UnNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria. Virginia 22313-1450

WWW.USplU.gOV

r APPLICATION NO. I FILING DATE J ' FIRST NAMED INVENTOR | ATTORNEY DOCKETNO. | CONFIRMATION NO. I
95/001.560 03/01/72011 7426720 13557.105125 8687)
25226 7590 047182011

2 EXAMINER

MORRISON & FOERSTER LLP l 4|

755 PAGE MILL RD STEELMAN, MARY j

PALO ALTO, CA 94304-1018 —

0 [ART UNIT l PAPER NUMBER I :
3992
) e o S o [. MAILDATE I DELIVERY MODE]
04/18/2011 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rcv. 04/07)

UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents

United States Patents and Trademark Office
P.0.Box 1450

Alexandria, VA 22313-1450
WWW.uspto.gov

DO NOT USE IN PALM PRINTER %
BV T

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS Date: wlEY)

KING & SPALDING A?R ? szfa

1180 PEACHTREE STREET, N.E.
ATLANTA, GA 30309-3521

AENTREL REZRANATL N UN

B

Transmittal of Communication to Third Party Requester
Inter Partes Reexamination

REEXAMINATION CONTROL NO. : 95001560
PATENT NO. : 7426720

TECHNOLOGY CENTER : 3999

ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified Reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this
communication, the third party requester of the inter partes reexamination may once file
written comments within a period of 30 days from the date of service of the patent owner's
response. This 30-day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot
be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no
responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed
to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end
of the communication enclosed with this transmittal.

PTOL-2070(Rev.07-04)

Control No. Patent Under Reexamination
OFFICE ACTION IN INTER PARTES | 5001 560 | 428720
REEXA MINA TION Examin’er Art Unit
MARY STEELMAN 3992

.. The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

Responsive to the communication(s) filed by:
Patent Owner on
Third Party(ies) on 1 March 2011

RESPONSE TIMES ARE SET TO EXPIRE AS FOLLOWS:

For Patent Owner's Response:

1 MONTH(S) from the mailing date of this action. 37 CFR 1.945. EXTENSIONS OF TIME ARE
GOVERNED BY 37 CFR 1.956.
For Third-Party Requester's Comments on the Patent Owner Response: , .

30 DAYS from the date of service of any patent owner's response. 37 CFR 1.947. NO EXTENSIONS
OF TIME ARE PERMITTED. 35 U.S.C. 314(b)(2). ,

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central
Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

This action is not an Action Closing Prosecution under 37 CFR 1.949, nor is it a Right of Appeal Notice under
37 CFR 1.953. '

PART |. THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1.[] Notice of References Cited by Examiner, PTO-892
2.4 Information Disclosure Citation, PTO/SB/08
3.0

PART Il. SUMMARY OF ACTION:

1a.[X] Claims 1-8,10-17 and 19-22 are subjecf to reexamination.
1b.[X] Claims 9 and 18 are not subject to reexamination.

=

2. [Claims ____ have been canceled. ‘

3. [JClaims _____ are confirmed. [Unamended patent claims]

4. [JClaims ____ are patentable. [Amended or new claims]

5. [X Claims 1-8,10-27,19-22 are rejected.

6. []Claims ______are objected to.

7. [[] The drawings filed on ” [] are acceptable [] are not acceptable.

8. [] The drawing correction request filedon _____is: (] approved. [] disapproved.

9. [] Acknowledgment is made of the claim for priority under 35 U.S.C. 119 (a)-(d). The certified copy has:
[been received. [] not been received. [] been filed in Application/Control No 95001560.

10.[] Other

U.S. Patent and Trademark Office Paper No. 20110407
PTOL-2064 (08/06) :

Application/Control Number: 95/001,560 Page 2
Art Unit: 3992

Inter Partes Reexamination

DETAILED ACTION

This first Office Action on the merits follows the Order granting Inter Partes Reexamination of

USPN 7,426,720 B1 to Fresko. Claims 1-8, 10-17, and 19-22 are requested for reexamination.

Application Control Number 10/745,023 (file date 12/22/2003), issued as USPN 7,426,720 B1
(09/16/2008) to Fresko. A terminal disclosure was filed (07/10/2007) and accepted (09/20/2007)
over Application control number 10/745,022, now USPN 7,293,267, where similar subject

matter was claimed by the same inventor.

~

In order to ensure full cqnsideration of any amendments, affidavits or declarations, or other
documents as evidence of patentability, such documents must bé submitted in response to this
Office Action. Submissions after the next Office Action, which is intended to be an Action
Closing Prosecution (ACP), will be governed by 37 CFR 1.116(b) and (d), which will be strictly

enforced.

Statutory Basis for Grounds of Rejections. 35 USC §102 and §103

The following is a quotation of the appropriate paragraphs of 35 U.S.C. §102 that form the basis
for the rejections under this section made in this Office Action:
A person shall be entitled to a patent unless -

(b) the invention was patented or described in a printed publication in this or a foreign country or

Application/Control Number: 95/001,560 Page 3

Art Unit: 3992

in public use or on sale in this country, more than one year prior to the date of application for

patent in the United States.

The following is ’a quotation of 35 U.S.C. §103(a) which forms the basis for all

obviousness rejections set forth in this Office Action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as
set forth in section 102 of this title, if the differences between the subject matter sought to be
patented and the prior art are such that the subject matter as a whole would have been obvious at
the time the invention was made to a person having ordinary skill in the art to which said subject
matter pertains. Patentability shall not be negatived by the manner in which the invention was

made.

Third Party Requester's Proposed Grounds of Rejections

Ground #1

Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered obvious by
Webb in view of Kuck and further in view of APA-Bach.

Ground #2

Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 102(b) as anticipated by Dike
in view of Steinberg.

Ground #3

Claims 1-8, 10-17, and 19-22 are unpatentable under 35US.C. § 1.03(a) as rendered obvious by

Dike in view of Steinberg.

Application/Control Number: 95/001,560 . Page 4

Art Unit: 3992

Ground #4

Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered obvious by
Bryant in view of APA-Bach.

Ground #5

Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103fa) as rendered oBvious by

Bryant in view of Traut._

Grqund #6

Claims 1-8, 16-17, and 19-22 are unpatentable under 35 U.S..C. § 103(a) as ren\dered obvious by
Srinivasan in view of APA-Baéh.

Ground #7

Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered obvious by
Sexton in view of Bugnion.

Ground #8

Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered obvious by

Sexton in view of Johnson.

Analysis of Proposed Third Party Requester’s Rejections

Webb as a primary reference

Re. Ground #1:

Claims 1-8, 10-17, and 19-22 are rejected under 35 U.S. C. § 103(a) as rendered obvious by

Webb in view of Kuck and further in view of APA-Bach. Pertinent teachings found in

Application/Control Number: 95/001,560 : Page 5
Art Unit: 3992

Request 03/01/2010, p. 36 and Exhibit 17 are incorporated by reference. This rejection is

adopted, with additional comments added by Examiner.

Regarding independent claims 1, 10, and 20:

Webb provides an overview of Java (1: 22-3 8): "Java is an object-oriented language. Thus a
Java program is formed from a set of class files having methods [claim 10, method] that
represent sequences of instructions. A hierarchy of classes can be defined, with each class
inheriting properties from those classes which are above it in the hierarchy. For any given class
in the hierarchy, its descendants (i.e. below it) are call subclasses, whilst its ancestors (i.e. above
it) are called superclasses. At run-time objects are created as instantiations of these class files [a
class pre-loader], and indeed the class files themselves are effectively loaded as objects. One
Java object can call a method in another Java object. In recent years Java has become very
popular, and is described in many books, for example "Exploring Java" by Niemeyer and Peck,
O'Reilly & Associates, 1996, USA, and "The Java Virtual Machine Specification" by Lindholm

and Yellin, Addison-Wedley, 1997, USA."

Webb discloses (3: 56-4: 2), "FIG. 1 illustrates a computer system 10 including a (micro)
processor 20 which is used to run software loaded into memory 60. The software [claim 19] can
be lbaded into the memory by various; means (not shown), for example from a removable storage
device such as a floppy disc or CD ROM, or over a network such as a local area network (LAN) |

or telephone/modem connection, typically via a hard disk drive (also not shown). computer

Application/Control Number: 95/001,560 ' Page 6

Art Unit; 3992

system [claim 1, system, claim 20, apparatus] runs an operating system (OS) 30, on top of which
is provided a Java virtual machine (JVM) 40. The JVM . looks like an application to the (native)
0S:30, but in fact functions itself as a virtual operating system, supporting Java application 50. A '

Java application may include multiple threads, illustrated by threads T1 and T2 71, 72."

Webb implements (1: 22-38) a class pre-loader:. "[a]t ;un;time objects are éreated as
instantiations of these class files, and indeed the class files themselves are effectively loaded as
objects." Web discloses (4: 26-41), a system for dynamic preloading classeé with a hierarchy of
class loaders, through a cloning mechanism. Webb discloses (FIG. 3, 6: 59-7: 5 & 7: 25-40) a
master runtime system process to interpret and to instantiate the represgntation as a class
definition in a memory space of the master runtime system process: "initialization of a loaded
class (step 350), which rebresents célling the static initialization method (or methodé) of the class
fee this application must be performed once and only once before the first active use of a class”
which then allows for "[t}he new application class [to load the application classes inté the JVM
(step 410), and involves the steps shown in Fig. 3 for all the application classes." Note that
initialization of an object also requires initialization of its superclasses, and so this may inv.olve
recursion up a superclass tree in a similar manner to that described for resolution. The
initialization flag in a class file 145 is set as"p-art of the initialization process, thereby ensuring

that the class is not subsequently re-initialised."

