device
implementations MUST enable the RFCOMM-based Bluetooth APl as described in the
SDK documentation [Resources, 29]. Device implementations SHOULD implement
relevant Bluetooth profiles, such as A2DP, AVRCP, OBEX, etc. as appropriate for the
device.

Note: this section was added by Erratum EX6580.

9. Performance Compatibility

One of the goals of the Android Compatibility Program is to enable consistent
application experience to consumers. Compatible implementations must ensure not
only that applications simply run correctly on the device, but that they do so with
reasonable performance and overall good user experience. Device implementations
MUST meet the key performance metrics of an Android 2.1 compatible device
defined in the table below:

Metric Performance Threshold Comments
The following applications The launch time is measured as
should launch within the the total time to complete
Application specified time. loading the default activity for
Launch Time the application, including the
* Browser: less than time it takes to start the Linux
1300ms process, load the Android
23 of 26
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000601

3:10-cv-03561-WHA
Trial Exhibit 2802 Page 74 of 141

24 of 26

e MMS/SMS: less than

700ms . .
ackage into the Dalvik VM,
e AlarmClock: less than gnd cagll onCreate
650ms '

When multiple applications
have been launched,
re-launching an already-
running application after it
has been launched must take
less than the original launch
time.

Simultaneous
Applications

10. Security Model Compatibility

Device implementations MUST implement a security model consistent with the
Android platform security model as defined in Security and Permissions reference
document in the APIs [Resources, 28] in the Android developer documentation.
Device implementations MUST support installation of self-signed applications without
requiring any additional permissions/certificates from any third parties/authorities.
Specifically, compatible devices MUST support the security mechanisms described in
the follow sub-sections.

10.1. Permissions

Device implementations MUST support the Android permissions model as defined in
the Android developer documentation [Resources, 28]. Specifically, implementations
MUST enforce each permission defined as described in the SDK documentation; no
permissions may be omitted, altered, or ignored. Implementations MAY add
additional permissions, provided the new permission ID strings are not in the
android.* namespace.

10.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in
which each application runs as a unigue Unix-style UID and in a separate process.
Device implementations MUST support running multiple applications as the same
Linux user ID, provided that the applications are properly signed and constructed, as
defined in the Security and Permissions reference [Resources, 28].

10.3. Filesystem Permissions

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000602
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 75 of 141

Device implementations MUST support the Android file access permissions model as
defined in as defined in the Security and Permissions reference [Resources, 28].

11. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS)
[Resources, 2] available from the Android Open Source Project, using the final
shipping software on the device. Additionally, device implementers SHOULD use the
reference implementation in the Android Open Source tree as much as possible, and
MUST ensure compatibility in cases of ambiguity in CTS and for any
reimplementations of parts of the reference source code.

The CTS is desighed to be run on an actual device. Like any software, the CTS may
itself contain bugs. The CTS will be versioned independently of this Compatibility
Definition, and multiple revisions of the CTS may be released for Android 2.1. Device
implementations MUST pass the latest CTS version available at the time the device
software is completed.

12. Updatable Software

Device implementations MUST include a mechanism to replace the entirety of the
system software. The mechanism need not perform "live" upgrades -- that is, a
device restart MAY be required.

Any method can be used, provided that it can replace the entirety of the software
preinstalled on the device. For instance, any of the following approaches will satisfy
this requirement:

e Over-the-air (OTA) downloads with offline update via reboot
e "Tethered" updates over USB from a host PC
e "Offline" updates via a reboot and update from a file on removable storage

The update mechanism used MUST support updates without wiping user data. Note
that the upstream Android software includes an update mechanism that satisfies
this requirement.

If an error is found in a device implementation after it has been released but within
its reasonable product lifetime that is determined in consultation with the Android
Compatibility Team to affect the compatibility of thid-party applications, the device
implementer MUST correct the error via a software update available that can be
applied per the mechanism just described.

13. Contact Us

You can contact the document authors at compatibilitv@ android.com for

25 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000603
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 76 of 141

clarifications and to bring up anyissues that you think the document does not
cover.

26 of 26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000604
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 77 of 141

Appendix: Android 2.1 Compatibility
Definition, Erratum EX6580

The Android 2.1 Compatibility Definition is modified by this erratum, as follows.

Section 3.2.3.2. Intent Overrides

Section 3.2.3.2 on Intent Overrides is modified to remove the
references to the non-existent "Appendix A". The revised text
follows.

As Android is an extensible platform, device implementers MUST allow each
Intent pattern defined in core system apps to be overridden by third-party
applications. The upstream Android open source project allows this by
default; device implementers MUST NOT attach special privileges to system
applications' use of these Intent patterns, or prevent third-party applications
from binding to and assuming control of these patterns. This prohibition
specifically includes but is not limited to disabling the "Chooser" user interface
which allows the user to select between multiple applications which all handle
the same Intent pattern.

Section 8.14. Memory and Storage

Section 3.2.3.2 on Memory and Storage is modified to correct
erroneous values provided for minimum internal storage
requirements. The minimum internal storage is revised downward,
from 290MB to 150MB. The revised text follows.

Device implementations MUST have at least 92MB of memory available to the
kernel and userspace. The 92MB MUST be in addition to any memory
dedicated to hardware components such as radio, memory, and so on that is
not under the kernel's control.

Device implementations MUST have at least 150MB of non-volatile storage
available for user data. That is, the /data partition must be at least 150MB.

1of3

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000605
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 78 of 141

Section 8.15. Application Shared Storage

Section 8.15 is added, to clarify existing requirements on
external/shared storage. The added text follows.

Device implementations MUST offer shared storage for applications. The
shared storage provided MUST be at least 2GB in size.

Device implementations MUST be configured with shared storage mounted by
default, "out of the box". If the shared storage is not mounted on the Linux
path /sdcard, then the device MUST include a Linux symbolic link from /sdcard to
the actual mount point.

Device implementations MUST enforce as documented the
android.permission.WRITE EXTERNAL STORAGE permission on this shared storage. Shared
storage MUST otherwise be writable by any application that obtains that
permission.

Device implementations MAY have hardware for user-accessible removable
storage, such as a Secure Digital card. Alternatively, device implementations
MAY allocate internal (non-removable) storage as shared storage for apps.

Regardless of the form of shared storage used, the shared storage MUST
implement USB mass storage, as described in Section 8.6. As shipped out of
the box, the shared storage MUST be mounted with the FAT filesystem.

It is illustrative to consider two common examples. If a device implementation
includes an SD card slot to satisfy the shared storage requirement, a
FAT-formatted SD card 2GB in size or larger MUST be included with the device
as sold to users, and MUST be mounted by default. Alternatively, if a device
implementation uses internal fixed storage to satisfy this requirement, that
storage MUST be 2GB in size or larger and mounted on /sdcard (Or /sdcard MUST
be a symbolic link to the physical location if it is mounted elsewhere.)

Section 8.16. Bluetooth

Section 8.16 is added, to clarify existing requirements on the
inclusion of Bluetooth hardware. The added text follows.

Device implementations MUST include a Bluetooth transceiver. Device
implementations MUST enable the RFCOMM-based Bluetooth APl as described
in the SDK documentation [Resources, 29]. Device implementations SHOULD
implement relevant Bluetooth profiles, such as A2DP, AVRCP, OBEX, etc. as

20f3

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000606
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 79 of 141

appropriate for the device.

30f3

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000607
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 80 of 141

Android 2.2 Compatibility Definition

Copyright © 2010, Google Inc. All rights reserved.
compatibility@android.com

Table of Contents

1. Introduction

2. Resources

3. Software
3.1. Managed AP| Compatibility
3.2. Soft APl Compatibility

3.2.1. Permissionsg
3.2.2. Build Parameters
3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents
3.2.3.2, Intent Overrides
3.2.3.3. Intent Namaspaces
3.2.3.4. Broadcast Intents
3.3. Native API Compatibility
3.4. Web Compatibility
3.4.1. WebView Compatibility
3.4.2. Browser Compatibility
3.5. API Behavioral Compatibility
3.8. AP Namespaces
3.7. Virtual Machine Compatibility
3.8. User Interface Compatibility
3.8.1. Widgets
3.8.2. Notifications
3.8.3. Search
3.8.4. Toasts
3.8.5. Live Wallpapers
4. Reference Software Compatibility
5. Application Packaging Compatibility
6. Multimedia Compatibility
6.1. Media Codecs
6.2. Audio Recording
8.3. Audio Latency
7. Developer Tool Compatibility

8. Hardware Compatibility
8.1. Display
8.1.2. Non-Standard Display Configurations

8.1.3. Display Metrics
8.1.4. Declared Screen Support

8.2. Keyhoard
8.3. Non-touch Navigation

8.4. Screen Orientation
8.5. Touchscreen input

Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 81 of 141

GOOGLE-00-00000608

Trial Exhibit 2802 Page 82 of 141

8.6. UsB

8.7. Navigation keys
8.8. Wireless Data Nelworking

8.9. Camera

8.10. Accelerometer

8.11. Compass

8.12. GPS

8.13. Telephony

8.14. Memory and Storage

8.15. Application Shared Siorage
8.16. Bluetooth

9. Performance Compatibility

10. Security Model Compatibility

10.1. Permissions
10.2. UID and Process Isolation

10.3. Filesystam Permissions

10.4. Alternate Execution Environments

11. Compatibility Test Suite

12. Updatable Software

13. Contact Us

Appendix A - Bluetooth Test Procedure

Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA

GOOGLE-00-00000609

1. Introduction

This document enumerates the requirements that must be met in order for mobile phones to be compatible with Android 2.2.

The use of "must", "must not", "required”, "shall", "shall not", "should", "should not", "recommended”, "may" and "optional" is per the IETF standard
defined in RFC2119 [Resources, 1].

As used in this document, a "device implementer” or "implementer" is a person or organization developing a hardware/software solution running
Android 2.2. A "device implementation” or "implementation” is the hardware/software solution so developed.

To be considered compatible with Android 2.2, device implementations:

- MUST meet the requirements presented in this Compatibility Definition, including any documents incorporated via reference.

= MUST pass the most recent version of the Android Compatibility Test Suite (CTS) available at the time of the device implementation's software is
completed. (The CTS is available as part of the Android Open Source Project [Resources, 2].) The CTS tests many, but not all, of the components
outlined in this document.

Where this definition or the CTS is silent, ambiguous, or incomplete, it is the responsibility of the device implementer to ensure compatibility with
existing implementations. For this reason, the Android Open Source Project [Resources, 3] is both the reference and preferred implementation of
Android. Device implementers are strongly encouraged to base their implementations on the "upstream” source code available from the Android Open
Source Project. While some components can hypothetically be replaced with alternate implementations this practice is strongly discouraged, as
passing the CTS tests will become substantially more difficult. It is the implementer's responsibility to ensure full behavioral compatibility with the
standard Android implementation, including and beyond the Compatibility Test Suite. Finally, note that certain component substitutions and
modifications are explicitly forbidden by this document.

2. Resources

1. IETF RFC2119 Requirement Levels: http:/iwww.ietf.org/rfc/rfc2119.ixt

. Android Compatibility Program Overview: http://source.android.com/compatibility/index.htmi

. Android Open Source Project: hitp://source.android.com/

. API definitions and documentation: http:/developer.android.com/reference/packages.html

. android.os.Build reference: http://developer.android.com/reference/android/os/Build.html

. Android 2.2 allowed version strings: hitp://source.android.com/compatibility/2.2/versions.html

2
3
4
5. Android Permissions reference: http://developer.android.com/reference/android/Manifest.permission.himi
6
7
8

. android.webkit.WebView class: http://developer.android.com/reference/android/webkit/\WebView.html

9. HTMLS: http://www.whatwg.org/specs/web-apps/current-work/multipage/

10. Dalvik Virtual Machine specification: available in the Android source code, at dalvik/docs

11. AppWidgets: hitp://developer.android.com/guide/practices/ui_guidelines/widget design.html

12. Notifications: hitp://developer.android.com/guide/topics/ui/notifiers/notifications.html

13. Application Resources: http://code.google.com/android/reference/available-resources.html

14. Status Bar icon style guide: http://developer.android.com/guide/practices/ui_guideline /icon_design.html#statusbarstructure

15. Search Manager: http://developer.android.com/reference/android/app/SearchManager.html

16. Toasts: htip://developer.android,comireference/android/widget/Toast. html

17. Live Wallpapers: hitp://developer.android.com/resources/articles/live-wallpapers.html

18. Apps for Android: hitp://code.google.com/p/apps-for-android

19. Reference tool documentation (for adb, aapt, ddms): http://developer.android.com/guide/developing/tools/index.html

20. Android apk file description: hitp://developer.android.com/guide/topics/fundamentals.html

21. Manifest files: hitp://developer.android.com/guide/topics/manifest/manifest-intro.himl

22. Monkey testing tool: hitp://developer.android.com/guide/developing/tocls/monkey.html

23. Android Hardware Features List: hitp://developer.android.com/reference/android/content/om/PackageManager.html

24. Supporting Multiple Screens: http://developer.android.com/guide/practices/screens support.html

25. android.content.res.Configuration: http://developer.android.com/reference/android/content/res/Configuration.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000610
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 83 of 141

26. android.util.DisplayMetrics: http://developer.android.com/reference/android/util/DisplayMetrics.himl

27. android.hardware.Camera: hiip://developer.android.com/reference/android/hardware/Camera.himl

28. Sensor coordinate space: http://developer.android.com/reference/android/hardware/SensorEvent.html

29. Android Security and Permissions reference: http://developer.android.com/guide/topics/security/security.htmil

30. Bluetooth API: hitp://developer.android.com/reference/android/biustooth/package-summary.htmi

Many of these resources are derived directly or indirectly from the Android 2.2 SDK, and will be functionally identical to the information in that SDK's
documentation. In any cases where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK documentation, the SDK
documentation is considered authoritative. Any technical details provided in the references included above are considered by inclusion to be part of this
Compatibility Definition.

3. Software

The Android platform includes a set of managed APls, a set of native APlIs, and a body of so-called "soft" APIs such as the Intent system and
web-application APIs. This section details the hard and soft APIs that are integral to compatibility, as well as certain other relevant technical and user
interface behaviors. Device implementations MUST comply with all the requirements in this section.

3.1. Managed API Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for Android applications. The Android application programming interface
(API) is the set of Android platform interfaces exposed to applications running in the managed VM environment. Device implementations MUST provide
complete implementations, including all documented behaviors, of any documented API exposed by the Android 2.2 SDK [Resources, 4].

Device implementations MUST NOT omit any managed APlIs, alter AP| interfaces or signatures, deviate from the documented behavior, or include
no-ops, except where specifically allowed by this Compatibility Definition.

3.2. Soft APl Compatibility

In addition to the managed APIs from Section 3.1, Android also includes a significant runtime-only "soft" API, in the form of such things such as Intents,
permissions, and similar aspects of Android applications that cannot be enforced at application compile time. This section details the "soft" APIs and
system behaviors required for compatibility with Android 2.2. Device implementations MUST meet all the requirements presented in this section.

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as documented by the Permission reference page [Resources, 5]. Note that
Section 10 lists additional requirements related to the Android security model.

3.2.2, Build Parameters

The Android APIs include a number of constants on the android.os.Build class [Resources, 6] that are intended to describe the current device. To
provide consistent, meaningful values across device implementations, the table below includes additional restrictions on the formats of these values to
which device implementations MUST conform.

Parameter Comments

The version of the currently-executing Android system, ih
android.os.Build.VERSION.RELEASE human-readable format. This field MUST have one of the string values
defined in [Resources, 7].

I he version of the currently-executing Android system, in a format
android.os.Build.VERSION.SDK accessible to third-party application code. For Android 2.2, this field
MUST have the integer value 8.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000611
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 84 of 141

A value chosen by the device implementer designating the specific
build of the currently-executing Android system, in human-readable
format. This value MUST NOT be re-used for different builds made
android.os.Build.VERSION.INCREMENTAL available to end users. A typical use of this field is to indicate which
build number or source-control change identifier was used to generate
the build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string (™).

A value chosen by the device implementer identifying the specific
internal hardware used by the device, in human-readable format. A
android.os.Build.BOARD possible use of this field is to indicate the specific revision of the board
powering the device. There are no requirements on the specific format
of this field, except that it MUST NOT be null or the empty string ("").
A value chosen by the device implementer identifying the name of the

company, organization, individual, etc. who produced the device, in

i) human-readable format. A possible use of this field is to indicate the
android.os.Build.BRAND . . .
OEM and/or carrier who sold the device. There are no requirements on
the specific format of this field, except that it MUST NOT be null or the

empty string ("").

A value chosen by the device implementer identifying the specific

configuration or revision of the body (sometimes called "industrial

android.os.Build.DEVICE design") of the device. There are no requirements on the specific
format of this field, except that it MUST NOT be null or the empty string
™.
Siring that uniquely identifies this build. It SHOULD be . IUMUS T Tollow this template!
A (32AKD) /4 (PRINUCT) /4 (REVTIRT /5 (ROARDY £ 8 (VIR57ONLRRTFRER1 /6 (T2 /4 (7RRSTON, NCRREMPNTALI 15 (TYF) /§ (T2 55
android.os.Build.FINGERPRINT Forexample: -
acre/rydevice/seneric/gensr i o2, SRR/ 235U userdeduy/ tesT-heys

The fingerprint MUST NOT include whitespace characters. If other fields included in the template above have whitespace characters, they
MUST be replaced in the build fingerprint with another character, such as the underscore ("_") character.

A string that uniquely identifies the host the build was built on, in

human readable format. There are ho requirements on the specific
format of this field, except that it MUST NOT be null or the empty string
™.

An identitier chosen by the device implementer to retfer to a specitic

android.os.Build.HOST

release, in human readable format. This field can be the same as
android.os.Build. VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software
builds. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string ("").

A value chosen by the device implementer containing the name ot the
device as known to the end user. This SHOULD be the same name
android.os.Build.MODEL under which the device is marketed and sold to end users. There are
no requirements on the specific format of this field, except that it MUST
NOT be null or the empty string ("").

A value chosen by the device implementer containing the development
name or code name of the device. MUST be human-readable, but is
android.os.Build. PRODUCT not necessarily intended for view by end users. There are no
requirements on the specific format of this field, except that it MUST
NOT be null or the empty string ("").

android.os.Build.ID

A comma-separated list of tags chosen by the device implementer that
further distinguish the build. For example, "unsigned,debug". This field
MUST NOT be null or the empty string (""), but a single tag (such as
"release") is fine.

android.os.Build. TAGS

android.os.Build. TIME A'value representing the timestamp of When the build occurred.

A value chosen by the device implementer specifying the runtime
configuration of the build. This field SHOULD have one of the values
corresponding to the three typical Android runtime configurations:

android.os.Build. TYPE

"user", "userdebug", or "eng".

A hame or user ID of the user (or automated user) that generated the
android.os.Build. USER build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string (™).

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000612
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 85 of 141

3.2.3. Intent Compatibility

Android uses Intents to achieve loosely-coupled integration between applications. This section describes requirements related to the Intent patterns
that MUST be honored by device implementations. By "honored", it is meant that the device implementer MUST provide an Android Activity or Service
that specifies a matching Intent filter and binds to and implements correct behavior for each specified Intent pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as a phone dialer, calendar, contacts book, music player, and so on. Device
implementers MAY replace these applications with alternative versions.

However, any such alternative versions MUST honor the same Intent patterns provided by the upstream project. For example, if a device contains an
alternative music player, it must still honor the Intent pattern issued by third-party applications to pick a song.

The following applications are considered core Android system applications:

» Desk Clock
» Browser
= Calendar

= Calculator

» Camera
= Contacts
» Email

« Gallery

= GlobalSearch

= Launcher

» LivePicker (that is, the Live Wallpaper picker application; MAY be omitted if the device does not support Live Wallpapers, per Section 3.8.5.)
» Messaging (AKA "Mms")

* Music
* Phone
= Settings

» SoundRecorder

The core Android system applications include various Activity, or Service components that are considered "public". That is, the attribute
"android:exported” may be absent, or may have the value "true”.

For every Activity or Service defined in one of the core Android system apps that is not marked as non-public via an android:exported attribute with the
value “false", device implementations MUST include a compontent of the same type implementing the same Intent filter patterns as the core Android
system app.

