UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria, Virginia 22313-1450

WWW,USpo.gov

l APPLICATION NO. FILING DATE L FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. I CONFIRMATION NO.
95/001,560 03/01/2011 7426720 13557.105125 8687
25226 7590 1171872011
EXAMINER
MORRISON & FOERSTER LLP l . -)
755 PAGE MILL RD STEELMAN, MARY J
PALO ALTO, CA 94304-1018 [T UNIT I Py p—
3992
| MAIL DATE | DELIVERY MODE
11/18/2011 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents

United States Patents and Trademark Office
P.O.Box 1450

Alexandria, VA 22313-1450
WWWw._usplo.gov

DO NOT USE IN PALM PRINTER

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS Date: MA".ED
KING & SPALDING
1180 PEACHTREE STREET, N.E. ' NOV 18 2011

ATLANTA, GA 30309-3521
CENTRAL REEXAMINATION unry

Transmittal of Communication to Third Party Requester
Inter Partes Reexamination

REEXAMINATION CONTROL NO. : 95001560
PATENT NO. : 7426720

TECHNOLOGY CENTER : 3999

ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified Reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this
communication, the third party requester of the inter partes reexamination may once file
written comments within a period of 30 days from the date of service of the patent owner's
response. This 30-day time period is statutory (35 U.S. C 314(b)(2)), and, as such, it cannot
be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no
responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed
to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end
of the communication enclosed with this transmittal.

PTOL-2070(Rev.07-04)

Control No. Patent Under Reexamination
ACTION CLOSING PROSECUTION | 95/001,560 7426720
(37 CFR 1949) Examiner Art Unit
MARY STEELMAN 3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

Responsive to the communication(s) filed by:
Patent Owner on 05 July, 2011
Third Party(ies) on 04 August, 2011

Patent owner may once file a submission under 37 CFR 1.951(a) within 1 month(s) from the mailing date of this
Office action. Where a submission is filed, third party requester may file responsive comments under 37 CFR
1.951(b) within 30-days (not extendable- 35 U.S.C. § 314(b)(2)) from the date of service of the initial
submission on the requester. Appeal cannot be taken from this action. Appeal can only be taken from a
Right of Appeal Notice under 37 CFR 1.953. ~

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central
Reexamination Unit at the mail, FAX, or hand-carry addresses given.at the end of this Office action.

PART I. THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. [X] Notice of References Cited by Examiner, PTO-892
2. { Information Disclosure Citation, PTO/SB/08

3.0
PART Il. SUMMARY OF ACTION:

1a. [X] Claims 1-8,10-17 and 19-22 are subject to reexamination.
1b. [X] Claims 9 and 18 are not subject to reexamination.

2. [] Claims have been canceled.
3. [Claims are confirmed. [Unamended patent claims]
4. [Claims are patentable. [Amended or new claims]
5. [Claims 1-8, 10-17, and 19-22 are rejected.
6. [] Claims are objected to.
7. [] The drawings filed on (] are acceptable [] are not acceptable.
8 [The drawing correction request filed on is: [] approved. [] disapproved.
9 [] Acknowledgment is made of the claim for priority under 35 U.S.C. 119 (a)-(d). The certified copy has:
[C] been received. [] not been received. [] been filed in Application/Control No
10.[] Other
U.S. Patent and Trademark Office . Paper No. 20111024

PTOL-2065 (08/06)

Application/Control Number: 95/001,560 Page 2
Art Unit: 3992

This office action addresses the reexamination of claims 1-8, 10-17, and 19-22 of USPN
7,426,720 B1 to Fresko. Per Non Final Office Action mailed 05/05/2011, claims 1-8, 10-
17, and 19-22 are rejected. This Office Action is responsive to Patent Owner Remarks

(07/05/2011) and Requester Comments (08/04/2011).

Information Disclosure Statement

IDS received 04/27/2011 and 07/05/2011 have been entered into prosecution. “With
respect to the Information Disclosure Statement (PTO/SB/08A and 08B or its equivalent)
considered with this action, the information cited has been considered as described in the
MPEP. Note that MPEP 2256 and 2656 indicate that degree of consideration to be given
to such information will be normally limited by the degree to which the party filing the
information citation has explained the content and relevance of the information by way of
a concise explanation of the relevance, as it is presently understood i)y the individual
designated in § 1.56(c) most knowledgeable about the content of the information, of each
patent, publication, or other information listed that is not in the English language. The
concise explanation may bg either separate from applicant’s speciﬁcatioh or incorporated

therein.

Information that does not appear to be "patents or printed publications” as identified in 35
U.S.C. 301 has been considered to the same extent (unless otherwise noted), but has been
lined through and will not be printed on any resulting reexamination certificate.”

Undated NPL has been lined through and not considered.

Application/Control Number: 95/001,560
Art Unit: 3992

Examiner has entered into prosecution the NPL documents, submitted as Appendices /
Exhibits by Patent Owner (07/05/2011) and Third Party Requester (08/04/2011) by way

of Form PTOL 892. Copies of the NPL are found in the reexamination prosecution file.

1.132 Declarations

Dr. Benjamin Goldberg, in support of Patent Owner (07/05/2011)

Dr. Goldberg has provided an opinion directed to patentability over the cited references
and secondary considerations of nonobviousness. Dr. Goldberg has presented credentials
(Exhibit A, Curriculum Vitae of Dr. Benj arﬁin Goldberg) that support his experiences and
knowledge as one skilled in the art. Dr. Goldberg is being compensated for his opinions

and such compensation is not conditioned on the outcome of the reexamination.

Dr. Goldberg asserts (paragraph 9) the ‘720 Patent provides a new approach to virtual
machine memory management and startup b}; using copy-on-write with process cloning
of virtual machines. As a resﬁlt, a master virtual machine (e.g., the claimed master
runtime system process) preloaded to a prewarmed state can be cloned to provide a child
virtuai machine (e.g., the claimed child runtime system process) that inherits the
prewarmed state, thereby reducing the startup time for the child virtual machine.
Additionally, copy-on-write cloning can be applied to the memory space of the master
virtual machine so as to defer copying of the memory space until the child virtual
machine needs to modify that memory space, thereby reducing the memory footprint of

the child virtual machine and further reducing startup time.

Page 3

Application/Control Number: 95/001,560 - Page 4
Art Unit: 3992

Dr. Goldberg rebuts the rejections based on the Webb, Kuck and Bach combination
(paragraphs 10-14), the Dike and Steinberg combination (paragraph 15), the Bryant and
Bach combination (paragraphs 16-18), the Bryant and Traut combination (paragraphs 19-
21), the Srinivasan and Bach combination (paragraphs 22-23), the Sexton and Bugnion
combination (paragraphs 24-27) and the Sexton and Johnson combination (paragraphs

28-29).

Dr. Goldberg asserts secondary considerations (paragraphs 30-31) noting a need felt for
efficient use of memory between multiple virtual machine processes, while providing a
robust environment for executing the multiple virtual machine processes concurrently.
Dr. Goldberg asserts that '720 satisfied this need with a new approach to virtual machine
memory management and startup that used process cloning with copy-on-write
technology to share memory between a master virtual machine and a cloned virtual
machine until the cloned virtual machine needed to modify the shared memory. '720
shares common libraries between processes, does not have to repeat initialization costs
for each cloned virtual machine, and it shares memory between processes by default. It
reduces startup time by cloning a prewarmed state of a master virtual machine onto a

child virtual machine.

The 1.132 Declaration of Dr. Goldberg has been weighed and considered in full. In
assessing the probative value of an expert opinion, the examiner must consider the nature

of the matter sought to be established, the strength of any opposing evidence, the interest

Application/Control Number: 95/001,560 Page 5
Art Unit: 3992

of the expert in the outcome of the case, and the presence or absence of factual support
for the expert’s opinion. Ashland Oil, Inc. v. Delta Resins & Refractories, Inc., 776 F.2d

281, 227 USPQ 657 (Fed. Cir. 1985), cert. denied, 475 U.S. 1017 (1986).

In view of the foregoing, regarding the Declaration of Dr. Goldberg, under 37 CFR
1.132, based on consideration of the entire record by a preponderance of the evidence,
weighted by the relevance, when all of the evidence is considered, the totality of the
rebuttal evidence pertaining to secondary considerations fails to outweigh the evidence
presented and considered by Examiner. The Goldberg Declaration under 37 CFR 1.132,
filed 07/05/2011, is insufficient to overcome the rejections under 35 USC 102(b) and
103(a) for the reasons detailed in the following paragraphs, claim rejections, and

responses to arguments below.

The record has established a strong cause of obviousness with respect to combinations
including Webb, Kuck, Bach, Dike, Steinberg, Bryant, Srinivasan, Sexton and Bugnion.
Patent Owner’s evidence is deemed insufficient to rebut the strong prima facie case of
obviousness. Assertions related to rejections are aligned with Patent Owner arguments

and addressed below.

Dr. Jason Flinn, in support of Third Party Requester (08/04/2011)

Dr. Flinn has provided an opinion directed to the validity and obviousness embodied by
the scope of the claims of *720. Dr. Flinn has presented credentials that support

experience and knowledge of one skilled in the art. Dr. Flinn is being compensated for

Application/Control Number: 95/001,560 Page 6
Art Unit: 3992

his work on this reexamination and states that such compensation is 'not conditioned on
the outcome of the reexamination. Dr. Flinn notes (paragraph 10) that copy-on-write was
a common low level operating system optimization that reduces the overhead associated
with the instantiation of a new process, by sharing memory between the parent and child
(created new processes) until the memory is modified by either process. The
optimization is transparent to the application. Dr. Flinn provides an understanding of
(paragraphs 11-12) the limitation “runtime environment” to be the underlying
environment managing the master mntime system process, and managing the cloning
process, for example by implementing the fork() system call. The master runtime
environment will typically include the underlying operating system to perform functions
like memory allocation and process cloning. Dr. Flinn provides an understanding of the
level of skill of one having ordinary skill in the art at the time of the invention as required

by an obviousness statement, (paragraphs 13-14) in agreement with Requester.

Dr. Flinn provides rebuttals to Patent Owner arguments that are mimicked by Third Party
Requester. See analysis in Argument section below. The 1.132 Declaration of Dr. Flinn
has been fully weighed and considered in its entirety. In view of the foregoing, regardiné
the Declaration of Dr. Flinn under 37 CFR 1.132, based on consideration of the entire
record by a preponderance of the evidence, weighted by the relevance, when all of the
evidence is considered, the totality of the rebuttal evidence is found to be persuasive by
Examiner, for the reasons detailed in the following paragraphs, claim rejections, and

responses to arguments below.

Application/Control Number: 95/001,560 ‘ Page 7
Art Unit: 3992

Patent Owner Exhibits (PO Remarks 07/052011, p. 6)

Ex. A Declaration of Dr. Benjamin Goldberg ("Goldberg Declaration")

Ex. B "CDC Porting Guide for the Sun Java Connected Device Configuration

Application

Management System," Version 1.0, Sun Microsystems, Inc., November 2005

("Porting Guide")

Ex. C "CDC Runtime Guide for the Sun Java Connected Device Configuration

Application Management System," Version 1.0, Sun Microsystems, Inc., November 2005
("Rl_mtime Guide") ’\
Ex. D "Anatomy and Physiology of an Android, Google I/O 2008," by ?atrick Brady,

http ://sites.google.com/site/io/anatomy-phvsiology-of-an-android/Android-Anatomy-

GooglelO.pdf ("Android Presentation," last visited July, 5, 2011)
Ex. E "Dalvik Virtual Machine Internals, Google I/O 2008," by Dan Bornstein,

http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-

Dalvik-VM-Internals.pdf ("Dalvik Presentation," last visited July 5, 2011)

Ex. F "Bug ID: 4416624 multiple JVM runtimes do not share memory between

themselves," http://bugs.sun.com/bugdatabase/viewbug.do?bug id=4416624 ("Shared

Memory Blog," last visited July 5,2011)
Ex. G "Bug ID: 4469557 Faster startup/reduced footprint for subsequent VMs,"

http://bugs.sun.com/bugdatabase/viewbug.do?bugid=44679557 ("Reduced

Footprint Blog," last visited July 1,2011)

Ex. H "Complaint for Patent and Copyright Infringement," Oracle America, Inc. v.