Application/Control Number: 95/001,560 Page 7
Art Unit: 3992

Webb discloses (4: 26-41), "FIG. 2 shows the structure of JVM 40 in more detail (omitting some
components which are not directly pertinent to an understanding of the present invention). The
fundamental unit of a Java program is the class, and thus in order to run any application the JVM
must first load the classes forming and required by that application. For this purpose the JVM
includes a hierarchy of class loaders 110, which conventionally includes three particular class
loaders, named Application 120, Extension 125, and Primordial 130. An application can add
additional class loaders to the JVM (a class loader is itself effectively a Java program). In the
preferred embodiment of the present invention, a fourth class loader is also supported,
Middleware 124. Classes which are loaded by this class loader will be referred to hereinafter

as middleware, whilst those loaded by Application Class loader 120 will be referred to as

application.”

Webb discloses (7: 25-40), "FIG. 4 illustrates a method in accordance with the present invention
whereby this problem can be largely overcome. The method starts with the middleware initiating
an application (e.g. a transaction), it being assumed that both the relevant part of the middleware
and the application here are Java programs. In order to do this, the middleware creates an
instance of the application class loader (it cannot use an existing one because the application
class loader is below the middleware class loader in the class loader hierarchy as shown in FIG.
2, and so it has no reference to it). The new application class loader instance then loads the
application classes into the JVM (step 410), and involves the steps shown in FIG. 3 for all

the application classes. The application is then run in standard fashion (step 420), and after

completion control returns to the middleware."

Application/Control Number: 95/001,560 Page 8

Art Unit: 3992

Webb does not disclose a runtime environment to clone the memory space as a child runtime
system process responsive to a process request and to execute the child runtime system process.
However, Kuck discloses a runtime environment to clone the merﬁory space as a chilci runtime
system process responsive to a process request and to execute the child runtime system process
(paragraph [0064]-[0065] "... initialization overhead can be reduced thrbugh the use of a pre-
initialized "master" PAVM (virtual machine). Rather than initializing a new PAVM from
scratch, the memory block of the master PAVM can simply be’ copied into the memory

block of the new PAVM. Copying the template image of the master PAVM's memory block into
the memory block of a new PAVM enables the new PAVM to start running in an already-
"initialized state...storing type information (i.e., the runtime representation of loaded classes) in a
section of shared memory that can be accéssed by all the PAVMs... technique can reduce the
overhead for class loading, verification, and resol)ution incurred by each PAVM, and can be
especially useful if used to share the byte code of systgm classes that are likely to be used by

every user context'").

Kuck discloses [0029] many analogous features to Webb’s teachings: "Referring to FIG. 1, a
network 10 includes a server 12 linked to client systems 14, 16, 18. The server 12 isa
" programmable data processing system suitable for implementing apparatus or performing
‘methods in accordance with the invention. The server 12 contains a processor 16 and a memory

18. Memory 18 stores an operating system (OS) 20, a Transmission Control Protocol/Internet

Application/Control Number: 95/001,560 Page 9

Art Unit: 3992

Protocol (TCP/IP) stack 22 for communicating over the network 10, and machine-executable
inst_ructions 24 executed by processor 16 to perform a process 500 below. In some
implementations, the server 12 can contain multiple processors, each of which can be used to

execute the machine-executable instructions 24."

The Webb/Kuck combination fails to explicitly disclose the “save the copy on write limitation.”
The explicit, stated purpose of the disclosures is to reduce memory usage by, in part,

implementing a shared memory state for the instantiation and execution of virtual machines.

APA-Bach (p. 192) discloses, "The only way for a user to create a new process in the UNIX
operating system is to iﬁvoke the fork system call." APA-Bach (p. 287) discloses, "The copy-on-
write bit, used in the fork system call, indicates that the kernel must create a new copy of the
page when a process modifies its contents.” APA-Bach (p. 289-290) discloses, "9.2.1.1 Fork in a
Paging System As explained in Section 7.1, the kernel duplicates every region of the parent
process during the fork system call and attaches it to the child process. Traditionally, the kernel
of a swapping system makes a physical copy of the parent's address space, usually a wasteful
operation, because processes often call exec soon after the fork call and immediately free the.
memory just copied. On the System V paging system, the kernel avoids co‘pying the page by
manipulating the region tables, page table entries, and pfdata table entries: It simply increments
the region reference count of shared regions.... The page can now be referenced through both
regions, which share the page until a process writes to it. The kernel then copies the page so that

each region has a private version. To do this, the kernel turns on the 'copy on write' bit for every

Application/Control Number: 95/001,560 . Page 10

Art Unit: 3992

page table entry in private regions of the parent and child processes during fork. If either process
writes the page,\it incurs a protection fault, and in handling the fault, the kernel makes a new
copy of the page for the faulting process. The physical copying of the page is thus deferred until

a process really needs it."

' Therefore it would have been obvious to a person of ordinary skill in the art at the time the
invention was made to modify Webb's teaching by adding a runtime environment to clone the
memory space aé a child runtime system process responsive to a process request and to execute
the child runtime system process as taught by Kuck in order to provide avoiding the overhead
and crashing the process and enabling the server to run robustly (Kuck, paragraph [0004]-
[0005]). To further modify Webb/ Kuck with the teacﬁings of APA-Bach provided a copy-on-
write process cloning mechanism to instantiate the child runtime system process by copying
references to the memory space of the master runtime system process into a separate memory
space for the child runtime system process, and to defer copying of the memory space of the
master runtime system process until the child runtime system process needs to modify the
referenced memory space of the master runtime system process. In keeping with the explicit
motivétion to reduce memory usage and overhead impact when instantiating and executing
virtual machines, it would have been obvious to one of ordinary skill in the art to combine the
cloning of a master runtime process as disclosed in Webb and Kuck with the copy-on-write

technology that was the focus of much of Chapter 9 of the APA-Bach reference.

Regarding the “means for” limitations of claim 20:

Application/Control Number: 95/001 560 Page 11
Art Unit: 3992

In support of the conclusion that the prior art elements are an equivalent, the combination of
prior art elements are shown to perform an equivalent “means for”, as detailed below. The
means disclosed by Webb, and Kuck produce substantially the same results as the corresponding

element disclosed in the specification, in substantially the same way.
Webb discloses:

- “rheans for obtaining a representation of at least one class...” Webb (Abstract), “a computer
system includes a virtual machine supporting an object-oriented environment, in which programs
to run on the virtual machine are formed from classes loaded into the virtual machine by a class

loader.”

-“means for interpreting and means for instantiating the representation as a class definition...”
See Webb FIG. 1, Java APP 50, JVM 40; FIG. 2, Class loader, cache and storage; FIG. 3

Loading [instantiating]; col. 1: 53-67.
““means for executing the child runtime system process...” at FIGs. 1-4.
Kuck discloses:

-“means for cloning the memory space.. ., [0001-0008]; [0007], “Initializing can include
storing the virtual machine in a memory area, and copying a template image into the memory

area'; [0029-0032]; [0042], PAVM is generated and initialized; [0064-0065].

Regarding claim 2, Webb discloses (5: 55-65) a cache checker to determine whether the

instantiated class definition is available in a local cache associated with the master runtime

Application/Control Number: 95/001,560 ’ Page 12
Art Unit: 3992

system process. "The class loader cache therefore allows each class loader to check whether it

has loaded a particular class ...”

Regarding claim 3, Webb discloses (4: 41-58) a class locator to locate the source definition if the

instantiated class definition is unavailable in the local cache. "If the response from all of the class

loader is negative, then the JVM walks down the hierarchy (walks the class loader hietarchy), =
with the Primordial class loader first attempting to locate the class, by searching in the locations

specified in its class path definition."

Regarding claim 4, Webb does not disclose a class resolver to resolve the class definition.
But Kuck discloses [0064] a class resolver to resolve the class definition. "Initializilng aPAVM
can be an expensive operation, as it may involve loading, verifying, and resolving several classes

(e.g., Java system classes), as well as executing numerous static initializers in system classes."

Therefore, it would have been obvious to a person of ordinary skill in the art at the time the
invention was made to modify Webb's teaching by adding a class resolver to resolve the class
definition as taught by Kuck in order to reduce the overhead through the use of a pre-initialized

master PAVM rather than initializing a new PAVM (Kuck, [0064]) .

Application/Control Number: 95/001,560 Page 13

Art Unit: 3992

Regarding claim 5, Webb discloses (9: 34-59) at least one of a local and remote file system to
maintain the source definition as a class file. "... The JVM would effectively maintain a pool into

which the returned class loader instance and its associated classed would be added."

Regarding claim 6, Webb does not disclose a process cloning mechanism to instantiate the child
runfimé _syétem process by éopying the mémory space of the master runtime system process into
a separate memory space for the child runtime system process. However, Kuck discloses [0064-
0065] a process cloning mechanism to instantiate the child runtime system process by copying
the memory space of the master runtime system process into a separate memory space for the
child runtime system process initialization overhead can be reduced through the use of a pre-
initialized "master" PAVM. Rather than initializing a new PAVM from scratch, the memory
block of the master PAVM can simply be copied into the memory block of the new PAVM.
Copying the template image of the master PAVM’s memory block into the memory block of a
new PAVM enables the new PAVM to start running in an already-initialized state.., storing type
information (i. e., the runtime representation of loaded classes) in a section of shared memory
that can be accessed by all the PAVMs...technique can reduce the overhead for class loading,
verification, and resolution incurred by each PAVM, and can be especially useful if used to share

the byte code of system classes that are likely to be used by every user context.”

The feature of providing a process cloning mechanism to instantiate the child runtime
system process by copying the memory space of the master runtime system process

into a separate memory space for the child runtime-system process would be obvious

Application/Control Number: 95/001,560 Page 14
Art Unit: 3992

for the reasons set forth in the rejection of claim 1.