In other words, a device implementation MAY replace core Android system apps; however, if it does, the device implementation MUST support all
Intent patterns defined by each core Android system app being replaced.

3.2.3.2. Intent Overrides

As Android is an extensible platform, device implementers MUST allow each Intent pattern referenced in Section 3.2.3.1 to be overridden by third-party
applications. The upstream Android open source project allows this by default; device implementers MUST NOT attach special privileges to system
applications' use of these Intent patterns, or prevent third-party applications from binding to and assuming control of these patterns. This prohibition
specifically includes but is not limited to disabling the "Chooser" user interface which allows the user to select between multiple applications which all
handle the same Intent pattern.

3.2.3.3. Intent Namespaces

Device implementers MUST NOT include any Android component that honors any new Intent or Broadcast Intent patterns using an ACTION,
CATEGORY, or other key string in the android.* namespace. Device implementers MUST NOT include any Android components that honor any new
Intent or Broadcast Intent patterns using an ACTION, CATEGORY, or other key string in a package space belonging to another organization. Device
implementers MUST NOT alter or extend any of the Intent patterns used by the core apps listed in Section 3.2.3.1.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000613
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 86 of 141

This prohibition is analogous to that specified for Java language classes in Section 3.6.
3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify them of changes in the hardware or software environment.
Android-compatible devices MUST broadcast the public broadcast Intents in response to appropriate system events. Broadcast Intents are described in
the SDK documentation.

3.3. Native APl Compatibility

Managed code running in Dalvik can call into native code provided in the application .apk file as an ELF .so file compiled for the appropriate device
hardware architecture. Device implementations MUST include support for code running in the managed environment to call into native code, using the
standard Java Native Interface (JNI) semantics. The following APIs MUST be available to native code:

= libc (C library)

+ libm (math library)

= JNlinterface

» libz (Zlib compression)

» liblog (Android logging)
» Minimal support for C++

» Support for OpenGL, as described below

Device implementations MUST support OpenGL ES 1.0. Devices that lack hardware acceleration MUST implement OpenGL ES 1.0 using a software
renderer. Device implementations SHOULD implement as much of OpenGL ES 1.1 as the device hardware supports. Device implementations
SHOULD provide an implementation for OpenGL ES 2.0, if the hardware is capable of reasonable performance on those APIs.

These libraries MUST be source-compatible (i.e. header compatible) and binary-compatible (for a given processor architecture) with the versions
provided in Bionic by the Android Open Source project. Since the Bionic implementations are not fully compatible with other implementations such as
the GNU C library, device implementers SHOULD use the Android implementation. If device implementers use a different implementation of these
libraries, they MUST ensure header, binary, and behavioral compatibility.

Device implementations MUST accurately report the native Application Binary Interface (ABI) supported by the device, via the
android.os.Build.CPU_ABI APIl. The ABI MUST be one of the entries documented in the latest version of the Android NDK, in the file
docs/CPU-ARCH-ABIS. txt. Note that additional releases of the Android NDK may introduce support for additional ABls.

Native code compatibility is challenging. For this reason, it should be repeated that device implementers are VERY strongly encouraged to use the
upstream implementations of the libraries listed above to help ensure compatibility.

3.4. Web Compeatibility

Many developers and applications rely on the behavior of the android.wekkit.WebView class [Resources, 8] for their user interfaces, so the
WebView implementation must be compatible across Android implementations. Similarly, a full web experience is central to the Android user
experience. Device implementations MUST include a version of android.webkit.WebView consistent with the upstream Android software, and
MUST include a modern HTML5-capable browser, as described below.

3.4.1. WebView Compatibility

The Android Open Source implementation uses the WebKit rendering engine to implement the android.webkit.WebView. Because it is not feasible
to develop a comprehensive test suite for a web rendering system, device implementers MUST use the specific upstream build of WebKit in the
WebView implementation. Specifically:

- Device implementations' android.webkit.WebView implementations MUST be based on the 533.1 WebKit build from the upstream Android
Open Source tree for Android 2.2. This build includes a specific set of functionality and security fixes for the WebView. Device implementers MAY
include customizations to the WebKit implementation; however, any such customizations MUST NOT alter the behavior of the WebView, including
rendering behavior.

The user agent string reported by the WebView MUST be in this format:
Mozilla/5.0 (Linux; U; Andreoid $(VERSION); $(LOCALE); $(MODEL) Build/$(BUILD)) AppleWebKit/533.1 (KHTML, like

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000614
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 87 of 141

Gecko) Version/4.0 Mobile Safari/533.1
+ The value of the $(VERSION) string MUST be the same as the value for android.os.Build.VERSION.RELEASE

» The value of the $(LOCALE) string SHOULD follow the ISO conventions for country code and language, and SHOULD refer to the current
configured locale of the device

> The value of the $(MODEL) string MUST be the same as the value for android.os.Build.MODEL
» The value of the $(BUILD) string MUST be the same as the value for android.os.Build.ID

The WebView configuration MUST include support for the HTML5 database, application cache, and geolocation APIs [Resources, 9]. The WebView
MUST include support for the HTMLS <video> tag. HTMLS APls, like all JavaScript APls, MUST be disabled by default in a WebView, unless the
developer explicitly enables them via the usual Android APls.

3.4.2. Browser Compatibility

Device implementations MUST include a standalone Browser application for general user web browsing. The standalone Browser MAY be based on an
browser technology other than WebKit. However, even if an alternate Browser application is shipped, the android.webkit.WebView component
provided to third-party applications MUST be based on WebKit, as described in Section 3.4.1.

Implementations MAY ship a custom user agent string in the standalone Browser application.

The standalone Browser application (whether based on the upstream WebKit Browser application or a third-party replacement) SHOULD include
support for as much of HTML5 [Resources, 8] as possible. Minimally, device implementations MUST support HTML5 geolocation, application cache,
and database APIs and the <video> tag in standalone the Browser application.

3.5. APl Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the preferred implementation of the upstream Android
open-source project [Resources, 3]. Some specific areas of compatibility are:

» Devices MUST NOT change the behavior or meaning of a standard Intent

= Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of system component (such as Service, Activity, ContentProvider,
etc.)

= Devices MUST NOT change the semantics of a particular permission

The above list is not comprehensive, and the onus is on device implementers to ensure behavioral compatibility. For this reason, device implementers
SHOULD use the source code available via the Android Open Source Project where possible, rather than re-implement significant parts of the system.

The Compatibility Test Suite (CTS) tests significant portions of the platform for behavioral compatibility, but not all. It is the responsibility of the
implementer to ensure behavioral compatibility with the Android Open Source Project.

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java programming language. To ensure compatibility with third-party
applications, device implementers MUST NOT make any prohibited modifications (see below) to these package namespaces:

- java.*

- javax.*

» sun.*

» android.*

= com.android.*
Prohibited modifications include:

= Device implementations MUST NOT modify the publicly exposed APIs on the Android platform by changing any method or class signatures, or by
removing classes or class fields.

= Device implementers MAY madify the underlying implementation of the APIs, but such madifications MUST NOT impact the stated behavior and
Java-language signature of any publicly exposed APIs.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000615
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 88 of 141

» Device implementers MUST NOT add any publicly exposed elements (such as classes or interfaces, or fields or methods to existing classes or
interfaces) to the APIs above.

A "publicly exposed element” is any construct which is not decorated with the "@hide" marker in the upstream Android source code. In other words,
device implementers MUST NOT expose new APls or alter existing APls in the namespaces noted above. Device implementers MAY make
internal-only modifications, but those modifications MUST NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APls, but any such APIs MUST NOT be in a namespace owned by or referring to another organization. For
instance, device implementers MUST NOT add APIs to the com.google.* or similar namespace; only Google may do so. Similarly, Google MUST NOT
add APIs to other companies' namespaces.

If a device implementer proposes to improve one of the package hamespaces above (such as by adding useful new functionality to an existing API, or
adding a new API), the implementer SHOULD visit source.android.com and begin the process for contributing changes and code, according to the
information on that site.

Note that the restrictions above correspond to standard conventions for naming APIs in the Java programming language; this section simply aims to
reinforce those conventions and make them binding through inclusion in this compatibility definition.

3.7. Virtual Machine Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) bytecode specification and Dalvik Virtual Machine semantics [Resources, 10].

Device implementations with screens classified as medium- or low-density MUST configure Dalvik to allocate at least 16MB of memory to each
application. Device implementations with screens classified as high-density MUST configure Dalvik to allocate at least 24MB of memory to each
application. Note that device implementations MAY allocate more memory than these figures.

3.8. User Interface Compatibility

The Android platform includes some developer APIs that allow developers to hook into the system user interface. Device implementations MUST
incorporate these standard Ul APls into custom user interfaces they develop, as explained below.

3.8.1. Widgets

Android defines a component type and corresponding AP and lifecycle that allows applications to expose an "AppWidget" to the end user [Resources,
11]. The Android Open Source reference release includes a Launcher application that includes user interface elements allowing the user to add, view,
and remove AppWidgets from the home screen.

Device implementers MAY substitute an alternative to the reference Launcher (i.e. home screen). Alternative Launchers SHOULD include built-in
support for AppWidgets, and expose user interface elements to add, configure, view, and remove AppWidgets directly within the Launcher. Alternative
Launchers MAY omit these user interface elements; however, if they are omitted, the device implementer MUST provide a separate application
accessible from the Launcher that allows users to add, configure, view, and remove AppWidgets.

3.8.2. Notifications

Android includes APIs that allow developers to notify users of notable events [Resources, 12]. Device implementers MUST provide support for each
class of notification so defined; specifically: sounds, vibration, light and status bar.

Additionally, the implementation MUST correctly render all resources (icons, sound files, etc.) provided for in the APIs [Resources, 13], or in the Status
Bar icon style guide [Resources, 14]. Device implementers MAY provide an alternative user experience for notifications than that provided by the
reference Android Open Source implementation; however, such alternative notification systems MUST support existing notification resources, as
above.

3.8.3. Search

Android includes APIs [Resources, 15] that allow developers to incorporate search into their applications, and expose their application's data into the
global system search. Generally speaking, this functionality consists of a single, system-wide user interface that allows users to enter queries, displays
suggestions as users type, and displays results. The Android APls allow developers to reuse this interface to provide search within their own apps, and
allow developers to supply results to the common global search user interface.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000616
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 89 of 141

Device implementations MUST include a single, shared, system-wide search user interface capable of real-time suggestions in response to user input.
Device implementations MUST implement the APIs that allow developers to reuse this user interface to provide search within their own applications.
Device implementations MUST implement the APIs that allow third-party applications to add suggestions to the search box when it is run in global
search mode. If no third-party applications are installed that make use of this functionality, the default behavior SHOULD be to display web search
engine results and suggestions.

Device implementations MAY ship alternate search user interfaces, but SHOULD include a hard or soft dedicated search button, that can be used at
any time within any app to invoke the search framework, with the behavior provided for in the API documentation.

3.8.4. Toasts

Applications can use the "Toast" API (defined in [Resources, 16]) to display short non-modal strings to the end user, that disappear after a brief period
of time. Device implementations MUST display Toasts from applications to end users in some high-visibility manner.

3.8.5. Live Wallpapers

Android defines a component type and corresponding APl and lifecycle that allows applications to expose one or more "Live Wallpapers" to the end
user [Resources, 17]. Live Wallpapers are animations, patterns, or similar images with limited input capabilities that display as a wallpaper, behind
other applications.

Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers, with no limitations on functionality, at a reasonable
framerate with no adverse affects on other applications. If limitations in the hardware cause wallpapers and/or applications to crash, malfunction,
consume excessive CPU or battery power, or run at unacceptably low frame rates, the hardware is considered incapable of running live wallpaper. As
an example, some live wallpapers may use an Open GL 1.0 or 2.0 context to render their content. Live wallpaper will not run reliably on hardware that
does nhot support multiple OpenGL contexts because the live wallpaper use of an OpenGL context may conflict with other applications that also use an
OpenGL context.

Device implementations capable of running live wallpapers reliably as described above SHOULD implement live wallpapers. Device implementations
determined to not run live wallpapers reliably as described above MUST NOT implement live wallpapers.

4. Reference Software Compatibility

Device implementers MUST test implementation compatibility using the following open-source applications:

» Calculator (included in SDK)

» Lunar Lander (included in SDK)

» The "Apps for Android" applications [Resources, 18].

- Replica Island (available in Android Market; only required for device implementations that support with OpenGL ES 2.0)

Each app above MUST launch and behave correctly on the implementation, for the implementation to be considered compatible.
Additionally, device implementations MUST test each menu item (including all sub-menus) of each of these smoke-test applications:

+ ApiDemos (included in SDK)
» ManualSmokeTests (included in CTS)

Each test case in the applications above MUST run correctly on the device implementation.
5. Application Packaging Compatibility

Device implementations MUST install and run Android ".apk" files as generated by the "aapt" tool included in the official Android SDK [Resources, 19].

Devices implementations MUST NOT extend either the .apk [Resources, 20], Android Manifest [Resources, 21], or Dalvik bytecode [Resources, 10
formats in such a way that would prevent those files from installing and running correctly on other compatible devices. Device implementers SHOULD
use the reference upstream implementation of Dalvik, and the reference implementation's package management system.

10

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000617
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 90 of 141

6. Multimedia Compatibility

Device implementations MUST fully implement all multimedia APls. Device implementations MUST include support for all multimedia codecs described

below, and SHOULD meet the sound processing guidelines described below.

6.1. Media Codecs

Device implementations MUST support the following multimedia codecs. All of these codecs are provided as software implementations in the preferred

Android implementation from the Android Open Source Project.

Please note that neither Google nhor the Open Handset Alliance make any representation that these codecs are unencumbered by third-party patents.

Those intending to use this source code in hardware or software products are advised that implementations of this code, including in open source

software or shareware, may require patent licenses from the relevant patent holders.

File/Container

Name Encoder Decoder Details
Format
M /St
AAC LCILTP X c::"m iir::
conte
ntinany 3GPP (.3gp) and
combination of
HE-AACv1 (AAC+) X) MPEG-4 (.mp4,
standard bit rates up maa). No support
to 160 kbps and) - hlo suppo
HE-AACv2 . for raw AAC (.aac)
X sampling rates
(enhanced AAC+)
between 8 to 48kHz
4.75t0 12.2 Kb
AMR-NB X X © ps 3GPP (.3gp)
sampled @ 8kHz
9'rates trom 6.60
AMR-WB X Kbit/s to 23.85 Kbit/s 3GPP (.3gp)
Audio sampled @ 16kHz
Mono/Stereo
8-320Kbps constant
MP3 X MP3 (.mp3
(CBR) or variable (mp3)
bit-rate (VBR)
MIDI I'ype U and 1.
DLS Version 1 and Type 0 and 1 (.mid,
2. XMF and Mobile xmf, .mxmf). Also
MIDI X XMF. Support for RTTTL/RTX (.rtttl,
ringtone formats .rtx), OTA (.ota), and
RTTTL/RTX, OTA, iMelody (.imy)
and iMelody
Ogg Vorbis X Ogg (.0gg)
8- and 16-bit linear
PCM X PCM (rates up to WAVE (.wav)
limit of hardware)
JPEG X X basetprogressive
Image GIF X
PNG X X
BMP X
H.263 X X 3GPP (:3gp) files
Video H.264 X SGPP (-3gp) and,
MPEG-4 (.mp4) files
MPEG4 Simpl
-4 Simple X 3GPP (.3gp) file
Profile

11

Trial Exhibit 2802 Page 91 of 141

Oracle America, Inc. v. Google Inc.

3:10-cv-03561-WHA

GOOGLE-00-00000618

Note that the table above does not list specific bitrate requirements for most video codecs. The reason for this is that in practice, current device
hardware does not necessarily support bitrates that map exactly to the required bitrates specified by the relevant standards. Instead, device
implementations SHOULD support the highest bitrate practical on the hardware, up to the limits defined by the specifications.

6.2. Audio Recording

When an application has used the android.media.AudioRecord API to start recording an audio stream, device implementations SHOULD sample
and record audio with each of these behaviors:

- Noise reduction processing, if present, SHOULD be disabled.

= Automatic gain control, if present, SHOULD be disabled.

» The device SHOULD exhibit approximately flat amplitude versus frequency characteristics; specifically, +3 dB, from 100 Hz to 4000 Hz

» Audio input sensitivity SHOULD be set such that a 90 dB sound power level (SPL) source at 1000 Hz yields RMS of 5000 for 16-bit samples.

» PCM amplitude levels SHOULD linearly track input SPL changes over at least a 30 dB range from -18 dB to +12 dB re 90 dB SPL at the
microphone.

» Total harmonic distortion SHOULD be less than 1% from 100 Hz to 4000 Hz at 90 dB SPL input level.

Note: while the requirements outlined above are stated as "SHOULD" for Android 2.2, the Compatibility Definition for a future version is planned to
change these to "MUST". That is, these requirements are optional in Android 2.2 but will be required by a future version. Existing and new devices
that run Android 2.2 Android are very strongly encouraged to meet these requirements in Android 2.2, or they will not be able to attain Android
compatibility when upgraded to the future version.

6.3. Audio Latency

Audio latency is broadly defined as the interval between when an application requests an audio playback or record operation, and when the device
implementation actually begins the operation. Many classes of applications rely on short latencies, to achieve real-time effects such sound effects or
VOIP communication. Device implementations SHOULD meet all audio latency requirements outlined in this section.

For the purposes of this section:

= "cold output latency" is defined to be the interval between when an application requests audio playback and when sound begins playing, when the
audio system has been idle and powered down prior to the request

= "warm output latency" is defined to be the interval between when an application requests audio playback and when sound begins playing, when the
audio system has been recently used but is currently idle (that is, silent)

= "continuous output latency" is defined to be the interval between when an application issues a sample to be played and when the speaker physically
plays the corresponding sound, while the device is currently playing back audio

= "cold input latency" is defined to be the interval between when an application requests audio recording and when the first sample is delivered to the
application via its callback, when the audio system and microphone has been idle and powered down prior to the request

= "continuous input latency" is defined to be when an ambient sound occurs and when the sample corresponding to that sound is delivered to a
recording application via its callback, while the device is in recording mode

Using the above definitions, device implementations SHOULD exhibit each of these properties:

» cold output latency of 100 milliseconds or less

= warm output latency of 10 milliseconds or less

= continuous output latency of 45 milliseconds or less
» cold input latency of 100 milliseconds or less

- continuous input latency of 50 milliseconds or less

Note: while the requirements outlined above are stated as "SHOULD" for Android 2.2, the Compatibility Definition for a future version is planned to
change these to "MUST". That is, these requirements are optional in Android 2.2 but will be required by a future version. Existing and new devices
that run Android 2.2 Android are very strongly encouraged to meet these requirements in Android 2.2, or they will not be able to attain Android
compatibility when upgraded to the future version.

12

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000619
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 92 of 141

7. Developer Tool Compatibility

Device implementations MUST support the Android Developer Tools provided in the Android SDK. Specifically, Android-compatible devices MUST be
compatible with:

« Android Debug Bridge (known as adb) [Resources, 19]
Device implementations MUST support all adk functions as documented in the Android SDK. The device-side adb daemon SHOULD be inactive
by default, but there MUST be a user-accessible mechanism to turn on the Android Debug Bridge.

» Dalvik Debug Monitor Service (known as ddms) [Resources, 19
Device implementations MUST support all ddms features as documented in the Android SDK. As ddms uses adb, support for ddms SHOULD be
inactive by default, but MUST be supported whenever the user has activated the Android Debug Bridge, as above.

= Monkey [Resources, 22]

Device implementations MUST include the Monkey framework, and make it available for applications to use.
8. Hardware Compatibility

Android is intended to support device implementers creating innovative form factors and configurations. At the same time Android developers expect
certain hardware, sensors and APIls across all Android device. This section lists the hardware features that all Android 2.2 compatible devices must
support.