Application/Control Number: 95/001,560 Page 8
Art Unit: 3992

Google, Inc., N.D. Cal., Case No. cv10-03561 ("Complaint")

Ex. I "Zygote" reference page, http://59. 61.88.234/android-help/reference/dalvik/system

/Zvgote.html ("Zygote," last visited July 5, 2011)

Ex. J "Evidence of Copying by Google of US 7,426,720" Chart ("Copy Chart")

Ex. K "Multitasking VMs: More Performance, Less Memory," by Kyle Buza, et al.,
JavaOne Conference, June 2005 ("JavaOne Presentation")

Ex. L "Cloneable JVM: A New Approach to Start Isolated Java Applications Faster," by

Kiyokuni Kawachiya, et al., VEE'07, June 2007 ("Kawachiya Paper")

Requester Exhibits (Third Party Comments, 08/04/2011, p. 3)

Ex. 1. Declaration of Dr. Jason Flinn ("Flinn Declaration")

Ex. 2. Curriculum Vitae of Jason Flinn

Ex. 3. ABRAHAM SILBERSCHATZ & 1. PETERSON, OPERATING SYSTEMS
CONCEPTS (Alt. ed. 1988) ("Silberschatz 1")

Ex. 4. CURT SCHIMMEL, UNIX SYSTEMS FOR MODERN ARCHITECTURES
(1994) ("Schimmel")

Ex. 5. DANIEL P. BOVET & MARCO CESATI, UNDERSTANDING THE LINUX
KERNEL (2001) ("Bovet")

Ex. 6. HP-UX MEMORY MANAGEMENT WHITE PAPER (Version 1.3, Apr. 7,
1997) ("HP-UX White Paper")

Ex. 7. ABRAHAM SILBERSCHATZ & PETER GALVIN, OPERATING SYSTEMS
CONCEPTS (5™ ed. 1998) ("Silberschatz 2")

Ex. 8. JOHN R. LEVINE, LINKERS & LOADERS (Rev. 2.3, Jun. 30, 1999) ("Linkers

Application/Control Number: 95/001,560 Page9
Art Unit: 3992

& Loaders")

Ex. 9. Janice J. Heiss, The Multi-Tasking Virtual Machine: Building a Highly Scalable
JVM, published Mar. 22, 2005 ("Heiss")

Ex. 10. "Bug ID: 4416624 multiple JVM runtimes do not share memory between
themselves," available at: http://bugs.sun.com/bugdatabase/viewbug.do?bug_id=4416654
(last visited Aug. 3,2011) ("Bug Report")

Ex. 11. New Java Language Features in J2SE 1.5, published Jul. 29, 2003 ("Java Live

Dialog")

Arguments

Requester asserts (Third Party Comments, 08/04/2011, Introductory Comments, pp. 4-7) /
that “copy-on-write" technology (copy-on-write version of the fork() system call) was

widely known in the art both at the time of, and even long before the work described in

the ‘720 patent. Requester notes the (720, 4: 66-5:6) credit‘given to Bach (See Bach,

“The Design of the Unix Operating System, disclosure of Chapter 7, incorporated by

reference within the ‘720 patent) as an affirmation of a prior art teaching of the copy-on-

write process. Requester pointé to additional citations (Bach at Chapter 9) in suI')port of

the assertion that the copy-on-write version of the fork() [vfork] system call was known.

Bach at page 289-290, “As explained in Section 7.1, the kernel duplicates every

region of the parent process during the fork system call and attaches it to the child
process. Traditionally, the kernel of a swapping system makes a physical copy of
the parent's address space, usually a wasteful operation... On the System V paging

system, the kernel avoids copying the page by manipulating...The page can now

Application/Control Number: 95/001,560
Art Unit: 3992

be referenced through both regions, which share the page until a process writes to
it. The kernel then copies the page so that each region has a private version. To do
this, the kernel turns on the "copy on write" bit for every page table entry in
private regions of the parent and child processes during fork. If either process
writes the page, it incurs a protection fault, and in handling the fault, the kernel
makes a new copy of the page for the faulting process. The physical copying of

the page is thus deferred until a process really needs it.”

“Figure 9.15 shows the data structures when a process forks. The processes share
access to the page table of the shared text region... The kernel allocates a new
child data region... The implementation of the fork system call in the BSD system
makes a physical copy of the pages of the parent process. Recognizing the *
performance improvement gained by not héving to do the copy, however, the
BSD system also contains the vfork system call, which assumes that a child
process will immediately invoke exec on return from the vfork call. Vfork does

not copy page tables so it is faster than the System V fork implementation.”

Requester cites to Dike at § 2.1; Steinberg at 21; Traut at §[0026]; Bugnion at 6:29-36;
Johnson at 18:34-44 evidencing known copy-on-write versions of the fork() system call.
Additional references, entered into prosecution via PTO Form 892 by Examiner, disclose

known copy-on-write versions:

Page 10

Application/Control Number: 95/001,560 Page 11
Art Unit: 3992

Ex. 3 —Silberschatz 1 at 481-82 (disclosing that "[a]n alternative is to share all
pages by duplicating the page table, but to mark the entries of both page tables as

copy-on-write") (emphasis in original).

Ex. 4 - Schimmel at 10 (A 1994 advanced UNIX text describing the fork()
system call explained that "nearly all [UNIX] implementations [of fork()] use a
technique called copy-on-write to avoid having to copy the bulk of the remaining

portions of the address space.")

Ex. 5 - Bovet at 225 (A text on Linux, a popular open-source version of UNIX,
described this optimization as follows: First-generation Unix systems
implemented process creation in a rather clumsy way: when a fork() system call
was issued, the kernel duplicated the whole parent address space in the literal
sense of the word and assigned the copy to the child process... Modem Unix
kernels, including Linux, follow a more efficient approach called Copy On Write,

or COW.)

Ex. 6 - HP-UX White Paper at 96 “HP-UX now implements copy-on-write of

« EXEC_MAGIC processes, to enable the system to manipulate processes more
efficiently...Copy-on-write means that pages in the parent's region are not copied
to
the child's region until needed... sharing the same page...as soon as either parent
or child writes to the page, a new copy is written, so that the other process retains

the original view of the page.”

Application/Control Number: 95/001,560 Page 12
Art Unit: 3992

Third Party Requester cites (Third Party Comments 08/04/2011, pp. 5-7), to the Flinn
Declaration, paragraph 10 for support that “by the December 22, 2003 filing date of the
application for the '720 patent, copy-on-write was a well-known, low-level operating
system technique that expedited the fork() system call and allowed shared memory
between parent and child processes and did so in a manner that was transparent to

programmers.

Examiner again reviews the prosecution history for application 10/745,023 that matured

into the ‘720 patent. Applicant’s Remarks (12/18/2007, pp. 9-10) after a Non Final

Office action assert, “Both Webb and Kuck involve reducing the number of instructions N
needed when allocating a new virtual machine from scratch, but do not attempt to reduce

the memory usage for these virtual machines.”

“In contrast, the present invention reduces both the allocation overhead and the memory
spaice usage of virtual machines by using copy-on-write cloning (see page 4, line 28 to
page 5, line 11, of the instant application). The present invention enables copying the
master runti'me system process context to create a child runtime system by creating a
logical set of references to the master runtime system process context so that referenced
segments are lazily copied at modification time. Deferring the copying of the memory
space of the master runtime system process until the child runtime system process needs
to modify the referenced memory space reduces the time and space needed to initialize

and execute the child runtime system (see page 12, lines 2 to 17, of the instant

Application/Control Number: 95/001,560 Page 13
Art Unit: 3992

application). Nothing in Webb or Kuck discloses reducing memory usage for virtual

machines by using copy-on-write cloning.”

“Accordingly, Applicant has amended independent claims 1, 12, and 24 to include
limitations from dependent claims 7 and 18, to clarify that the runtime €nvironment is
configured to clone the memory space of a child runtime system process using a copy-on-
write process cloning mechanism. This cloning mechanism instantiates the child runtime
system process by copying references to the memory space of the master runtime system
process into a separate memory space for the child runtime system process. This process
cloning mechanism defers copying the memory space of the master runtime system
process until the child runtime system process needs to modify the reference memory
space of the

master runtime system process.”

Additionally as noted in Applicant’s interview agenda (12/21/2007), "My understanding
is that Webb (USPN 6,823,509) discloses re-using allocated virtual machines, and Kuck
(US Pub. No. 2003/0088604) discloses copying a pre-initialized process-attachable
virtual-machine to reduce overhead. While both Webb and Kuck involve reducing the
number of instructions needed when allocating a new virtual machine from scratch, they
do not attempt to reduce the memory usage for those virtual machines. In contrast, the
present invention reduces both the allocation overhead and the memory space usage of

virtual machines using copy-on-write cloning (see page 4, line 28 to page 5, line 11, of

Application/Control Number: 95/001,560 Page 14
Art Unit: 3992

the instant application). Nothing in Webb or Kuck discloses reducing memory usage for -

virtual machines by using copy-on-write cloning.”

An Examiner’s Amendment (05/20/2008) to add “a processor” and “a memory” to the
S};stem and apparatus (presumably to add hardware system / apparatus elements)
preceded the Examiner’s statement of reasons for allowance. The Examiner stated, “As
- pointed out by applicant, the prior art of record fails to teach and/or suggest a runtime
environment to clone the memory space as a child runtime system process responsive to a
process request and to execute the child runtime system process and a copy-on-write
process cloning mechanism to instantiate the child' runtime system process by copying
references to the memory space of the master runtime system process into a separate
memory space for the child runtime system proces.s, and to defer copying of the memory
space of the master runtime system process until the child runtime system process needs
to modify the referenced memory space of the master runtime system process as recited

in independent claims.”

Prosecution history suggests that the Applicant alleged the novelty of ‘120 included
reducing both the allocation overhead and the memory space usage of virtual machines
' using copy-on-write cloning, in contrast to prior art teachings that involve reducing the

number of instructions needed when allocating a new virtual machine.

Application/Control Number: 95/001,560 . Page 15
Art Unit: 3992

Examiner agrees with Requester that evidence exists of known copy-on-write versions
of the fork() system call, prior to the file date of ‘720. Examiner opines that regardless
of Patent Owner’s prior statement, a copy-on-write version of the fork() system call (as
taught by Bach) would necessarily reduce the allocation overhead and the memory space
usage of virtual machines. Until a point in time where the child virtual machine attempts
to modify shared memory locations of the parent virtual machine (the non-copied
memory segments), any unmodified parent memory space is shared between the parent

and child process.

Support in the ‘720 Specification for Claim Language

Patent Owner asserts (Remarks 07/05/2011, pp. 17-18, 27-28) that a Linux environment
executing C and C++ programs lacks the class preloader. Patent Owner cites to the
Goldberg Declaration, paragraph 15 and asserts that Dike does not disclose or even
suggest a "class preloader"” or any other preloader that "obtain[s] a representation of at
least one class from a source definition provided as object-oriented program code,"
because Dike discloses a Linux environment, which executes C and C++ programs that
do not provide a representation that can be interpreted and instantiated as a class
definition. Rather C and C++ programs are simply compiled into machine code that is
then executed. On the other hand, the "class preloader" provides "a representation of at
least one class from a source definition provided as object-oriented program code" that is
interpreted and instantiated as a class definition. A L:inux virtual machine in machine

code compiled from C and C++ has no need to be prewarmed, i.e., preloaded with the

Application/Control Number: 95/001,560
Art Unit: 3992

class data. Thus, the combination's Linux virtual machine does not lead to a "class

preloader.”

At §2.2, Dike’s disclosure of the initialization of a system in preparation for
booting up a user-mode kernel does not involve a "class preloader.” Dike's mention of
the initialization being "analogous to the boot loader on a physical machine" is not the
same as the "class preloader." The boot loader loads the programs that run the physical
machine, without also performing preloading that "obtain[s] a representation of at least
one class from a source definition provided as object-oriented program code.” In §3,
Dike discloses various applications, including daemons and services, that are started
when the user-mode kernel boots up. However, none of the various applicétions is
started by a "class preloader” or includes "a representation of at least one class from a
source definition

provided as object-oriented program code."

Steinberg's brief disclosures of C++ code and glibc are not associated with a "class

preloader." (Goldberg Declaration, paragraph 15.)

Regarding claim interpretations, Requester points out that (Third Party Comments
08/04/2011, pp. 7-9) the broadest possible construction consistent with the specification
is applied to claim language in the context of a reexamination. See In re Icon Health &

Fitness, Inc., 496 F.3d 1374, 1379 (Fed. Cir. 2007).

Page 16

Application/Control Number: 95/001,560 Page 17
Art Unit: 3992

Requester disputes (p. 8) Patent Owner’s assertion that the term “class preloader”
requires only a Java language class preloader. Requester cites to ‘720, 5: 12-15:

"[a]lthough described with specific reference to classes, other forms of structured static

data could also be preloaded, including data structures, processes, functions, subroutines,

interfaces, and the like." Requester asserts that the dynamic library compilation of a

C++ program's object-oriented classes, which indisputably contains classes, and the
packages of an assembled Perl program, are directly analogous to the Java class, and
easily fall within the definition of a class preloader provided by the '720 patent

specification when applying a broadest reasonable construction.

Requester asserts (p. 9-10) that the master runtime system process reads on the parent
virtual machine. Requester cites to ‘720, 2: 49-51; 5: 24-26 and to the Flinn
Declaration, paragraphs 11-12 for support. Requester asserts that a [mastef] runtime
environment 1s simply the underlying environment managing the master runtime system
process, and managing the cloning process, for example by implementing the fork()
system call...will typically include the underlying operating system to perform functions

like memory allocation and process cloning.

Examiner agrees with Requester that the ‘720 specification broadly provides for ‘(720,
5:7-21: “By way of example, the system is described with reference to the Java operating

environment, although other forms of managed code platforms that execute applications

preferably written in an object oriented programming language, such as the Java

Application/Control Number: 95/001,560 Page 18
Art Unit: 3992

programming language, could also be used.”) object oriented languages, only reciting
Java as an example. Therefore the invention is not limited to the use of the Java language
class preloader. Object oriented code representing a class may be interpreted by a virtual

machine.

Examiner cites to the Specification for claim construction:

720, 2: 66 — 3: 6 “class preloader” During initialization, the master runtime system

process preloads classes and interfaces likely to be required by user application at
runtime. The classes and interfaces are identified through profiling by ranking a set
of classes according to a predetermined criteria such as described in commonly-
assigned U.S. patent application Ser. No. 09/970,661, filed Oct. 5, 2001, pending, the
disclosure of which is incorporated by reference. 6: 38-43, preloads classes 36 and
classes defined in the class libraries 37 that are likely to be required by applications
at runtime...classes and interfaces are identified through profiling by ranking a set of

classes according to a predetermined criteria...

“720, 3: 12-20 “dynamic preloading of classes” dynamic preloading of classes through
memory space cloning of a master runtime system process. A master runtime system
process is executed. A representation of at least one class is obtained from a source
definition provided as object-oriented program code. The representation is interpreted

and instantiated as a class definition in a memory space of the master runtime

Application/Control Number: 95/001,560 Page 19
Art Unit: 3992

system process. The memory space is cloned as a child runtime system process

responsive to a process request and the child runtime system process is executed.