Regarding claim 7, Webb fails to disclose the master runtime system process is caused to sleep
relative to receiving the process request. However, Kuck discloses [0064-0066], "After a PAVM
has been initialized, the PAVM can be used to process user requests from the corresponding user
session. When a user request from the corresponding user session is received (504), an available
process from the pool of OS processes allocated to the server can be selected to process the

- request (506). The PAVM of thé user session that sent the request i.s then bound to the selected
process (508).” The master runtime system process is caused to sleep relative to receiving he
process request. This reduces overhead by storing information is a section of shared memory,
~where it sleeps until needed.

The feature of pro?iding wherein the master runtime system process is caused to sleep relative to

receiving the process request would be obvious for the reasons set forth in claim 1 above.

Regarding claim 8, Webb discloses (4: 27-29), the object—orientedr program code is written in the
Java programming language. "The fundamental unit of a Java program is the class, and thus in
order to run any application the JVM must first load the classes forming and required by that
appiication... " Analogously, Kuck discloses [0032]A0f Process Attachable Virtual Machines

with specific reference to a Java source program.

Application/Control Number: 95/001,560 ') Page 15

Art Unit: 3992

Regarding claims 11-17, limitations are similar to claims 2-8 above respectively. See claim

chart for mapping of limitations.

Regarding claim 19, Webb teaches (FIG. 1 & 3: 56-4: 12) software loaded into memory
[computer readable storage medium holding code...]...system runs an operating system (OS) 30
on top of which is provided a Java virtual machine (JVM) 40.. functions itself as a virtu-al

operating system. ..

Regarding claims 21 and 22, as an example, Webb disclosed (8: 5-12) a class to be defined as
final (setting management parameters) to prevent subclasses from overriding it. Kuck
analc;gously disclosed [0020-0021], "Storing the context of a user session, as well as the heap
and stack of a PAVM, in shared memory essentially makes the operation of binding or attaching
the PAVM to an OS process a non-operation--the process simply has to map the appropriate
secti;)n of shared memory into its address space. Data does not need to be actually moved or
copied. Shared OS resources such as I/O resources can be implemented using descriptor passing
between processes. For Java VMs, that only requirés a few modifications to be made in a non-
Java part of a class library. Alternatively, the task of managing OS resources can be delegated to
a resource manager [resource controller]. Attaching PAVMs to and detaching PAVMs from
processes can thus be carried out in a cost-effective manner. Consequently, a small number of

processes can be used to efficiently process requests from a large number of user sessions."

Application/Control Number: 95/001,560 Page 16
Art Unit: 3992

Dike as a primary reference

Re. Ground #2 or Ground #3:

Claims 1-7, 10-16, and 19-22 are rejected under 35 U.S.C. 102(b) as anticipated by or,‘in
the alternative, under 35 U.S.C. 103(a) as obvious over Dike, in view of Steinberg. See
pertinent tgachingé found in Request a p. 36 and Exhibit 18, which are incorporated by reference.
This rejection (for Ground 2 or G-rou’n(ri 3) i§ adopted as modiﬁed,‘with additional comments
added by Examiner. The modification does not reject claims 8 and 17, as they are not proposed

by Third Party Requester in the claim chart, Exhibit 18.

Dike fairly discloses the “copy-on-write” functionality. The Steinberg reference (p. 16, 21) is
introduced to describe the copy-on-write mechanism of the Linux Fork() system call, as

disclosed by Dike.

Regarding independent claims 1, 10, and 20, Dike discloses (§6, §4.2) bne or more virtual
machines (with virtual kernel / user-mode virtual machine, user-mode kernel, virtual processor
and virtual memory; methods running on a system / apparatus) running on a physical machine
(host processor with physical kernel memory and address space memory, using a Linux
operating system /with Linux kernel/host kernel/native kernel). Dike discloses (§2.1-processor
and memory management implemented virtually as a “runtime environment”; §2.2-class
preloader/boot loader, initialization, memory management; § 3-applications run in the virtual

machine; §5.3.3-memory management, construct and modify mm_struct objects; § 2.3, new

Application/Control Number: 95/001 560 Page 17

Art Unit: 3992

process created, initialization) system, method and apparatus of the limitations of independent
claims. Dike (§2.3) runs a "fork or clone" process 10 duplicate virtual machine system processes
[to interpret and to instantiate the representation as a class definition in a memory space of the
master runtime system process]. "Since the generic kernel arranged for the new address space to
be a copy of the parent address space, and the new process has the same registers as the old

"

one...

Dike teaches (§ 2.1), "Each process within a virtual machine gets its own process in the host
kernel.” To save address space, user-mode kernel (virtual) address space and host (physical)
address space share kernel data. “This converts a copy-on-write segment of the address space
into a shared segment." (§ 2.3) The fork () method is used to create a new process including

new address space.

To the extent that clarifying evidence is needed to support the “copy-on-write” teachings, one of
ordinary skill in the art at the time of the invention would have looked to other art.describing the

Linux fork() system call and copy-on-write, including the Steinberg reference.

Specifically, it would have been obvious to one of ordinary skill in the art at the time of the
invention'to combine Dike's disclosure, directed to virtual machines in a Linux environment and
making using of a fork() system call, with Steinberg's disclosure of the Linux fork() 5ystem call
and its explicit use of the copy-on-writg mechanism for supporting evidence that "copy-on-

write” was known in the art.

Application/Control Number: 95/001,560 Page 18

Art Unit: 3992

TheA Steinberg reference describes (p. 21, see also Steinberg at 16 describing the Linux clone
functionality) the copy-on-write mechanism of the Linux fork() system call, as disclosed by
Dike: "The normal means by which a Linux process can create new tasks is the fork system call.
This system call creates an exact copy of the calling process, which then becomes the calling
prdcess' child process. The created child process inherits copies of the parent process data

space; heap and stack, which are copied on demand using a copy-on-write mechanism."

Regarding the “means for” limitations of claim 20:

In support of the conclusion that the prior art elements are an equivalent, the combination of
prior art elements are shown to perform an equivalent “means for”, as detailed below. The
means disclosed by Dike produce substantially the same results as the corresponding element

disclosed in the specification, in substantially the same way.
Dike discloses:

- “means for obtaining a representation of at least one class...” 2.1-2.2, virtual machine booting,

initialization, kernel, memory

-“means for interpreting and means for instantiating the representation as a class definition...”

Dike at 2.2-2.3, fork / clone process, address space, kernel booting process and initialization

-“means for executing the child runtime system process...” Dike at 2.3, process in the user space

virtual machine; pid (process id) of new process; new process scheduled to run

Application/Control Number: 96/001,560 Page 19

Art Unit: 3992

-“means for cloning the memory space...”, Dike at 2.3, generic kernel creates the task structure

for the new process, data structures such as threads and stack, registers, and system call handler

Regarding claims 2 and 11, Dike discloses the "double caching of disk data" [a cache checker to
determine whether the instantiated class definition is available in a local cache associated with
the master runtime systeﬁ procrzerss]. Diker discloses (§ 5.3.3), " Another area to look at is the
doﬁble-caching of disk data. The host kernel and the user-mode kernel both implement Buffer
caches, which will contain a lot of the same data." Dike discloses (§ 2.1), "SIGIO is used to
deliver the other asynchronous events fhat the kernel must handle, namely device interrupts. The
console driver, network drivers, serial line driver, and block device driver use the Linux
asynchronous 1/0 mechanism to notify the kernel of available data." Dike at § 2.7,"Linux

irﬁpleménts demand loading of process code and data."

Regarding claims 3 and 12, Dike discloses a class locator to locate the source definition if the
instantiated class definition is unavailable in the local cache. Dike at § 5.3.3., "The host

kernel and the user-mode kernel both implement buffer caches." Therefore the system of Dike
discloses a system which looks to a first instantiated class definition, then to a source definition

if the instantiated version is unavailable.

Dike at § 5.3.3, "In addition, access to the host memory context switching mechanism would
probably speed up context switches greatly. The ability to construct and modify mm_struct

objects from user-space and switch an address space between them would eliminate the potential

Application/Control Number: 95/001,560) Page 20
Art Unit: 3992

address space scan from context switches. Angther area to look at is the double-caching of disk
data. The host kernel and the user-mode kernel both implement buffer caches, which will

contain a lot of the same data." Dike at 2.1, "SIGIO is used to deliver the other asynchronous
events that the kernel must handle, namely device interrupts. The console driver, network
drivers, serial line driver, and block device driver use the Linux asynchronous I/0O mechanism to
noti’fy the kernel of available data." Dike at § 2.7, "Linux implements demand loadin;g of process

code and data."

Regarding claims 4 and 13, Dike provided a class resolver to resolve the class definition. Dike
discloses the implementation of a virtual machine with broad capabilities. "A Linux virtual
machine is capable of running nearly all of the applications and services available on the host

architecture." Dike at Abstract. This would include the resolution of class definitions.

"In addition, access to the host memory context switching mechanism would probably speed
up context switches greatly. The ability to construct and modify mm_struct objects from
usef-spa;:e and switch an address space between them would eliminate the potential address
space scan from context switches. Another area to look at is the double-caching of disk

data. The host kernel and the user-mode kernel both implement buffer caches, which will

contain a lot of the same data." Dike at § 5.3.3.

"SIGIO is used to deliver the other asynchronous events that the kernel must handle, namely

device interrupts. The console driver, network drivers, serial line driver, and block device

A

Application/Control Number: 95/001,560 Page 21 .

Art Unit: 3992

driver use the Linux asynchronous I/O mechanism to notify the kernel of available data."

" Dike at § 2.1. "Linux implements demand loading of process code and data." Dike at § 2.7.

Regarding claims 5 and 14, Dike provided at least one of a local and remote file system to
maintain the source definition as a class file. Dike discloses a virtual machine and a host system.
The virtual machine has its own "memory management, process managemc;,nt, Vand fault support.”
Dike at § 2.1. Thus, class files can be stored in both locations, i.e., the host or local system and

the virtual machine or remote system.