If a device includes a particular hardware component that has a corresponding API for third-party developers, the device implementation MUST
implement that API as defined in the Android SDK documentation. If an API in the SDK interacts with a hardware component that is stated to be
optional and the device implementation does hot possess that component:

» class definitions for the component's APls MUST be present
» the API's behaviors MUST be implemented as no-ops in some reasonable fashion
» APl methods MUST return null values where permitted by the SDK documentation

= APl methods MUST return no-op implementations of classes where null values are not permitted by the SDK documentation

A typical example of a scenario where these requirements apply is the telephony API: even on non-phone devices, these APls must be implemented as
reasonable no-ops.

Device implementations MUST accurately report accurate hardware configuration information via the getSystemAvailableFeatures () and
hasSystemFeature (String) methods onthe android.content.pm.PackageManager class. [Resources, 23

8.1. Display

Android 2.2 includes facilities that perform certain automatic scaling and transformation operations under some circumstances, to ensure that
third-party applications run reasonably well on a variety of hardware configurations [Resources, 24]. Devices MUST properly implement these
behaviors, as detailed in this section.

For Android 2.2, these are the most common display configurations:

X X i . Diagonal Length . Screen Density
Screen Type Width (Pixels) Height (Pixels) . Screen Size Group
Range (inches) Group

QVGA 240 320 26-3.0 Small Low
WQVGA 240 400 3.2-35 Normal Low
FWQVGA 240 432 3.5-3.8 Normal Low
HVGA 320 480 3.0-35 Normal Medium
WVGA 480 800 3.3-4.0 Normal High
FWVGA 480 854 3.5-4.0 Normal High
WVGA 480 800 48-55 Large Medium
FWVGA 480 854 5.0-5.8 Large Medium

13

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000620

3:10-cv-03561-WHA
Trial Exhibit 2802 Page 93 of 141

Device implementations corresponding to one of the standard configurations above MUST be configured to report the indicated screen size to
applications via the android.content.res.Configuration [Resources, 24] class.

Some .apk packages have manifests that do not identify them as supporting a specific density range. When running such applications, the following
constraints apply:

- Device implementations MUST interpret resources in a .apk that lack a density qualifier as defaulting to "medium" (known as "mdpi" in the SDK
documentation.)

- When operating on a "low" density screen, device implementations MUST scale down medium/mdpi assets by a factor of 0.75.
* When operating on a "high" density screen, device implementations MUST scale up medium/mdpi assets by a factor of 1.5.

» Device implementations MUST NOT scale assets within a density range, and MUST scale assets by exactly these factors between density ranges.
8.1.2. Non-Standard Display Configurations

Display configurations that do not match one of the standard configurations listed in Section 8.1.1 require additional consideration and work to be
compatible. Device implementers MUST contact Android Compatibility Team as described in Section 13 to obtain classifications for screen-size bucket,
density, and scaling factor. When provided with this information, device implementations MUST implement them as specified.

Note that some display configurations (such as very large or very small screens, and some aspect ratios) are fundamentally incompatible with Android
2.2; therefore device implementers are encouraged to contact Android Compatibility Team as early as possible in the development process.

8.1.3. Display Metrics
Device implementations MUST report correct valuesfor all display metrics defined in android.util.DisplayMetrics [Resources, 26].
8.1.4. Declared Screen Support

Applications may indicate which screen sizes they support via the <supports-screens> attribute in the AndroidManifest.xml file. Device
implementations MUST correctly honor applications' stated support for small, medium, and large screens, as described in the Android SDK
documentation.

8.2. Keyboard

Device implementations:

» MUST include support for the Input Management Framework (which allows third party developers to create Input Management Engines -- i.e. soft
keyboard) as detailed at developer.android.com

» MUST provide at least one soft keyboard implementation (regardless of whether a hard keyboard is present)
» MAY include additional soft keyboard implementations
* MAY include a hardware keyboard

= MUST NOT include a hardware keyboard that does not match one of the formats specified in
android.content.res.Configuration.keyboard [Resources, 25] (thatis, QWERTY, or 12-key)

8.3. Non-touch Navigation

Device implementations:
» MAY omit a non-touch navigation options (that is, may omit a trackball, d-pad, or wheel)
» MUST report the correct value for android.content.res.Configuration.navigation [Resources, 25]

8.4. Screen Orientation

Compatible devices MUST support dynamic orientation by applications to either portrait or landscape screen orientation. That is, the device must
respect the application's request for a specific screen orientation. Device implementations MAY select either portrait or landscape orientation as the
default.

14

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000621
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 94 of 141

Devices MUST report the correct value for the device's current orientation, whenever queried via the android.content.res.Configuration.orientation,
android.view.Display.getOrientation(), or other APls.

8.5. Touchscreen input

Device implementations:

+ MUST have a touchscreen
» MAY have either capacative or resistive touchscreen

» MUST report the value of android.content.res.Configuration [Resources, 28] reflecting corresponding to the type of the specific
touchscreen on the device

» SHOULD support fully independently tracked pointers, if the touchscreen supports multiple pointers
8.6. USB

Device implementations:

» MUST implement a USB client, connectable to a USB host with a standard USB-A port

» MUST implement the Android Debug Bridge over USB (as described in Section 7)

+ MUST implement the USB mass storage specification, to allow a host connected to the device to access the contents of the /sdcard volume
= SHOULD use the micro USB form factor on the device side

+ MAY include a hon-standard port on the device side, but if so MUST ship with a cable capable of connecting the custom pinout to standard USB-A
port

+ SHOULD implement support for the USB Mass Storage specification (so that either removable or fixed storage on the device can be accessed from
a host PC)

8.7. Navigation keys

The Home, Menu and Back functions are essential to the Android navigation paradigm. Device implementations MUST make these functions available
to the user at all times, regardless of application state. These functions SHOULD be implemented via dedicated buttons. They MAY be implemented
using software, gestures, touch panel, etc., but if so they MUST be always accessible and hot obscure or interfere with the available application display
area.

Device implementers SHOULD also provide a dedicated search key. Device implementers MAY also provide send and end keys for phone calls.
8.8. Wireless Data Networking

Device implementations MUST include support for wireless high-speed data networking. Specifically, device implementations MUST include support for
at least one wireless data standard capable of 200Kbit/sec or greater. Examples of technologies that satisfy this requirement include EDGE, HSPA,
EV-DO, 802.11g, etc.

If a device implementation includes a particular modality for which the Android SDK includes an API (that is, WiFi, GSM, or CDMA), the implementation
MUST support the API.

Devices MAY implement more than one form of wireless data connectivity. Devices MAY implement wired data connectivity (such as Ethernet), but
MUST nonetheless include at least one form of wireless connectivity, as above.

8.9. Camera

Device implementations MUST include a rear-facing camera. The included rear-facing camera:

- MUST have a resolution of at least 2 megapixels

» SHOULD have either hardware auto-focus, or software auto-focus implemented in the camera driver (transparent to application software)

15

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000622
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 95 of 141

+ MAY have fixed-focus or EDOF {extended depth of field) hardware

+ MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be lit while an android.hardware.Camera.PreviewCallback instance
has been registered on a Camera preview surface, unless the application has explicitly enabled the flash by enabling the FLASH_MODE_AUTO or
FLASH MODE ON attributes of a Camera. Parameters object. Note that this constraint does not apply to the device's built-in system camera
application, but only to third-party applications using Camera.PreviewCallback.

Device implementations MUST implement the following behaviors for the camera-related APls:

1. If an application has never called android.hardware.Camera.Parameters.setPreviewFormat(int), then the device MUST use
android.hardware.PixelFormat.YCbCr_420_SP for preview data provided to application callbacks.

2. If an application registers an android.hardware.Camera.PreviewCallback instance and the system calls the onPreviewFrame() method when the
preview format is YCbCr_420_SP, the data in the byte[] passed into onPreviewFrame() must further be in the NV21 encoding format. (This is the
format used natively by the 7k hardware family.) That is, NV21 MUST be the default.

Device implementations MUST implement the full Camera API included in the Android 2.2 SDK documentation [Resources, 27]), regardless of whether
the device includes hardware autofocus or other capabilities. For instance, cameras that lack autofocus MUST still call any registered
android.hardware.Camera.AutoFocusCallback instances (even though this has no relevance to a non-autofocus camera.)

Device implementations MUST recognize and honor each parameter name defined as a constant on the

android.hardware.Camera.Parameters class, if the underlying hardware supports the feature. If the device hardware does not support a feature,
the API must behave as documented. Conversely, Device implementations MUST NOT honor or recognize string constants passed to the
android.hardware.Camera.setParameters () method other than those documented as constants on the
android.hardware.Camera.Parameters. Thatis, device implementations MUST support all standard Camera parameters if the hardware allows,
and MUST NOT support custom Camera parameter types.

Device implementations MAY include a front-facing camera. However, if a device implementation includes a front-facing camera, the camera AP as
implemented on the device MUST NOT use the front-facing camera by default. That is, the camera API in Android 2.2 is for rear-facing cameras only,
and device implementations MUST NOT reuse or overload the APl to act on a front-facing camera, if one is present. Note that any custom APls added
by device implementers to support front-facing cameras MUST abide by sections 3.5 and 3.6; for instance, if a custom android.hardware.Camera
or Camera.Parameters subclass is provided to support front-facing cameras, it MUST NOT be located in an existing namespace, as described by
sections 3.5 and 3.6. Note that the inclusion of a front-facing camera does not meet the requirement that devices include a rear-facing camera.

8.10. Accelerometer

Device implementations MUST include a 3-axis accelerometer and MUST be able to deliver events at 50 Hz or greater. The coordinate system used by
the accelerometer MUST comply with the Android sensor coordinate system as detailed in the Android APIs (see [Resources, 28]).

8.11. Compass

Device implementations MUST include a 3-axis compass and MUST be able to deliver events 10 Hz or greater. The coordinate system used by the
compass MUST comply with the Android sensor coordinate system as defined in the Android API (see [Resources, 28]).

8.12. GPS

Device implementations MUST include a GPS receiver, and SHOULD include some form of "assisted GPS" technique to minimize GPS lock-on time.
8.13. Telephony

Android 2.2 MAY be used on devices that do not include telephony hardware. That is, Android 2.2 is compatible with devices that are not phones.
However, if a device implementation does include GSM or CDMA telephony, it MUST implement the full support for the API for that technology. Device
implementations that do not include telephony hardware MUST implement the full APIs as no-ops.

See also Section 8.8, Wireless Data Networking.

8.14. Memory and Storage

16

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000623
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 96 of 141

Device implementations MUST have at least 92MB of memory available to the kernel and userspace. The 92MB MUST be in addition to any memory
dedicated to hardware components such as radio, memory, and so on that is not under the kernel's control.

Device implementations MUST have at least 150MB of non-volatile storage available for user data. That is, the /data partition MUST be at least
150MB.

Beyond the requirements above, device implementations SHOULD have at least 128MB of memory available to kernel and userspace, in addition to
any memory dedicated to hardware components that is not under the kernel's control. Device implementations SHOULD have at least 1GB of
non-volatile storage available for user data. Note that these higher requirements are planned to become hard minimums in a future version of Android.
Device implementations are strongly encouraged to meet these requirements now, or else they may not be eligible for compatibility for a future version
of Android.

8.15. Application Shared Storage

Device implementations MUST offer shared storage for applications. The shared storage provided MUST be at least 2GB in size.

Device implementations MUST be configured with shared storage mounted by default, "out of the box". If the shared storage is not mounted on the
Linux path /sdcard, then the device MUST include a Linux symbolic link from /sdcaxrd to the actual mount point.

Device implementations MUST enforce as documented the android.permission.WRITE _EXTERNAL_STORAGE permission on this shared storage.
Shared storage MUST otherwise be writable by any application that obtains that permission.

Device implementations MAY have hardware for user-accessible removable storage, such as a Secure Digital card. Alternatively, device
implementations MAY allocate internal (non-removable) storage as shared storage for apps.

Regardless of the form of shared storage used, the shared storage MUST implement USB mass storage, as described in Section 8.6. As shipped out
of the box, the shared storage MUST be mounted with the FAT filesystem.

It is illustrative to consider two common examples. If a device implementation includes an SD card slot to satisfy the shared storage requirement, a
FAT-formatted SD card 2GB in size or larger MUST be included with the device as sold to users, and MUST be mounted by default. Alternatively, if a
device implementation uses internal fixed storage to satisfy this requirement, that storage MUST be 2GB in size or larger, formatted as FAT, and
mounted on /sdcard (or /sdcard MUST be a symbolic link to the physical location if it is mounted elsewhere.)

Device implementations that include multiple shared storage paths (such as both an SD card slot and shared internal storage) SHOULD modify the
core applications such as the media scanner and ContentProvider to transparently support files placed in both locations.

8.16. Bluetooth

Device implementations MUST include a Bluetooth transceiver. Device implementations MUST enable the RFCOMM-based Bluetooth APl as
described in the SDK documentation [Resources, 30]. Device implementations SHOULD implement relevant Bluetooth profiles, such as A2DP,
AVRCP, OBEX, etc. as appropriate for the device.

The Compatibility Test Suite includes cases that cover basic operation of the Android RFCOMM Bluetooth API. However, since Bluetooth is a
communications protocol between devices, it cannot be fully tested by unit tests running on a single device. Consequently, device implementations
MUST also pass the human-driven Bluetooth test procedure described in Appendix A.

9. Performance Compatibility

One of the goals of the Android Compatibility Program is to enable consistent application experience to consumers. Compatible implementations must
ensure nhot only that applications simply run correctly on the device, but that they do so with reasonable performance and overall good user experience.
Device implementations MUST meet the key performance metrics of an Android 2.2 compatible device defined in the table below:

Metric Performance Threshold Comments

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000624
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 97 of 141

The following applications should launch The launch time is measured as the total time

within the specified time. to complete loading the default activity for the

Application Launch Time » Browser: less than 1300ms application, including the time it takes to start
= MMS/SMS: less than 700ms the Linux process, load the Android package
» AlarmClock: less than 650ms into the Dalvik VM, and call onCreate.

When multiple applications have been

i L launched, re-launching an already-running
Simultaneous Applications L .
application after it has been launched must

take less than the original launch time.

10. Security Model Compatibility

Device implementations MUST implement a security model consistent with the Android platform security model as defined in Security and Permissions
reference document in the APIs [Resources, 29] in the Android developer documentation. Device implementations MUST support installation of
self-signed applications without requiring any additional permissions/certificates from any third parties/authorities. Specifically, compatible devices
MUST support the security mechanisms described in the follow sub-sections.

10.1. Permissions

Device implementations MUST support the Android permissions model as defined in the Android developer documentation [Resources, 29].

Specifically, implementations MUST enforce each permission defined as described in the SDK documentation; no permissions may be omitted, altered,
or ignored. Implementations MAY add additional permissions, provided the new permission ID strings are not in the android.* namespace.

10.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in which each application runs as a unigue Unix-style UID and in a
separate process. Device implementations MUST support running multiple applications as the same Linux user ID, provided that the applications are
properly signed and constructed, as defined in the Security and Permissions reference [Resources, 29].

10.3. Filesystem Permissions

Device implementations MUST support the Android file access permissions model as defined in as defined in the Security and Permissions reference
[Resources, 23].

10.4. Alternate Execution Environments

Device implementations MAY include runtime environments that execute applications using some other software or technology than the Dalvik virtual
machine or native code. However, such alternate execution environments MUST NOT compromise the Android security model or the security of
installed Android applications, as described in this section.

Alternate runtimes MUST themselves be Android applications, and abide by the standard Android security model, as described elsewhere in Section
10.

Alternate runtimes MUST NOT be granted access to resources protected by permissions not requested in the runtime's AndroidManifest.xml file via the

<uses-permission> mechanism.
Alternate runtimes MUST NOT permit applications to make use of features protected by Android permissions restricted to system applications.
Alternate runtimes MUST abide by the Android sandbox model. Specifically:

= Alternate runtimes SHOULD install apps via the PackageManager into separate Android sandboxes (that is, Linux user IDs, etc.)
- Alternate runtimes MAY provide a single Android sandbox shared by all applications using the alternate runtime.

» Alternate runtimes and installed applications using an alternate runtime MUST NOT reuse the sandbox of any other app installed on the device,
except through the standard Android mechanisms of shared user ID and signing certificate

18

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000625

3:10-cv-03561-WHA

Trial Exhibit 2802 Page 98 of 141

» Alternate runtimes MUST NOT launch with, grant, or be granted access to the sandboxes corresponding to other Android applications.

Alternate runtimes MUST NOT be launched with, be granted, or grant to other applications any privileges of the superuser (root), or of any other user
ID.

The .apk files of alternate runtimes MAY be included in the system image of a device implementation, but MUST be signed with a key distinct from the
key used to sign other applications included with the device implementation.

When installing applications, alternate runtimes MUST obtain user consent for the Android permissions used by the application. That is, if an
application needs to make use of a device resource for which there is a corresponding Android permission (such as Camera, GPS, etc.), the alternate
runtime MUST inform the user that the application will be able to access that resource. If the runtime environment does not record application
capabilities in this manner, the runtime environment MUST list all permissions held by the runtime itself when installing any application using that
runtime.

11. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS) [Resources, 2] available from the Android Open Source Project, using
the final shipping software on the device. Additionally, device implementers SHOULD use the reference implementation in the Android Open Source
tree as much as possible, and MUST ensure compatibility in cases of ambiguity in CTS and for any reimplementations of parts of the reference source
code.

The CTS is designed to be run on an actual device. Like any software, the CTS may itself contain bugs. The CTS will be versioned independently of
this Compatibility Definition, and multiple revisions of the CTS may be released for Android 2.2. Device implementations MUST pass the latest CTS
version available at the time the device software is completed.

12. Updatable Software

Device implementations MUST include a mechanism to replace the entirety of the system software. The mechanism need not perform "live" upgrades
--that is, a device restart MAY be required.

Any method can be used, provided that it can replace the entirety of the software preinstalled on the device. For instance, any of the following
approaches will satisfy this requirement:

» Over-the-air (OTA) downloads with offline update via reboot
» "Tethered" updates over USB from a host PC

- "Offline" updates via a reboot and update from a file on removable storage

The update mechanism used MUST support updates without wiping user data. Note that the upstream Android software includes an update
mechanism that satisfies this requirement.

If an error is found in a device implementation after it has been released but within its reasonable product lifetime that is determined in consultation with
the Android Compatibility Team to affect the compatibility of thid-party applications, the device implementer MUST correct the error via a software
update available that can be applied per the mechanism just described.

13. Contact Us

You can contact the document authors at compatibility@android.com for clarifications and to bring up any issues that you think the document does nhot

cover.

19

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000626
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 99 of 141

Appendix A - Bluetooth Test Procedure

The Compatibility Test Suite includes cases that cover basic operation of the Android RFCOMM Bluetooth API. However, since Bluetooth is a
communications protocol between devices, it cannot be fully tested by unit tests running on a single device. Consequently, device implementations
MUST also pass the human-driven Bluetooth test procedure described below.

The test procedure is based on the BluetoothChat sample app included in the Android open-source project tree. The procedure requires two devices:

- acandidate device implementation running the software build to be tested

» aseparate device implementation already known to be compatible, and of a model from the device implementation being tested - that is, a "known
good" device implementation

The test procedure below refers to these devices as the "candidate" and "known good" devices, respectively.
Setup and Installation

1. Build BluetoothChat.apk via 'make samples' from an Android source code tree.
2. Install BluetoothChat.apk on the known-good device.

3. Install BluetoothChat.apk on the candidate device.
Test Bluetooth Control by Apps

1. Launch BluetoothChat on the candidate device, while Bluetooth is disabled.

2. Verify that the candidate device either turns on Bluetooth, or prompts the user with a dialog to turn on Bluetooth.
Test Pairing and Communication

1. Launch the Bluetooth Chat app on both devices.

Make the known-good device discoverable from within BluetoothChat (using the Menu).

On the candidate device, scan for Bluetooth devices from within BluetoothChat (using the Menu) and pair with the known-good device.
Send 10 or more messages from each device, and verify that the other device receives them correctly.

Close the BluetoothChat app on both devices by pressing Home.

@ o > w N

Unpair each device from the other, using the device Settings app.
Test Pairing and Communication in the Reverse Direction

Launch the Bluetooth Chat app on both devices.
Make the candidate device discoverable from within BluetoothChat (using the Menu).
On the known-good device, scan for Bluetooth devices from within BluetoothChat (using the Menu) and pair with the candidate device.