720, 5: 11-14, Although described with specific reference to classes, other forms of
structured static data could also be preloaded, including data structures, processes,

functions, subroutines, interfaces, and the like.

720, 5: 7-21, describes a system for preloading classes. “By way of example, the system
is described with reference to the Java operating environment, although other forms of
managed code platforms that execute applications preferably written in an object
oriented programming language, such as the Java programming language, could also be

used.”

€720, 5: 48-58 — Upon initialization, the master JVM process 33 reads an executable
process image from the storage device 35 and performs bootstrapping operations.
These operations include preloading the classes 36 and classes defined in the class |,
libraries 37...upon completion of initialization, the memory image of the master JVM

process 33 resembles that of an initialized, primed and warmed up JVM process with key

classes stored in the master JVM process context as prewarmed state 41.

Application/Control Number: 95/001,560 Page 20
Art Unit: 3992

“720, 6: 49-54 — Class loading requires identifying a binary form of a class type as
identified by specific name...[and] can include retrieving a binary representation from

source and constructing a class object to represent the class in memory.

720, 8: 47-50 - preloading classes involves executing the bootstrap class loader 39
and system application class loader 40 to create and resolve classes likely required

by one or more of the applications.

720, 9: 29-62, ;outine 150 for preloading a class 36 for use in the routine 120...one
purpose... is to find and instantiate prewarmed instances of classes 36 and classes
defined in the class libraries 37 as specified in the bootstrap class loader 39 and
system application class loader 40 as prewarmed state 41 in the master JVM process

33 for inheritance by a cloned JVM process 34.

720, 6: 64-67, Thus, the prewarmed state 41 includes the class loading for applications
[every class likely to be requested by the applications] prior to actual execution and the
initialized and loaded classes are inherited by each cloned JVM process 34 as the

inherited prewarmed state 42.

Application/Control Number: 95/001,560 Page 21
Art Unit: 3992

720, 2: 49-50 - “master runtime system process” such as a virtual machine, to interpret

machine-portable code defining compatible applications

720, 5: 22-32, The exemplary runtime environment 31 includes an application manager
32, master Java virtual machine (JVM) process 33 and zero or more cloned JVM
processes 34. The master JVM process 33 and cloned JVM processes 34 respectively

correspond to a master runtime system process and child runtime system processes. The

master runtime system process, preferably provided as a virtual machine, interprets

machine-portable code defining compatible applications. The runtime environment 31

need not execute cloned JVM processes 34, which are only invoked upon request by the

application manager 32.

“720: 2: 51- 60- “child runtime system process” An application manager executing

within the application framework, communicatively interfaced to the master runtime
system process through an inter-process communication mechanism logically copies the
master runtime system prbcess context upon request by the application framework to
create a child runtime system process through process cloning. The context of the
master runtime system process stored in memory is inherited by the child runtime

system process as prewarmed state and cached code.

Application/Control Number: 95/001,560 Page 22
Art Unit: 3992

720, 2: 60-66 - “copy-on-write process cloning mechanism” When implemented with

copy-on-write semantics, the process cloning creates a logical copy of references to the
master runtime system process context. [i.e., initially, all master runtime system
process context is not copied into child runtime system process] Segments of the
referenced master runtime system process context are lazily copied [into child] only
upon an attempt by the child runtime system process to modify the referenced

context.

720, 8: 4-8 - Through copy-on-write semantics, the overall footprint of the runtime
environment 31 is maintained as small as possible and only grows until, and if, each
cloned JVM process 34 actually requires additional memory space for application

specific context.

720, 3: 6-10 - “runtime environment” An exampie of a suitable managed code platform

and runtime system process are the Java operating environment and Java virtual machine

(JVM) architecture...

‘720, 5: 33-36 - The runtime environment 31 executes an application framework that
spawns multiple independent and isolated user application processes instances by

preferably cloning the memory space of a master runtime system process.

Application/Control Number: 95/001,560 Page 23
Art Unit: 3992

‘720, 5: 36-40 - The example of an application framework suitable for use in the present

invention is the Unix operating system...

‘720, 3: 21-40; 4: 50-5: 6 — “process cloning mechanism” provided by the underlying

application framework [operating system], resolves the need for efficient concurrent
application execution of machine portable code. The inheritance of prewarmed state
through the cloning of the master runtime process context provides inter-process
sharing of preloaded classes. Similarly, each chiid runtime system process executes in
isolation of each other process, thereby providing strong resource control through the
system level services of the application framework. Isolation, reliable process invocation
and termination, and resource reclamation are available and cleanly provided at an
operating system level. In addition, process cloning provides fast user application
initialization and deterministic runtime behavior, particularly for environments
providing process cloning with copy-on-write semantics. Finally, for non-shareable
segments of the master runtime system process context, actual copying is deferred until
required through copy-on-write semantics, which avoid.s impacting application

performance until, and if, the segment is required.

Each operating system supports a process cloning mechanism that spawns multiple

and independent isolated user applications by cloning the memory space of specifiable

Application/Control Number: 95/001,560 Page 24
Art Unit: 3992

processes. An example of a process cloning mechanism suitable for use in the present
invention is the fork() system call provided by the Unix or Linux operating systems,
such as described in M. J. Bach, "The Design Of The Unix Operating System," Ch. 7,
Bell Tele. Labs., Inc. (1986), the disclosure of which is incorporated by reference. The
process invoking the fork() system call is known as the parent process and the
newly created process is called the child process. The operating system assigns a
separate process identifier to the child process, which executes as a separate process. The
operating system also creates a logical copy of the context of the parent process by
copying the memory space of the parent process into the memory space of the child
process. In a copy-on-write variant of the fork() system call, the operating system
only copies references to the memory space and defers actually copying individual
memory space segments until, and if, the child process attempts to modify the
referenced data of the parent process context. The copy-on-write fork() system call is
faster than the non-copy-on-write fork() system call and implicitly shares any data not
written into between the parent and child processes. ['721, 7: 61-64, until child cloned
process attempts to modify the master process context, the memory space is treated a read

only data, which can be shared by other processes]

720 5: 59 — 6: 19 - Following initialization, the master JVM process 33 idles, that is,
"sleeps"...[and] awakens in response to requests received from the application manager
32 to execute applications...The application manager 32 sends a request to the master

JVM process 33, including standard command line parameters, such as application name,

Application/Control Number: 95/001,560 Page 25
Art Unit: 3992

class path, and application arguments. The master JVM process 33 awakens and creates
a cloned JVM process 34 as a new cloned process instance of the master JVM process 33
using the process cloning mechanism of the underlying operating system. The
context of the master JVM process 33 stored in memory as prewarmed state 41 is
inherited by the cloned JVM process 34 as inherited prewarmed state 42, thereby saving
initialization and runtime execution times and providing deterministic execution
behavior...the master JVM process 33 records the launched application in an applications

launched list 38 and return to an inactive sleep state.

When implemented with copy-on-write semaﬁtics, the process cloning creates a
logical copy of only the reverences to the master JVM process contest. Segments of the
referenced master JVM process context are lazily copied only upon an attempt by the
cloned JVM process to modify the referenced context. Therefore, as long as the cloned
JVM process does not write into a memory segment, the segment replains shared

between parent and child processes.

Rejections based on the combination of Webb, Kuck, and Bach

Patent Owner asserts (Remarks 07/05/2011, pp. 12-14 & 15) the Webb, Kuck, and Bach
combination does not disclose the ""runtime environment." In particular, Kuck, cited
for this element, lacks the requisite cloning, i.e., "to clone," in a "'runtime
environment." Kuck’s initialization merely copies initialization data from the master
PAYM to the new PAVM. Kuck thus cannot be considered to disclose that the new

PAVM is cloned. Because Kuck does not disclose cloning, Kuck does not disclose the

Application/Control Number: 95/001,560 Page 26
Art Unit: 3992

“runtime environment to clone.” Patent Owner cites to the Goldberg Declaration

paragraph 10.

Patent Owner argues (Remarks 07/05/2011, pp. 14-16) the combination of Webb, Kuck,
and Bach and asserts: (a) Webb teaches away from the combination regarding cloning;
(b) Kuck teaches away from the combination regarding copy-on-write; (c) the
combination changes the principle of operation of Webb from a sirigle reusable virtual
machine to multiple independent virtual machines; (d) the combination changes the
principle of operation of Kuck fro;n simple shared memory to copy-on-write memory;
and (e) the reasons for the combination are insufficient to support a prima facie case of

obviousness.

Patent Owner asserts (Remarks 07/05/2011, p. 14) that Webb discloses the desirability
of running successive applications on the same Java virtual machine (Welgb, 1:39-41;
2:5-25; 4:8-11). This is fundamentally different from Kuck (Abstract, directed to
creating multiple Java machines), and Bach (Chapter 7, directed to creating multiple
processes). Patent Owner concludes therefore, that Webb teaches .away from using any
process, such as Bach's cloning, that would create multiple Java virtual machines. Patent
Owner cites to the Goldberg Declaration, paragraph 11(attesting Webb’s reuse of a
virtual machine). Patent Owner quotes, " 'Teaching away' does not require that the

prior art foresaw the specific invention that was later made, and warned against taking

that path." Spectralytics, Inc., v. Cordis Corp. (Fed. Cir. June 13,2011). Rather, the

Application/Control Number: 95/001,560 Page 27
Art Unit: 3992 '

design of the prior art device itself can teach away from the invention. (d.) See also, e.g.,
MPEP 2145(X)(D), which describes teaching away as an improper rationale for

combining references.

Patent Owner asserts (Remarks 07/05/2011, pp. 14-15) that Kuck teaches away. Kuck
discloses the allocation of a memory block for a new PAVM: "a PAVM is generated and
initialized for that user session (502). That can include allocating a block of memory for
the PAVM...After a block of memory has been allocated to the PAVM, the PAVM can be
stored in the memory block." (Kuck, [0062]-[0063].) This is fundamentally different
from Bach's copy-on-write process, in which no allocation of a memory block is

- performed when a new process is forked. As such, Kuck teaches away from using any
process, such as copy-on-write, that would avoid or defer until necessary memory block
allocation for a new virtual machine. Patent Owner’s positi(;n is supported by the

Goldberg Declaration, paragraph 13.

Patent Owner asserts (Remarks 07/05/2011, p. 15) that such a combination would
change the principle of operation of Webb, and the principle of operation of Kuck. The
modification of Webb, would provide separate Java virtual machines, with no need to
reinitialize classes on the same virtual machine. Modifying Kuck to implement cloning
would obviate the need to generate and reuse persistent PAVMs. A copy-on-write would
replace Kuck’s simple shared memory with a copy-on-write memory. Patent Owner

cites to the Goldberg Declaration, paragraphs 13-14.

Application/Control Number: 95/001,560 Page 28
Art Unit: 3992

Patent Owner disagrees with (Remarks 07/05/2011, pp.15-16) the given reasons to
combine Webb, Kuck, and Bach. Patent Owner asserts that Kuck does not disclose the
"runtime environment" to clone a memory space and even if the "runtime environment"
were added to Kuck, the skilled person reading Webb would not be motivated to modify
Webb to include cloning because Webb specifically teaches the desirability of using a
single Java virtual machine (1:39-41; 2:5-25; 4: 8-11; claim 1), thereby eliminating the
need for cloning to create multiple virtual machines. Adding cloning would increase
system overhead and increase the likelihood of crashing processes because of the
increased number of virtual machines Mng the processes, negating any alleged benefit

from Kuck.

Patent Owner disagrees with the given motivation to combine (Non Final Office Action,
05/05/2011, p. 10) Bach with Webb and Kuck "to reduce memory usage and overhead
impact when instantiating and executing virtual machines." “...the combination of Webb
and Kuck does not provide all the claimed elements, i.e., the "runtime environment," as
described above... implementing cloning, even with copy-on-write, would increase the
memory usage and overhead impact of Webb' s operation by creating and using multiple
Java virtual machines, rather than reusing the same virtual machine. Lastly, because
Kuck's operation already performs efficiently and effectively by creating and storing
PAVMs for later use in the disclosed manner, there would have been no need to

implement copy-on-write.

Application/Control Number: 95/001,560 Page 29
Art Unit: 3992

As stated during prosecution of the '720 Patent (December 18, 2007 Amendment), Webb
and Kuck were concerned with reducing the overhead needed when executing a virtual
machine (e.g., Webb, 2:5-16; Kuck, [0064]-[0065]), but did not attempt to reduce the

memory usage for the virtual machine, as provided by copy-on-write.

Moreover, given that copy-on-write technology was known as early as 1986, when Bach
was published and at least fourteen years before Webb and Kuck were filed as patent
applications, it ciearly was not obvious to use copy-on-write "to reduce memory usage
and overhead impact when instantiating and executing virtual machines." Otherwise,
either Webb or Kuck would have done so. Patent Owner cites to Goldberg, paragraphs

10-14 for support.

Regarding dependent claims 4 and 13, Patent Owner asserts (Remarks 07/05/2011,
pp-16-17) patentability for the same reasons given for their respective independent
claims. Regarding dependent claims 6 and 15, Patent Owner asserts that Kuck’s
disclosure of the initialization of a new PAVM based on an already initialized master
PAVM does not disclose that the PAVM is created as the result of “cloning.” Regarding
dependent claims 21 and 22, Patent Owner asserts that Kuck’s PAVMs cannot be
considered to be cloned and therefore cannot provide the requisite “child runtime system

process” on which the “resource controller” operates.