"Serial lines The serial line driver allocates a pseudo-terminal. Users wanting to connect to
the virtual machine via a serial line can do so by connecting to the appropriate

pseudo-terminal with a terminal program. Dike at § 1.2.

Network devices There are two network device drivers. The old network driver communicates
with the host networking system through a slip de\;ice in the host. The virtual machine's side of
the connection is a pseudo-terminal in the host which appears as a network device inside. There

is also a newer network driver which uses an external daemon to pass Ethernet frames between
virtual machines. This daemon can also attach this virtual network to the host's physical Ethernet .
by way of an ethertap device. With aﬁ appropriate packet forwarding policy in the daemon, the
virtual Ethernet can be transparently merged with the physical Ethernet, totally isolated from it,

or anything in between." Dike at § 1.2.

"SIGIO is used to deliver the other asynchronous events that the kernel must handle, namely

device interrupts. The console driver, network drivers, serial line driver, and block device

Application/Control Number: 95/001,560 Page 22
Art Unit: 3992

driver use the Linux asynchronous 1/O mechanism to notify the kernel of available data."

Dike at § 2.1.
"Linux implements demand loading of process code and data." Dike at § 2.7.

"In addition, access to the host memory context switching mechanism would probably speed
up context switches greatly. The ability to construct and modify mm_struct objects from

user-space and switch an address space between them would eliminate the potential address

space scan from context switches." Dike at § 5.3.3.

Regarding claims 6 and 15, Dike provided a process cloning mechanism to instantiate the child
runtime system process by copying the memory space of the master runtime system process into
a separate memory space for the child runtime system process. Dike runs a "fork or cione"
process to create a process in the host corresponding to a process in the u;er space virtual
machine, i.e., cloning a virtual machine system process. Dike at § 2.3. "Since the generic kernel
arranged for the new address space to be a copy of the parent address space, and the new process

has the same registers as the old one, except for the zero return value from the system call, it is a

copy of its parent." Dike at § 2.3.

"Each process within a virtual machine gets its own process in the host kernel. Even threads
sharing an address space in the user-mode kernel will get different address spaces in the
host. Even though each process gets its own address spaces, they must all share the kernel
data. Unless something is done to prevent it, every process will get a separate, copy of the

kernel data. So, what is done is that the data segment of the kernel is copied into a file,

Application/Control Number: 95/001,560 Page 23

Art Unit: 3992

unmapped, and that file is mapped shared in its place. This converts a copy-on-write

segment of the address space into a shared segment." Dike at § 2.1.

Regarding claims 7 and 16, Dike provided a system wherein the master runtime system process

is caused to sleep relative to receiving the process request, as explicitly disclosed below.

"If a process sleeps ...the tracing thread performs the switch by stopping the old process and
continuing the new one. The new process returns from the context switch that it entered when it

last ran and continues whatever it was doing." Dike at §2.5.

Regarding claim 19, Dike runs on a host system, and includes memory management, process
management and fault support (§ 2.7) [computer readable storage medium holding code for
performing...] See (§ 2.2) physical memory area, mem_init, paging_init for memory

management.

Regarding claims 21 and 22, Dike provided an apparatus with a resource controller to set
operating system level resource management parameters on the child runtime éystem process.
Dike discloses a system wherein the access to host resources is limited: “They have no access to
any host resources other than those explicitly provided to the virtual machine." Dike at § 1.1. See

§ 4.2 for discussion of physical machine limiting access to its resources by virtual machine

processes (sandboxed processes).

Application/Control Number: 95/001,560 ‘ - Page 24

" Art Unit; 3992

Bryant as a Primary Reference

Re. Ground #4:

Claims 1-8, 10-17, and 19-22 are rejected under 35 U.S. C. § 103(a) as obvious over Bryant
in view of APA-Bach. See pertinent teachings found in Request 03/01/2010, p. 37 and Exhibit

19, Wthh are 1ncorporated by reference. This rejection is adopted, with additional comments

added by Examiner. Although a l'C_)CCthH for clalms 9 and 18 is found in Exhibit 19 Claim

Chart, the claims are not requested for reexamination.

Regarding claims 1, 10, and 20, Bryant discloses a system (method and apparatus) for dyﬁamic
preloading of classes through, memor‘y space cloning of a master runtime system process. Bryant
notes from the outset that it is faster to connect up to the already running Java server and have
the already running Java server fork a child server” than it is to ekecute the desired classes from

scratch. Bryant, Abstract.

Thus one of ordinary skill in the art seeking to improve or accelerate the performance of a Java
operation would look to combine the disclosure of Bryant with the copy-on-write technology that

was very well known in the art, as evidenced by the APA-Bach text.

"The Java server invokes the Java virtual machine and preloads all potentially needed objects
files during initialization of the Java virtual machine to speed up the actual execution of a
particular Java application. The Java server accomplishes the execution of a particular Java

application by forking itself and then having the child Java server run the Java class files in

Application/Control Number: 95/001,560 Page 25

Art Unit: 3992

the already loaded Java virtual machine for the specific Java CGI-BIN script." Bryant, col.2, 1.

46-48. See Bryant FIG. 3, processor & memory.

Bryant discloses a class preloader to obtain a representation of at least one class from a
source definition provided as object-oriented program code. The éfaparatus and method of
Bryan works by "preload[ing] all potentially needed object files," “to speed up the actual

execﬁtion of a particular Java application." Bryant, col. 2, 11. 46-48.

"First, the Java server 160 is initialized at step 161, and then waits to be called. The initialization
step 161 includes starting the Java virtual machine and loading the standard class files needed for

 Java application execution." Bryant, FIG. 8 & col. 6, 1. 66-col. 7, 1. 4.

Bryant discloses a master runtime system process to interpret and to instantiate the
representation as a class definition ina memory space of the master runtime system process.

The master runtime system process is merely the standard creation of a process from a set of
instructions (interpret instructions and instantiate a class object at initialization and loading of the

standard class files needed for Java application execution).

Bryant discloses a runtime environment to clone the memory space as a child runtime system

process responsive to a process request and to execute the child runtime system process.

The execution of a child runtime process here is simply the well-known fork system call,

which creates a duplication of a master runtime process [runtime environment to clone the

Application/Controi Number: 95/001,560 Page 26
Art Unit: 3992

memory space as a child runtime system process responsive to a process request and toexecute
the child runtime system process}: "Java server 160 forks immediately to create a child Java
server 180...the pipe connection from the application program 140 is connected to both the
parent Java server 160 and to the child Java server 180. The child Java server 180 receives the
program name execution arguments and environmental arguments sent on the pipe connection,
sets_up.the file descriptors, maps to the requested class and method, éxqcutc;s the class and
method, and writes the output to a stdout; which is then returned to application program 140."

Bryant, col. 5, 11.9-14 & col.7, 11. 7-14.

)
To the extent t.hat Bryant failed to explicitly disclose the “cdpy-on-write" method and the "fork”
system call, APA Bach provided details: "The only way for a user to create a new process in the
UNIX operating system is to invoke the fork system call.” APA-Bach at 192. "The copy-on-
write bit, used in the fork system call, indicates that the kernel must create a new copy of the

page when a process quiﬁes its contents." APA-Bach at 287.

Bach disclosed , "9.2.1.1 Fork in a Paging System As explained in Section 7.1, the kemel\
duplicates every region of the parent process during the fork system call and attaches it to the
child process. Traditionall‘y, the kernel of a swapping system makes a physical copy of the
parent's address space, usually a wasteful operation, because processes often call exec soon after
the fork call and immediately free the mefnory just copied. On the System V paéing system, the
kernel avoids copying the page by manipulating the region tables, page table entries, and pfdata

table entries: It simply increments the region reference count of shared regions The page can

Application/Control Number: 95/001,560 Page 27

" Art Unit: 3982

now be referenced through both regions, which share the page until a process writes to it. The
kernel then copies the page so that each region has a private version. To do this, the kernel turns
on the 'copy on write' bit for every page table entry in private regions of the parent and child
processes during fork. If either process writes the page, it incurs a protection fault, and in
handling the fault, the kernel makes a new. copy of the page for the faulting process. The physical

copying of the page is thus deferred until a process really needs it." APA-Bach at 289-290.

(

Bryant in combination with APA-Bach discloses a copy-on-write process cloning mechanism
to instantiate the child runtime system process by copying references to the memory space of
the master runtime system process into a separate memory space for the child runtime system
process, and to defer copying of the memory space of the master runtime system process until
the child runtime system process needs to modify the referenced memory space of the master

runtime system process.

The copy-on-write technology was widely known in the art at the time of the purported invéntion
of the '720 patent. The APA-Bach reference clearly discloses the utility and application of the
copy-on-write method of cloning. It would have been obvious to one of ordinary skill in the art
,lookir;g fora meéns to streamline and accelerate a Java machine would have been motivated to

combine the Bryant reference with APA-Bach to minimize resource usage by copying data only

when needed, i.e., employing copy-on-write.