Send 10 or messages from each device, and verify that the other device receives them correctly.

o WD

Close the Bluetooth Chat app on both devices by pressing Back repeatedly to get to the Launcher.
Test Re-Launches
1. Re-launch the Bluetooth Chat app on both devices.

2. Send 10 or messages from each device, and verify that the other device receives them correctly.

Note: the above tests have some cases which end a test section by using Home, and some using Back. These tests are not redundant and are not
optional: the objective is to verify that the Bluetooth API and stack works correctly both when Activities are explicitly terminated (via the user pressing
Back, which calls finish()), and implicitly sent to background (via the user pressing Home.) Each test sequence MUST be performed as described.

20

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000627
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 100 of 141

Android 2.3 Compatibility Definition

Copyright © 2010, Google Inc. All rights reserved.
compatibility@android.com

Table of Contents

1. Introduction

2. Resources

3. Software
3.1. Managed AP| Compatibility
3.2. Soft APl Compatibility

3.2.1. Permissionsg
3.2.2. Build Parameters
3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents
3.2.3.2, Intent Overrides
3.2.3.3. Intent Namaspaces
3.2.3.4. Broadcast Intents

3.3. Native APl Compatibility
3.4. Web Compatibility

3.4.1. WebView Compatibility
3.4.2. Browser Compatibility

3.5. API Behavioral Compatibility
3.8. AP Namespaces
3.7. Virtual Machine Compatibility
3.8. User Interface Compatibility
3.8.1. Widgets
3.8.2. Notifications
3.8.3. Search
3.8.4. Toasts
3.8.5. Live Wallpapers
4., Application Packaging Compatibility
5. Multimedia Compatibility
5.1. Media Codecs
5.1.1. Media Decoders
5.1.2. Media Encoders
5.2. Audio Recording
5.3. Audio Latency
6. Developer Tool Compatibility

7. Hardware Compatibility

7.1. Display and Graphics

7.1.1. Screen Configurations
7.1.2. Display Metrics

7.1.3. Declared Screen Support
7.1.4. Screen Orientation

7.1.5. 3D Graphics Accleration

7.2. Input Devices

Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 101 of 141

GOOGLE-00-00000628

Trial Exhibit 2802 Page 102 of 141

7.2.1. Keyboard
7.2.2. Non-touch Navigation

7.2.3. Navigation keys

7.2.4, Touchscreen input

7.3. Sensors
7.3.1. Accelerometer
7.3.2. Magnetometer
7.3.3. GPS
7.3.4. Gyroscope
7.3.5. Barometer
7.3.6. Thermometer
7.3.7. Photometer
7.3.8. Proximity Sensor

7.4. Data Connectivity
7.4.1. Telephony
7.4.2. IEEE 802.11 (WiFD)
7.4.3. Bluetooth
7.4.4. Near-Field Communications

7.4.5, Minimum Network Capability

7.5. Cameras
7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. Camera AP| Behavior
7.5.4. Camera Orientation

7.6. Memory and Storage

7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage
7.7. U8B

8. Performance Compatibility
8. Security Model Compatibility

9.1. Permissions
9.2. UID and Process Isolation
9.3. Filesystem Permissions

9.4. Alternate Execution Environments

10. Software Compatibility Testing
10.1. Compatibility Test Suite
10.2. CTS Verifier
10.3. Reference Applications

11, Updatable Software

12. Contact Us

Appendix A - Bluetooth Test Procedure

Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA

GOOGLE-00-00000629

1. Introduction

This document enumerates the requirements that must be met in order for mobile phones to be compatible with Android 2.3.

The use of "must", "must not", "required”, "shall", "shall not", "should", "should not", "recommended”, "may" and "optional" is per the IETF standard
defined in RFC2119 [Resources, 1].

As used in this document, a "device implementer” or "implementer" is a person or organization developing a hardware/software solution running
Android 2.3. A "device implementation” or "implementation” is the hardware/software solution so developed.

To be considered compatible with Android 2.3, device implementations MUST meet the requirements presented in this Compatibility Definition,
including any documents incorporated via reference.

Where this definition or the software tests described in Section 10 is silent, ambiguous, or incomplete, it is the responsibility of the device implementer
to ensure compatibility with existing implementations. For this reason, the Android Open Source Project [Resources, 3] is both the reference and
preferred implementation of Android. Device implementers are strongly encouraged to base their implementations to the greatest extent possible on the
"upstream"” source code available from the Android Open Source Project. While some components can hypothetically be replaced with alternate
implementations this practice is strongly discouraged, as passing the software tests will become substantially more difficult. It is the implementer's
responsibility to ensure full behavioral compatibility with the standard Android implementation, including and beyond the Compatibility Test Suite.
Finally, note that certain component substitutions and modifications are explicitly forbidden by this document.

Please note that this Compatibility Definition is issued to correspond with the 2.3.3 update to Android, which is API level 10. This Definition obsoletes
and replaces the Compatibility Definition for Android 2.3 versions prior to 2.3.3. (That is, versions 2.3.1 and 2.3.2 are obsolete.) Future
Android-compatible devices running Android 2.3 MUST ship with version 2.3.3 or later.

2. Resources

-

IETF RFC2119 Requirement Levels: hitp:/iwww.ietf.org/rfcirfc2119.txt

Android Compatibility Program Overview: http://source.android.com/compatibility/index.htm|

Android Open Source Project: hitp://source.android.com/

API definitions and documentation: http://developer.android.com/reference/packages.htmi

Android Permissions reference: http:/developer.android.comireference/android/Manifest.permission.him|

android.os.Build reference: htip://developer.android.com/reference/android/os/Build.html

Android 2.3 allowed version strings: http://source.android.com/compatibility/2.3/versions.htmi

® N oo~ w N

android.webkit.WebView class: http://developer.android.com/reference/android/webkit\WebView.htm|

9. HTMLS: http:/iwww.whatwg.org/specs/web-apps/current-work/multipage/

10. HTMLS5 offline capabilities: http://dev.w3.org/htmlS/spec/Overview.htmi#offline
11. HTML5 video tag: http://dev.w3.org/htmib/spec/Overview.htmifvideo

12. HTML5/W3C geolocation API: http:/iwww.w3.org/TR/geolocation-APl/

13. HTML5/W3C webdatabase API: hitp://www.w3.org/TR/webdatabase/

14, HTMLS5/W3C IndexedDB API: http://www.w3.org/TR/IndexedDB/

15. Dalvik Virtual Machine specification: available in the Android source code, at dalvik/docs

16. AppWidgets: http://developer.android.com/guide/practices/ui_guidelines/widget _design.html

17. Notifications: hitp://developer.android.com/guide/topics/ui/notifiers/notifications.himl

18. Application Resources: http://code.google.com/android/reference/available-resources.html

19. Status Bar icon style guide: http://developer.android.com/quide/practices/ui_gquideline /icon _design.himi#statusbarstructure

20. Search Manager: hitp://developer.android.comireference/android/app/SearchManager.html

21. Toasts: hitp://developer.android. com/reference/android/widget/ Toast.html

22. Live Wallpapers: http://developer.android.com/resources/articles/live-wallpapers.html

23. Reference tool documentation (for adb, aapt, ddms): hitp://developer.android.com/guide/developing/tools/index.html

24, Android apk file description: http://developer.android.com/guide/topics/fundamentals.hitml

25. Manifest files: http://developer.android.com/quide/topics/manifest/manifest-intro.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000630
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 103 of 141

26. Monkey testing tool: hitp://developer.android.com/guide/developing/tools/imonkey.htmi

27. Android Hardware Features List: hitp://developer.android.com/referance/android/content/pm/PackageManager.himl

28. Supporting Multiple Screens: hitp://developer.android.com/guide/practices/screens _support.html

29. android.util.DisplayMetrics: http://developer.android.com/reference/android/util/DisplayMetrics.html

30. android.content.res.Configuration: hitp://developer.android.com/reference/android/content/res/Configuration.html

31. Sensor coordinate space: hitp://developer.android.comireference/android/hardware/SensorEvent.html

32. Bluetooth API: http:/developer.android.com/reference/android/blustooth/package-summary.himl

33. NDEF Push Protocol: http:/source.android.com/compatibility/ndef-push-protocol.pdf

34. MIFARE MF1S503X: hitp://www.nxp.com/documents/data_sheet/MF 13503x.pdf

35. MIFARE MF1S8703X: hitp://www.nxp.com/documents/data shest/MF18703x.pdf

36. MIFARE MFOICU1: htip:/Awww.nxp.com/documenis/data shest/MFDICU1.pdf

37. MIFARE MFOICU2: htip://www.nxp.com/documents/short data sheet/MFOICU2 SDS.pdf
38. MIFARE AN130511: http://www.nxp.com/documents/application _note/AN130511.pdf

39. MIFARE AN130411: http://www.nxp.com/documents/application_note/AN130411.pdf

40. Camera orientation API: hitp://developer.android.com/reference/android/hardware/Camera.htmli#setDisplayOrientation(int)

41. android.hardware.Camera: hiip://developer.android.com/reference/android/hardware/Camera.himl

42. Android Security and Permissions reference: hitp:/developer.android.com/guide/iopics/security/security.html

43. Apps for Android: http://code.google.com/p/apps-for-android

Many of these resources are derived directly or indirectly from the Android 2.3 SDK, and will be functionally identical to the information in that SDK's
documentation. In any cases where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK documentation, the SDK
documentation is considered authoritative. Any technical details provided in the references included above are considered by inclusion to be part of this
Compatibility Definition.

3. Software

The Android platform includes a set of managed APIs, a set of native APIls, and a body of so-called "soft" APIs such as the Intent system and
web-application APIs. This section details the hard and soft APIs that are integral to compatibility, as well as certain other relevant technical and user
interface behaviors. Device implementations MUST comply with all the requirements in this section.

3.1. Managed API Compatibility

The managed (Dalvik-based) execution environment is the primary vehicle for Android applications. The Android application programming interface
(API) is the set of Android platform interfaces exposed to applications running in the managed VM environment. Device implementations MUST provide
complete implementations, including all documented behaviors, of any documented API exposed by the Android 2.3 SDK [Resources, 4].

Device implementations MUST NOT omit any managed APIs, alter AP interfaces or signatures, deviate from the documented behavior, or include
no-ops, except where specifically allowed by this Compatibility Definition.

This Compatibility Definition permits some types of hardware for which Android includes APls to be omitted by device implementations. In such cases,
the APIs MUST still be present and behave in a reasonable way. See Section 7 for specific requirements for this scenario.

3.2. Soft APl Compatibility

In addition to the managed APIs from Section 3.1, Android also includes a significant runtime-only "soft" API, in the form of such things such as Intents,
permissions, and similar aspects of Android applications that cannot be enforced at application compile time. This section details the "soft" APls and
system behaviors required for compatibility with Android 2.3. Device implementations MUST meet all the requirements presented in this section.

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as documented by the Permission reference page [Resources, 5]. Note that
Section 10 lists additional requirements related to the Android security model.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000631
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 104 of 141

3.2.2. Build Parameters

The Android APIs include a number of constants on the android.os.Build class [Resources, 6] that are intended to describe the current device. To
provide consistent, meaningful values across device implementations, the table below includes additional restrictions on the formats of these values to
which device implementations MUST conform.

Parameter Comments

The version of the currently-executing Androld system, in
android.os.Build.VERSION.RELEASE human-readable format. This field MUST have one of the string values
defined in [Resources, 7].

The version of the currently-executing Android system, in a format
android.os.Build.VERSION.SDK accessible to third-party application code. For Android 2.3, this field
MUST have the integer value 9.

A value chosen by the device implementer desighating the specific

build of the currently-executing Android system, in human-readable
format. This value MUST NOT be re-used for different builds made
android.os.Build.VERSION.INCREMENTAL available to end users. A typical use of this field is to indicate which
build number or source-control change identifier was used to generate
the build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string ("").

A value chosen by the device implementer identifying the specific

internal hardware used by the device, in human-readable format. A

. . possible use of this field is to indicate the specific revision of the board
android.os.Build.BOARD . X L
powering the device. The value of this field MUST be encodable as
7-bit ASCIl and match the regular expression

"~la-zA-20-9., -]+$".

A value chosen by the device implementer identifying the name of the

company, organization, individual, etc. who produced the device, in
human-readable format. A possible use of this field is to indicate the
OEM and/or carrier who sold the device. The value of this field MUST
be encodable as 7-bit ASCIl and match the regular expression

"~ a-zA-20-9., -]+$".

A value chosen by the device implementer identifying the specific
configuration or revision of the body (sometimes called “industrial
android.os.Build.DEVICE design") of the device. The value of this field MUST be encodable as
7-bit ASCII and match the regular expression

"~ [a-zA-20-9., -]+5"

Astring that uniquely identifies this build. It S
3 {BRAKDT $ {FRODICTS /3 (DEVICE) : §

) . For example:
android.os.Build.FINGERPRINT acme mydsvies/gensric/gersric:2.3/ERCTT/33E9usczdebr g/ tosT-keve

The fingerprint MUST NOT include whitespace characters. If other fields included in the template above have whitespace

characters, they MUST be replaced in the build fingerprint with another character, such as the underscore ("_") sharacter. The
value of this field MUST be encodable as 7-bit ASCII.

A'string that uniguely identities the host the build was built on, in
human readable format. There are no requirements on the specific
format of this field, except that it MUST NOT be null or the empty string
™).

An identifier chosen by the device implementer to refer to a specific

android.os.Build.BRAND

UL be y RiiaH-Feadabia. It MUST follow this temp
ZOK.REZEARZ) /2 (ID) /$ (VERSION. INCREMENTAD) ¢ 5

android.os.Build. HOST

release, in human readable format. This field can be the same as
android.os.Build. VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software
builds. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression "~ [a-zA-20-9., -1+5".

A value chosen by the device implementer contaihing the hame of the

android.os.Build.ID

device as known to the end user. This SHOULD be the same name
android.os.Build. MODEL under which the device is marketed and sold to end users. There are
no requirements on the specific format of this field, except that it MUST

NOT be null or the empty string ("").

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000632
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 105 of 141

A value chosen by the device implementer containing the development
name or code name of the device. MUST be human-readable, but is
android.os.Build.PRODUCT not necessarily intended for view by end users. The value of this field
MUST be encodable as 7-bit ASCIl and match the regular expression
"~ a-zA-Z20-9., -1+$".

A comma-separated list of tags chosen by the device implementer that

further distinguish the build. For example, "unsigned,debug". The value
of this field MUST be encodable as 7-bit ASCII and match the regular
expression "~ [a-zA-Z0-9., -]1+$".

android.os.Build. TIME A value representing the timestamp of when the build occurred.

android.os.Build. TAGS

A value chosen by the device implementer specifying the runtime
configuration of the build. This field SHOULD have one of the values

. . corresponding to the three typical Android runtime configurations:
android.os.Build. TYPE

"user", "userdebug", or "eng". The value of this field MUST be
encodable as 7-bit ASCIl and match the regular expression
"Ala-zA-Z0-9., -1+5".

A hame or user ID of the user (or automated user) that generated the
android.os.Build.USER build. There are no requirements on the specific format of this field,

except that it MUST NOT be null or the empty string (™).

3.2.3. Intent Compatibility

Android uses Intents to achieve loosely-coupled integration between applications. This section describes requirements related to the Intent patterns
that MUST be honored by device implementations. By "honored", it is meant that the device implementer MUST provide an Android Activity or Service
that specifies a matching Intent filter and binds to and implements correct behavior for each specified Intent pattern.

3.2.3.1. Core Application Intents

The Android upstream project defines a number of core applications, such as a phone dialer, calendar, contacts book, music player, and so on. Device
implementers MAY replace these applications with alternative versions.

However, any such alternative versions MUST honor the same Intent patterns provided by the upstream project. For example, if a device contains an
alternative music player, it must still honor the Intent pattern issued by third-party applications to pick a song.

The following applications are considered core Android system applications:

» Desk Clock
- Browser
- Calendar

» Calculator

» Contacts

> Email

+ Gallery

= GlobalSearch
» Launcher

» Music

» Settings

The core Android system applications include various Activity, or Service components that are considered "public”. That is, the attribute
"android:exported" may be absent, or may have the value "true".

For every Activity or Service defined in one of the core Android system apps that is hot marked as non-public via an android:exported attribute with the
value "false", device implementations MUST include a compontent of the same type implementing the same Intent filter patterns as the core Android
system app.

In other words, a device implementation MAY replace core Android system apps; however, if it does, the device implementation MUST support all
Intent patterns defined by each core Android system app being replaced.

3.2.3.2. Intent Overrides

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000633
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 106 of 141

As Android is an extensible platform, device implementers MUST allow each Intent pattern referenced in Section 3.2.3.1 to be overridden by third-party
applications. The upstream Android open source project allows this by default; device implementers MUST NOT attach special privileges to system
applications' use of these Intent patterns, or prevent third-party applications from binding to and assuming control of these patterns. This prohibition
specifically includes but is not limited to disabling the "Chooser" user interface which allows the user to select between multiple applications which all
handle the same Intent pattern.

3.2.3.3. Intent Namespaces

Device implementers MUST NOT include any Android component that honors any new Intent or Broadcast Intent patterns using an ACTION,
CATEGORY, or other key string in the android.* namespace. Device implementers MUST NOT include any Android components that honor any new
Intent or Broadcast Intent patterns using an ACTION, CATEGORY, or other key string in a package space belonging to another organization. Device
implementers MUST NOT alter or extend any of the Intent patterns used by the core apps listed in Section 3.2.3.1.

This prohibition is analogous to that specified for Java language classes in Section 3.6.
3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain Intents to notify them of changes in the hardware or software environment.
Android-compatible devices MUST broadcast the public broadcast Intents in response to appropriate system events. Broadcast Intents are described in
the SDK documentation.

3.3. Native APl Compatibility

Managed code running in Dalvik can call into native code provided in the application .apk file as an ELF .so file compiled for the appropriate device
hardware architecture. As native code is highly dependent on the underlying processor technology, Android defines a number of Application Binary
Interfaces (ABIs) in the Android NDK; in the file docs/CPU-ARCH-ABIS. txt. If a device implementation is compatible with one or more defined ABIs,
it SHOULD implement compatibility with the Android NDK, as below.

If a device implementation includes support for an Android ABI, it:

= MUST include support for code running in the managed environment to call into nhative code, using the standard Java Native Interface (JNI)
semantics.

= MUST be source-compatible (i.e. header compatible) and binary-compatible (for the ABI) with each required library in the list below
» MUST accurately report the native Application Binary Interface (ABI) supported by the device, via the android.os.Build.CPU ABI API
= MUST report only those ABIs documented in the latest version of the Android NDK, in the file docs/CPU-ARCH-ABIS. txt

» SHOULD be built using the source code and header files available in the upstream Android open-source project
The following native code APIs MUST be available to apps that include native code:

» libc (C library)

» libm (math library)

» Minimal support for C++

= JNlinterface

- liblog (Android logging)

» libz (Zlib compression)

» libdl (dynamic linker)

= libGLESvV1_CM.so (OpenGL ES 1.0)

» libGLESv2.s0 (OpenGL ES 2.0)

= libEGL.so (native OpenGL surface management)
= libjnigraphics.so

» libOpenSLES.so (Open Sound Library audio support)
» libandroid.so (native Android activity support)

= Support for OpenGL, as described below

Note that future releases of the Android NDK may introduce support for additional ABIs. If a device implementation is hot compatible with an existing
predefined ABI, it MUST NOT report support for any ABI at all.

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000634
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 107 of 141

Native code compatibility is challenging. For this reason, it should be repeated that device implementers are VERY strongly encouraged to use the
upstream implementations of the libraries listed above to help ensure compatibility.

3.4. Web Compatibility

Many developers and applications rely on the behavior of the android.webkit .WebView class [Resources, 8] for their user interfaces, so the
WebView implementation must be compatible across Android implementations. Similarly, a complete, modern web broswer is central to the Android
user experience. Device implementations MUST include a version of android.webkit.WebView consistent with the upstream Android software,
and MUST include a modern HTML5-capable browser, as described below.

