UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria, Virginia 22313-1450

WWW.uspto.gov

r APPLICATION NO,] FILING DATE FIRSTNAMED INVENTOR | ATTORNEY DOCKETNO. | CONFIRMATION NO. |
95/001,548 ’ 02/17/2011 6910205 13557.112021 1709
25226 7590 08/1912011
EXAMINER
MORRISON & FOERSTERLLP r |
755 PAGE MILL RD KISS, ERIC B
PALO ALTO, CA 94304-1018 :
» CA 943 | ART UNIT | PAPER NUMBER I
3992
| MAIL DATE I DELIVERY MODE J
- 08/19/2011 PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

PTOL-90A (Rev. 04/07)

UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents

United States Patents and Trademark Office
P.0.Box 1450

Alexandria, VA 22313-1450
WWW.USplo.gov

DO NOT USE IN PALM PRINTER

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS Date: .
- KING & SPALDING M AILED
1180 PEACHTREE STREET, NE
ATLANTA, GA 30309-3521 AUG 19 201
CENTRAL AEEXAMINATION UNIT

Transmittal of Communication to Third Party Requester
Inter Partes Reexamination

REEXAMINATION CONTROL NO. : 95001548
PATENT NO. : 6910205

TECHNOLOGY CENTER : 3999

ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified Reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this
communication, the third party requester of the inter partes reexamination may once file
written comments within a period of 30 days from the date of service of the patent owner's
response. This 30-day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot
be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no
responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed
to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end
of the communication enclosed with this transmittal.

PTOL-2070(Rev.07-04)

L\

. . . Control No. Patent Under Reexamination
Transmittal of Communication to)
Third Party Requester 95/001,548 6910205
. . Examiner Art Unit
Inter Partes Reexamination
ERIC B. KISS 3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office
in the above-identified reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication,
the third party requester of the inter partes reexamination may once file written comments within a
period of 30 days from the date of service of the patent owner's response. This 30-day time period is
statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive
submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the
Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the
communication enclosed with this transmittal.

U.S. Patent and Trademark Office Paper No. 20110607
PTOL-2070 (5/04)

Control No. Patent Under Reexamination
OFFICE ACTION IN INTER PARTES | o001 548 5910205
REEXAMINA TION Examin,er Art Unit
ERIC B. KISS 3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

Responsive to the communication(s) filed by:
Patent Owner on
Third -Party(ies) on

RESPONSE TIMES ARE SET TO EXPIRE AS FOLLOWS:

For Patent Owner's Response:

2 MONTH(S) from the mailing date of this action. 37 CFR 1.945. EXTENSIONS OF TlME ARE
GOVERNED BY 37 CFR 1.956.
For Third Party Requester's Comments on the Patent Owner Response:

30 DAYS from the date of service of any patent owner's response. 37 CFR 1.947. NO EXTENSIONS
OF TIME ARE PERMITTED. 35 U.S.C. 314(b)(2).

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central
Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

This action is not an Action Closing Prosecution under 37 CFR 1.949, nor is it a Right of Appeal Notice under
37 CFR 1.953.

PART |. THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1.[_] Notice of References Cited by Examiner, PTO-892
2.[X] Information Disclosure Citation, PTO/SB/08

3]
PART Il. SUMMARY OF ACTION:

1a.[X] Claims 1-4 and 8 are subject to reexamination.
1b. [X] Claims 5-7 and 9-14 are not subject to reexamination.

2. [] Claims have been canceled.
3. [Claims are confirmed. [Unamended patent claims]
4. [Claims are patentable. [Amended or new claims]
5. [X] Claims 1-4 and 8 are rejected.
6. [] Claims are objected to.
7. [] The drawings filed on (] are acceptable (] are not acceptable.
8. [] The drawing correction request filed on is: [approved. [] disapproved.
9. [] Acknowledgment is made of the claim for priority under 35 U.S.C. 119 (a)-(d). The certified copy has:
] been received. (] not been received. [been filed in Apphcatlon/Control No 95001548.
10.[] Other .
U.S. Patent and Trademark Office Paper No. 20110607

PTOL-2064 (08/06)

Application/Control Number: 95/001,548 - Page2
Art Unit: 3992

DETAILED ACTION

Claims 1-4 and 8 of United States Patent 6,910,205 are under reexamination.

I REFERENCES CITED IN THE REQUEST

The request cites the following patents and printed publications:

1. L. Peter Deutsch et al., Efficient Implementation of the Smalltalk-80 System,
Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pp. 297-302, 1984 (hereinafter, “Deutsch”);

2. David Wakeling, 4 Throw-Away Compiler for a Lazy Functional Language, Fuji
International Workshop on Functional and Logic Programming, pp. 287-300, 1995
(hereinafter, “Wakeling”);

3. Brian T. Lewis et al., Clarity MCode: A Retargetable Intermediate
Representation for Compilation, ACM, IR 95, 1/95, San Francisco, California, USA, pp.
119-128, 1995 (hereinafter, “Lewis”);

4, Paul Tarau et al., The Power of Partial Translation: An Experiment with the C-
Ification of Binary Prolog, ACM Symposium on Applied Computing, pp. 152;156, 1995
(hereinafter, “Tarau”);

5. Frank Yellin, The JIT Compiler API, The JIT Compiler API, October 4, 1996, pp.
1-23 (hereinafter, “Yellin”);

6. U.S. Patent 6,081,665 (Nilsen et al.);

7. U.S. Patent 5,842,017 (Hookway et al.);

8. Peter Magnusson, Partial Translation, Swedish Institute of Computér Science

Technical Report (T93.5), Oct. 1993 (hereinafter, “Magnusson”); and

Application/Control Number: 95/001,548 Page 3
Art Unit: 3992 '

9. U.S. Patent 5,768,593 (Walters et al.).

II. INFORMATION DISCLOSURE STATEMENT

Consideration by the examiner of the information submitted in an information disclosure
statement means that the examiner will consider the documents in the same manner t};e party
filing the information citation has explained the content and relevance of the information. The
initials of the examiner placed adjacent to the citations on the form PTO/SB/08A and 08B or its
equivalent, without an indication to the contrary in the record, do not signify that the information
has been considered by the examiner any further than to the extent noted above. See MPEP §§
609.05(b), 2256, and 2656.