The “means for” language of Claim 20 is reviewed with regards to 35 CRF 112 paragraph 6:

Application/Control Number: 95/001,560 " Page28

Art Unit: 3992

In support of the conclusion that the prior art elements are an equivalent, the combination of
prior art elements are shown to perform an equivalent “means for”, as detailed below. The
means disclosed by Bryant produce substantially the same results as the corresponding element

disclosed in the specification, in substantially the same way.
Bryant discloses:

“means for obtaining a representation of at least one class...” Bryant, 2: 46-48; 6: 66 — 7: 4;

object files are a representation of a class; See FIGs. 2,3, &4

“means for interpreting and means for instantiating the representation as a class definition...” |
Bryant, 6: 66-7: 4, Java virtual machine, loaded class files, application execution

-“means for cloning the memory space...” Bryant 5: 9-14, fork process; FIG. 3 hardware

“means for executing the child runtime system process...” Bryant FIG. 3; 2: 46-53, “Java server
invokes the Java virtual machine and preloads objects files during initialization, forking; 4: 18-
30, processor, storage device, memory, browser program is the software that interacts with the

server

Regarding claims 2-5, and 11-14, Bryant discloses (col. 2, 1L. 46-49; col. 7, 11. 1-4), "The Java
server invokes the Java virtual machine and preloads [class loader] all potentially needed objects
[class resolver] files during initialization [into local cache, determine whether instantiated class
definition is available in local cache else load it] of the Java virtual machine to speed up tﬁe

actual execution of a particular Java application.” Bryant discloses (Abstract; col. 5, 11. 4-18),

Application/Control Number: 95/001,560 Page 29
Art Unit: 3992

When an application 140 is to be executed, an object file calls the Java server process that forks
itself to create a child Java server. The child Java server 180 sets up file descriptors, maps to the
requested class and method, and executes the already loaded classes and methods (located in
local cache of Java server 160). Within the newly created child server, a proxy object file calls a
Java server daemon process to execute code that is stored ih a single Java server 160. See FIG. -
3, local file system and remote file system [memory 71, application program 140 executed on
child Java server 180 [file system] by calling to class and method code stored in Java server 160

[file system],

Regarding claims 6 and 15, the process cloning mechanism of Bryant is useful to load the object
file only once and then execute the fork system call to create child runtime processes. "The Java
server is accessed by an object file (proxy), that is setup to access the correct Java server process.
Next, when an application is to be executed, the object file calls the Java server process that
forks itself and then has the child server run the already loaded classes and methods. Thus, the
Java classes and methods are loaded only once when the Java virtual machine is started. With
large classes and methods, it is faster to connect up to the already running Java server and have
the already running Java server fork a child server to execute the correct classes and methods
than it is to start and load the Java virtual machine, and execute the original classes and

methods." Bryant, Abstract.

Application/Control Number: 95/001,560 Page 30
Art Unit: 3992

Regarding claims 7 and 16, Bryant discloses the master runtime system process is caused to
sleep relative to receiving the process request. The listening pipe of Bryant is idle until the Java

server receives a request for service call, as explained below.

"The initialization step 161 includes starting the Java virtual machine and loading the

standard class files needed for Java application execution. A listening pipe is setup to receive

requests for serviée c“allsiand ihre jAvé server waits to receive a call in step 162." Bryant, -

col.7, l} .1-6. The Java server 160 forks to create a child Java server 180. The child Java server
180 sets up and executes, prior to exiting. While the child Java server 180 is executing andi prior
to the child Java server terrhination, the Java server 160 “sleeps.” See 5: 4-41; FIG.'8 and 6: 66-
-7:12, “The Java server 160 then waits..) Bl;yant also discloses (7: 16-18), “The process is

returned to the wait state at step 163 to wait for the next pipe connection to be established.”

Regarding claims 8 and 17, Bryant discloses object-oriented program code is written in the Java
programming language. "The process of the Java server 160...includes starting the Java virtual
machine and loading the standard class files needed for Java application execution." Bryant,

col.6, 1.65-col.7, 1.4. 7

Regarding claim 19, Bryant discloses a computer readable storage medium in FIG 3, storage

#62.

Application/Control Number: 95/001,560 Page 31

Art Unit; 3992

Regarding claims 21 and 22, Bryant, either by itself or in combination with APA-Bach,
discloses a resource controller to set operating system level resource management parameters on
the child runtime system process. Bryant creates a child server by forking the parent server. This
chiid server operates under resource management controls, executing specific tasks as instructed
by the Java server. "The child Java server 180 is initialized at step 181. The child Java server
180 receives the information sent on the pipe connection created by the application program 140
at step 182. The child Java server 180 then maps, at step 183, to the. specified application (i.e.,
class and method) identified in the information that was communiéated over the pipe connection
and received at step 182. The child Java server then executes the specified application (i.e.)
class and method) using the specified program name, executiop arguments, and environment
arguments present in the information received on the pipe connection at step 184 [where

operating system level resource management parameters are set on the child runtime system

process]." Bryant, col. 7, 11. 41-52.

Re. Ground #5:

" Claims 1-8, 10-17, and 19-22 are rejected under 35 U.S. C. § 103(a) as obvious over Bryant
in view of Traut. See pertinent teachings found in Request 03/01/2010, p. 37 and Exhibit 20,
which are incorporated by reference. This rejection is adopted, with additional comments added

by Examiner.

Application/Control Number: 85/001 ,560 Page 32
Art Unit: 3992 '

Regarding independent claims 1, 10, and 20 (system, method, and apparatus), Bryant disclosed

features that are mapped to claim limitations as noted above.

To the extent that Bryant failed to provide details on the “copy-on-write" process and the fork()

method, these teachings are disclosed by Traut.

"The present invention in one implementation provides a method for increasing the
efficiency of virtual machine processing. One step of the method is providing a parent
virtual machine. Another step is temporarily suspending the parent virtual machine. Another
step 1s forkir;g the parent virtual machine to create a child virtual machine at a new

location." Traut at § [0012]

"Referring now to FIGS. 2 and 3, "forking" is a term used by UNIX programmers to
describe the duplication of a UNIX process and its address space. Both the original process
and the fork are then allowed to run as independent processes from the forking point. The
implementation of forking often involves a technique ;:alled "copy on write" in which case
all memory pages in both address spaces are marked "write protected”. When either the
original or the forked process writes to a page, a copy is made so t};at each process has its
own copy. Pages that are not modified can continue to be shared between the two pr(:)cesses.
This technique not only saves on memory resources, but it also makes fbrking much faster

than otherwise possible." Traut at § [0026]

"Shown in FIG. 2 is a flow diagram of a method 20 for forking a virtual machine. In step

202, a virtual machine parent is suspended. In step 204, a copy or "snapshot" is made of all

Application/Control Number: 85/001,560 Page 33

Art Unit: 3992

of the pieces of the parent virtual machine other than the memory of the parent virtual
machine. In step 206, the snapshot is moved to a new location, i.e. a location other than the

location of the parent. Moving the snapshot to a new location creates a new virtual machine

child." Traut at § [0029]

"In step 306, it is determined whether or not the child virtual machine is accessing the
memory of the parentrvirtiuél machine. If the child is accessing the parent's memory, in step
308, the child virtual machine is temporarily suspended and the piece of the parent's memory
required by the child is sent from the parent to the child. If the child is not accessing the
parent's memory, in step 31 O, pieces of the parent’s memory that are not actively required by
the child may be sent from the parent to the child. If step 308 or step 310 is completed, the

method proceeds to step 312." Traut at § [0031].

As discussed in the Request for Reexamination, the copy-on-write technology was widely
known in the art at the time of the purported invention of the '720 patent. Therefore, it would
have been obvious for one of ordinary skill in the art at the time of the invention to streamline
and accelerate a Java machine by using the “copy-on-write” and fork () methods to efficiently

use memory resources.

See “means for" analysis in the Bryant / APA Bach rejection above.

Srinivasan as a Primary Reference

Application/Control Number: 95/001,560 Page 34

Art Unit: 3992

Re. Ground #6:

Claims 1-8, 10-17, and 19-22 are rejected under 35 U.S. C. § 103(a) as obvious over
Srinivasan in view of APA-Bach. See pertinent discussions found in Request 03/01/2010, p.
37 and Exhibit 21, which are incorporated by reference. This rejection is adopted, with

additional comments added by Examiner.

Per independent claims 1, 10, and 20 (system, method, apparatus), Srinivasan discloses object
oriented programming and its usefulness in conjunction with Perl code. Srinivasan at 101.
Srinivasan notes that, in Perl, a "class is a package." Srinivasan at 389. Srinivasan then discusses
two methods for the creation of a package fr/om source definition provided as object oriented
program code. See id. at 389-390 (discussing creation of the "employee" class). In order to

preload the class, Srinivasan discloses specific functional code:
"Using object package:

use Employee;

$emp = Employee->new ("Ada", 3 5);
$emp->set_salary(1000);

See id. at 390.

Srinivasan discloses an "in-memory cache of objects." Srinivasan at 178.

Application/Control Number: 95/001,560 ' Page 35

Art Unit: 3992

Srinivasan provides a discussion of the merits of Java and Perl object languages (Srinivasan at
98), and object oriented software methodology (Srinivasan at 99). "Objects of a certain type are
' said to belong to a class." érinivasan at 101. Srinivasan notes that opcodes are similar in concept
to machine code; while machine code is executed by hardware, opcodes (sometimes called byte-
codes or p-code) are executed by a virtual machine. Srinivasan notes that Java and Perl are both

examples of interpreters. Srinivasan at 323-324.

In ord§r to create multiple threads of control, Srinivasan invokes the fork() system call to create
"prbcess-level parallelism." Srinivasan at 193-194. This creates a new process, called the child
process. " [instantiate the representation as a class definition in a memory space of the master
runtime system process] The newly created child process meanwhile has a copy of its parent's
environment [parent runtime system process / master runtime system process] and shares all
open file descriptors." See id. You can use multiple interpreters to enforce completely isolated
namespaces. Each interpreter has its own "main" package and its own tree of loaded packages."

Srinivasan at 323.

"Perl... supports fork, the way to get process-level parallelism. The server process acts

as a full-time receptionist...spawns a child process... The newly created child process
meanwhile has a copy of its parent's environment and shares all open file descriptors... When the
child is done...it simply exits. Each process is therefore dedicated to its own task and doesn't

interfere with the other. (See code segment example of a forking server.) The fork call results in

Application/Control Number: 95/001,560 Page 36
Art Unit: 3992

two identical processes-the parent and child-starting from the statement following the fork. The
parent gets a positive return value, the process ID ($pid) of the child process. Both processes
check this return value and execute their own logic; the main process goes back to ‘accept’...

Srinivasan at 194-195.

To the extent that Srinivasan failed to provide explicit details related to the ‘copy-on-write’
method, APA-Bach provided such teachings. "The only way for a user to create a new process

in the UNIX operating system is to invoke the fork system call." APA-Bach at 192.