3.4.1. WebView Compatibility

The Android Open Source implementation uses the WebKit rendering engine to implement the android.webkit .WebView. Because it is not feasible
to develop a comprehensive test suite for a web rendering system, device implementers MUST use the specific upstream build of WebKit in the
WebView implementation. Specifically:

» Device implementations' android.webkit .WebView implementations MUST be based on the 533.1 WebKit build from the upstream Android
Open Source tree for Android 2.3. This build includes a specific set of functionality and security fixes for the WebView. Device implementers MAY
include customizations to the WebKit implementation; however, any such customizations MUST NOT alter the behavior of the WebView, including
rendering behavior.

The user agent string reported by the WebView MUST be in this format:
Mozilla/5.0 (Linux; U; Android $(VERSION); $(LOCALE); $(MODEL) Build/$(BUILD)) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1

= The value of the $(VERSION) string MUST be the same as the value for android.os.Build.VERSION.RELEASE

= The value of the $(LOCALE) string SHOULD follow the ISO conventions for country code and language, and SHOULD refer to the current
configured locale of the device

= The value of the $(MODEL) string MUST be the same as the value for android.os.Build.MODEL
» The value of the $(BUILD) string MUST be the same as the value for android.os.Build.ID

The WebView component SHOULD include support for as much of HTML5 [Resources, 9] as possible. Minimally, device implementations MUST
support each of these APIs associated with HTML5 in the WebView:

- application cache/offline operation [Resources, 10]
- the <video> tag [Resources, 11

= geolocation [Resources, 12]

Additionally, device implementations MUST support the HTML5/W3C webstorage API [Resources, 13], and SHOULD support the HTML5/W3C
IndexedDB API [Resources, 14]. Note that as the web development standards bodies are transitioning to favor IndexedDB over webstorage,
IndexedDB is expected to become a required component in a future version of Android.

HTMLS5 APls, like all JavaScript APls, MUST be disabled by default in a WebView, unless the developer explicitly enables them via the usual Android
APls.

3.4.2. Browser Compatibility

Device implementations MUST include a standalone Browser application for general user web browsing. The standalone Browser MAY be based on a
browser technology other than WebKit. However, even if an alternate Browser application is used, the android.webkit.WebView component
provided to third-party applications MUST be based on WebKit, as described in Section 3.4.1.

Implementations MAY ship a custom user agent string in the standalone Browser application.

The standalone Browser application (whether based on the upstream WebKit Browser application or a third-party replacement) SHOULD include
support for as much of HTML5 [Resources, 9] as possible. Minimally, device implementations MUST support each of these APIs associated with
HTMLS5:

- application cache/offline operation [Resources. 10]
» the <video> tag [Resources, 11

= geolocation [Resources, 12]

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000635
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 108 of 141

Additionally, device implementations MUST support the HTML5/W3C webstorage API [Resources, 131, and SHOULD support the HTML5/W3C
IndexedDB API [Resources, 14]. Note that as the web development standards bodies are transitioning to favor IndexedDB over webstorage,
IndexedDB is expected to become a required component in a future version of Android.

3.5. API Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the preferred implementation of the upstream Android
open-source project [Resources, 3]. Some specific areas of compatibility are:

» Devices MUST NOT change the behavior or semantics of a standard Intent

+ Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of system component (such as Service, Activity, ContentProvider,
etc.)

+ Devices MUST NOT change the semantics of a standard permission

The above list is hot comprehensive. The Compatibility Test Suite (CTS) tests significant portions of the platform for behavioral compatibility, but not all.
It is the responsibility of the implementer to ensure behavioral compatibility with the Android Open Source Project. For this reason, device implementers
SHOULD use the source code available via the Android Open Source Project where possible, rather than re-implement significant parts of the system.

3.6. APl Namespaces

Android follows the package and class namespace conventions defined by the Java programming language. To ensure compatibility with third-party
applications, device implementers MUST NOT make any prohibited modifications (see below) to these package namespaces:

» javat
+ javax.*
= sun’
+ android.*

» com.android.*
Prohibited modifications include:

- Device implementations MUST NOT modify the publicly exposed APIs on the Android platform by changing any method or class signatures, or by
removing classes or class fields.

» Device implementers MAY modify the underlying implementation of the APIs, but such modifications MUST NOT impact the stated behavior and
Java-language signhature of any publicly exposed APls.

+ Device implementers MUST NOT add any publicly exposed elements (such as classes or interfaces, or fields or methods to existing classes or
interfaces) to the APIs above.

A "publicly exposed element” is any construct which is not decorated with the "@hide" marker as used in the upstream Android source code. In other
words, device implementers MUST NOT expose new APIs or alter existing APls in the namespaces noted above. Device implementers MAY make
internal-only modifications, but those modifications MUST NOT be advertised or otherwise exposed to developers.

Device implementers MAY add custom APls, but any such APls MUST NOT be in a namespace owned by or referring to another organization. For
instance, device implementers MUST NOT add APIs to the com.google.* or similar namespace; only Google may do so. Similarly, Google MUST NOT
add APIs to other companies' namespaces. Additionally, if a device implementation includes custom APIs outside the standard Android namespace,
those APIs MUST be packaged in an Android shared library so that only apps that explicitly use them (via the <uses-1ibrary> mechanism) are
affected by the increased memory usage of such APls.

If a device implementer proposes to improve one of the package namespaces above (such as by adding useful new functionality to an existing API, or
adding a new API), the implementer SHOULD visit source.android.com and begin the process for contributing changes and code, according to the
information on that site.

Note that the restrictions above correspond to standard conventions for naming APls in the Java programming language; this section simply aims to
reinforce those conventions and make them binding through inclusion in this compatibility definition.

3.7. Virtual Machine Compatibility

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000636
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 109 of 141

Device implementations MUST support the full Dalvik Executable (DEX) bytecode specification and Dalvik Virtual Machine semantics [Resources, 15].

Device implementations with screens classified as medium- or low-density MUST configure Dalvik to allocate at least 16MB of memory to each
application. Device implementations with screens classified as high-density or extra-high-density MUST configure Dalvik to allocate at least 24MB of
memory to each application. Note that device implementations MAY allocate more memory than these figures.

3.8. User Interface Compatibility

The Android platform includes some developer APIs that allow developers to hook into the system user interface. Device implementations MUST
incorporate these standard Ul APls into custom user interfaces they develop, as explained below.

3.8.1. Widgets

Android defines a component type and corresponding API and lifecycle that allows applications to expose an "AppWidget" to the end user [Resources,
16]. The Android Open Source reference release includes a Launcher application that includes user interface elements allowing the user to add, view,
and remove AppWidgets from the home screen.

Device implementers MAY substitute an alternative to the reference Launcher {i.e. home screen). Alternative Launchers SHOULD include built-in
support for AppWidgets, and expose user interface elements to add, configure, view, and remove AppWidgets directly within the Launcher. Alternative
Launchers MAY omit these user interface elements; however, if they are omitted, the device implementer MUST provide a separate application
accessible from the Launcher that allows users to add, configure, view, and remove AppWidgets.

3.8.2. Notifications

Android includes APIs that allow developers to notify users of notable events [Resources, 17]. Device implementers MUST provide support for each
class of notification so defined; specifically: sounds, vibration, light and status bar.

Additionally, the implementation MUST correctly render all resources (icons, sound files, etc.) provided for in the APIs [Resources, 18], or in the Status
Bar icon style guide [Resources, 19]. Device implementers MAY provide an alternative user experience for notifications than that provided by the
reference Android Open Source implementation; however, such alternative notification systems MUST support existing notification resources, as
above.

3.8.3. Search

Android includes APIs [Resources, 20] that allow developers to incorporate search into their applications, and expose their application's data into the
global system search. Generally speaking, this functionality consists of a single, system-wide user interface that allows users to enter queries, displays
suggestions as users type, and displays results. The Android APIs allow developers to reuse this interface to provide search within their own apps, and
allow developers to supply results to the common global search user interface.

Device implementations MUST include a single, shared, system-wide search user interface capable of real-time suggestions in response to user input.
Device implementations MUST implement the APIs that allow developers to reuse this user interface to provide search within their own applications.
Device implementations MUST implement the APls that allow third-party applications to add suggestions to the search box when it is run in global
search mode. If ho third-party applications are installed that make use of this functionality, the default behavior SHOULD be to display web search
engine results and suggestions.

Device implementations MAY ship alternate search user interfaces, but SHOULD include a hard or soft dedicated search button, that can be used at
any time within any app to invoke the search framework, with the behavior provided for in the APl documentation.

3.8.4. Toasts

Applications can use the "Toast" API (defined in [Resources, 21]) to display short non-modal strings to the end user, that disappear after a brief period
of time. Device implementations MUST display Toasts from applications to end users in some high-visibility manner.

3.8.5. Live Wallpapers

Android defines a component type and corresponding APl and lifecycle that allows applications to expose one or more "Live Wallpapers" to the end
user [Resources, 22]. Live Wallpapers are animations, patterns, or similar images with limited input capabilities that display as a wallpaper, behind
other applications.

10

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000637
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 110 of 141

Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers, with no limitations on functionality, at a reasonable
framerate with no adverse affects on other applications. If limitations in the hardware cause wallpapers and/or applications to crash, malfunction,
consume excessive CPU or battery power, or run at unacceptably low frame rates, the hardware is considered incapable of running live wallpaper. As
an example, some live wallpapers may use an Open GL 1.0 or 2.0 context to render their content. Live wallpaper will not run reliably on hardware that
does not support multiple OpenGL contexts because the live wallpaper use of an OpenGL context may conflict with other applications that also use an
OpenGL context.

Device implementations capable of running live wallpapers reliably as described above SHOULD implement live wallpapers. Device implementations
determined to not run live wallpapers reliably as described above MUST NOT implement live wallpapers.

4. Application Packaging Compatibility

Device implementations MUST install and run Android ".apk" files as generated by the "aapt" tool included in the official Android SDK [Resources, 23].

Devices implementations MUST NOT extend either the .apk [Resources, 24], Android Manifest [Resources, 25], or Dalvik bytecode [Resources, 15
formats in such a way that would prevent those files from installing and running correctly on other compatible devices. Device implementers SHOULD
use the reference upstream implementation of Dalvik, and the reference implementation's package management system.

5. Multimedia Compatibility

Device implementations MUST fully implement all multimedia APIs. Device implementations MUST include support for all multimedia codecs described
below, and SHOULD meet the sound processing guidelines described below. Device implementations MUST include at least one form of audio output,
such as speakers, headphone jack, external speaker connection, etc.

5.1. Media Codecs

Device implementations MUST support the multimedia codecs as detailed in the following sections. All of these codecs are provided as software
implementations in the preferred Android implementation from the Android Open-Source Project.

Please note that neither Google nor the Open Handset Alliance make any representation that these codecs are unencumbered by third-party patents.
Those intending to use this source code in hardware or software products are advised that implementations of this code, including in open source
software or shareware, may require patent licenses from the relevant patent holders.

The tables below do not list specific bitrate requirements for most video codecs. The reason for this is that in practice, current device hardware does
not necessarily support bitrates that map exactly to the required bitrates specified by the relevant standards. Instead, device implementations SHOULD
support the highest bitrate practical on the hardware, up to the limits defined by the specifications.

5.1.1. Media Decoders

Device implementations MUST include an implementation of an decoder for each codec and format described in the table below. Note that decoders
for each of these media types are provided by the upstream Android Open-Source Project.

11

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000638
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 111 of 141

Name Details File/Container Format
Mono/Ster ntent in an
petert cl)'nlca)ina: eno Cf(::taendard bi:/rat s SGPP (:3gp) and MPEG-4 (mp4,
co on o e
HE-AACv1 (AACH+)) .m4a). No support for raw AAC
up to 160 kbps and sampling
HE-AACV2Z (enhanced AAC+) rates between 8 to 48kHz (-aac)
AMR-NB 4.75 10 12.2 kbps sampled @ 3GPP (3gp)
8kHz 9P
9 rates from 6.60 Kbit/s to 23.85
AMR-WE Kbit/s sampled @ 16kHz 3GPP (-3gp)
Audio s sampled @
Mono/Stereo 8-320Kbps
MP3 constant (CBR) or variable MP3 (.mp3)
bit-rate (VBR)
MIDI Type 0 and 1. DLS Version .
. Type 0 and 1 {{mid, .xmf, .mxmf).
1 and 2. XMF and Mobile XMF.
MIDI) Also RTTTL/RTX (.rtttl, .rtx), OTA
Support for ringtone formats . i
. (.ota), and iMelody (.imy)
RTTTL/RTX, OTA, and iMelody
Ogg Vorbis 0gd (.099)
8- and 16-bit linear PCM (rates
PCM . WAVE (.wav)
up to limit of hardware)
JPEG base+progressive
Image GIF
PNG
BMP
H.263 3GPP (.3gp) tiles
Vid 3GPP (.3 d MPEG-4 (.mp4
eo H.264 . (-3gp) an (.mp4)
files
MPEG4 Simple Profile 3GPP (.3gp) file

5.1.2. Media Encoders

Device implementations SHOULD include encoders for as many of the media formats listed in Section 5.1.1. as possible. However, some encoders do
not make sense for devices that lack certain optional hardware; for instance, an encoder for the H.263 video does not make sense, if the device lacks
any cameras. Device implementations MUST therefore implement media encoders according to the conditions described in the table below.

See Section 7 for details on the conditions under which hardware may be omitted by device implementations.

"Name ‘ Details File/Container Format Conditions
4.75t0 12.2 kbps
AMR-NB 3GPP (.3
sampled @ 8kHz (-3gp)
9 rates from 6.60 kbit/s to
. AMR-WB 23.85 kbit/s sampled @ 3GPP (.3gp) Device implementations that include
Audio ;)
16kHz microphone hardware and define
. andro’d.hardware.microphons
Mono/Stereo content in MUST include encoders for these
any combination of audio formats.
) 3GPP (.3gp) and
AAC LC/LTP standard bit rates up to
) MPEG-4 (.mp4, .m4a).
160 kbps and sampling
rates between 8 to 48kHz
12

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000639
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 112 of 141

All device
implementations MUST
JPEG base+progressive include encoders for
these image formats, as
Android 2.3 includes
APIs that applications

Image

can use to
PNG programmatically
generate files of these

types.

Uevice implementations that include

camera hardwars and define sither

i . droid.rardeare.caners

Video H.263 3GPP (.3gp) files endratd.Fardware.caners of
android.kardware.canmer: . front

MUST include encoders for these

video formats.

In addition to the encoders listed above, device implementations SHOULD include an H.264 encoder. Note that the Compatibility Definition for a future
version is planned to change this requirement to "MUST". That is, H.264 encoding is optional in Android 2.3 but will be required by a future version.
Existing and new devices that run Android 2.3 are very strongly encouraged to meet this requirement in Android 2.3, or they will not be able to
attain Android compatibility when upgraded to the future version.

5.2. Audio Recording

When an application has used the android.media.AudioRecord API to start recording an audio stream, device implementations SHOULD sample
and record audio with each of these behaviors:

= Noise reduction processing, if present, SHOULD be disabled.

» Automatic gain control, if present, SHOULD be disabled.

= The device SHOULD exhibit approximately flat amplitude versus frequency characteristics; specifically, +3 dB, from 100 Hz to 4000 Hz

» Audio input sensitivity SHOULD be set such that a 90 dB sound power level (SPL) source at 1000 Hz yields RMS of 5000 for 16-bit samples.

» PCM amplitude levels SHOULD linearly track input SPL changes over at least a 30 dB range from -18 dB to +12 dB re 90 dB SPL at the
microphone.

= Total harmonic distortion SHOULD be less than 1% from 100 Hz to 4000 Hz at 90 dB SPL input level.

Note: while the requirements outlined above are stated as "SHOULD" for Android 2.3, the Compatibility Definition for a future version is planned to
change these to "MUST". That is, these requirements are optional in Android 2.3 but will be required by a future version. Existing and new devices
that run Android 2.3 are very strongly encouraged to meet these requirements in Android 2.3, or they will not be able to attain Android
compatibility when upgraded to the future version.

5.3. Audio Latency

Audio latency is broadly defined as the interval between when an application requests an audio playback or record operation, and when the device
implementation actually begins the operation. Many classes of applications rely on short latencies, to achieve real-time effects such sound effects or
VOIP communication. Device implementations that include microphone hardware and declare android.hardware.microphone SHOULD meet all
audio latency requirements outlined in this section. See Section 7 for details on the conditions under which microphone hardware may be omitted by
device implementations.

For the purposes of this section:

- "cold output latency" is defined to be the interval between when an application requests audio playback and when sound begins playing, when the
audio system has been idle and powered down prior to the request

- "warm output latency" is defined to be the interval between when an application requests audio playback and when sound begins playing, when the
audio system has been recently used but is currently idle (that is, silent)

= "continuous output latency" is defined to be the interval between when an application issues a sample to be played and when the speaker physically
plays the corresponding sound, while the device is currently playing back audio

= "cold input latency" is defined to be the interval between when an application requests audio recording and when the first sample is delivered to the
application via its callback, when the audio system and microphone has been idle and powered down prior to the request

13

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000640
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 113 of 141

» "continuous input latency" is defined to be when an ambient sound occurs and when the sample corresponding to that sound is delivered to a
recording application via its callback, while the device is in recording mode

Using the above definitions, device implementations SHOULD exhibit each of these properties:

» cold output latency of 100 milliseconds or less

» warm output latency of 10 milliseconds or less

» continuous output latency of 45 milliseconds or less
» cold input latency of 100 milliseconds or less

= continuous input latency of 50 milliseconds or less

Note: while the requirements outlined above are stated as "SHOULD" for Android 2.3, the Compatibility Definition for a future version is planned to
change these to "MUST". That is, these requirements are optional in Android 2.3 but will be required by a future version. Existing and new devices
that run Android 2.3 are very strongly encouraged to meet these requirements in Android 2.3, or they will hot be able to attain Android
compatibility when upgraded to the future version.

If a device implementation meets the requirements of this section, it MAY report support for low-latency audio, by reporting the feature
"android.hardware.audio.low-latency" via the android.content.pm.PackageManager class. [Resources, 27] Conversely, if the device
implementation does not meet these requirements it MUST NOT report support for low-latency audio.

6. Developer Tool Compatibility

Device implementations MUST support the Android Developer Tools provided in the Android SDK. Specifically, Android-compatible devices MUST be
compatible with:

= Android Debug Bridge (known as adb) [Resources, 23]
Device implementations MUST support all adb functions as documented in the Android SDK. The device-side adb daemon SHOULD be inactive
by default, but there MUST be a user-accessible mechanism to turn on the Android Debug Bridge.

- Dalvik Debug Monitor Service (known as ddms) [Resources, 23
Device implementations MUST support all ddms features as documented in the Android SDK. As ddms uses adb, support for ddms SHOULD be
inactive by default, but MUST be supported whenever the user has activated the Android Debug Bridge, as above.

» Monkey [Resources, 26]
Device implementations MUST include the Monkey framework, and make it available for applications to use.

Most Linux-based systems and Apple Macintosh systems recoghize Android devices using the standard Android SDK tools, without additional support;
however Microsoft Windows systems typically require a driver for new Android devices. (For instance, new vendor |IDs and sometimes new device IDs
require custom USB drivers for Windows systems.) If a device implementation is unrecognized by the adb tool as provided in the standard Android
SDK, device implementers MUST provide Windows drivers allowing developers to connect to the device using the adb protocol. These drivers MUST
be provided for Windows XP, Windows Vista, and Windows 7, in bath 32-bit and 64-bit versions.

7. Hardware Compatibility

Android is intended to enable device implementers to create innovative form factors and configurations. At the same time Android developers write
innovative applications that rely on the various hardware and features available through the Android APIs. The requirements in this section strike a
balance between innovations available to device implementers, and the needs of developers to ensure their apps are only available to devices where
they will run properly.

If a device includes a particular hardware component that has a corresponding API for third-party developers, the device implementation MUST
implement that API as described in the Android SDK documentation. If an API in the SDK interacts with a hardware component that is stated to be
optional and the device implementation does not possess that component:

» complete class definitions (as documented by the SDK) for the component's APls MUST still be present
» the API's behaviors MUST be implemented as no-ops in some reasonable fashion
» APl methods MUST return null values where permitted by the SDK documentation

» APl methods MUST return no-op implementations of classes where null values are not permitted by the SDK documentation

14

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000641
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 114 of 141

» APl methods MUST NOT throw exceptions not documented by the SDK documentation

A typical example of a scenario where these requirements apply is the telephony API: even on non-phone devices, these APIs must be implemented as
reasonable no-ops.