Application/Control Number: 95/001,560 Page 30
Art Unit: 3992

Requester asserts (Third Party Comments, 08/04/2011, pp. 16-20) that the prior rejection
[during the original examination of 10/745,023] relied on only the Webb and Kuck
references. In response to Patent Owner Remarks (07/05/2011, p. 22), Requester
disagrees (p. 17) that Webb, Kuck, and Bach were “specifically indicated as not being
éombinable.” Requester opines (p. 18) that Kuck’s step-by-step description of creating a
new virtual machine and providing that child virtual machine with the parent virtual
machine's full set of initialization data does disclose cloning {{[0062]-[0064]: "the new
PAVM to start running in an already-initialized state." Kuck's cloning includes .-
"copying" of the entire set of initialization data from the master virtual machine to the

child virtual machine.

Further supporting this point, the Kuck process contains no values; it starts with a blank
canvas. After creating this blank canvas, the memory block of the master PAVM can
simply be copied into the child. This is the same as the "cloning" mechanism cited by
Patent Owner, just broken down into more clear steps. Kuck discloses all of the parts of
the cloning process, including the integral copying aspect, in clear detail. Requester
cites to the Flinn Declaration, paragraphs 31-34: Kuck discloses the allocation of
memory space for a child virtual machine...starts as a ‘blank canvas...copying of the
master process attachable virtual machine into the child memory...child virtual machine
to inherit preloaded classes. Flinn opines that Bach’s (pp. 193-195 & FIG. 7.2) allocation

followed by copying are an integral part of cloning.

Requester asserts (p. 18) that Patent Owner's related arguments concerning a "runtime

environment to clone" are based on the same spurious argument that attempts to find a

Application/Control Number: 95/001,560 Page 31
Art Unit: 3992

distinction between "copying" and "cloning", see Response at 13, and fail for the same

réasons.

Requester disagrees with Patent Owner's arguments related to “teaching away” and
changing the “principle of operation.” Requester opines that Patent Owner’s claim that
Webb displosed the desirability of running applications on a single JVM, while Kuck was
directed to creating multiple JVMs, does not support a “teaching away” argument.
Requester asserts that Webb and Kuck, as well as the Bach reference, are directed to the
reduction of overhead: thus, a person having ordinary skill in the art at the time of the
invention, seeking to reduce system overhead, would be very likely to combine the two
approaches disclosed in these references, e.g., running multiple applications on multiple
JVMs. See Flinn Declaration at §35: references are technically and thematically

consistent, seeking to reduce system overhead.

Requester cites to the Flinn Declaration at §36: ““...Kuck and Bach disclosures work
seamlessly with one another using only basic code instructions and system calls. Kuck
describes child process attachable virtual machines that are copies of a master process
attachable virtual machine. To employ copy-on-write, Kuck would share memory pages
between the master and newly cleated child process attachable virtual machines. These
pages would be mapped read-only into any process to which one of these process
attachable virtual machines is attached. When the [read only] memory page is modified
[written to], a page fault would occur, during which Kuck would allocate a new page for

the faulting process attachable virtual machine, copy the data from the faulted page to the

Application/Control Number: 95/001,560 Page 32
Art Unit: 3992

new page, map the page(s) read-write, and restart the faulting process. This is the same

method used by a copy-on-write fork.”

Requester asserts (p. 19) that the principles of operation of the Webb, Kuck, & Bach
disclosures are consistent. Kuck and Bach both disclose making a copy of the original
state, where the copy becomes the master process, and then creating child versions based
on this saved original state. Webb simply re-runs an initialization sequence (restores a
virtual machine to an initialized state); Kuck restores the initialized state from a snapshot
(e.g., the master virtual machine). These are just two ways of doing the same thing; both
are well-known techniques. See Flinn Declaration at §37. The motivation, function and
outcome are the same: returning to the original pre-warmed state for consistent reference
information. Combining these references, a person having ordinary skill in the art could
start with Kuck's process-attached virtual machine. See Flinn Declaration at §36.
Following the Kuck disclosure, the person having ordinary skill in the art would create

new virtual machines in response to new sessions. See id.

Within a Java system, the Webb disclosure provides a roadmap for the loading of classes
into a JVM. One of ordinary skill in the art, seeking to implement the Kuck system in a
Java system, would know from Webb to preload the Java classes into Kuck's parent
virtual machine, so that the newly created virtual machines would have a copy of the pre-

warmed, pre-initialized state of the parent. See id. at §38.

As the Examiner found during the original prosecution, the motivation here would be

"avoiding the overhead" and "enabling the server to run robustly." See Non-Final

Application/Control Number: 95/001,560 Page 33
Art Unit: 3992

Rejection at 10. Fﬁrther, implementation of this process on any number of operating
systems utilizing copy-on-write, such as the UNIX system described by Bach, would
result in a system with all of the limitations of the claimed '720 system. The use of a
copy-on-write fork() is also consistent with the motivation to reduce the overhead of
cloning new virtual machines by using the well-known copy-on-write optimization. See

Flinn Declaration at 940.

Requester asserts that Patent Owner's argument that Webb would somehow preclude
multiple virtual machines is without merit. Where multiple processors are present, Webb
would inevitably lead to using multiple virtual machines, each applying the Webb

technique. See Flinn Declaration at §41.

Requester asserts (p. 20) that Patent Owner's dependent élaim arguments are conclusory
and without support. Requester responds to these arguments by referring to the
particularized citations to the prior art submitted with the original Request for
Reexamination show that the cited prior art references render the dependent claims

unpatentable.

Examiner is persuaded by Requester’s rebuftal. Upon review, thére appears to be no
prosecution history suggesting that Webb, Kuck, and Bach (or Webb and Kuck) were not
combinable. Examiner notes that Webb, Kuck, and Bach disclose cloning in a "runtime

environment" embodied as virtual machines. Examiner asserts that Webb does not

Application/Control Number: 95/001,560 Page 34
Art Unit: 3992 ‘

“teach away” from the combination regarding multiple virtual machines and cloning, as
Webb is directed to reducing overhead. Examiner asserts that Kuck does not “teach
away” from the combination regarding “copy-on-write.” Kuck allocates memory for a
new virtual machine and copies initialization data, but does not copy values [Kuck shares
some memories]. Kuck copies and initializes data from a master PAVM to a new

PAVM. Allocating memory and copying are steps of a clone process.

Examiner disagrees with Patent Owner’s comments that Bacﬁ's COpYy-on-write process

“ does not involve an allocation of a memory block when a new process is forked.
Examiner asserts that the forked child process does require memory, but copying of
certain portions of the parent process memory storage are deferred /not immediately
copied. The Webb / Kuck / Bach modification reduces both the system resources
allocated to overhead and the memory space usage of the child virtual machines by using

copy-on-write cloning.

. Examiner asserts that the combination does not change the principle of operation of
Kuck from simple shared memory to copy-on-write memory. To modify Kuck’s process
attached virtual machines, by preloading classes, as taught by Webb into Kuck’s parent
process attached virtual machine, thereby enables newly created child virtual machines to
have a copy of the parent virtual machine in a pre-warmed state, thus reducing system
overhead. Shared memory in a child process attached virtual machine, when allocated by

an operating system optimization fork() call, is maintained until the child attempts to

Application/Control Number: 95/001,560 Page 35
Art Unit: 3992

modify write protected memory. Many operating systems use a copy-on-write fork()
optimization to reduce overhead of cloning new virtual machine processes, as known in

the art, as acknowledged by Patent Owner, and as disclosed by Bach.

Kuck’s "runtime environment" is found in the process attachable virtual machines. Webb
is relied upon to teach the preloading of classes. Examiner agrees with the Flinn
Declaration, paragraph 41, Webb does not preclude multiple virtual machines. Bach is
relied upon for teaching the copy-on-write optimization when cloning. While certainly
the act of cloning to create child virtual machine process increases overhead, cloning
using copy-on-write methods optimizes the increased overhead. There are many benefits
achieved when creating multiple child virtual machines as recognized by the ‘720 patent
(3: 21-40, ...several benefits...efficient concurrent application execution...sharing of
preloaded classes...each child runtime system process executes in isolation of each other
process...resource control...fast user application initialization and deterministic runtime
behavior...” Examiner asserts that it was obvious to use copy-on-write "to reduce
memory usage and overhead impact when instantiating and executing virtual machines"

because many operating systems included this feature.

Regarding dependent claims 6 and 15, Examiner notes that the memory allocation and
copying methods used when creating a PAVM are steps of the cloning process.

Dependent claims 21 and 22 read on generated PAVMSs / “child runtime system process™

Application/Control Number: 95/001,560 Page 36
Art Unit: 3992

which are provided with a copy the parent virtual machine’s full set of initialization data

on a “blank canvas.”

Examiner agrees with Requester and maintains the rejections based on the combination

of Webb, Kuck. and Bach.

Rejections based on the combination of Dike and Steinberg

Regarding the anticipation rejections based on the combination of Dike and Steinberg
(Remarks 07/05/2011, p.17), Patent Owner asserts that neither the Office nor Requester

describes the circumstances of a proper multiple reference anticipation rejection.

Patent Owner asserts that Dike is directed to a different technology than the ‘720 Patent.
Dike discloses a Linux environment, which executes C and C++ programs that do not
provide a representation that can be interpreted and instantiated as a class definition...C
and C++ programs are simply compiled into machine code that is then executed. On the
other hand, the "class preloader" provides "a rebresentation of at least one class from a
source definition provided as object-oriented program code" that is interpreted and
instantiated as a class definition. A Linux virtual machine in machine code compiled
from C and C++ has no need to be prewarmed, i.e., preloaded with the class data. Thus,
the combination's Linux virtual machine does not lead to a "class preloader." Patent

Owner cites to the Goldberg Declaration, paragraph 15.

Application/Control Number: 95/001,560 Page 37
Art Unit: 3992

Dike discloses (§2.2) the initialization of a system in preparation for booting up a user-
mode kernel. However, there is nothing in this system initialization that involves a "class
preloader.” Dike's mention of the initialization being "analogous to the boot loader on a
physical machine" is not the same as the "class preloader.” The boot loader loads the
programs that run the physical machine, without also performing preloading that
"obtain[s] a representation of at least one class from a source definition provided as

object-oriented program code."

Dike’s disclosure (§2.2, §2.3, §3, Non Final Office Action 05/05/2011, p. 16) does not
suggest that a parent process in the user-mode kernel has the ability "to interpret and to
instantiate the representation [of at least one class] as é class definition" in the parent's
address space.‘ There can be no "master runtime system process" if there is no "class
preloader” to provide the "representation [of at least one class] as a class definition" for

interpreting and instantiation.

Dike (§2.3) simply discloses how the fork or clone system call is implemented. It has
nothing to do with a "class definition." Dike also does not disclose that the new process
is the "child runtime system process" whose copied address space is a copy of the
"memory space [of the master runtime system process]" that includes a "class definition."

Rather Dike makes no mention of the contents of that address space in this regard.

Application/Control Number: 95/001,560 Page 38
Art Unit: 3992

Dike does not disclose the "copy-on-write process cloning mechanism." Dike (§2.1)
describes the address space having a shared memory segment that is converted from a
copy-on-write memory segment in order to share kernel data. However, this is a
disclosure not of using a "copy-on-write process cloning mechanism," but of the
opposite. Dike's shared segment does not "defer copying" of the parent's memory space
until the new process "needs to modify" the memory space. Dike prevents such deferring
by making the address space a shared one. Moreover, Dike's shared segment is not the
"memory space of the master runtime system process" because the address space's kernel
data does not include a "class definition." Dike does not disclose the kernel data
contents. As such, the skilled person reading Dike would have been led toward shared

memory and away from copy-on-write memory.

Patent Owner asserts that the deficiencies of Dike are not corrected by Steinberg. In
Steinbgrg, Fiasco-UX can include C++ code and can link to glibc, a C library for Linux
(p. 14). However, the C++ code does not provide the "class preloader to obtain a
representation of at least one class from a source definition provided as object-oriented
program code.” Steinberg's brief disclosures of C++ code and glibc are not associated
with a "class preloader” or with a “master runtime system process.” Patent Owner
further asserts (Remarks 07/05/2011, p.19) that Dike and Steinberg are further deficient
in disclosing the claimed “runtime environment”: a runtime environment to clone the
memory space [of the master runtime system process] as a child runtime system process

responsive to a process request and to execute the child runtime system process.

Application/Control Number: 95/001,560 Page 39
Art Unit: 3992

Patent Owner asserts (Remarks 07/05/2011, pp.20-21) that Dike / Steinberg do not
disclose the claimed copy-on-write process cloning mechanism: a copy-on-write process
cloning mechanism to instantiate the child runtime system process by copying references
to the memory space of the master runtime system process into a separate memory space
for

the child runtime system process, and to defer copying of the memory space of the master
runtime system process until the child runtime system process needs to modify the

referenced memory space of the master runtime system process.

Patent Owner asserts (Remarks 07/05/2011, pp.21-22) that Dike and Steinberg are
"directed to virtual machines in a Linux environment." As such, the skilled person
reading Dike and Steinberg would have been led toward a Linux environment, which
executes C and C++ programs that do not provide representations of a class that can be

interpreted and instantiated as a class definition, and away from the '720 Patent.

Patent Owner asserts that dependent claims 4 and 13, directed to a "class resolver" are
pateﬂtablé because Dike fails to disclose the "class preloader” that obtains a "class
definition" and therefore cannot disclose the "class resolver" to resolve the absent class
definition. Claims 6 and 15 directed to a "process cloning mechanism" are also
patentable because Dike's address space is a shared memory space, not a copied "memory

space." Claims 21 and 22, directed to a "resource controller” are further patentable

Application/Control Number: 95/001,560 Page 40
Art Unit: 3992

because Dike does not disclose the requisite "child runtime system process," as described

above, on which the "resource controller" operates.