Srinivasan in view of APA-Bach providgd the use of fork in Unix/Linux, which includes a
copy-on-write process cloning mechanism to instantiate the child r‘untime syétem process by
copying references to the memory space of the master runtime system process into a
separate memory space for the child runtime system process, and to defer éopying of the
memory space of the master runtime system process until the child runtime system process

needs to modify the referenced memory space of the master runtime system process.

"The copy-on-write bit, used in the fork system call, indicates that the kernel must create a néW
copy of the page when a process modifies its contents." APA-Bach at 287. ."9.2.1.1 Fork in a
Paging System As explained in Section 7 1, the kernel duplicates every region of the parent
process during the fork system call and attaches it to the child process. Traditionally, the kernel

of a swapping system makes a physical copy of the parent's address space, usually a wasteful

Application/Control Number: 95/001,560 Page 37
Art Unit: 3992

operation, because processes often call exec soon after the fork call and immediately free the
memory just copied. On the System V paging system, the kernel avoids copying the page by
manipulating the region tables, page table entries, and pfdata table entries: It simply increments
the region reference count of shared regions The page can now bé referenced through both
regions, which share the page until a process writes to it. The kernel then copies the page so that
each region has a private version. To do thi;, the kernel turns on the 'copy on write' bit for every
page table entry in p-rivate regions of the parent and child processes during fork. If either process
writes the page, it incurs a protection fault, and in handling the fault, the kernel makes a new
copy of the page for the faulting process. The physical copying of the page is thus deferred until

a process really needs it." APA-Bach at 289-90.

Therefore it would have been obvious, to one of ordinary skill in the art at the time of the
invention, to modify the teaching of Srinivasan, with the explicit teachings of APA-Bach to
include a déscription of the copy-on-write bit. The fork() system call discloséd by Srinivasan
was commonly used in conjunction with the copy-on-write mechanism to further streamline the

impact on system memory.

The “means for” language of Claim 20 is reviewed with regards to 35 CRF 1 12 paragraph 6:

—
In support of the conclusion that the prior art elements are an equivalent, the combination of

prior art elements are shown to perform an equivalent “means for”, as detailed below. The

Application/Control Number: 95/001,560 _ Page 38

Art Unit: 3992

means disclosed by Srinivasan produce substantially the same results as the corresponding

element disclosed in the specification, in substantially the same way.
Srinivasan discloses:

~““means for obtaining a representation of at least one class...” p. 178, in-memory cache of

objects; p.-98-101, Java code packages and classes;

““means for interpreting and means for instantiating the representation as a class definition...” p.

323, interpreters; p. 321, running system

- “means for cloning the memory space...”, pp. 193-194, multiple threads of control, fork()

system call, child process has copy of parent’s environment

Regarding claims 2 and 11, as an example of Srinivasan’s disclosure of “a cache checker to
determine whether the instantiated class definition is available in a local cache associated with
the master runtime system process”: "Adaptor File" function, which "converts [a] query
expression to an evalable Perl expression and cycles through all objects, matching them against
the query specification." Srinivasan at 179. "This means that Adaptor has to keep an in-memory
cache of objects that have been rétrieved from disk in previous queries, so that if a database row

is reread, the corresponding object is reused." Srinivasan at 178.

Regarding claims 3 and 12, Srinivasan discloses an Adaptor File function that searches a file

and matches objects against a query [a class locator to locate the source definition if the

Application/Control Number: 95/001,560 Page 39

Art Unit: 3992

instantiated class definition is unavailable in the local cache]. The file adaptor has an attribute
called all instances, a hash table of all objects given to its store method (and indexed by their

_id), as shown in Figure 11-2. Srinivasan at 179-180.

Regarding claims 4 and 13, Srinivasan discloses “run-time binding” [class resolver] of class
methods. Srinivasan at 107-108. As another example: “Schema Evolution Let us say you have
sent your objects' data to a file, and tomorrow, some more attributes are added to the object
implementation. The schema is said to have evolved. The framework has to be able to reconcile

[resolver] old data with newer object implementations. Srinivasan at 179-180.

Regarding claims 5 and 14, as an example of a local and remote file systerﬁ to maintain the
source definition as a class file, Srinivasan discloses, for example, that "[i]n a typical
client/server system, the server has the "real" objects. But the system is written in such a wéy
that a client can remotely invoke a method of the object, with familiar OO syntax. For example,
if a client program wants to invoke a method on a remote bank account, it should be able to say

something like this:..." Srinivasan at 134.

Regarding claims 6 and 15, as an example of process cloning mechanism to instantiate the child
runtime system process by copying the memory space of the master runtime system process into

a separate memory space for the child runtime system process, Srinivasan discloses, for example

Application/Control Number: 95/001,560 Page 40
Art Unit: 3992

creating multiple interpreters. Srinivasan at 323. Srinivasan invokes the fork() system call to
create "process-level parallelism." This creates a new process, called the child process. "The
newly created child process meanwhile has a copy of its parent's environment and shares all open

file descriptors." Srinivasan at 193-195.

Regarding claims 7 and 16, Srinivasan discloses that after forking / creating the child process,

“the main process goes back to ‘accept’...” (sleep) Srinivasan at 195.

Regarding claims 8 and 17, Srinivasan discloses Java object-Oriented programming language.

Srinivasan at 98 and 323-324.

Regarding claim 19, Srinivasan discloses an in-memory cache [computer readable storage
medium holding code for performing the method] of objects that have been retrieved from disk
in previous queries, so that if a database row is reread, the

~ corresponding object is reused." Srinivasan at 178.

Regarding claims 21 and 22, Srinivasan discloses a server process that manages resources.
Srinivasan at 195. As an example, the fork() method and garbage collection method are used to

manage resources. Srinivasan at 112 and 179-180.

Application/Control Number: 85/001,560 Page 41

Art Unit: 3992

Sexton as a Primary Reference

Re. Ground #7:

Claims 1-8, 10-17, and 19-22 are rejected under 35 U.S. C. § 103(a) as obvious over Sexton
in view of Bugnion. See pertinent discussions in Request 03/01/2010, p. 37 and Exhibit 22,
which are incorporated by reference. This rejection is adopted, with additional comments added

by Examiner.

Regarding claims 1, 10, and 20, Sexton discloses "the use of a shared state area [that] allows the
various VM instantiations to share class definitions anci other resources" [dy.namic preloading of
classes through memory space cloning of a master runtime system process]. Sexton, col. 5, li.
53-57. "Each VM instance has read-only access to the data that has been loaded into the shared
state area, and therefore the VM instances do not contend with each other for access rights to that
data. According to one .embodiment, the shéred state area is used to store loaded Java classes."
Sexton, col. 8, 11. 45-48. "[t}he non-session-si)eciﬁc data for the class, including the methods,
method table and fields, are not duplicated in the session memory for each VM instance. Rather,
all VM instances share read-only access to a single instantiation of the class, thus significantly

reducing the memory requirements of VM instances (the user-session memory requirements)."

Sexton, col. 8, 11. 55-61.

Application/Control Number: 95/001,560 Page 42
Art Unit: 3992 '

"A virtual machine is software that acts as an interface between a computer program that has
been compiled into instructions undérstood by the virtual machine and.th‘e microprocessor

(or "hardware platform") that actually performs the program's instructions [method]. Once a
:/irtual machine has been provided for a platform, any program compiled for that virtual machine

can run on that platform." Sexton, col. 2, 11. 35-42. See “system” and “apparatus” at Sexton,

“FIG. 1.~ © ° ') T T -

Sexton provided a class preloader, e.g., the shared "state information," to obtain a

representation of at leaét one class from a source definition provided as object-oriented

program code: “.. .staté sharing tends to-reduce the resource overhead required to concurrently
service the requests..." Sexton, col. 3, 11. 51—6.3. "The database instance memory 220 is a
shared memory. area for storing data that is shared concurrently by more than one process... used
to store the read-only data and instructions (e.g. bytecodes of JAVA classes) thgt are executed by
the server processes 213 and 217. The database instance memory 220 ié typically allocated and
initialized at boot time of the database system 200, before clients connect to the database system

200." Sexton, col. 6, 11. 59-67.

"When a database session is created, an area of the database memory 202 is allocated to

store informatién for the database session...session memories. ..are memories used to store static
~ data, i.e., data associated with a user that is preserved for the duration of a series of calls,
especially between calls issued by a client during a single database session. JAVA class variables’

are one example of such static data." Sexton, col. 7, 11. 1-11.

Application/Control Number: 95/001,560 Page 43
Art Unit: 3992

Sexton provfded a master runtime system process to interpret and to instantiate the
representation as a class definition in a memory space of the master runtime system process.
"Techniques are provided for instantiating separate Java virtual machines for each a session
established by a server. “The separate VM instances can be created and run, for example, in
separate units of execution that are managed by the operating system of the platform on which
“the server is executing [master runtime system). For example, the separate VM instances may be
executed either as separate processes, or using separate system threads. Because the units of
execution used to run the separate VM instances are provided by the operating system, thé
operating system is able to ensure that the appropriate degree of insulation exists between the

VM instances." Sexton, col. 5, 11.29-44. N

"... the Java virtual machine itself takes the form of a set of global variables accessible to all
threads, where there is only one copy of each global variable...in one embodiment of the
invention, an entire Java VM instance is spawned for every session made through the
server...each Java VM instance is spawned by instantiating a VM data structure in

session memory. During execution, the state of a VM instance is modified by performing
transformations on the VM data structure associated with the VM instance, and/or modifying the
data contained therein. .. the routines access session-specific variables that are stored within the
VM data structure... [clone the memory space as a child runtime system process responsive to a
process request and to execute the child runtime] Consequently, the contention for resources that
otherwise occurs between threads associated with different sessions is significantly reduced,
because those threads are associated with different VM instances." Sexton, col. 7, 1. 61 -col. 8,

1.18.