Device implementations MUST accurately report accurate hardware configuration information via the get3ystemAvailableFeatures () and
hasSystemFeature (3tring) methods on the android.content.pm.PackageManager class. [Resources, 27

7.1. Display and Graphics

Android 2.3 includes facilities that automatically adjust application assets and Ul layouts appropriately for the device, to ensure that third-party
applications run well on a variety of hardware configurations [Resources, 28]. Devices MUST properly implement these APIs and behaviors, as detailed
in this section.

7.1.1. Screen Configurations
Device implementations MAY use screens of any pixel dimensions, provided that they meet the following requirements:

» screens MUST be at least 2.5 inches in physical diagonal size
= density MUST be at least 100 dpi
+ the aspect ratio MUST be between 1.333 (4:3) and 1.779 (16:9)

- the display technology used consists of square pixels

Device implementations with a screen meeting the requirements above are considered compatible, and no additional action is necessary. The Android
framework implementation automatically computes display characteristics such as screen size bucket and density bucket. In the majority of cases, the
framework decisions are the correct ones. If the default framework computations are used, no additional action is hecessary. Device implementers
wishing to change the defaults, or use a screen that does not meet the requirements above MUST contact the Android Compatibility Team for
guidance, as provided for in Section 12.

The units used by the requirements above are defined as follows:

= "Physical diagonal size" is the distance in inches between two opposing corners of the illuminated portion of the display.

= "dpi" (meaning "dots per inch") is the number of pixels encompassed by a linear horizontal or vertical span of 1". Where dpi values are listed, both
horizontal and vertical dpi must fall within the range.

= "Aspect ratio" is the ratio of the longer dimension of the screen to the shorter dimension. For example, a display of 480x854 pixels would be 854 /
480 = 1.779, or roughly "16:9".

Device implementations MUST use only displays with a single static configuration. That is, device implementations MUST NOT enable multiple screen
configurations. For instance, since a typical television supports multiple resolutions such as 1080p, 720p, and so on, this configuration is not compatible
with Android 2.3. (However, support for such configurations is under investigation and planned for a future version of Android.)

7.1.2. Display Metrics
Device implementations MUST report correct values for all display metrics defined in android.util.DisplayMetrics [Resources, 29].
7.1.3. Declared Screen Support

Applications optionally indicate which screen sizes they support via the <supports-screens> attribute in the AndroidManifest.xml file. Device
implementations MUST correctly honor applications' stated support for small, medium, and large screens, as described in the Android SDK
documentation.

7.1.4. Screen Orientation

Compatible devices MUST support dynamic orientation by applications to either portrait or landscape screen orientation. That is, the device must
respect the application's request for a specific screen orientation. Device implementations MAY select either portrait or landscape orientation as the
default. Devices that cannot be physically rotated MAY meet this requirement by "letterboxing" applications that request portrait mode, using only a
portion of the available display.

15

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000642
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 115 of 141

Devices MUST report the correct value for the device's current orientation, whenever queried via the android.content.res.Configuration.orientation,
android.view.Display.getOrientation(), or other APIs.

7.1.5. 3D Graphics Acceleration

Device implementations MUST support OpenGL ES 1.0, as required by the Android 2.3 APIs. For devices that lack 3D acceleration hardware, a
software implementation of OpenGL ES 1.0 is provided by the upstream Android Open-Source Project. Device implementations SHOULD support
OpenGL ES 2.0.

Implementations MAY omit Open GL ES 2.0 support; however if support is ommitted, device implementations MUST NOT report as supporting
OpenGL ES 2.0. Specifically, if a device implementations lacks OpenGL ES 2.0 support:

» the managed APIs (such as via the GLE510.g=tString () method) MUST NOT report support for OpenGL ES 2.0

» the native C/C++ OpenGL APIs (that is, those available to apps via libGLES_v1CM.so, libGLES_v2.s0, or libEGL.so) MUST NOT report support for
OpenGL ES 2.0.

Conversely, if a device implementation does support OpenGL ES 2.0, it MUST accurately report that support via the routes just listed.

Note that Android 2.3 includes support for applications to optionally specify that they require specific OpenGL texture compression formats. These
formats are typically vendor-specific. Device implementations are not required by Android 2.3 to implement any specific texture compression format.
However, they SHOULD accurately report any texture compression formats that they do support, via the getString () method in the OpenGL API.

7.2. Input Devices

Android 2.3 supports a number of modalities for user input. Device implementations MUST support user input devices as provided for in this section.
7.2.1. Keyboard
Device implementations:

+ MUST include support for the Input Management Framework (which allows third party developers to create Input Management Engines -- i.e. soft
keyboard) as detailed at developer.android.com

+ MUST provide at least one soft keyboard implementation (regardless of whether a hard keyboard is present)
- MAY include additional soft keyboard implementations
* MAY include a hardware keyboard

» MUST NOT include a hardware keyboard that does not match one of the formats specified in
android.content.res.Configuration.zeyboard [Resources, 30] (thatis, QWERTY, or 12-key)

7.2.2. Non-touch Navigation
Device implementations:

> MAY omit a non-touch navigation option (that is, may omit a trackball, d-pad, or wheel)
» MUST report the correct value for android.content.res.Configuration.navigation [Resources, 30

» MUST provide a reasonable alternative user interface mechanism for the selection and editing of text, compatible with Input Management Engines.
The upstream Android Open-Source code includes a selection mechanism suitable for use with devices that lack non-touch navigation inputs.

7.2.3. Navigation keys

The Home, Menu and Back functions are essential to the Android navigation paradigm. Device implementations MUST make these functions available
to the user at all times, regardless of application state. These functions SHOULD be implemented via dedicated buttons. They MAY be implemented
using software, gestures, touch panel, etc., but if so they MUST be always accessible and not obscure or interfere with the available application display
area.

Device implementers SHOULD also provide a dedicated search key. Device implementers MAY also provide send and end keys for phone calls.
7.2.4. Touchscreen input

Device implementations:

16

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000643
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 116 of 141

= MUST have a touchscreen
= MAY have either capacitive or resistive touchscreen

= MUST report the value of android.content.res.Configuration [Resources, 30] reflecting corresponding to the type of the specific
touchscreen on the device

- SHOULD support fully independently tracked pointers, if the touchscreen supports multiple pointers
7.3. Sensors

Android 2.3 includes APls for accessing a variety of sensor types. Devices implementations generally MAY omit these sensors, as provided for in the
following subsections. If a device includes a particular sensor type that has a corresponding API for third-party developers, the device implementation
MUST implement that API as described in the Android SDK documentation. For example, device implementations:

» MUST accurately report the presence or absence of sensors per the android. content.pm.PackageManager class. [Resources, 27
= MUST return an accurate list of supported sensors via the SensorManager.get3SensorList () and similar methods

« MUST behave reasonably for all other sensor APIs (for example, by returning true or false as appropriate when applications attempt to register
listeners, not calling sensor listeners when the corresponding sensors are not present; etc.)

The list above is not comprehensive; the documented behavior of the Android SDK is to be considered authoritative.

Some sensor types are synthetic, meaning they can be derived from data provided by one or more other sensors. (Examples include the orientation
sensor, and the linear acceleration sensor.) Device implementations SHOULD implement these sensor types, when they include the prerequisite
physical sensors.

The Android 2.3 APls introduce a notion of a "streaming" sensor, which is one that returns data continuously, rather than only when the data changes.
Device implementations MUST continuously provide periodic data samples for any APl indicated by the Android 2.3 SDK documentation to be a
streaming sensor.

7.3.1. Accelerometer
Device implementations SHOULD include a 3-axis accelerometer. If a device implementation does include a 3-axis accelerometer, it:

= MUST be able to deliver events at 50 Hz or greater

» MUST comply with the Android sensor coordinate system as detailed in the Android APIs (see [Resources, 31])
+ MUST be capable of measuring from freefall up to twice gravity (2g) or more on any three-dimensional vector

- MUST have 8-bits of accuracy or more

» MUST have a standard deviation no greater than 0.05 m/s*2

7.3.2. Magnetometer
Device implementations SHOULD include a 3-axis magnetometer (i.e. compass.) If a device does include a 3-axis magnetometer, it:

» MUST be able to deliver events at 10 Hz or greater

» MUST comply with the Android sensor coordinate system as detailed in the Android APls (see [Resources, 31]).
» MUST be capable of sampling a range of field strengths adequate to cover the geomagnetic field

= MUST have 8-bits of accuracy or more

- MUST have a standard deviation no greater than 0.5 pT
7.3.3. GPS

Device implementations SHOULD include a GPS receiver. If a device implementation does include a GPS receiver, it SHOULD include some form of
"assisted GPS" technique to minimize GPS lock-on time.

7.3.4. Gyroscope

Device implementations SHOULD include a gyroscope (i.e. angular change sensor.) Devices SHOULD NOT include a gyroscope sensor unless a
3-axis accelerometer is also included. If a device implementation includes a gyroscope, it:

» MUST be capable of measuring orientation changes up to 5.5*Pi radians/second (that is, approximately 1,000 degrees per second)

17

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000644
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 117 of 141

+ MUST be able to deliver events at 100 Hz or greater

+ MUST have 8-bits of accuracy or more
7.3.5. Barometer
Device implementations MAY include a barometer {i.e. ambient air pressure sensor.) If a device implementation includes a barometer, it:

- MUST be able to deliver events at 5 Hz or greater

- MUST have adequate precision to enable estimating altitude
7.3.7. Thermometer

Device implementations MAY but SHOULD NOT include a thermometer (i.e. temperature sensor.) If a device implementation does include a
thermometer, it MUST measure the temperature of the device CPU. It MUST NOT measure any other temperature. (Note that this sensor type is
deprecated in the Android 2.3 APIs.)

7.3.7. Photometer
Device implementations MAY include a photometer (i.e. ambient light sensor.)
7.3.8. Proximity Sensor

Device implementations MAY include a proximity sensor. If a device implementation does include a proximity sensor, it MUST measure the proximity of
an object in the same direction as the screen. That is, the proximity sensor MUST be oriented to detect objects close to the screen, as the primary
intent of this sensor type is to detect a phone in use by the user. If a device implementation includes a proximity sensor with any other orientation, it
MUST NOT be accessible through this API. If a device implementation has a proximity sensor, it MUST be have 1-bit of accuracy or more.

7.4. Data Connectivity

Network connectivity and access to the Internet are vital features of Android. Meanwhile, device-to-device interaction adds significant value to Android
devices and applications. Device implementations MUST meet the data connectivity requirements in this section.

7.4.1. Telephony

"Telephony" as used by the Android 2.3 APIs and this document refers specifically to hardware related to placing voice calls and sending SMS
messages via a GSM or CDMA network. While these voice calls may or may not be packet-switched, they are for the purposes of Android 2.3
considered independent of any data connectivity that may be implemented using the same network. In other words, the Android "telephony”
functionality and APls refer specifically to voice calls and SMS; for instance, device implementations that cannot place calls or send/receive SMS
messages MUST NOT report the "android.hardware.telephony" feature or any sub-features, regardless of whether they use a cellular network for data
connectivity.

Android 2.3 MAY be used on devices that do not include telephony hardware. That is, Android 2.3 is compatible with devices that are not phones.
However, if a device implementation does include GSM or CDMA telephony, it MUST implement full support for the API for that technology. Device
implementations that do not include telephony hardware MUST implement the full APIs as no-ops.

7.4.2. IEEE 802.11 (WiFi)

Android 2.3 device implementations SHOULD include support for one or more forms of 802.11 (b/g/a/n, etc.) If a device implementation does include
support for 802.11, it MUST implement the corresponding Android API.

7.4.3. Bluetooth

Device implementations SHOULD include a Bluetooth transceiver. Device implementations that do include a Bluetooth transceiver MUST enable the
RFCOMM-based Bluetooth API as described in the SDK documentation [Resources, 32]. Device implementations SHOULD implement relevant
Bluetooth profiles, such as A2DP, AVRCP, OBEX, etc. as appropriate for the device.

The Compatibility Test Suite includes cases that cover basic operation of the Android RFCOMM Bluetooth API. However, since Bluetooth is a
communications protocol between devices, it cannot be fully tested by unit tests running on a single device. Consequently, device implementations
MUST also pass the human-driven Bluetooth test procedure described in Appendix A.

18

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000645
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 118 of 141

7.4.4. Near-Field Communications

Device implementations SHOULD include a transceiver and related hardware for Near-Field Communications (NFC). If a device implementation does
include NFC hardware, then it:

» MUST report the android.hardware.nfc feature from the android.content.pm.PackageManager.hasSystemFeature () method.

Resources, 27
= MUST be capable of reading and writing NDEF messages via the following NFC standards:

» MUST be capable of acting as an NFC Forum reader/writer (as defined by the NFC Forum technical specification
NFCForum-TS-DigitalProtocol-1.0) via the following NFC standards:

= NfcA (1ISO14443-3A)
« NfcB (1ISO14443-3B)
- NfcF (JIS 6319-4)
= NfcV (ISO 15693)
» IsoDep (ISO 14443-4)
= NFC Forum Tag Types 1, 2, 3, 4 (defined by the NFC Forum)
» MUST be capable of transmitting and receiving data via the following peer-to-peer standards and protocols:
+ 1SO 18092
= LLCP 1.0 (defined by the NFC Forum)
- SDP 1.0 (defined by the NFC Forum)
» NDEF Push Protocol [Resources, 33]
» MUST scan for all supported technologies while in NFC discovery mode.

» SHOULD be in NFC discovery mode while the device is awake with the screen active.
(Note that publicly available links are not available for the JIS, 1ISO, and NFC Forum specifications cited above.)
Additionally, device implementations SHOULD support the following widely-deployed MIFARE technologies.

- MIFARE Classic (NXP MF15503x [Resources, 34], MF18703x [Resources, 35])
- MIFARE Ultralight (NXP MFOICU1 [Resources, 36], MFOICU2 [Resources, 37])
= NDEF on MIFARE Classic (NXP AN130511 [Resources, 38], AN130411 [Resources, 39])

Note that Android 2.3.3 includes APIs for these MIFARE types. If a device implementation supports MIFARE, it:

= MUST implement the corresponding Android APls as documented by the Android SDK

» MUST report the feature com.nxp.mifare from the android.content.pm.PackageManager.hasSystemFeature () method. [Resources
27] Note that this is not a standard Android feature, and as such does not appear as a constant on the PackageManager class.

» MUST NOT implement the corresponding Android APls nor report the com.nxp.mifare feature unless it also implements general NFC support as
described in this section

If a device implementation does not include NFC hardware, it MUST NOT declare the android.hardware.nfc feature from the
android.content.pm.PackagelManager.hasSystemFeature () method [Resources, 27], and MUST implement the Android 2.3 NFC API as
a ho-op.

As the classes android.nfc.NdefMessage and android.nfc.NdefRecord represent a protocol-independent data representation format,
device implementations MUST implement these APls even if they do not include support for NFC or declare the android.hardware.nfc feature.

7.4.5. Minimum Network Capability

Device implementations MUST include support for one or more forms of data networking. Specifically, device implementations MUST include
support for at least one data standard capable of 200Kbit/sec or greater. Examples of technologies that satisfy this requirement include EDGE,
HSPA, EV-DO, 802.11g, Ethernet, etc.

Device implementations where a physical networking standard (such as Ethernet) is the primary data connection SHOULD also include support for
at least one common wireless data standard, such as 802.11 (WiFi).

Devices MAY implement more than one form of data connectivity.

19

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000646
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 119 of 141

7.5. Cameras

Device implementations SHOULD include a rear-facing camera, and MAY include a front-facing camera. A rear-facing camera is a camera located
on the side of the device opposite the display; that is, it images scenes on the far side of the device, like a traditional camera. A front-facing camera
is a camera located on the same side of the device as the display; that is, a camera typically used to image the user, such as for video conferencing
and similar applications.

7.5.1. Rear-Facing Camera
Device implementations SHOULD include a rear-facing camera. If a device implementation includes a rear-facing camera, it:

+ MUST have a resolution of at least 2 megapixels
> SHOULD have either hardware auto-focus, or software auto-focus implemented in the camera driver (transparent to application software)
» MAY have fixed-focus or EDOF (extended depth of field) hardware

» MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be lit while an android.hardware.Camera.PreviewCallback
instance has been registered on a Camera preview surface, unless the application has explicitly enabled the flash by enabling the
FLASH MODE AUTO or FLASH MODE ON atiributes of a Camera.Parameters object. Note that this constraint does not apply to the device's
built-in system camera application, but only to third-party applications using Camera.PreviewCallback.

7.5.2. Front-Facing Camera
Device implementations MAY include a front-facing camera. If a device implementation includes a front-facing camera, it:

» MUST have a resolution of at least VGA (that is, 640x480 pixels)

» MUST NOT use a front-facing camera as the default for the Camera API. That is, the camera API in Android 2.3 has specific support for
front-facing cameras, and device implementations MUST NOT configure the API to to treat a front-facing camera as the default rear-facing
camera, even if it is the only camera on the device.

» MAY include features (such as auto-focus, flash, etc.) available to rear-facing cameras as described in Section 7.5.1.

» MUST horizontally reflect (i.e. mirror) the stream displayed by an app in a CameraPreview, as follows:

+ If the device implementation is capable of being rotated by user (such as automatically via an accelerometer or manually via user input), the
camera preview MUST be mirrored horizontally relative to the device's current orientation.

+ If the current application has explicitly requested that the Camera display be rotated via a call to the
android.hardware.Camera.setDisplayOrientation () [Resources, 40] method, the camera preview MUST be mirrored horizontally
relative to the orientation specified by the application.

» Otherwise, the preview MUST be mirrored along the device's default horizontal axis.

» MUST mirror the image data returned to any "postview" camera callback handlers, in the same manner as the camera preview image stream. (If
the device implementation does not support postview callbacks, this requirement obviously does not apply.)

» MUST NOT mirror the final captured still image or video streams returned to application callbacks or committed to media storage
7.5.3. Camera APl Behavior
Device implementations MUST implement the following behaviors for the camera-related APIs, for both front- and rear-facing cameras:

1. If an application has never called android.hardware.Camera.Parameters.setPreviewFormat(int), then the device MUST use
android.hardware.PixelFormat.YCbCr_420_SP for preview data provided to application callbacks.

2. If an application registers an android.hardware.Camera.PreviewCallback instance and the system calls the onPreviewFrame() method when the
preview format is YCbCr_420_SP, the data in the byte[] passed into onPreviewFrame() must further be in the NV21 encoding format. That is,
NV21 MUST be the default.

3. Device implementations SHOULD support the YV12 format (as denoted by the android.graphics. ImageFormat.YV12 constant) for
camera previews for both front- and rear-facing cameras. Note that the Compatibility Definition for a future version is planned to change this
requirement to "MUST". That is, YV12 support is optional in Android 2.3 but will be required by a future version. Existing and new devices that
run Android 2.3 are very strongly encouraged to meet this requirement in Android 2.3, or they will not be able to attain Android compatibility
when upgraded to the future version.

Device implementations MUST implement the full Camera API included in the Android 2.3 SDK documentation [Resources, 41]), regardless of
whether the device includes hardware autofocus or other capabilities. For instance, cameras that lack autofocus MUST still call any registered
android.hardware.Camera.AutoFocusCallback instances (even though this has no relevance to a non-autofocus camera.) Note that this

20

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000647
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 120 of 141

does apply to front-facing cameras; for instance, even though most front-facing cameras do not support autofocus, the API callbacks must still be
“faked" as described.

Device implementations MUST recognize and honor each parameter name defined as a constant on the
android.hardware.Camera.Parameters class, if the underlying hardware supports the feature. If the device hardware does not support a
feature, the APl must behave as documented. Conversely, Device implementations MUST NOT honor or recognize string constants passed to the
android.hardware.Camera.setParameters () method other than those documented as constants on the
android.hardware.Camera.Parameters. Thatis, device implementations MUST support all standard Camera parameters if the hardware
allows, and MUST NOT support custom Camera parameter types.