Regarding the anticipation rejection, Requester opines (Third Party Comments,
08/04/2011, pp. 20-23) that the Dike reference provides an enabling disclosure; the
Steinberg reference is provided merely to explain the meaning of certain of the Dike
terms and to show that the copy-on-write characteristic is inherent in the Dike reference.
These rationales support combining multiple references under 35 U.S.C. § 102. See

MANUAL OF PATENT EXAMINING PRACTICE § 2131.01 (Rev. 7, Jul. 2008).

Requester notes that Dike discloses that the process cloning mechanism, e.g., the Linux
fork() call, is implemented as copy-on-write, as evidenced by suggesting a further
approach of creating a shared data segment from the copy-on-write segment containing
kemnel data, where such data needs to be shared across processes. Steinberg (p. 21)
supports this by explaining that "[t]he normal means by which a Linux process can create
new tasks is the fork() system call. This system call creates an exact copy of the calling
process, which then becomes the calling process' child process. The created child process
inherits copies of the parent process data space, heap, and stack, which are copied on

demand using a copy-on-write mechanism."

Requester opines that Dike's disclosure of the claim elements with respect to C++ code

is directly analogous to the '720 patent's claim elements with respect to Java. Requester

Application/Control Number: 95/001,560 Page 41
Art Unit: 3992

opines that Patent Owner's entire argument rests on the differences between C++ and
Java code, where Patent Owner asserts that "Dike discloses a Linux environment, which
executes C and C++ programs that do not provide a representation that can be interpreted

and instantiated as a class definition." See Patent Owner Response at 18.

Requester asserts that the preferred embodiment of the '720 patent relies on a "class
preloader." As recited above, the '720 patent explains the class preloader by noting that
"[a]lthough described with specific reference to classes, other forms of structured static
data could also be preloaded, including data structures, proces:ses, functions, subroutines,
interfaces, and the like. See '720 patent at 5:12-15. The broadest reasonable
interpretation of the claims, especially in light of the directions provided in the
specification, must extend beyond Java code to include code derived from other object-
oriented and functional computer languages. Requester asserts (p. 22) that a class
preloader is merely a tool that loads the code and data associated with object-oriented

programming before the program needs the code and/or data, for example, before a first

process request. See the Flinn Declaration at 42.

Dike's disclosed C++ programs undeniably contain classes, which are an abstraction of
underlying code and related data structures. See Flinn Declaration at §43. C++ classes
are compiled into dynamic libraries which are typically loaded before the code is
executed or the data is referenced by the program. See Flinn Declaration at 44; see also

Linkers & Loaders at, e.g., 11 (attached as Exhibit 8).

Application/Control Number: 95/001,560 Page 42
Art Unit: 3992

Requester asserts that the Dike / Steinberg combination discloses that the dynamic
libraries preloaded into the master virtual machine are copied into the child virtual
machine in their pre-loaded state. See Flinn Declaration at §44. Thus, the act of
preloading a class (Java) is directly analogous to the act of linking and loading a dynamic
library (C++). See id. at 44. Requester summarizes Patent Owner arguments: that C++
code does not involve a class definition, that the Dike in view of Steinberg combination
does not disclose a class loader, a master runtime system process, a claimed runtime

environment, or a copy-on-write process cloning mechanism.

Requester opines that a person having ordinary skill in the art seeking to improve Java
performance would have immediately looked to other object-oriented languages, such as
C++. See Flinn Declaration at §46. Patent Owner's own documents support this point.
For example, Patent Owner's articles discussing scalable JVMs note that "Home
programming tasks related to systems programming cannot be performed solely using the
standard Java libraries. Developers might have to use native code, scripting languages,

and C or C++ before returning to Java code.” See Heiss at 1 (provided as Exhibit 9).

Requester asserts that Dike discloses both traditional copy-on-write memory segments as

well as shared segments, contrary to Patent Owner's assertions at 22. See Dike at § 2.1.

Application/Control Number: 95/001,560 Page 43
Art Unit: 3992

Requester asserts that Patent Owner's dependent claim arguments are conclusory and
without support. Requester responds to these arguments by referring to the
particularized citations to the prior art that were submitted with the original Request for

Reexamination.

Examiner agrees that the purpose of the Steinberg reference in the anticipation rejection
was to properly evidence the teachings of Dike. Examiner agrees that the ‘720
specification and claim language broadly references object oriented program code, which
includes C++. As an example, Dike (5.3.3) discloses the mm_struct object processed by
a virtual machine, where an object is an instance of a class from a source definition
provided as object-oriented program code. Examiner agrees with Requester and the
Flinn Declaration that Dike's disclosed C++ programs contain classes, which are an
abstraction of underlying code and related data structures, that C++ classes are compiled
into dynamic libraries are typically loaded before the code is executed or the data is

referenced by the program.

Examiner asserts that Dike (at 2.3) provides a master runtime system process (a set of
Linux processes / a virtual machine, as a virtual kernel running on Linux) to interpret and
instantiate the representation of a class definition in a memory space of the master
runtime system process. “A Linus virtual machine (master runtime system process) is
capable of running nearly all of the applications and services available on the host

architecture (broadly loading and resolving a representation of a class, such as object

Application/Control Number: 95/001,560 ‘ Page 44
Art Unit: 3992

instances derived from a C++ class source definition).” A virtual machine interprets.
Dike’s fork or clone process (responsive to-a process request) duplicates virtual machine
system processes, creating a child runtime system process in a child runtime
environment. “...the new address space (separate memory space for child’s runtime
system process / cloned child runtime environment) ‘to be a copy of the parent address
space, and the new process has the same registers as the old one... (share some memory
space, until a modification is requested as confirmed by Steinberg’s copy-on-write
teachings)” See Dike at 2.1. “When a new process is created (child runtime
enviroﬁment)...creates a new process in the host for each new process in the virtual
machine...system call in the forking process (clone) returns the pid (process identification
/ child process virtual machine) of the new process.” (2.3) At 4.2 Dike explains that
there are several motivations to want isolation (by use of multiple virtual machines)...to
protect the physical machine and its resources from a potentially hostile process...to
allocate machine resources...Running many virtual machines on a large server offers the
advantages of a dedicated machine together with the administrative conveniences of

having everything running on a single machine (conserving overhead).

Examiner opines that it would have been obvious to one of ordinary skill in the art at the
time of the invention to combine Dike's disclosure, directed to virtual machines in a
Linux environment, making using of a fork() system call, with Steinberg's disclosure of
the Linux fork() system call and the explicit use of the copy-on-write mechanism. The
Steinberg reference describes the copy-on-write mechanism of the Linux fork() system
call that is disclosed by Dike: "The normal means by which a Linux process can create

new tasks is the fork system call. This system call creates an exact copy (clone) of the

Application/Control Number: 95/001,560 | Page 45
Art Unit: 3992

calling process, which then becomes the calling process' child process. The created child
process inherits copies of the parent process data space, heap and stack, which are copied
on demand using a copy-on-write mechanism." Steinberg at 21; see also Steinberg at 16

(describing the Linux clone functionality).

Examiner agrees with Requester’s position and maintains the rejections based on Dike

and Steinberg.

Rejections based on Bryant in view of Bach

Patent Owner asserts (Remarks 07/05/2011, pp. 21-22) that Bryant teaches away from
or at least fails to provide any motivation to combine Bryant with any process, such as
copy-on-write, that would reduce memory us.age. Bryant discloses a Java server
preloading all the classes that would be potentially needed by requesting applications.
(2:46-54.) Bryant also discloses a child Java server selecting a subset of the preloaded
classes when a particular Java application executes. (Id.) Clearly, by loadi’ng all
potentially needed classes, Bryant is not concerned about memory usage reduction,
having been implemented in a web server environment having substantial memory
resources. Rather, Bryant 'is directed to faster startup at the expense of memory usage.
(Bryant, 2:32-36, 46-63; 7:36-40) Patent Owner cites to the Goldberg Declaration,

paragraph 16.

Application/Control Number: 95/001,560 Page 46
Art Unit: 3992

Patent Owner opines that the description in Bach (pp. 289-290) of the motivation for
copy-on-write teaches away from a combination with Bryant. Bach notes that a call to
exec soon after the fork call wastes address space (when not using a copy-on-write
mechanism). Patent Owner asserts that Bryant’s fork call is not followed by a call to an
exec (thus there is no need for a copy-on-write mechanism). Patent Owner asserts that
modifying Bryant to implement a copy-on-write memory would change the principle of
operation of Bryant. The modification would require the operating system to change how
it implements the fork system call. Patent Owner cites to the Goldberg Declaration,

paragraphs 16-17.

Patent Owner asserts that Bryant already discloses streamlining and accelerating a Java
machine by loading all potentially needed classes for faster startup and then selecting the
actually needed classes therefrom. Given that copy-on-write technology was known as
early as 1986, when Bach was published and twelve years before Bryant was filed as a
patent application, it clearly was not obvious to use copy-on-write "to streamline and -
accelerate a Java machine." Otherwise, Bryant would have done so. Patent Owner cites

to the Goldberg Declaration, paragraphs 16-18.

Patent Owner asserts (Remarks 07/05/2011, p. 24) that Bryant teaches away from copy-
on-write as stated above. Second, computer scientists at the time did not think about
using copy-on-write technology with process cloning for Java virtual machines. Patent

Owner cites to the Goldberg Declaration, paragraph 18. Rather, as evidenced by the

Application/Control Number: 95/001,560 Page 47
Art Unit: 3992

cited references, other schemes were used to manage memory for multiple Java virtual
machines or multiple Java processes. Thus, rather than cast its mind back to the time of
invention to be guided by what the references teach, the Office has simply used the
claimed elements as a blueprint or road map to find them in the prior art. This is
impermissible. (MPEP 2145(X)(A).) Interconnect Planning Corp. v. Feil, 774 F.3d 1132,

1139.

Patent Owner asserts that dependent claims are paténtable over the combination for at
least the same reasons as their respective independent claims. Claims 4 and 13 directed to
a "class resolver" are patentable because Bryant merely discloses that classes are
preloaded and does not disclose that the classes are resolved. Claims 6 and 15 directed to
a "process cloning mechanism" are patentable at least by virtue of the patentability of
their independent claims. Claims 21 and 22 directed to a "resource controller" are also
patentable because Bryant' s disclosure of the child Java server receiving information
though a pipe cénnection from the Java server has nothing to do with a resource

controller "to set operating system level resource management parameters."

Requester (Third Party Requester Comments 08/04/2011, pp. 12-15) notes that Patent
Owner concedes that Bryant discloses a class preloader, a master runtime system process,
and a runtime environment. Requester notes that Patent Owner concedes that Bach
discloses a copy-on-write process cloning mechanism. Regarding Patent Owner’s
arguments asserting that Bryant “teaches away,” Requester opines (p. 13) that “if the

system of Bryant were built on one of the many UNIX operating systems implementing

Application/Control Number: 95/001,560 Page 48
- Art Unit: 3992

copy-on-write (including Linux), then it would necessarily benefit from the copy-on-
write technique. (For support Requester cites to Flinn, paragraphs 16-19; Schimmel at
10; Bovet at 225.) Requester opines that systems with substantial memory resources
face significant resource constraints as they are designed to support the large and
unrelenting workloads one would expect in a web server environment like the one
addressed by Bryant. In a web server environment, more efficient memory management
results in the ability to save expense by both providing fewer servers for a given demand
for a service and by provisioning less memory per server...web server Would still benefit
from decreased startup times and overhead impacts. - “Thus, a person having ordinary
skill in the art at the time of the invention would be inclined to combine the references to

increase performance by reducing startup times and overhead impacts.”

Requester opines (p. 14) that Bryant was filed in 1998 by engineers at the Hewlétt
Packard Company, which at leach as early as April 1997, had implemented copy-on-write
technology in its commercial UNIX operatihg system, called HP-UX. Even if HP-UX
was not the operating environment of the Bryant system, there would have motivation to
make use of a copy-on-write enabled operating system environment to enable the system
to manipulate processes more efficiently. Requester cites to the HP-US White Pater (at

p.96) and the Flinn Declaration, paragraph 21 for support.

Requester asserts (p. 14) that because copy-on-write is an OS-level variant of the fork()
command, the disclosure of Bryant could function within a copy-on-write enabled

environment without changing a single line of its code. Requester asserts that Patent

Application/Control Number: 95/001,560 Page 49
Art Unit: 3992

Owner’s noted difficulties involved in replacing (the Goldberg Declaration, paragraph
17) a “standard fork” with a “copy-on-write fork are completely without merit. HP was
developing the Bryant system just after it had finished updating its HP-UX operating
system environment to include copy-on-write technology. HP engineers developing the
Bryant system had every reason to implement their improvements on the most current HP
operating system so as to ensure compatibility and extend the useful life of their

' improvements. The fact that the HP-UX operating system had implemented copy-on-
write technology more than a year before the filing data of the application disclosing the
Bryant system shows the combination is not and cannot be based on impermissible
hindsight. Requester cites to the Flinn Declaration, paragraphs 22-23 for support.
Regarding the dependent claim arguments, Requester asserts that arguments are
conclusory and without support. The citations in the Request render the dependent

claims unpatentable.

Examiner notes the conflict in Patent Owner’s argument: “...by loading all potentially
needed classes (broadly resolves classes by loéding referenced classes), Bryant is not
concerned about memory usage reduction.” In fact the ‘720 Specification (720, 2: 66 —
3: 3: 1) recites “During initializatio;l, the master runtime system process preloads classes
and interfaces likely to be required by user applications at runtime.” Bryant is as
concerned about memory usage (memory access usage) as Patent Owner. Bryant
discloses (2: 50-47-49) «...initialization of the Java virtual machine to speed up the actual
execution ...” and (7: 38-40), «__.it is faster to connect up to the Java servér 160 and have

it fork a child and execute the correct code than to load and execute the correct code.”