Application/Control Number: 95/001,560 Page 44
Art Unit: 3992 '

It is noted that Sexton disclosed methods for a plurality of VMs to access certain "shared state”

data such that data and methods are not duplicated in the session memory for each VM instance,

"In addition, techniques are provided for reducing startup costs and incremental memory
requirements of the Java virtual machines ingtantiated by ther server. For example, the use of

a shared state area allows the various VM instantiations to share class definitions and other
resources. In addition, while it is aétively processing a call, each VM instance has two

~ components, a session-duration component and a call-duration component. Only the data

that must persist in the VM between calls is stored in the session-duration component [infers
persistente via a copy on write technique]. Data that need not persist between calls is stored in
the call-duration component, which is instantiated at the start of a call, and discarded at the
termination of the call." Sexton, col. 5, 11. 53-65. Sexton failed to explicitly discuss “copy-on-

write.”

To the extent that Sexton failed to explicitly disclose “copy on write” techniques, Bugnion is
relied upon for teaching “copy-on-write mappings to reduce copying and to allow for memory

sharing." Bugnion, col. 15, 1. 66 - col. 16, 1. 1.

"The VMM layer also maintains copy-on-write disks that allow virtual machines to

transparently share main memory resources and disk storage resources. .. VMM layer may also

Application/Control Number: 95/001,560 . " Page 45
At Unit; 3992

comprise a virtual memory resource interface to allow processes running on multiple virtual

machines to share memory." Bugnion, col. 6, 11. 29-36.

"Disco's copy-on-write disks allow virtual machines to share both main memory and disk storage
resources. .. allows Disco to support a system-wide cache of disk blocks in
memory that can be transparently shared between all the virtual machines." Bugnion, col.

14, 11. 55-64.

"Attempts to modify a shared page will resultin a copy-on-write fault handled internally by the
monitor. Using this mechanism, multiple virtual machines accessing a shared disk end up
sharing machine memory. The copy-on-write semantics means that the virtual machine is
unaware of the sharing with the exception that disk requests can finish nearly instantly...
...Effectively we get the memory sharing patterns expected of a single shared memory
multiprocessor operating system even.though the system runs multiple independent operating

systems.”

“To preserve the isolation of the virtual machines, disk writes must be kept private to the
virtual machine that issues them. Disco logs the modified sectors so that the copy-on-write
disk is never actually modified. For persistent disks, these modified sectdrs would be logged
in a separate disk partition fnanaged by Disco. To simplify our implementation, we only
applied the concept of copy-on-write disks to non-persistent disks and kept the modified

sectors in main memory whenever possible." Bugnion, col. 14, 1. 66 -col. 15, 1. 35.

Application/Control Number: 95/001,560 Page 46
Art Unit: 3992

Sexton in view of Bugnion provided a copy-on-writé process cloning mechanism to instantiate
the child runtime system process by copying references to the memory space of the master
runtime system process into a separate memory space for the child runtime system process, and
to defer copying of the memory space of the master runtime system process until the child
runtime system process needs to modify thé referenced memory space of the master runtime
system process. Therefore it would have been obvious, given the goal of reducing session
memory by sharing data between multiplé Virtual Machines, by one of ordinary skill in tﬁe art at
the time of the invention, to modify the teachings of Sexton with the Bugnion prior art by only
copying neéessary files, using the well-known copy on write technology, thereby placing the

artisan in possession of the invention.

The “means for” languagé of Claim 20 is reviewed with regards to 35 CRF 112 paragraph 6:

In support of the conclusion that the prior art elements are an equivalent, the combination of
prior art elements are shown to perform an equivalent “means for”, as detailed below. The
means disclosed by Sexton produces substantially the same results as the corresponding element

disclosed in the specification, in substantially the same way.
Sexton discloses:

~“means for obtaining a representation of at least one class.. ”FIGs. 1,2, & 3;2: 36-57, virtual
machine software, microprocessor / hardware platform, instruction set, registers, stack, heap; 9:

44-10: 22, hardware overview as shown in FIG. 1.

Application/Control Number: 95/001,560 Page 47

© Art Unit: 3992

““means for interpreting and means for instantiating the fepresentation as a class definition...” 2:
50-52, Java virtual machine can interpret the bytecode; 3: 15, Java virtual machine may spawn
[instantiate]; 5: 54-57, memory requirements of the Java virtual machines instantiated by the
server, shared state area, shared class definitions and other resources; 6: 29, virtual machine

interpreter

- “means for cloning the memory space...”, 3: 21-23, server may cause Java virtual machine to
spawn [clone] a second thread for executing the second Java program; 8: 1-5, Java VM instance

is spawned by instantiating a VM data structure in session memory

““means for executing the child runtime system process...” 4: 35-36, memory manager; 4: 58-61,
separate VM instances can be created and run [executing] in separate units of execution that are
managed by the operating system of the platform on which the server is executing; 9: 1-8, a call
processed by system thread using VM instance, shared access to shared state area/memory; 9:

26-31, a dispatcher arranges for requests to be executed

Regarding claims 2 and 11, Sexton discloses system checks for whether a Virtual Machine

instance has been established already and, if not, instantiates one in session memory.

Bugnion further teaches:

"... a global buffer cache that is transparently shared among the virtual machines ..." Bugnion,
col. 6, 11.25-29; col. 7, 11. 43-45. "The machines use é directdry to maintain cache coherency

[use a cache checker to determine whether instantiated class definition is available in local

Application/Control Number: 95/001,560 Page 48

Art Unit: 3992

cache], providing to the software the view of a shared-memory multiprocessor with non-uniform
memory access times."

Bugnion, col. 8, 11.31-34.

_ Regarding claims 3 and 12, Sexton discloses the process of checking for an instantiation and, if

"no VM instances bas been established.., a VM instance for the session is instantiated in session
memory." Sexton, col. 6, 11. 2-8. Sexton further suggests, “...each Java VM instance is
spawned by instantiating a VM data structure in session memory. During execution, the state of a
VM instance is modified by performing transformations on the VM data structure associated
with the VM instance [class locator to locat/e the source definition if the instantiated class
definition is unavailable in the local cache], and/or modifying the data contained therein.
Specifically, the VM data structure that is instantiated for a particuiar session is passed as an

input parameter to the server routines that are called during that session..." Sexton, col. 7, 1. 61 - V

col. 8, 1. 18.

Regarding claims 4 and 13, Sexton discloses "...user sessions share the state information
required by the virtual machine. Such state information includes, for example, the bytecode for
all of the system classes. .. the bytecode being executed for first user in a first thread

has access to information and resources that are shared with the bytecode being executed by

a second user in a second thread... [a class resolver resolves the class definitions]" Sexton, col.

3,11.51-63.

Application/Control Number: 95/001,560 Page 49

Art Unit: 3992

"The database instance memory 220 is a shared memory area for storing data that is shared
concurrently by more than one process... The database instance memory 220 is typically
allocated and initialized at boot time [resolved] of the database s.ystem 200..." Sexton, col. 6, 11.

59-67.

Regarding claims 5 and 14, Sexton discloses, "Various forms of computer readable m‘ediai may
be involved... a magnetic disk of a remote computer... main memory 106, from which processor
104 retrieves and executes the instructions. The instructions received by main memory 106 may
optionally be stored on storage device 110 either before or after execution by processor 104."
[local and remote file system to maintain the source definition as a class file] Sexton, col. 10, 11

45-60.

Regarding claims 6 and 15, Sexton discloses:

"In addition, techniques are provided for reducing startup costs and incremental memory
requirements of the Java virtual machines instantiated by the server [cloning the memory space
of the master runtime system process into a separate memory space for the child runtime
system] ...the use of a shared state area allows the various VM instantiations to share class
definitions and other resources... Only the data that must persist in the VM between calls is

stored in the session-duration component.”" Sexton, col. 5, 11. 53-65.

Application/Control Number: 95/001,560 Page 50

Art Unit: 3992

"... according to one embodiment, a data structure, referred to he‘rein as a "java_active_class", is
instantiated in session space [child runtime process] to store session-specific values (e.g. static
variables) of a corresponding shared Java class. The non-session-specific data for the class,
including the methods, method table and fields, are not duplicated in the session memory for

each VM instance... " Sexton, col. 8, 11.40-64.

Bugnion provides additional details:

"The VMM layer also maintains copy-on-write disks that allow [cloned] virtual machines to
transparently share main memory resources and disk storage resources...The VMM layer may
also comprise a virtual memory resource interface to allow processes running on multiple virtual

machines to share memory." Bugnion, col. 6, 11. 29-36.

» . share disk and memory resources among virtual machines. Disco's copy-on-write disks allow
virtual machines to share Both main memory and disk storage resources...allows Disco to support _
a system-wide cache of disk blocks in memory that can be transparently shared between all the
virtual machines.” Bugnion, col. 14, 11. 55-64. See plurality of cloned virtual machines at FIG.

4.

"... Attempts to modify a shared page will resultin a copy-on-write fault handled internally by
the monitor... ‘disk writes must be kept private to the virtual machine that issues them.. 7
Bugnion, col. 14, 1. 66 - col. 15, 1. 35. "The virtual subnet and networking interfaces of Disco
also use copy-on-write mappings to reduce copying and to allow for memory sharing." Bugnion,

col. 15,1.66 -col. 16, 1. 1.

Application/Control Number: 95/001,560 Page 51

Art Unit: 3992

Regarding claims 7 and 16, Sexton discloses *...various VM instantiations. .. actively
processing a call [master runtime system process is caused to sleep relative to receiving the
process request], where the server awaits additional service requeéts as arranged by a dispatcher.
Sexton, col. 9, II. 24-30. “The server application 120 process is suspended at step 128 until

output data is received from the SpeciﬁAed applfcaﬁon program140.” Sexton, col. 6, 1. 18-20."