7.5.4. Camera Orientation

Both front- and rear-facing cameras, if present, MUST be oriented so that the long dimension of the camera aligns with the screen’s long dimention.
That is, when the device is held in the landscape orientation, a cameras MUST capture images in the landscape orientation. This applies regardless
of the device's natural orientation; that is, it applies to landscape-primary devices as well as portrait-primary devices.

7.6. Memory and Storage

The fundamental function of Android 2.3 is to run applications. Device implementations MUST the requirements of this section, to ensure adequate
storage and memory for applications to run properly.

7.6.1. Minimum Memory and Storage

Device implementations MUST have at least 128MB of memory available to the kernel and userspace. The 128MB MUST be in addition to any
memory dedicated to hardware components such as radio, memory, and so on that is not under the kernel's control.

Device implementations MUST have at least 150MB of non-volatile storage available for user data. That is, the /data partition MUST be at least
150MB.

Beyond the requirements above, device implementations SHOULD have at least 1GB of non-volatile storage available for user data. Note that this
higher requirement is planned to become a hard minimum in a future version of Android. Device implementations are strongly encouraged to meet
these requirements now, or else they may not be eligible for compatibility for a future version of Android.

The Android APIs include a Download Manager that applications may use to download data files. The Download Manager implementation MUST be
capable of downloading individual files 55MB in size, or larger. The Download Manager implementation SHOULD be capable of downloading files
100MB in size, or larger.

7.6.2. Application Shared Storage
Device implementations MUST offer shared storage for applications. The shared storage provided MUST be at least 1GB in size.

Device implementations MUST be configured with shared storage mounted by default, "out of the box". If the shared storage is not mounted on the
Linux path /sdcard, then the device MUST include a Linux symbolic link from /sdcard to the actual mount point.

Device implementations MUST enforce as documented the android.permission.WRITE EXTERNAL STORAGE permission on this shared
storage. Shared storage MUST otherwise be writable by any application that obtains that permission.

Device implementations MAY have hardware for user-accessible removable storage, such as a Secure Digital card. Alternatively, device
implementations MAY allocate internal (non-removable) storage as shared storage for apps.

Regardless of the form of shared storage used, device implementations MUST provide some mechanism to access the contents of shared storage
from a host computer, such as USB mass storage or Media Transfer Protocol.

It is illustrative to consider two common examples. If a device implementation includes an SD card slot to satisfy the shared storage requirement, a
FAT-formatted SD card 1GB in size or larger MUST be included with the device as sold to users, and MUST be mounted by default. Alternatively, if
a device implementation uses internal fixed storage to satisfy this requirement, that storage MUST be 1GB in size or larger and mounted on
/sdcard (or /sdcard MUST be a symbolic link to the physical location if it is mounted elsewhere.)

Device implementations that include multiple shared storage paths (such as both an SD card slot and shared internal storage) SHOULD modify the
core applications such as the media scanner and ContentProvider to transparently support files placed in both locations.

21

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000648
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 121 of 141

7.7. USB

Device implementations:

» MUST implement a USB client, connectable to a USB host with a standard USB-A port

» MUST implement the Android Debug Bridge over USB (as described in Section 7)

= MUST implement the USB mass storage specification, to allow a host connected to the device to access the contents of the /sdcard volume
= SHOULD use the micro USB form factor on the device side

» MAY include a hon-standard port on the device side, but if so MUST ship with a cable capable of connecting the custom pinout to standard
USB-A port

8. Performance Compatibility

Compatible implementations must ensure not only that applications simply run correctly on the device, but that they do so with reasonable
performance and overall good user experience. Device implementations MUST meet the key performance metrics of an Android 2.3 compatible
device defined in the table below:

Metric Performance Threshold Comments
The launch time is measured as the total

The following applications should launch
within the specified time.
Application Launch Time - Browser: less than 1300ms
+ MMS/SMS: less than 700ms
» AlarmClock: less than 650ms

time to complete loading the default
activity for the application, including the
time it takes to start the Linux process,
load the Android package into the Dalvik
VM, and call onCreate.

When multiple applications have been
launched, re-launching an already-running

Simultaneous Applications application after it has been launched
must take less than the original launch
time.

9. Security Model Compatibility

Device implementations MUST implement a security model consistent with the Android platform security model as defined in Security and
Permissions reference document in the APIs [Resources, 42] in the Android developer documentation. Device implementations MUST support
installation of self-signed applications without requiring any additional permissions/certificates from any third parties/authorities. Specifically,
compatible devices MUST support the security mechanisms described in the follow sub-sections.

9.1. Permissions

Device implementations MUST support the Android permissions model as defined in the Android developer documentation [Resources, 42].
Specifically, implementations MUST enforce each permission defined as described in the SDK documentation; no permissions may be omitted,
altered, or ignored. Implementations MAY add additional permissions, provided the new permission ID strings are not in the android.* namespace.

9.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in which each application runs as a unique Unix-style UID and in a
separate process. Device implementations MUST support running multiple applications as the same Linux user ID, provided that the applications
are properly signed and constructed, as defined in the Security and Permissions reference [Resources, 42].

9.3. Filesystem Permissions

22

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000649
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 122 of 141

Device implementations MUST support the Android file access permissions model as defined in as defined in the Security and Permissions
reference [Resources, 42].

9.4. Alternate Execution Environments

Device implementations MAY include runtime environments that execute applications using some other software or technology than the Dalvik
virtual machine or native code. However, such alternate execution environments MUST NOT compromise the Android security model or the security
of installed Android applications, as described in this section.

Alternate runtimes MUST themselves be Android applications, and abide by the standard Android security model, as described elsewhere in
Section 9.

Alternate runtimes MUST NOT be granted access to resources protected by permissions not requested in the runtime's AndroidManifest.xml file via
the <uses-permission> mechanism.

Alternate runtimes MUST NOT permit applications to make use of features protected by Android permissions restricted to system applications.
Alternate runtimes MUST abide by the Android sandbox model. Specifically:

» Alternate runtimes SHOULD install apps via the PackageManager into separate Android sandboxes (that is, Linux user IDs, etc.)

» Alternate runtimes MAY provide a single Android sandbox shared by all applications using the alternate runtime.

» Alternate runtimes and installed applications using an alternate runtime MUST NOT reuse the sandbox of any other app installed on the device,
except through the standard Android mechanisms of shared user 1D and signing certificate

» Alternate runtimes MUST NOT launch with, grant, or be granted access to the sandboxes corresponding to other Android applications.

Alternate runtimes MUST NOT be launched with, be granted, or grant to other applications any privileges of the superuser (root), or of any other
user ID.

The .apk files of alternate runtimes MAY be included in the system image of a device implementation, but MUST be signed with a key distinct from
the key used to sign other applications included with the device implementation.

When installing applications, alternate runtimes MUST obtain user consent for the Android permissions used by the application. That is, if an
application needs to make use of a device resource for which there is a corresponding Android permission (such as Camera, GPS, etc.), the
alternate runtime MUST inform the user that the application will be able to access that resource. If the runtime environment does not record
application capabilities in this manner, the runtime environment MUST list all permissions held by the runtime itself when installing any application
using that runtime.

10. Software Compatibility Testing

The Android Open-Source Project includes various testing tools to verify that device implementations are compatible. Device implementations
MUST pass all tests described in this section.

However, note that no software test package is fully comprehensive. For this reason, device implementers are very strongly encouraged to make
the minimum number of changes as possible to the reference and preferred implementation of Android 2.3 available from the Android Open-Source
Project. This will minimize the risk of introducing bugs that create incompatibilities requiring rework and potential device updates.

10.1. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS) [Resources, 2] available from the Android Open Source Project,
using the final shipping software on the device. Additionally, device implementers SHOULD use the reference implementation in the Android Open
Source tree as much as possible, and MUST ensure compatibility in cases of ambiguity in CTS and for any reimplementations of parts of the
reference source code.

The CTS is desighed to be run oh an actual device. Like any software, the CTS may itself contain bugs. The CTS will be versioned independently of
this Compeatibility Definition, and multiple revisions of the CTS may be released for Android 2.3. Device implementations MUST pass the latest CTS
version available at the time the device software is completed.

23

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000650
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 123 of 141

MUST pass the most recent version of the Android Compatibility Test Suite (CTS) available at the time of the device implementation's software is
completed. (The CTS is available as part of the Android Open Source Project [Resources, 2].) The CTS tests many, but not all, of the components
outlined in this document.

10.2. CTS Verifier

Device implementations MUST correctly execute all applicable cases in the CTS Verifier. The CTS Verifier is included with the Compatibility Test
Suite, and is intended to be run by a human operator to test functionality that cannot be tested by an automated system, such as correct functioning
of a camera and sensors.

The CTS Verifier has tests for many kinds of hardware, including some hardware that is optional. Device implementations MUST pass all tests for
hardware which they possess; for instance, if a device possesses an accelerometer, it MUST correctly execute the Accelerometer test case in the
CTS Verifier. Test cases for features noted as optional by this Compatibility Definition Document MAY be skipped or omitted.

Every device and every build MUST correctly run the CTS Verifier, as noted above. However, since many builds are very similar, device
implementers are not expected to explicitly run the CTS Verifier on builds that differ only in trivial ways. Specifically, device implementations that
differ from an implementation that has passed the CTS Verfier only by the set of included locales, branding, etc. MAY omit the CTS Verifier test.

10.3. Reference Applications

Device implementers MUST test implementation compatibility using the following open-source applications:

» The "Apps for Android" applications [Resources, 43].

» Replica Island (available in Android Market; only required for device implementations that support with OpenGL ES 2.0)

Each app above MUST launch and behave correctly on the implementation, for the implementation to be considered compatible.
11. Updatable Software

Device implementations MUST include a mechanism to replace the entirety of the system software. The mechanism need not perform "live"
upgrades -- that is, a device restart MAY be required.

Any method can be used, provided that it can replace the entirety of the software preinstalled on the device. For instance, any of the following
approaches will satisfy this requirement:

» Over-the-air (OTA) downloads with offline update via reboot
» "Tethered" updates over USB from a host PC

» "Offline" updates via a reboot and update from a file on removable storage

The update mechanism used MUST support updates without wiping user data. Note that the upstream Android software includes an update
mechanism that satisfies this requirement.

If an error is found in a device implementation after it has been released but within its reasonable product lifetime that is determined in consultation
with the Android Compatibility Team to affect the compatibility of third-party applications, the device implementer MUST correct the error via a
software update available that can be applied per the mechanism just described.

12. Contact Us

You can contact the document authors at compatibility@android.com for clarifications and to bring up any issues that you think the document does

not cover.

24

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000651
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 124 of 141

Appendix A - Bluetooth Test Procedure

The Compatibility Test Suite includes cases that cover basic operation of the Android RFCOMM Bluetooth API. However, since Bluetooth is a
communications protocol between devices, it cannot be fully tested by unit tests running on a single device. Consequently, device implementations
MUST also pass the human-operated Bluetooth test procedure described below.

The test procedure is based on the BluetoothChat sample app included in the Android open-source project tree. The procedure requires two
devices:

- a candidate device implementation running the software build to be tested

= aseparate device implementation already known to be compatible, and of a model from the device implementation being tested -- that is, a
"known good" device implementation

The test procedure below refers to these devices as the "candidate" and "known good"” devices, respectively.
Setup and Installation

1. Build BluetoothChat.apk via 'make samples' from an Android source code free.
2. Install BluetoothChat.apk on the known-good device.

3. Install BluetoothChat.apk on the candidate device.
Test Bluetooth Control by Apps

1. Launch BluetoothChat on the candidate device, while Bluetooth is disabled.

2. Verify that the candidate device either turns on Bluetooth, or prompts the user with a dialog to turn on Bluetooth.
Test Pairing and Communication

Launch the Bluetooth Chat app on both devices.

Make the known-good device discoverable from within BluetoothChat (using the Menu).

On the candidate device, scan for Bluetooth devices from within BluetoothChat (using the Menu) and pair with the known-good device.
Send 10 or more messages from each device, and verify that the other device receives them correctly.

Close the BluetoothChat app on both devices by pressing Home.

@ Nk~ w N

Unpair each device from the other, using the device Settings app.
Test Pairing and Communication in the Reverse Direction

Launch the Bluetooth Chat app on both devices.
Make the candidate device discoverable from within BluetoothChat (using the Menu).
On the known-good device, scan for Bluetooth devices from within BluetoothChat (using the Menu) and pair with the candidate device.

Send 10 or messages from each device, and verify that the other device receives them correctly.

ok w N~

Close the Bluetooth Chat app on both devices by pressing Back repeatedly to get to the Launcher.
Test Re-Launches
1. Re-launch the Bluetooth Chat app on both devices.

2. Send 10 or messages from each device, and verify that the other device receives them correctly.

Note: the above tests have some cases which end a test section by using Home, and some using Back. These tests are not redundant and are not
optional: the objective is to verify that the Bluetooth API and stack works correctly both when Activities are explicitly terminated (via the user
pressing Back, which calls finish()), and implicitly sent to background (via the user pressing Home.) Each test sequence MUST be performed as

25

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000652
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 125 of 141

described.

26

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000653
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 126 of 141

Compatibility Test Suite | Android Open Source Page 1 of 3

Android.com
Home Source Compatibility Tech info Community About
Getting Started Compatibility Test Suite
Compatibility Overview How does the CTS work?
Current CDD
CT8 Introduction
CTS Development
More Information
Downloads
FAQs .
n rmachin
Contact Us On your machine
The CTS is an automated testing harness Download and
that includes two major software inclall tha TS
components: Devices you attach

ter your machine

e The CTS test harness runs on your

desktop machine and manages test | Huh the TS, . Test
execution. aantine
e Individual test cases are executed on Yos
attached mobile devices or on an : ; E'“
Store and view : resuls

emulator. The test cases are written in
Java as JUnit tests and packaged as
Android .apk files to run on the actual
device target.

resulis.

Workflow

1. Download the CTS.
2. Attach at least one device (or emulator) to your machine.
3. For CTS 2.1 R2 and beyond, setup your device (or emulator) to run the accessibility tests:
1. adb install -r android-cts/repository/testcases/CtsDelegatingAccessibilityService.apk
2. On the device, enable Settings > Accessibility > Accessibility > Delegating Accessibility Service
4. For CTS 2.3 R4 and beyond, setup your device to run the device administration tests:
1. adb install -r android-cts/repository/testcases/CtsDeviceAdmin.apk

2. On the device, enable all the android.deviceadmin.cts.* device administrators under Settings >
Location & security > Select device administrators

5. Launch the CTS. The CTS test harness loads the test plan onto the attached devices. For each test in the
test harness:

o The test harness pushes a .apk file to each device, executes the test through instrumentation, and

http://source.android.com/compatibility/cts-intro.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000654
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 127 of 141

Compatibility Test Suite | Android Open Source Page 2 of 3

records test results.
o The test harness removes the .apk file from each device.

6. Once all the tests are executed, you can view the test results in your browser and use the results to adjust
your design. You can continue to run the CTS throughout your development process.

When you are ready, you can submit the report generated by the CTS to cts@android.com. The reportis a .zip
archived file that contains XML results and supplemental information such as screen captures.

Types of test cases

The CTS includes the following types of test cases:

e Unit tests test atomic units of code within the Android platform; e.g. a single class, such as
java.util. HashMap.

e [unctional tests test a combination of APIs together in a higher-level use-case.

e Reference application tests instrument a complete sample application to exercise a full set of APIs and
Android runtime services

Future versions of the CTS will include the following types of test cases:

e Robustness lests test the durability of the system under stress.

e Performance fests test the performance of the system against defined benchmarks, for example rendering
frames per second.

Areas Covered

The unit test cases cover the following areas to ensure compatibility:

Area Description
Signature For each Android release, there are XML files describing the signatures of all public APIs
tests contained in the release. The CTS contains a utility to check those API signatures

against the APIs available on the device. The results from signature checking are
recorded in the test result XML file.

Platform API Test the platform (core libraries and Android Application Framework) APls as

Tests documented in the SDK Class Index to ensure API correctness, including correct class,
attribute and method signatures, correct method behavior, and negative tests to ensure
expected behavior for incorrect parameter handling.

Dalvik VM The tests focus on testing the Dalvik VM

Tests

Platform Data The CTS tests the core platform data model as exposed to application developers

Model through content providers, as documented in the SDK android.provider package:
contacts, browser, settings, etc.

Platform The CTS tests the core platform intents, as documented in the SDK Available Intents.

Intents

Platform The CTS tests the core platform permissions, as documented in the SDK Available

Permissions Permissions.

http://source.android.com/compatibility/cts-intro.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000655
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 128 of 141

Compatibility Test Suite | Android Open Source Page 3 of 3

Platform The CTS tests for correct handling of the core platform resource types, as documented in
Resources the SDK Available Resource Types. This includes tests for: simple values, drawables,
nine-patch, animations, layouts, styles and themes, and loading alternate resources.

Site Terms of Servics - Privacy Policy GotoTop

http://source.android.com/compatibility/cts-intro.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000656
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 129 of 141

CTS Development | Android Open Source Page 1 of 2

Android.com
Home Source Compatibility Tech info Community About

Getting Started CTS Q%V@E@ﬁm&ﬂt

Compatibility Overview Initializing Your Repo Client

Current CDD

CTS Introduction Follow the instructions to get and build the Android source code but

CTS Development specify -b gingerbread when issuing the repo init command.

. This assures that your CTS changes will be included in the next CTS

More Information release and beyond.

Downloads

FAQSs Setting Up Eclipse

Contact Us

Follow the insiructions to setup Eclipse but execute the following
command to generate the . classpath file rather than copying the one from the development project:

cd /path/to/android/root
./cts/development/ide/eclipse/genclasspath.sh > .classpath
chmod u+w .classpath

This . classpath file will contain both the Android framework packages and the CTS packages.

Building and Running CTS
Execute the following commands to build CTS and start the interactive CTS console:
cd /path/to/android/root

make cts
cts

Provide arguments to CTS to immediately start executing a test:

cts start --plan CTS -p android.os.cts.BuildversionTest

Writing CTS Tests

CTS tests use JUnit and the Android testing APIs. Review the Testing and Instrumentation tutorial while perusing
the existing tests under the cts/tests/tests directory. You will see that CTS tests mostly follow the same
conventions used in other Android tests.

Since CTS runs across many production devices, the tests must follow these rules:

o Must take into account varying screen sizes, orientations, and keyboard layouts.

e Only use public API methods. In other words, avoid all classes, methods, and fields that are annotated
with the "hide" annotation.

e Avoid relying upon particular view layouts or depend on the dimensions of assets that may not be on
some device.

http://source.android.com/compatibility/cts-development.html
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000657
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 130 of 141

CTS Development | Android Open Source Page 2 of 2

e Don't rely upon root privileges.

Test Naming and Location

Most CTS test cases target a specific class in the Android API. These tests have Java package names with a
cts suffix and class names with the Test suffix. Each test case consists of multiple tests, where each test
usually exercises a particular APl method of the API class being tested. These tests are arranged in a directory
structure where tests are grouped into different categories like "widgets" and "views."

For example, the CTS test for android.widget.TextViewis android.widget.cts.TextViewTest
found under the cts/tests/tests/widget/src/android/widget/cts directory with its Java package
name as android.widget.cts and its class name as TextVviewTest. The TextViewTest class has a test
called testSetText that exercises the "setText" method and a test named "testSetSingleLine" that calls the
setSinglelLine method. Each of those tests have @TestTargetNew annotations indicating what they cover.

Some CTS tests do not directly correspond to an API class but are placed in the most related package possible.
For instance, the CTS test, android.net.cts.ListeningPortsTest, is in the android.net.cts,
because it is network related even though there is no android.net.ListeningPorts class. You can also
create a new test package if necessary. For example, there is an "android.security" test package for tests related
to security. Thus, use your best judgement when adding new tests and refer to other tests as examples.

Finally, a lot of tests are annotated with @TestTargets and @TestTargetNew. These are no longer necessary so
do not annotate new tests with these.

New Test Packages

When adding new tests, there may not be an existing directory to place your test. In that case, refer to the
example under cts/tests/tests/example and create a new directory. Furthermore, make sure to add your
new package's module name from its Android.mk to CTS_COVERAGE_TEST_CASE_LIST in
cts/CtsTestCaselist.mk. This Makefile is used by build/core/tasks/cts.mk to glue all the tests
together to create the final CTS package.