Application/Control Number: 95/001,560 Page 50
Art Unit: 3992

Examiner asserts that Bryant is silent regarding whether his invention calls exec
immediately following a fork() call. Examiner agrees that the assignee of Bryant’s ‘367
patent, Hewlett-Packard Company, likely implemented the Bryant HP apparatus and

- method on an HP UNIX (HP-UX) operating system that by default inclﬁdes copy-on-
write technology as an operating system variant of the fork() system call (which
addresses the quantity of memory used). When Bach was pliblishéd and when Bryant
was filed as a patent application, it clearly was obvious to use copy-on-write "to
streamline and accelerate” a cloned process, because it was a default operating system
call. Bach is relied upon for teaching copy-on-wfite as a default operating system call.
Regarding the arguments directed towards a "resource controller," Examiner notes that
environmental arguments (as cloned from parent process in system operating system) are
received on the pipe connection. Examiner agrees with Requester's rebuttal and

maintains the rejections based on the Bryant / Bach combination.

Rejections based on Bryant in view of Traut

Regarding the rejections based on the combination of Bryant and Traut, Patent Owner
asserts (Remarks 07/05/2011, pp. 25-26) that Bryant and Traut are not combinable
because: (a) Bryant teaches away from the combination regarding copy-on-write cloning;
(b) the combination changes the principle of operation of Bryant regarding how the fork
system call is implemented; (c) the reasons for the combination are insufficient to support

a prima facie case of obviousness; (d) the combination is based on impermissible

Application/Control Number: 95/001,560 Page 51
Art Unit: 3992

hindsight that uses the '720 Patent as a road map to find these elements in the prior art;
(€) Traut teaches away from the "copy-on-write process cloning mechanism" and toward
a copy-on-access cloning mechanism for its child virtual machine; and (f) Traut and
Bryant's virtual machines are too different to reasonably teach the skilled person how to

transfer Traut's teachings to Bryant's virtual machine. The combination also does not

disclose the dependent claims.

Patent Owner asserts that Traut describes its own system as using copy-on-write when
the parent process modifies a page, not when the child process does so. ([0026], [0030])
Traut describes the child using an advantageous copy-on-access technique. ({0031],
[0034]-[0035]; FIG. 3.) It is clear that Traut leads the skilled ...away.from using copy-
on-write for the child virtual machine. This is because Traut's goal is to copy all memory
to the child either immediately or over time ([0032], [0039]) and copy-on-access achieves
that goal. This is fundamentally different from the '720 Patent,- in which the goal is to
copy as needed. Patent owner cites to the Goldberg Declaration, paragraph 20. Had
Traut intended that copy-on-write be used with the child virtual machine, Traut would
certainly have done so, particularly in view of the parent virtual machine using copy-on-

write.

Patent Owner asserts that Traut's virtual machine emulates a hardware machine
([0006]), whereas Bryant's Java virtual machine emulates a software machine. (1:61-65.)
As an example, Traut's virtual machine interprets machine code, whereas Bryant's Java

virtual machine interprets Java bytecodes. The skilled person looking to implement a

Application/Control Number: 95/001,560 _ Page 52
Art Unit: 3992

"copy-on-write process cloning mechanism" in a Bryant Java virtual machine would not

have looked to Traut to do so. Patent Owner cites to Goldberg, paragraph 21.

For the reasons that claims 4, 6, 13, 15, 21, and 22 are not disclosed in Bryant and Bach,
they are also not disclosed in Bryant and Traut. The remaining dependent claims are
patentable over the combination for at least the same reasons as their respective

independent claims.

Requester (Third Party Comments, 08/04/2011, pp. 15-16) rebuts Patent Owner’s
“teaches away" argument. Traut discusses [0026-0029] ‘copy-on-write’ and the

combination of forking with the concept of a virtual machine to improve conversion of

~

shared resources, when both virtual machines [parent and child] are running on the same
host. Traut discloses an eﬁbodiment where the parent and child are located on the same
host computer, where resource sharing is possible and so memory is kept as copy-on-
write.

“Traut plainly points one of skill in the art towards use of the copy-on-write fork, and
even discloses that this functionality is 'often’ already included in the operating systems
current in and around Traut's July 2002 filing date.” Requester cites to the Flinn

Declaration, paragraphs 25-28.

Requester asserts (p. 16) that Bryant and Traut are both directed to the emulation of a
machine, a software machine and hardware machine, respectively. Requester opines the

emulation of the two types of machines is so functionally similar that it is often taught in

Application/Control Number: 95/001,560 ‘ Page 53
Art Unit: 3992

successive sections with the same chapter of computer science textbooks. Requester cites
to Silberschatz 2 at §§3.6.1-3.6.3 for supporting evidence and to the Flinn Declaration,

paragraph 29 for support.

Requester asserts (p. 16) that Patent Owner’s arguments directed towards dependent
claims are conclusory and without support. Requester points to the citations submitted

in the original Request.

Examiner opines that Traut teaches [0003-0006] a virtual machine, guest computer
system that emulates the software instruction set mapped to the host processor.
Examiner notes that Traut is directed towards [0011] “increasing the efficiency of virtual
machine processing” and expressly discloses forking (“to create a child virtual machine at
a new location without a least a first portion of the stored data,” i.e., share some data).
Citing an exemplary UNIX process, Traut explains [0026] that a fork copy on write
technique shares pages that are not modified, thereby saving memory resources, an
making the forking process faster. Traut discloses “demand paging.” See FIG. 2 &
[0026]: When either the parent virtual machine process or the child virtual machine
process attempts an access to write to a write protected shared memory, a copy of the
data is made for each virtual machine process (thus modifications to certain data are
isolated within particular virtual machine environments). “Pages that are not modified
can continue to be shared between the two processes.” The type of code that a virtual

machine executes is not narrowly construed. Claim language recites the code source as

Application/Control Number: 95/001,560 Page 54
Art Unit: 3992

object oriented program code. Examiner agrees with Requester and maintains the

rejections based on the combination of Bryant / Traut.

Rejections based on the Srinivasan / Bach combination

Regarding the rejections based on the combination of Srinivasan and Bach, Patent
Owner asserts (Remarks 07/05/2011, pp. 27-32) Srinivasan and Bach are not combinable
because: (a) the combination fails to disclose any of the claimed elements, as the |
combination merely discloses simple Perl program code that describes how to create and
use a Perl package, without disclosing the base ‘element, i.e., the "class preloader," and
hence the remaining claimed elements devised therefrom; and (b) the reasons for the
combination are insufficient to provide a prima facie case of obviousness. Even if the
claimed elements were added to Srinivasan, the skilled person would have no idea how to
cobble them together to achieve the claimed invention, except by impermissibly using the

“720 Patent as a road map.

Patent Owner asserts that Srinivasan is basically a programming manual to show the
'/skilled person how to program various discrete concepts in Perl, a scripting language. .
These disparate sections mark a sum total of 10 pages scattered throughout different and
sometimes "stand alone" chapters of a 400-page manual,' with no teaching or suggestion
how each of the separate elements should be used together. The combination also does

not disclose the dependent claims.

Application/Control Number: 95/001,560 Page 55
Art Unit: 3992

Sﬁnivésan (pp.'389-390, 98, 99, 101, 323- 324, 370) does not disclose or suggest a "class
preloader to obtain a representation of at least one class from a source definition ,provided
as object-oriented program code." Srinivasan, pp. 389- 390, merely discloses an example
of Perl program code used to create and use an object package. Srinivasan does not
disclose that the Perl program code includes a "class preloader.”" Srinivasan, p. 98,
discloses differences between a Perl package and a Java package; p. 99, that Perl can be
used to build objects; and p. 101, that Perl objects of certain types can belong to a class.
Srinivasan, pp. 323-324, discloses that a Perl translator can convert a Perl script into
opcodes that can be executed by a virtual machine. Srinivasan, p. 370, discloses that a
Perl compiler can translate a Perl script into C code. Srinivasan’s example Perl program
code that executes a Unix fork system call (pp. 193-194) has nothing to do with a
"representation as a class definition." The parent “environment" and "open file
descriptors"” in the parent's memory space are not a "representation as a class definition."
Srinivasan does not disclose (pp. 321 & 323) how the multiple interpreters are created or
that any of the interpreters is a "master” interpreter "to interpret and to instantiate the
representation as a class definition in a memory space” of that interpreter. The
interpreters' main and loaded packages are not the "memory space" contents. Because the
above élements are absent from Srinivasan, the "master runtime system process" that

recites them is also absent.

Patent Owner asserts that the combination of Srinivasan and Bach fail to disclose a
“runtime environment” as a child runtime system process request and to execute the child

runtime system process. Srinivasan does not disclose (pp. 193-195) the "class preloader,"

Application/Control Number: 95/001,560 Page 56
Art Unit: 3992 ’

the "master runtime system process," and its "memory space,” €.g., its memory space
contents, as described above. Patent Owner cites to the Goldberg Declaration,
paragraph 22. Srinivasan’s disclosure of Perl program code to execute a fork system call
has nothing to do with a "class definition" that would be contained in the forked memory
space. That is, this section of Srinivasan does not disclose that the program code
"clone[s] the memory space [of the master runtime system process having an interpreted
and instantiated representation of a class definition]." Srinivasan’s shows forking a
process containing a socket, as written in Perl. Srinivasan and Bach fail to disclose the
copy-on-write process cloning mechanism to instantiate the child runtime system process
by copying references to the memory space of the master runtime systerﬁ process [having
an interpreted and instantiated representation of a class definition provided as object-
oriented program code] into a separate memory space for the child runtime system
process, and to defer copying of the memory space of the master runtime system process
until the child runtime system process needs to modify the referenced memory space of

the master runtime system process.

Patent Owner opines that Bach (pp. 192, 287,289-290) is directed to the forking process,
not to the contents of the forked memory space. Because previously argued elements
("class preloader," the "master runtime system process," its "memory space," e.g., its
memory space contents, and the "runtime environment") are not taught by the Srinivasan
/ Bach combination, the "copy-on-write process cloning mechanism" that recites them is

also absent.

Application/Control Number: 95/001,560 . Page 57
. Art Unit: 3992

Patent Owner asserts (Remarks 07/05/2011, pp. 30-31) that the cited sections of
Srinivasan would require a “leap” to cobble together and could not be done without
guidance from the '720 Patent. Patent Owner cites to the Goldberg Declaration,
paragraph 23. For example, the Action picks piecemeal from a Srinivasan section that
describes Perl syntax (e.g., Appendix B, pp. 389-390), a section that describes object
orientation (e.g., Chapter 7, pp. 99, 101), and a section that describes éPerl system (e.g.,
Chapter 19, pp. 323-324) in an attempt to find a disclosure of the "class preloader." The
Action similarly picks from a Srinivasan section that describes Perl prograrﬁ code for
networking (e.g., Chapter 12, pp. 193-194) and a section that describes a Perl system
(e.g., Chapter 19, pp. 323-324) in an attempt to find a disclosure of the "master runtime
system process.”" Similar attempts are made regarding the "runtime environment" and the
"copy-on-write process cloning mechanism" as v;fell. The skilled person could only know
to combine the cited Srinivasan sections to achieve the claimed invention from Patent

Owner's disclosure...impermissible hindsight and is not allowed as the basis for rejection.

Patent Owner asserts that there are insufficient reasons to establish a prima facie case of
obviousness. Given that copy-on-write technology was known as early as 1986, when
Bach was published and eleven years before Srinivasan was published, it clearly was not
obvious to use copy-on-write "to further streamline the impact on system memory" (Non
Final Office Action, 05/05/2011, p. 37) in Perl systems. Otherwise, Srinivasan would
have done so. Moreover, there is no disclosure in either Srinivasan or Bach to suggest

that the fork system call "commonly used in conjunction with the copy-on-write

Application/Control Number: 95/001,560 Page 58
Art Unit: 3992

mechanism" could be used "to clone the memory space of a master runtime system
process [having an interpreted and instantiated representation of a class definition
provided as object-oriented program code]." Patent Owner cites to the Goldberg

Declaration, paragraphs 22-23.

Regarding the dependent claims, Patent Owner asserts that claims 4 and 13, directed to a
"class resolver," are patentable because thé Srinivasan/ Bach combination fails to disclose
the "class preloader"” that obtains a "class definition" (therefore cannot disclose the "class
resolver" to resolve the absent class definition), claims 6 and 15, directed to a "process
cloning mechanism" are patentable because Srinivasan fails to disclose the "memory
space" (e.g., its interpreted and instantiated representation of a class definition and
therefore cannot disclose the "process cloning mechanism" that copies the absent memory
space), and claims 21 and 22, directed to a "resource controller" are patentable because
Srinivasan does not disclose the requisite "child runtime system process," on which fhe

"resource controller" operates.

Requester asserts (Third Party Comments 08/04/2011, pp. 23-26) that Patent Owner
seeks to narrow the field of relevant prior art to only those disclosures dealing with Java
computer code. Requester asserts that a person having ordinary skill in the art at the
time of the invention would have certainly looked to Perl. “Srinivasan is an instructional
computer science text; it merely expects you to know the essentials of Perl. See

Srinivasan at xi. Requester posits that one of ordinary skill in the art at the time of the

Application/Control Number: 95/001,560
Art Unit: 3992

invention, i.e., December of 2003, would have been already in possession of or easily
capable of putting together the basic Perl concepts outlined in the Srinivasan text. See
the Flinn Declaration at paragraph 52. Requester and Flinn note that Perl is an object
oriented computer language. Perl modules (analogous to classes) are loaded (as an
example preload a Perl socket module into parent process) using “use” or “require”
commands. Srinivasan discloses (pp. 194-195) the creation of a child process from a
parent process using the fork() system call (to clone). Srinivasan (p. 87), “[t]he
advantage of use is that when a program starts executing, there’s a guarantee that all

required modules have been successfully loaded (classes loaded and resolved)...”