“After the server process completes its processing of a call from one client, the server process is
free to be assigned to respond to the call of another client.” [master runtime system process is

caused to sleep relative to receiving the process request] Sexton, col. 7, 1I. 48-51.

Regarding claims 8 and 17, Sexton discloses Java programming language. Sexton, col. 2, 11. 43-

635.

Regarding claim 19, Sexton discloses computer readable medium to hold the code for executing

the method. Sexton, col. 10, Il. 23-60.

Regarding claims 21 and 22, Sexton discloses a resource controller. Sexton, col. 6, 1l. 59-67,
«__managed by the operating system of the platform on which the server is executing...

operating system is able to ensure that the appropriate degree of insulation exists between the

Application/Control Number: 85/001 ,560 . Page 52
Art Unit: 3992

VM instances.” Also see Sexton, col. 5, 11. 34-35; col. 12. 1l. 57-58, “responding to a call...by

scheduling, for execution... [resource controller]

Analogously Bugnion discloses resource management: "The unique virtual machine monitor of
the present invention virtualizes all the resources Qf the machine...The monitor manages all the
resources. .. allows multiple copies of potentially different operating systems'to coexist on thé
multiprocessor... The virtual machine monitor schedules the virtual resources (processor and
memory) or the virtual machines on the physical resources of the scalable multiprocessor."

Bugnion, col. 4, 11. 25-38.

"Although the system looks like a cluster of loosely-coupled machines, the virtual machine
monitor uses global policies to manage all the resources of the machine...” Bugnion, col. 4, 11.

51-67.

“The virtual machine monitor (VMM) layer executes directly on the hardware layer and
comprises a resource manager that manages the physical resources of the multiprocessor, a
processor manager that manages the computer processors, and a hardware emulator that creates
and manages a plurality of virtual machines. The operating systems execute on the plurality of
virtual machines and transparently share the plurality of computer processors and physical
resources through the VMM layer. In a preferred embodiment, the VMM layer further comprises
a virtual network device providing communication between (the operating systems executing on

the virtual machines, and allowing for transparent sharing optimizations between a sender

operating system and a receiver operating system. In addition, the resource manager maintains a

Application/Control Number: 95/001 ,560 Page 53
Art Unit: 3992

global buffer cache that is transparently shared among the virtual machines using read-only
mappings in portions of an address space of the virtual machines. The VMM layer also maintains
copy-on-write disks that allow virtual machines to transparently share main memory resources
and disk storage resources, and performs dynamic page migration/replication that hides
distributed characteristics of the physical memory resources from the operating systems. The
VMM layer may also comprise a virtual memory reso,urjce interface to allow processes running

on multiple virtual machines to share memory." Bugnion, col. 6, 11. 6-36.

Re.r Ground #8:

Claims 1-8, 10-17, and 19-22 are rejected under 35 U.S. C. § 103(a) as obvious over Sexton
in view of Johnson. Pertinent discussions are found in Request 03/01/2010, p. 37 and Exhibit
23, and are incorporated by reference. This rejection is adopted, with additional comments

added by Examiner.

Claim limitations that map to Sexton’s teachings are addressed above.
Analogously Johnson discloses:

"When the Factory class creates Persistent Container object 222, the Factory class
simultaneously creates Persistent ClassLoader object 244. Each Persistent Container object

222 has its own Persistent ClassLoader object 244 to load class data, in the form of a Class

Application/Control Number: 95/001,560 Page 54
Art Unit: 3992

Encapsulator object containing the class data, into the Persistent Container object in which it is

contained." Johnson, col. 13, 11.36-42.

"The JVM is preferably implemented to include and work with the Persistent Container

obj%:cts, Persistent ClassLoader objects, Class Encapsulator objects, Object Encapsulator

objects and Persistent Handles to create, store and interacf with persistent Java objects.
[representation ;)f at lez;st one class from a source 'déﬁ;litio'n provided as object-oriented program

code]...” Johnson, col. 14, 11. 44-57.

"When method findClass() is called on Persistent ClassLoader object 244, findClass() searches
the-list of classes contained with Persistent ClassLoader object 244 to determine whether a Class
Encapsulator object containing the definition for a specified Java class is already loaded into the
Persistent Container object. If a Class Encapsulator object is already loaded into Persistent

Container object 222, method findClass simply returns the reference of the class." Johnson, col.

19, 11. 9-20.

* Regarding the “copy-on-write process cloning”, Johnson more explicitly discloses:

"The preferred embodiment introduces copy on write storage which provides access to static &
variables. Static variéble as defined by a class file are stored at a particular address in SAS
copy on write storage. When an instance of a class is created, any static variables defined for
that class are created using the definitions stored in the class file in SAS. The presént
invention allows static variables to be shared among instances of a class running in a

particular JVM. However, different JVMs do not access the same static variables. Each JVM

Application/Control Number: 95/001,560 Page 55

Art Unit: 3992

has its own copies of any static variables defined for a class of which it has an instance."

Johnson, col. 18, 11. 34-44.

Sexton in view of Johnson provides a method for dynamic preloading of classes through
memory space cloning of a master runtime system process. Sexton is directed to "reducing
startup costs and incremental memory requirements" associated with the instantiéfion of
Java virtual machines; Sexton calls for a "the use of a shared state area [that] allows the.
various VM instantiations to share class definitions and other resources," Sexton, col. 5, 11.
53-57. And Johnson discloses that when a process needs a persistent object, the persistent

object is copied from persistent storage and into real memory." Johnson, col. 3, 1. 4-6.

Given the goal of reducing session memory by sharing data between multiple Virtual Machines,
one of ordinary skill in the art at the time of the invention could take the teachings of Sexton in
combination with the Johnson prior art and be in possession of the invention. Here, given the
goal of the reduction of overhead of Sexton, it would be obvious to one of ordinary skill in the
art to combine Sexton. with the well-known copy on write technology, thereby placing the artisan

in possession of the invention.

Regarding the “means for” limitations, see Sexton / Bugnion rejection above.

Application/Control Number: 95/001,560 Page 56

Art Unit: 3992

Regarding claims 2 and li,“Sexton discloses functionality acting as a cache checker. Further,
Johnson discloses: "... The page table entry list corresponding to that key number n in the
lookaside buffér 218 is then searched to determine if requested data is in the page cache 212. If
the data is in page cache...If the data is not in the page cache... loads that page into the page

cache 212..." Johnson, col. 11, 11. 52-67.

"The intelligent reference objects 229 are preferably created and cached... IRO Managers create
and cache...for each thread of execution in an application. In particular, each time an address
translation is performed, an IRO is created and cached by the IRO Manager corresponding to the
current thread of execution... quickly search the cache for an existing IRO that encapsulates the -
needed address trapslation. If such an IRO is not fdund in the IRO Manager cache, the IRO
Manager interacts with the virtual address translator 210 to translate the SAS address. An [RO
that encapsulates the new address translation is then created by the IRO Manager 127 and put ‘
into its cache undgr the current frame. Finally, the addvress of the IRO is returned to fhe JVM."

Johnson, col. 12, 1. 55-col. 13, 1. 6.

Regarding claims 3 and 12, Sexton teaches-an obvious disclosure of a class locator to locate the
source definition if the instantiated class definition is unavailable in the local cache. Further

Johnson discloses:

Application/Control Number: 95/001,560 Page 57
Art Unit: 3992

"If the data is not in the page cache, the pager 214 retrieves the page of data in which the
requested data is located [locate the source definition] from the backing store 404 and loads that

page into the page cache 212..." Johnson, col. 11, 11. 52-67.

"quickly search the cach'e for an existing IRO that encapsulates the needed address translation. If
such an IRO is not found in the IRO Manager cache, the IRO Manager interacts with the virtual
address translator 21A0<tcA> translate the SAS address. An IRO that encapsulates the new address
translation is then created by the IRO Manager 127 and put into its cache under the current
frame. Finally, the address of the IRO is returned to the JVM." Johnson, col. 12,1. 55 - col. 13,

1.6.

Regarding claims 4 and 13, Sexton teaches an obvious disclosure of a class resolver. Further to

resolve a class, Johnson discloses:

The virtual address translator 210 uses a hash table 216, page table entry list, lookaside buffer
218 to determine if requested data is in the page cache 212. If the data is in page cache, a 32 bit
address corresponding to the location of the data in the .pa.ge cache is returned. If the data is not
in the page cache, the pager 214 retrieves the page of data in which the requested data is located
from the backing store 404 and loads that page into the page cache 212. The 32 bit native address
of the data in the page cache 212 can then be returned.” Johnson, col. 11, 11. 52-67. See also

Johnson, col. 12, 1.5 -col. 13, 1. 6.

Application/Control Number: 95/001,560 ' Page 58
Art Unit: 3992 ‘

Regarding claims 5 and 14, Sexton provides an obvious disclosure of a local and remote file

system to maintain the source definition as a class file.
Further Johnson discloses:

- " two main types of data storage, transient-data storage such as. DRAM, and persistent storage

such as hard disk drives, optical drives and such...

Most commodity computer systems today...use a system called two-level store (TLS). TLS
systems use a file system for storing data on permanent storage and a virtual memory system for

running application processés..." Johnson, col. 6, 11. 29-47.

"The SLS system maps all of the data storage mediums, generically referred to as backing store,
into a single large address space. The backing store can include any type of local storage
médium, such as magnetic and optical disk drives, and can also include the storage mediums of
multiple computer systems connected by large networks. In the SLS model each bite of data
contained within this largé backing store area is addressed using its own ﬁnique, context
independent virtual address. This makeé the entire stofage system function as a single "virtual

memory" with a context independent addressing scheme." Johnson, col. 7 11. 48-60.

Regarding claims 6 and 15, Sexton provides an obvious disclosure of a process cloning

mechanism.

Further Johnson discloses:

	2011-04-18 Reexam - Non-Final Action