Test Stubs and Utilities

Some tests use additional infrastructure like separate activities and various utilities to perform tests. These are
located under the cts/tests/src directory. These stubs aren't separated into separate test APKs like the
tests, so the cts/tests/src directory does not have additional top level directories like "widget" or "view."
Follow the same principle of putting new classes into a package with a hame that correlates to the purpose of
your new class. For instance, a stub activity used for testing OpenGL like GLSurfaceviewstubActivity
belongs in the android.opengl.cts package under the cts/tests/src/android/openg]l directory.

Other Tasks

Besides adding new tests there are other ways to contribute to CTS:
e Fix or remove tests annotated with BrokenTest and KnownFailure.

Submitting Your Changes

Follow the Android Contributors' Workflow to contribute changes to CTS. A reviewer will be assighed to your
change, and your change should be reviewed shortly!

Site Terms of Service - Privacy Policy Goto Top

http://source.android.com/compatibility/cts-development.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000658
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 131 of 141

Android Compatibility Downloads | Android Open Source Page 1 of 2

Android.com
Home Source Compatibility Tech info Community About
Getting Started Android Compatibility Downloads
Compatibility Overview
Current CDD Thanks for your interest in Android Compatibility! The links below allow
CTS Introduction you to access the key documents and information.
CTS Development .
Android 2.3
More Information
Downloads Android 2.3 is the release of the development milestone code-named
FAQs Gingerbread. Android 2.3 is the current version of Android. Source
Contact Us code for Android 2.3 is found in the 'gingerbread' branch in the open-

source tree.

o Android 2.3 Compatibility Definition Document {CDD
e Android 2.3 R4 Compatibility Test Suite (CTS

Android 2.2

Android 2.2 is the release of the development milestone code-named FroYo. Source code for Android 2.2 is
found in the ‘froyo' branch in the open-source tree.

o Android 2.2 Compatibility Definition Document (CDD)
o Android 2.2 RE Compatibility Test Suite (CTS

Android 2.1

Android 2.1 is the release of the development milestone code-named Eclair. Source code for Android 2.1 is
found in the 'eclair' branch in the open-source tree. Note that for technical reasons, there is no compatibility
program for Android 2.0 or 2.0.1, and new devices must use Android 2.1.

e Android 2.1 Compatibility Definition Document (CDD)
o Android 2.1 RS Compatibility Test Suite (CTS)

Android 1.6

Android 1.6 was the release of the development milestone code-named Donut. Android 1.6 was obsoleted by
Android 2.1. Source code for Android 1.6 is found in the 'donut' branch in the open-source tree.

o Android 1.6 Compatibility Definition Document (CDD
o Android 1.6 R1 Compatibility Test Suite (CTS

Compatibility Test Suite Manual

The CTS user manual is applicable to any CTS version, but CTS 2.1 R2 and beyond require additional steps to
run the accessibility tests.

o Compatibility Test Suite (CTS) User Manual

http://source.android.com/compatibility/downloads.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000659
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 132 of 141

Android Compatibility Downloads | Android Open Source Page 2 of 2

Older Android Versions

There is no Compatibility Program for older versions of Android, such as Android 1.5 (known in development as
Cupcake). New devices intended to be Android compatible must ship with Android 1.6 or later.

Site Terms of Servics - Privacy Policy GotoTop

http://source.android.com/compatibility/downloads.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000660
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 133 of 141

Frequently Asked Questions | Android Open Source

Home Source Compatibility Tech Info Community

Abhout

Page 1 of 7

Android.com

Frequently Asked Questions

in This Document

Freguently Asked Questions
Open Source
What is the Android Open Source Project?
Why did we open the Android source code?
What kind of open-source project is Android?
Why Is Google in charge of Android?
What is Google's overall strateqy for Android product development?

How is the Android software developed?
Why are parts of Android developed in private?
When are source code releases made?

What is involved in releasing the source code for a new Android version?

How does the AOSP relate to the Android Compatibility Program?
How can | contribute to Android?
How do | become an Android committer?
Compatibility
What does "compatibility” mean?
What is the role of Android Market in compatibility?
What kinds of devices can be Android compatible?

If mv device is compatible, does it automatically have access to Android Market and branding?

If I am not a manufacturer, how can | get Android Market?

How can | get access to the Google apps for Android, such as Maps?

ls compatibility mandatory?

How much does compatibility certification cost?

How long does compatibility take?

Who determines what will be part of the compatibility definition?
How long will each Android version be supported for new devices?

Can a device have a different user interface and still be compatible?

When are compatibility definitions released for new Android versions?

How are device manufacturers' compatibility claims validated?

What happens if a device that claims compatibility is later found to have compatibility problems?

Compatibility Test Suite
What is the purpose of the CTS?
What kinds of things does the CTS test?
Will the CTS reports be made public?
How is the CTS licensed?
Does the CTS accept contributions?
Can anyone use the CTS on existing devices?

Open Source
What is the Android Open Source Project?

http://source.android.com/fags.html

Oracle America, Inc. v. Google Inc.
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 134 of 141

GOOGLE-00-00000661

Frequently Asked Questions | Android Open Source Page 2 of 7

We use the phrase "Android Open Source Project" or "AOSP" to refer to the people, the processes, and the
source code that make up Android.

The people oversee the project and develop the actual source code. The processes refer to the tools and
procedures we use to manage the development of the software. The net result is the source code that you can
use to build cell phone and other devices.

Why did we open the Android source code?

Google started the Android project in response to our own experiences launching mobile apps. We wanted to
make sure that there would always be an open platform available for carriers, OEMs, and developers to use to
make their innovative ideas a reality. We also wanted to make sure that there was no central point of failure, so
that no single industry player could restrict or control the innovations of any other. The single most important goal
of the Android Open-Source Project (AOSP) is to make sure that the open-source Android software is
implemented as widely and compatibly as possible, to everyone's benefit.

You can find more information on this topic at our Project Philosophy page.
What kind of open-source project is Android?

Google oversees the development of the core Android open-source platform, and works to create robust
developer and user communities. For the most part the Android source code is licensed under the permissive
Apache Software License 2.0, rather than a "copyleft" license. The main reason for this is because our most
important goal is widespread adoption of the software, and we believe that the ASL2.0 license best achieves that
goal.

You can find more information on this topic at our Project Philosophy and Licensing pages.
Why is Google in charge of Android?

Launching a software platform is complex. Openness is vital to the long-term success of a platform, since
openness is required to attract investment from developers and ensure a level playing field. However, the
platform itself must also be a compelling product to end users.

That's why Google has committed the professional engineering resources necessary to ensure that Android is a
fully competitive software platform. Google treats the Android project as a full-scale product development
operation, and strikes the business deals necessary to make sure that great devices running Android actually
make it to market.

By making sure that Android is a success with end users, we help ensure the vitality of Android as a platform,
and as an open-source project. After all, who wants the source code to an unsuccessful product?

Google's goal is to ensure a successful ecosystem around Android, but no one is required to participate, of
course. We opened the Android source code so anyone can modify and distribute the software to meet their own
needs.

What is Google's overall strategy for Android product development?

We focus on releasing great devices into a competitive marketplace, and then incorporate the innovations and
enhancements we made into the core platform, as the next version.

In practice, this means that the Android engineering team typically focuses on a small number of "flagship”
devices, and develops the next version of the Android software to support those product launches. These
flagship devices absorb much of the product risk and blaze a trail for the broad OEM community, who follow up
with many more devices that take advantage of the new features. In this way, we make sure that the Android
platform evolves according to the actual needs of real-world devices.

http://source.android.com/fags.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000662
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 135 of 141

Frequently Asked Questions | Android Open Source Page 3 of 7

How is the Android software developed?

Each platform version of Android (such as 1.5, 1.6, and so on) has a corresponding branch in the open-source
tree. At any given moment, the most recent such branch will be considered the "current stable" branch version.
This current stable branch is the one that manufacturers port to their devices. This branch is kept suitable for
release at all times.

Simultaneously, there is also a "current experimental” branch, which is where speculative contributions, such as
large next-generation features, are developed. Bug fixes and other contributions can be included in the current
stable branch from the experimental branch as appropriate.

Finally, Google works on the next version of the Android platform in tandem with developing a flagship device.
This branch pulls in changes from the experimental and stable branches as appropriate.

You can find more information on this topic at our Branches and Releases.

Why are parts of Android developed in private?

It typically takes over a year to bring a device to market, but of course device manufacturers want to ship the
latest software they can. Developers, meanwhile, don't want to have to constantly track new versions of the
platform when writing apps. Both groups experience a tension between shipping products, and not wanting to fall
behind.

To address this, some parts of the next version of Android including the core platform APls are developed in a
private branch. These APIs constitute the next version of Android. Our aim is to focus attention on the current
stable version of the Android source code, while we create the next version of the platform as driven by flagship
Android devices. This allows developers and OEMs to focus on a single version without having to track
unfinished future work just to keep up. Other parts of the Android system that aren't related to application
compatibility are developed in the open, however. It's our intention to move more of these parts to open
development over time.

When are source code releases made?

When they are ready. Some parts of Android are developed in the open, so that source code is always available.
Other parts are developed first in a private tree, and that source code is released when the next platform version
is ready.

In some releases, core platform APIs will be ready far enough in advance that we can push the source code out
for an early look in advance of the device's release; however in others, this isn't possible. In all cases, we release
the platform source when we feel the version has stabilized enough, and when the development process
permits. Releasing the source code is a fairly complex process.

What is involved in releasing the source code for a new Android version?

Releasing the source code for a new version of the Android platform is a significant process. First, the software
gets built into a system image for a device, and put through various forms of certification, including government
regulatory certification for the regions the phones will be deployed. It also goes through operator testing. This is
an important phase of the process, since it helps shake out a lot of software bugs.

Once the release is approved by the regulators and operators, the manufacturer begins mass producing devices,
and we turn to releasing the source code.

Simultaneous to mass production the Google team kicks off several efforts to prepare the open source release.
These efforts include final APl changes and documentation (to reflect any changes that were made during
qualification testing, for example), preparing an SDK for the new version, and launching the platform
compatibility information.

http://source.android.com/fags.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000663
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 136 of 141

Frequently Asked Questions | Android Open Source Page 4 of 7

Also included is a final legal sign-off to release the code into open source. Just as open source contributors are
required to sign a Contributors License Agreement attesting to their IP ownership of their contribution, Google
too must verify that it is clear to make contributions.

Starting at the time mass production begins, the software release process usually takes around a month, which
often roughly places source code releases around the same time that the devices reach users.

How does the AOSP relate o the Android Compatibility Program?

The Android Open-Source Project maintains the Android software, and develops new versions. Since it's open-
source, this software can be used for any purpose, including to ship devices that are not compatible with other
devices based on the same source.

The function of the Android Compatibility Program is to define a baseline implementation of Android that is
compatible with third-party apps written by developers. Devices that are "Android compatible™ may participate in
the Android ecosystem, including Android Market; devices that don't meet the compatibility requirements exist
outside that ecosystem.

In other words, the Android Compatibility Program is how we separate "Android compatible devices" from
devices that merely run derivatives of the source code. We welcome all uses of the Android source code, but
only Android compatible devices -- as defined and tested by the Android Compatibility Program -- may
participate in the Android ecosystem.

How can | contribute to Android?

There are a humber of ways you can contribute to Android. You can report bugs, write apps for Android, or
contribute source code to the Android Open-Source Project.

There are some limits on the kinds of code contributions we are willing or able to accept. For instance, someone
might want to contribute an alternative application API, such as a full C++-based environment. We would decline
that contribution, since Android is focused on applications that run in the Dalvik VM. Alternatively, we won't
accept contributions such as GPL or LGPL libraries that are incompatible with our licensing goals.

We encourage those interested in contributing source code to contact us via the AOSP Community page prior to
beginning any work. You can find more information on this topic at the Getting Involved page.

How do | become an Android committer?

The Android Open Source Project doesn't really have a notion of a "committer". All contributions -- including
those authored by Google employees -- go through a web-based system known as "gerrit" that's part of the
Android engineering process. This system works in tandem with the git source code management system to
cleanly manage source code contributions.

Once submitted, changes need to be accepted by a designated Approver. Approvers are typically Google
employees, but the same approvers are responsible for all submissions, regardless of origin.

You can find more information on this topic at the Submitting Patches page.

Compatibility
What does "compatibility” mean?

We define an "Android compatible” device as one that can run any application written by third-party developers
using the Android SDK and NDK. We use this as a filter to separate devices that can participate in the Android
app ecosystem, and those that cannot. Devices that are properly compatible can seek approval to use the
Android trademark. Devices that are not compatible are merely derived from the Android source code and may
not use the Android trademark.

http://source.android.com/fags.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000664
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 137 of 141

Frequently Asked Questions | Android Open Source Page 5 of 7

In other words, compatibility is a prerequisite to participate in the Android apps ecosystem. Anyone is welcome
to use the Android source code, but if the device isn't compatible, it's not considered part of the Android
ecosystem.

What is the role of Android Market in compatibility?

Devices that are Android compatible may seek to license the Android Market client software. This allows them to
become part of the Android app ecosystem, by allowing users to download developers' apps from a catalog
shared by all compatible devices. This option isn't available to devices that aren't compatible.

What kinds of devices can be Android compatible?

The Android software can be ported to a lot of different kinds of devices, including some on which third-party
apps won't run properly. The Android Compatibility Definition Document (CDD) spells out the specific device
configurations that will be considered compatible.

For example, though the Android source code could be ported to run on a phone that doesn't have a camera, the
CDD requires that in order to be compatible, all phones must have a camera. This allows developers to rely on a
consistent set of capabilities when writing their apps.

The CDD will evolve over time to reflect market realities. For instance, the 1.6 CDD only allows cell phones, but
the 2.1 CDD allows devices to omit telephony hardware, allowing for non-phone devices such as tablet-style
music players to be compatible. As we make these changes, we will also augment Android Market to allow
developers to retain control over where their apps are available. To continue the telephony example, an app that
manages SMS text messages would not be useful on a media player, so Android Market allows the developer to
restrict that app exclusively to phone devices.

If my device is compatible, does it automatically have access to Android Market and branding?

Android Market is a service operated by Google. Achieving compatibility is a prerequisite for obtaining access to
the Android Market software and branding. Device manufacturers should contact Google to obtain access to
Android Market.

If | am not a manufacturer, how can | get Android Market?

Android Market is only licensed to handset manufacturers shipping devices. For questions about specific cases,
contact android-partnerships@google.com.

How can | get access to the Google apps for Android, such as Maps?

The Google apps for Android, such as YouTube, Google Maps and Navigation, Gmail, and so on are Google
properties that are not part of Android, and are licensed separately. Contact android-partnerships@google.com
for inquiries related to those apps.

Is compatibility mandatory?

No. The Android Compatibility Program is optional. Since the Android source code is open, anyone can use it to
build any kind of device. However, if a manufacturer wishes to use the Android name with their product, or wants
access to Android Market, they must first demonstrate that the device is compatible.

How much does compatibility certification cost?

There is no cost to obtain Android compatibility for a device. The Compatibility Test Suite is open-source and
available to anyone to use to test a device.

How long does compatibility take?

http://source.android.com/fags.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000665
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 138 of 141

Frequently Asked Questions | Android Open Source Page 6 of 7

The process is automated. The Compatibility Test Suite generates a report that can be provided to Google to
verify compatibility. Eventually we intend to provide self-service tools to upload these reports to a public
database.

Who determines what will be part of the compatibility definition?

Since Google is responsible for the overall direction of Android as a platform and product, Google maintains the
Compatibility Definition Document for each release. We draft the CDD for a new Android version in consultation
with a number of OEMs, who provide input on its contents.

How long will each Android version be supported for new devices?

Since Android's code is open-source, we can't prevent someone from using an old version to launch a device.
Instead, Google chooses not to license the Android Market client software for use on versions that are
considered obsolete. This allows anyone to continue to ship old versions of Android, but those devices won't use
the Android hame and will exist outside the Android apps ecosystem, just as if they were non-compatible.

Can a device have a different user interface and still be compatible?

The Android Compatibility Program focuses on whether a device can run third-party applications. The user
interface components shipped with a device (such as home screen, dialer, color scheme, and so on) does not
generally have much effect on third-party apps. As such, device builders are free to customize the user interface
as much as they like. The Compatibility Definition Document does restrict the degree to which OEMs may alter
the system user interface for areas that do impact third-party apps.

When are compatibility definitions released for new Android versions?

Our goal is to release new versions of Android Compatibility Definition Documents (CDDs) once the
corresponding Android platform version has converged enough to permit it. While we can't release a final draft of
a CDD for an Android software version before the first flagship device ships with that software, final CDDs will
always be released after the first device. However, wherever practical we will make draft versions of CDDs
available.

How are device manufacturers' compatibility claims validated?

There is no validation process for Android device compatibility. However, if the device is to include Android
Market, Google will typically validate the device for compatibility before agreeing to license the Market client
software.

What happens if a device that claims compatibility is later found to have compatibility
problems?

Typically, Google's relationships with Android Market licensees allow us to ask them to release updated system
images that fix the problems.

Compatibility Test Suite
What is the purpose of the CTS?

The Compatibility Test Suite is a tool used by device manufacturers to help ensure their devices are compatible,
and to report test results for validations. The CTS is intended to be run frequently by OEMs throughout the
engineering process to catch compatibility issues early.

What kinds of things does the CTS test?

The CTS currently tests that all of the supported Android strong-typed APIs are present and behave correctly. It
also tests other non-API system behaviors such as application lifecycle and performance. We plan to add
support in future CTS versions to test "soft" APIs such as Intents as well.

http://source.android.com/fags.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000666
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 139 of 141

Frequently Asked Questions | Android Open Source Page 7 of 7

Will the CTS reports be made public?

Yes. While not currently implemented, Google intends to provide web-based self-service tools for OEMs to
publish CTS reports so that they can be viewed by anyone. CTS reports can be shared as widely as
manufacturers prefer.

How is the CTS licensed?
The CTS is licensed under the same Apache Software License 2.0 that the bulk of Android uses.
Does the CTS accept contributions?

Yes please! The Android Open-Source Project accepts contributions to improve the CTS in the same way as for
any other component. In fact, improving the coverage and quality of the CTS test cases is one of the best ways
to help out Android.

Can anyone use the CTS on existing devices?

The Compatibility Definition Document requires that compatible devices implement the 'adb' debugging utility.
This means that any compatible device -- including ones available at retail -- must be able to run the CTS tests.

Site Terms of Service - Privacy Policy GotoTop

http://source.android.com/fags.html

Oracle America, Inc. v. Google Inc. GOOGLE-00-00000667
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 140 of 141

Contact Us | Android Open Source Page 1 of 1

Android.com

Home Source Compatibility Tech info Community About
Getting Started Contact Us
Compatibility Overview
Current CDD Thanks for your interest in Android compatibility!

CTS Introduction

CTS Development If you have questions about Android compatibility that aren't covered in

this site, you can reach us in one of a few different ways. To get the

More Information most out of any of these options, please first read "Getting the Most
Downloads from QOur Lists" on the Community page
FAQs
Contact Us For General Discussion

The preferred way to reach us is via the compatibility@android.com address.

For CTS Technical Questions

If you have specific issues with the Compatibility Test Suite that require you to disclose information you'd prefer
not to be public, you can contact an email address we've set up specifically this purpose: cis@android.com. This
email address is for cases that require disclosure of confidential information only, so general questions will be
directed back to the public android-compatibility list. Note also that this list is for specific technical questions;
general inquiries will also be directed back to the android-compatibility list.

For Business Inquiries

Finally, business inquiries about the compatibility program, including requests to use branding elements and so
on, can be sent to the address android-partnerships@google.com. Like the CTS address, this address is for
specific, private inquiries; general questions will be directed back to the android-compatibility list.

Site Terms of Service - Privacy Policy Go to Top

http://source.android.com/compatibility/contact-us.html
Oracle America, Inc. v. Google Inc. GOOGLE-00-00000668
3:10-cv-03561-WHA

Trial Exhibit 2802 Page 141 of 141