Requester opines that a person having ordinary skill in the art seeking to improve Java
performance would have looked to other object oriented languages, such as Perl.

Requester cites to the Flinn Declaration, paragraphs 48-49 and Hess, p. 1 for support.

Examiner agrees with Requester, that the combination of Srinivasan and Bach provide

an obvious teaching that maps to the claimed '720 invention and maintains the rejections.

Rejections based on the combination of Sexton and Bugnion

Regarding the rejections based on the combination of Sexton and Bugnion, Patent
Owner asserts (Remarks 07/05/2011, pp. 32-36) the combination does not disclose, (a)
the "runtime environment” (b) the "copy-on-write process cloning mechanism" because
Bugnion, cited for this element, lacks the requisite cloning, i.e., "to clone," in a "runtime

environment" and copy-on-write cloning.

Page 59

Application/Control Number: 95/001,560 Page 60
Art Unit: 3992

Patent Owner submits that the Office has mistakenly equated "spawned" with "to
clone." Sexton clearly describes "spawned" to mean instantiation, in which a virtual
machine instance is created from a virtual machine class (i.e., a "VM data structure").
(8:3-5.) Sexton does not disclose that the "spawned" Java virtual machines are either all
clones of an undesignated master Java virtual machine, or one of the virtual machines is
the undesignated master and the others are clones. Sexton does not disclose virtual
machine cloning. Patent Owner cites to the Goldberg Declaration, paragraph 24.
Because the combination does not disclose the above elements, the "runtime

environment” that recites them is also not disclosed.

The Sexton / Bugnion combination fails to teach: a copy-on-write process cloning
mechanism to instantiate the child runtime system process by copying references to the
memory space of the master runtime system process into a separate memory space for the
child runtime system process, and to defer copying of the memory space of the master
runtime system process until the child runtime system process needs to modify the

referenced memory space of the master runtime system process.

While Bugnion discloses (6:29-36; 14:55-15:35; 15:66-16:1) each virtual machine
referencing shared data, e.g., the code and buffer cache, in the machine memory and the
machine memory having copy-on-write capabilities (14:55-15:25; FIG. 4), Bugnion does
not disclose that any of the virtual machines is the result of cloning. Patent Owner cites

to the Goldberg declaration, paragraph 25.

Application/Control Number: 95/001,560 Page 61
Art Unit: 3992

Bugnion does not disclose the "master runtime system process” that owns the machine
memory or the "child runtime system process" that is cloned and that references and/or
needs to modify the memory space of another virtual machine. Bugnion does not
disclose that the machine memory is the "memory space" of any one of the virtual
machines. The machine memory is an independent shared memory that each virtual
machine can referencg (or map to), but not own. (6:29-36.) Neither is a virtual machine's
physical memory the claimed "memory space" because it is not accessible by any other
virtual machine for referencing thereto and/or copying therefrom. (FIG. 4.) Bugnion
further does not disclose the "copy-on-write process cloning mechanism." Bugnion
merely discloses using copy-on-write disks for machine memory, with no indication that
the copy-on-write disks are associated with cloning of the virtual machines. (14:55-15:35;
15:66- 16:1.) Because Bugnion does not disclose the above elements, Bugnion also does
not disclose the "copy-on-write process cloning mechanism" that recites them. This

deficiency is not corrected by Sexton, as acknowledged by the Action. (Action at 44.)

Sexton discloses a segmented memory model for the virtual machines, where session and
call memories of each virtual machine are set up to store data to be modified by the
virtual machine, and shared memory is set up to store data not to be modified by any
virtual machine. (6:59-67; 7:1- 11, 31-45; FIGs. 2, 3.) Sexton leads the skilled person to
provide individual memories, €.g., session memories, upon instantiation of a virtual
machine so as to store data that the virtual machine intends to modify and, therefore,
away from a shared memory that uses copy-on-write to store such data, fundamentally

different from Bugnion, which initially sets up all the data (modifiable and unmodifiable)

Application/Control Number: 95/001,560 Page 62
Art Unit: 3992

in a global machine memory. Sexton did not consider sharing modifiable data between
virtual machines, having set up the session and call memories. Accordingly, Sexton
teaches away from the combination. Modifying Sexton to implement copy-on-write,
would replace a segmented memory model having a read-only shared memory with a
copy-on-write shared memory, thereby changing the principle of operation of Sexton.

Patent Owner cites to the Goldberg Declaration, paragraphs 26-27.

Patent Owner asserts that Requester's reasons for the combination of Sexton and
Bugnion are insufficient to establish a prima facie case of obviousnesg. Patent Owner
disagrees with Non Final Office Action, (05/05/2011, p. 46) reasons for combining the
prior art. The combination does not disclose all of the claimed elements, as described

above. The skilled person reading Sexton would not consider modifying Sexton to

. include copy-on-write because Sexton has already set up a memory model to avoid

unnecessary copying by initializing a shared memory area to store "necessary files" of
Java classes. There need not be any further copying because the session memories store
any data specific to that session's virtual machine. Sexton has reduced the session
memory to the extent necessary, such that copy-on-write would be ineffective and

unneeded.

It clearly was not obvious to use copy-on-write for "reducing session memory by sharing
data between multiple Virtual Machines" to "only copying necessary files." Otherwise,

Sexton would have done so. Patent Owner cites to the Goldberg Declaration,

Application/Control Number: 95/001,560 Page 63
Art Unit: 3992

paragraphs 24-27.

Regarding dependent claims 4 and 13 (directed to a "class resolver"), Sexton merely
discloses that class déta is shared and does not disclose that classes are resolved.
Regarding dependent claims 6 and 15 (directed to a "process cloning mechanism"),
Sexton does not disclose its Java virtual machines being the result of cloning, but merely
the result of instantiating a virtual machine data structure. Bugnion does not disclose how
its virtual machinés are created. Regarding dependent claims 21 and 22 (directed to a
"resource controller"), said claims are patentable at least by virtue of the patentability of

their independent claims.

Requester notes (Third Party Comments 08/04/2011, p. 38) that Patent Owner admits
(Patent Owner Remarks, p. 34) the Sexton & Bugnion prior art combination discloses
“each virtual machine referencing shared data," which undercuts Patent Owner’s
assertion of a long felt need for a shared memory space. The Flinn Declaration does not

address rejections based on the Sexton / Bugnion combination.

Examiner asserts that Sexton discloses “instantiating separate Java virtual machines for
each session established by a server. Virtual machine instances can be created and run in
separate units of execution that are managed by the operating system.” (Abstract)
Sexton, teaches (‘114, 3: 21-23), "...the server may respond to the request by causing the
Java virtual machine (master process) to spawn (allocate space and copy/instantiate) a

second thread for executing the second Java program (child process). This action broadly

Application/Control Number: 95/001,560 Page 64
Art Unit: 3992

teaches “cloning” and “resolving” classes of a Java Virtual Machine operating on a server
runtime environment. Broadly Examiner opines that the terms read on Sexton’s
teachings. Examiner cites to an Applicant response (12/18/2007, pp. 9-10) in reference
to cloning / instantiation/ and copying and the 720 specification: "This cloning
mechanism instantiates the child runtime system process by copying references to the
memory space of the master runtime system process into a separate memory space for the

child runtime system process.”

Sexton (114, 12: 1-23) discloses a first virtual machine instance (master runtime) and a
second virtual machine instance (child runtime) that are “distinct instances of the same
type of virtual machine” (i.e., cloned). Sexton discloses (‘114, 12: 66-67) that as part of
“spawning” “storing a pointer within said data structure (data structure of first virtual
machine is spawned) to provide access to the data stored in the shared state area. Sexton
discloses (‘114, 13: 22-27) virtual machine instances share data stored in said shared state
area allocated in volatile memory within said server. (‘114, 14: 4-18), Virtual machines
shares resources / stored values associated with an object class. Sexton discloses (‘114,
14, 30-32) ”...scheduling, for execution (by interpreting) in a system thread, the particular
virtual machine instance...” Notably the ‘720 specification recites (‘720, 4:\50-53),
“Each operating system supports a process cloning mechanism that sbawns multiple and
independent isolated user applications by cloning the memory space of specifiable
processes. An example ...fork() system call...” and (‘720, 7: 58-61), “Initialization and
execution of the application associated with the cloned JVM process 34 requires less

time, as only the page table entries 62 are copied to clone the master JVM process

Application/Control Number: 95/001,560 Page 65
Art Unit: 3992

context.” Sexton discloses (‘114, 5: 34-37), “The separate VM instances can be created
and run, for example, in separate units of execution that are managed by the operating
system of the platform on which the server is executing.” As discussed in prior
arguments above, known operating system calls include clone() and fork(). Except for
the copy-on-write feature, Examiner opines that Sexton provides an obvious discl(;sure

of claim limitations.

Regarding Patent Owner’s arguments asserting that session memories storing data as
teaching away, Examiner notes that Sexton recognized the need to separate memory
segments by providing for a shared state area read only memory [write protected,
database instance memory 220, stores read-only data and instructions, e.g., bytecodes of
the JAVA classes] (‘114, 8: 40-64, to store methods, method table and‘ fields) and a data
structure within each individual [virtual machine session] session space is used to store

session specific values [‘114, 7: 10-11, i.e., Java class variables].

Regarding the arguments directed towards a “class resolver,” Examiner notes that by

virtue of creating VM instances, necessary classes are loaded, thus resolved.

Sexton recognized the need for shared and non-shared memory spaces. Given the goal of
the reduction of overhead of Sexton (Sexton, 5: 53-65; 8: 40-64), it would be obvious to
one of ordinary skill in the art to combine Sexton with the well-known copy on write
technology, thereby placing the artisan in possession of the invention. Bugnion discloses

that "[t]he virtual subnet and networking interfaces of Disco also use copy-on-write

Application/Control Number: 95/001,560 ‘ Page 66
Art Unit: 3992

mappings to reduce copying and to allow for memory sharing." (Bugnion, 6: 29-36; 14:

55-64; 14: 66- 15: 35; 15: 66 - 16: 1)

Rejections base on the combination of Sexton and Johnson

Requester and the Flinn declaration did not address Patent Owner's comments (Remarks
07/05/2011, pp. 36-39) regarding the rejections based on the combination of Sexton and
Johnson. |
Examiner notes that while\ Johnson (18: 34-44) appears to disclose shared address space
(SAS) copy on write storage, the SAS shared storage is only shared among instances of a
class running within a particular JVM. Johnson is silent regarding the sharing of copy on
write memory between virtual machines. Johnson does not appear to provide an obvious

teaching of:

“a copy-on-write process cloning mechanism to instantiate the child runtime
system process by copying references to the memory space of the master runtime
system process into a separate memory space for the child runtime system
process, and to defer copying of the memory space of the master runtime system
process until the child runtime system process needs to modify the referenced
memory space of the master runtime system process.” (similarly recited in all
independent claims)

Examiner withdraws the prior rejections of claims 1-8, 10-17, and 19-22 under 35

U.S.C. § 103(a) as obvious over Sexton in view of Johnson.

Secondary Considerations

Patent Owner asserts (Remarks 07/05/2011, pp. 39-41) that evidence of secondary

considerations demonstrates the nonobviousness of the claimed invention. When

Application/Control Number: 95/001,560 Page 67
Art Unit: 3992

evaluating the nonobviousness of a claimed invention, such evidence must be considered,
and "may often be the most probative and cogent evidence in the record.” Stratoflex, Inc.
v. Aeroquip Corp., 713 F.2d 1530, 1538 (Fed. Cir. 1983); Transocean Offshore

Deepwater Drilling, Inc. v. Maersk Contractors USA, Inc., 2010 U.S. App. LEXIS 17181

at "14-'15 (Fed. Cir. August 18, 2010).

Patent Owner developed a commercial embodiment of the '720 Patent called Connected
Device Configuration-Application Management System (CDC AMS). CDC AMS is a
distributed system for launching and managing multiple applications that includes, inter
alia, virtual machine instances, each application having its own instance, and copy-on-
write technology for memory management of the virtual machine instances. (Appendix
C, Runtime Guide at 5-1 through 5-12; Appendix B, Porting Guide at 12-1 through 12-
12.) Patent Owner also presented CDC AMS at JavaOne, a premier Java conference.

(Appendix J, JavaOne Presentation.)

Some customers requested a product embodying the claimed invention, e.g., CDC AMS,
because of the performance and memory efficiencies therein. These customers wanted
memory usage reduction, as provided by the "copy-on-write process cloning
mechanism," for such applications as multi-task printing, e-reader technology, and VoIP

telephony, because this reduction was a good fit for their multi-process environments.

Patent Owner asserts that since the implementation of Java virtual machines, there has

been a need among system developers to have efficient use of memory between multiple

Application/Control Number: 95/001,560 Page 68
Art Unit: 3992

virtual machine processes, while providing a robust environment for executing the
multiple virtual machine processes concurrently. Patent Owner cites to the Goldberg
~ Declaration, paragraph 30, Appendix F, Shared Memory Blog and Appendix G, Reduced

Footprint Biog.

The naive approach that was developed involved starting multiple instances of a Java
virtual machine, each process having and executing its own virtual machine instance and
each virtual machine instance having a distinct address space that is physically separate
from that of other virtuai machines. There were several drawbacks to this approach,
mainly due to the dynamic nature of Java virtual machines. Wheh each process got its
own virtual machine, the initialization cost was repeated for each virtual machine, there
was no shared memory between the processes, and common libraries were duplicated
among processes. As a result, memory usage was inefficient. Patgnt Owner cites to the

Goldberg Declaration, paragraph 30. y

A later approach was developed to reduce the memory footprint associated with running
concurrent Java virtual machines. In this approach, the virtual machines shared some
memory between the processes, while maintaining individual memory spaces. This
approach had its own drawbacks. Initialization costs were still repeated for each virtual
machine and the individual memory spaces were not always necessary. Memory usage
improved, but was still inefficient. (Id.) Patent Owner cites to Appendix L, Kawachiya

Paper.

Application/Control Number: 95/001,560 Page 69
Art Unit: 3992

As smaller devices having limited or otherwise constrained memory resources emerged,
these approaches were no longer viable because their memory usage requirements were
greater than the device memory resources available. Patent Owner cites to the Goldberg

Declaration, paragraph 30.

Recognizing this unsatisfied need for efficient memory usage, Patent Owner developed
and patented a new approach to virtual machine memory management, as in the claimed
invention of the '720 Patent, that used copy-on-wﬁte with process cloning to share
memory between a master virtual machine and a cloned virtual machine until the cloned
virtual machine needed to modify the shared memory. As a result, Patent Owner'é
approach was well suited for smaller devices having limited memory resources because it
shared common libraries between processes, it did not have to repeat initialization costs
for each cloned virtual machine, and it shared memory between processes by default.

Patent Owner cites to the Goldberg declaration, paragraph 31.

Patent Owner opines (Remarks 07/05/2011, p. 41) that Google copied the claimed
invention, presumably in order to come up with its competing Android software without
having to invest the substantial time and resources that Patent Owner did in the' claimed
inyention. Patent Owner cites to Appendix H, Compiaint for Patent and Copyright
Infringement Demand for Jury Trial, Oracle America, Inc v. Google, Inc, cv 10 — 03 561

at 5-6, 8-9. Google's own public disclosures, e.g., websites, presentation videos and

Application/Control Number: 95/001,560 Page 70
Art Unit: 3992 '

slides, and open source code, describe Android software that has the functionality of the
'720 patent, further-evidencing copying of the claimed invention. Indeed, a side-by-side
comparison (Appendix J) of Patent Owner' s CDC AMS description and Google's
Android description and source code, with respect to claim 1 of the '720 Patent,

demonstrates copying by Google.

Patent Owner additionally cites to (Remarks 07/05/2011, footnotes at p. 41):
Appendix I, Zygote. See also, generally, http.//www.developer.android.com.

~ Appendix D, Android Presentation, and corresponding Video, "Google I/0 2008 -
Anatomy and Physiology of an Android," by Patrick Brady, http.://developer.android,
com/videos/index.html (follow "Google I/O Sessions" tab; follow "Google I/O 2008 -

Anatomy and Physiology of an Android" hyperlink; last visited June 29, 2011).

Appendix E, Dalvik Presentation, and corresponding Video, "Google I/O 2008 - Dalvik
Virtual Machine Internals," by Dan Bornstein,
hitp://developer.android.com/videos/index.himl ~ (follow "Google I/O Sessions" tab;
follow "Google I/O 2008 - Dalvik Virtual Machine Internals” hyperlink; last visited June

29, 2011).

Appendix J, Copy Chart. See also, generally, http://android. git. kernel.org.

Requester (Third Party Comments 08/04/2011, pp. 26-30) opines that Dr. Goldberg’s

opinions (Goldberg Declaration, paragraph 30) concerning the knowledge and needs of

Application/Control Number: 95/001,560 Page 71
Art Unit: 3992

developers (the need among developers for efficient use of memory and the awareness
among developers of disadvantages associated with Java virtual machines) is defective
because Dr. Goldberg fails to define what level of ordinary skill in the art he employed in
developing his opinions. Requester also noted Dr. Goldberg’s references (Goldberg
Decla;ation, paragraphs 18, 23, 27) to the “mindset at the time of the claimed invention”
and opinions regarding the numerous prior art references. Requester states, “Because
Dr. Goldberg fails to set forth his definition of the level of ordinary skill, it is impossible

to evaluate whether his opinions have merit.”

Requester opines that Patent Owner’s invention was a “clear, obvious, and even trivial
implementation as evidenced by Patent Owner’s Appendix F (Bug ID: 4416624 report),
noting a following developer comment/discussion (Exhibit 11) regarding the forking of

new virtual machines as a trivial implementation.

Requester asserts that Patent Owner’s admission (Patent Owner Remarks, 07/05/2011, p.
34) that the Sexton / Bugnion combination discloses “each virtual machine referencing

shared data,” undercuts the assertion of a long-felt need for a shared memory space.

Requester opines (p. 29) that Patent Owner’s copying arguments are unsupported and
conflict with their previous arguments and interpretations of the claim elements.
Requester asserts that Google developed the accused technology independently,
leveraging well-known techniques the prior art such as the Linux fork() system call.

Whereas Patent Owner argues that the Google I/O 2008 NPL is evidence of copying

Application/Control Number: 95/001,560 Page 72
Art Unit: 3992

(Remarks 07/05/2011; p. 41), Requester notes that the Google I/O 2008 presentation was
originally released prior to the issue date of the ‘720 patent (where the ‘023 application
had been subject to a non-publication request). Requester asserts (p. 29) that Patent
Owner's unsupported copying allegations provide none of the actual, direct evidence of
copying required by Federal Circuit case law. See Wyers v. Master Lock Co., 616 F.3d
1231, 1246 (Fed. Cir. 2010) (copying requires evidence such as "internal company
documents, direct evidence such as disassembling a patented prototype...and using [it] as

a blueprint to build a replica, or access to the patented product”).

Requester questions Patent Owner’s interpretation of the term “class preloader” as
encompassing only a “Java class preloader,” noting Patent Owner’s Exhibit J cites to
standgrd Java functionality. Requester notes that Patent Owner does not dispute that the
accused Dalvik Virtual machine does not run Java bytecode. Requester notes that Patent
Owner points to zygote bytecode that initializes a Dalvik virtual machine using copy-on-
write (a non Java embodiment) as evidence that Requestor copied Patent Owner’s
invention. Requester asserts (p. 30) that the Dalvik virtual machine cannot fall within

the claim scope and thus cannot demonstrate copying.

Examiner notes, in support of the assertion of a long felt need, that Patent Owner has
submitted Appendix J to show a nexus between all independent claims, limitation by
limitation with Patent Owner' s CDC AMS description and Google's Android description.

Examiner agrees with Requester that "copying” evidence requires extensive

Application/Control Number: 95/001,560 Page 73
Art Unit: 3992

documentation (such as "internal company documents, direct evidence such as
disassembling a patented prototype...and using [it] as a blueprint to build a replica, or
access to the patented product). Examiner agrees with Requester that there is little
support (considering the Sexton / Bugnion comments) for an argument based on a long

felt need.

In addition, notably, an argument asserting a “long felt need” is improper against an
anticipation rejection (Dike in view of Steinberg; Non Final Office Action 05/05/2011,
beginning at p. 16). Evidence of secondary considerations, such as unexpected results or
commercial success, is irrelevant to 35 U.S.C. 102 rejections and thus cannot overcome a

rejection so based. In re Wiggins, 488 F.2d 538, 543, 179 USPQ 421, 425 (CCPA 1973).

Examiner agrees with Requester and Dr. Flinn regarding the Patent Owner’s lack of
description of one of ordinary skill in the art, at the time of the invention, with respect to
the claimed séope of the invention. Thus, Patent Owner arguments, based on what one of
ordinary skill in the art at the time of the invention would consider to be obvious, are

difficult to access.

Examiner asserts that regarding the forking of new virtual machines (indicated as a
trivial implementation), using the copy-on-write mechanism (which had already been
known and, by default, in use in many operating systems), and the fact that it was known
for multiple virtual machines to reference shared data, supports a conclusion of

obviousness that a person of ordinary skill in the art (a person educated and / or with

Application/Control Number: 95/001,560 Page 74
Art Unit: 3992 '

work experience in programming languages, and operating system programming) would
consider cloning virtual machines and sharing copy-on-write memory space to reduce
system overhead and memory resources. Examiner agrees with Requester that a

modification to implement a fork() copy-on-write mechanism would be trivial.

Examiner has weighed Patent Owner’s and the Goldberg Declaration, but is not

persuaded given the abundance of evidence presented by Requester's rebuttal.

In summary, the following rejections are maintained and incorporated by reference to the
Non Final Office Action 05/05/2011:
1. Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(5) as rendered

obvious by Webb in view of Kuck and further in view of APA-Bach

2. Claims 1-7, 10-16, and 19-22 are unpatentable under 35 U.S. C. § 102(b) as anticipated

by Dike in view of Steinberg

3. Claims 1-7, 10-16, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered

obvious by Dike in view of Steinberg

4. Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered

obvious by Bryant in view of APA-Bach

Application/Control Number: 95/001,560 Page 75
Art Unit: 3992

5. Claiins 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered

obvious by Bryant in view of Traut

6. Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered

obvious by Srinivasan in view of APA-Bach

7. Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered

obvious by Sexton in view of Bugnion

Examiner has withdrawn the following rejection:
Claims 1-8, 10-17, and 19-22 are unpatentable under 35 U.S. C. § 103(a) as rendered

obvious by Sexton in view of Johnson

Claims 9 and 18 have not been requested for reexamination and have not been

reexamined.

This 1s an ACTION CLOSING PROSECUTION (ACP); see MPEP § 2671.02.

(1) Pursuant to 37 CFR 1.951 (a), the patent owner may once file written comments
limited to the issues raised in the reexamination proceeding and/or present a proposed
amendment to the claims whicH amendment will be subject to the criteria of 37 CFR
1.116 as to whether it shall be entered and considered. Such comments and/or proposed
amendments must be filed within a time period of 30 days or one month (whichever is

longer) from the mailing date of this action. Where the patent owner files such comments

Application/Control Number: 95/001,560 Page 76
Art Unit: 3992

and/or a proposed amendment, the third party requester may once file comments under 37
CFR 1.951 (b) responding to the patent owner's submission within 30 days from the date

of service of the patent owner's submission on the third party requester.

(2) If the patent owner does not timely file comments and/or a proposed amendment
pursuant to 37 CFR 1.951 (a), then the third party requester is precluded from filing

comments under 37 CFR 1.95 I(b).
(3) Appeal cannot be taken from this action, since it is not a final Office action.

Any comments considered necessary by PATENT OWNER regarding the above
statement musf be submitted promptly to avoid processing delays. Such submission by
the patent owner should be labeled: "Comments on Statement of Reasons for

Patentability and/or Confirmation" and will be placed in the reexamination file.

Extensions of time under 37 CFR 1.136(a) will not be permitted in inter partes
reexamination proceedings because the provisions of 37 CFR 1.136 apply only to "an
applicant” and not to the patent owner in a reexamination proceeding. Additionally, 35
U.S.C. 314(c) requires that inter partes reexamination proceedings "will be conducted
with special dispatch" (37 CFR 1.937). Patent owner extensions of time in inter partes
reexamination proceedings are provided for in 37 CFR 1.956. Extensions of time are not
available for third party requester comments, because a comment period of 30 days from

service of patent owner's response is set by statute. 35 U.S.C. 314(b)(3).

Any paper filed with the USPTO, i.e., any submission made, by either the Patent Owner

or the Third Party requester must be served on every other party in the reexamination

Application/Control Number: 95/001,560 | Page 77
Art Unit: 3992

procéeding, including any other Third Party requester that is part of the proceeding due to
merger of the reexamination proceedings. As proof of service, the party submitting the
paper to the Office must attach a Certificate of Service to the paper, which sets forth the
namé and address of the party served and the method of service. Papers filed without the
required Certificate of Service may be denied consideration. 37 CFR 1.903; MPEP

2666.06.

The Patent Owner is reminded that any proposed amendment to the specification
and/or claims in this reexamination proceeding must comply with 37 CFR 1.530(d)-(),
" must be formally presented pursuant to 37 CFR 1.52(a) and (b), and must contain any

fees required by 37 CFR 1.20(c).

Amendments in an inter partes reexamination proceeding are made in the same
manner that amendments in an ex parte reexamination are made. MPEP 2666.01. See
MPEP 2250 for guidance as to the manner of making amendments in a reexamination

proceeding.

The Patent Owner is reminded of the continuing responsibility under 37 CFR 1.985(a), to
apprise the Office of any litigation activity, or other prior or concurrent proceeding,
involving the instant Patent Under Reexamination or any related patent throughout the
course of this reexamination proceeding. The Third Party requester is also reminded of
the ability to similarly inform the Office of any such activity or broceeding throughout

the course of this reexamination proceeding. See MPEP §§ 2686 and 2286.04.

Application/Control Number: 95/001,560 Page 78
Art Unit: 3992

All correspondence relating to this Inter Partes reexamination proceeding should be

directed:

By EFS: Registered users may submit via the electronic filing system EFS-Web, at
https://efs.uspto.gov/efile/myportal/efs-registered

By Mail to: Mail Stop Inter Partes Reexam
' Attn: Central Reexamination Unit
Commissioner for Patents United States Patent & Trademark Office
P.O. Box 1450
Alexandria, Virginia 22313-1450

By FAX to: (571) 273-9900
Central Reexamination Unit

By hand: Customer Service Window
Attn: Central Reexamination Unit
Randolph Building, Lobby Level

401 Dulany Street
Alexandria, VA 22314

Any inquiry concerning this communication or earlier communications from the
examiner, or as to the status of this proceeding, should be directed to the Central

Reexamination Unit at telephone number (571) 272-7705.

/Mary Steelman/ Conferees:

Mary Steelman, Primary Examiner /EBK/

Central Reexamination Unit - Art Unit 3992 M

(571) 272-3704
MARK J. REINKART
CRU SPE-AU 39882

	2011-11-18 Action Closing Prosecution (nonfinal)