The information disclosure statement filed on April 27, 2011, has been given due
consideration. Documents with fail to constitute prior art patents or p'rinted publications have
been lined through on the Form PTO/SB/08 so as not to be published on the reexamination
certificate, but have been considered to the extent noted above. Documents that have previously

cited and considered have also been lined through.

III. REJECTIONS PROPOSED IN THE REQUEST

Within the scope of this reexamination proceeding, the request proposes the following
rejections (Request for Inter Partes Reexamination, pp. 37-40):

1. Proposed: Claims 1-4 and 8 are unpatentable under 35 U.S.C. § 102(b) as being

anticipated by Tarau, (id. at 37 (citing the claim chart in Exhibit 14));

2. Proposed: Claims 1-4 and 8 are unpatentable under 35 U.S.C. § 102(b) as being

anticipated by Magnusson, (id. at 38 (citing the claim chart in Exhibit 18)),

Application/Control Number: 95/001,548 Page 4
Art Unit: 3992

3 Proposed: Claims 1-4 and 8 are unpatentable under 35 U.S.C. § 103(a) as being
obvious over the Walters °593 patent in view of Tarau, (id. at 39 (citing the claim chart in
Exhibit 19)); and
4. Proposed: Claims 1-4 and 8 are unpatentable under 35 U.S.C. § 103(a) as being
obvious over the Walters ’593 patent in view of Magnusson, (id. at 40 (citing fhe claim

chart in Exhibit 19)).

IV. CLAIM REJECTIONS §§ 102(B) AND 103(A)

A. Relevant statutes

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the
basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(b) the invention was patented or described in a printed publication in this or a foreign

country or in public use or on sale in this country, more than one year prior to the date of

application for patent in the United States.

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or

described as set forth in section 102 of this title, if the differences between the subject

matter sought to be patented and the prior art are such that the subject matter as a whole

would have been obvious at the time the invention was made to a person having ordinary

skill in the art to which said subject matter pertains. Patentability shall not be negatived

by the manner in which the invention was made.

- B. Tarau

The proposed rejection of claim 8 under 35 U.S.C. 102(b) as being anticipated by

Tarau is adopted.

Application/Control Number: 95/001,548 Page 5

Art Unit: 3992

The following claim chart shows the correspondence between the *205 patent claim and

pertinent teachings of Tarau.

205 Patent

Tarau

8. In a computer system, a
method for increasing the
execution speed of virtual
machine instructions, the
method comprising:

“We describe a new language translation framework (partial
translation) and the implementation of one of its instances: the C-
ification of Binary Prolog.

“Partial C-ification is a translation framework which compiles
sequences of emulator instructions down to native code (on top of
a C compiler). In the case of logic programming languages, their
complex control structure, some large instructions, and the
management of the symbol table are left to the emulator while the
native code chunks will deal with relatively long sequences of
simple instructions.

“The technique can be seen as an automatic specialization with
respect to a given program of the traditional instruction folding
techniques used to speed-up emulators.” Tarau at 152.

inputting virtual machine
instructions for a function;

Prolog code (source code) is converted to interpreted WAM
instructions (virtual machine instructions for the Warren Abstract
Machine or the simplified BinWAM,).

“By a straightforward modification of the emulator written in C we
replace some contiguous sequences of interpreted WAM
instructions by lightweight C-routines (C-chunks) which get called
from a slightly differently compiled version of the emulator, linked
together with them.” Tarau at 153.

“We refer the reader to [11] for a more formal description of

the binarization transformation and to [4] for its relationship to the
Warren Abstract Machine (WAM) - the abstract engine used as a
basis of most modern Prolog implementations. With ‘AND-
continuations’ reified as an extra argument of each goal, we
manage to have only one call on the right side (b/1 in the previous
example). This allows the use of a simplified, yet powerful reduced
instruction set WAM-like execution model (BinWAM), as
described in [8, 9, 10, 12]. The main difference at code generation
level between the WAM and the BinWAM is the call-return
mechanism for the former versus the no-return, continuation
passing execution for the latter.” Tarau at 153.

Application/Control Number:
Art Unit: 3992

95/001,548 Page 6

Tarau further discloses an example Prolog clause chosen for
translation wherein the clause may be considered a function
(defined as, “A software routine (also called a subroutine,
procedure, member, and method)”; see col. 4, lines 18-19 of the
"205 patent): :

“Prolog version

“We have chosen the following clause containing some duplicate
symbols and numbers:

treesize(tree(Left,Right),S0,S) :-
add(S0,i,S1),
treesize(Left,S1,S2),
treesize(Right,S2,S).

“Binarized version
“After binarization, our example becomes:

treesize(tree(Left,Right),S0,S,C) :-
add(S0,1,S1,
treesize(Left,S1,S2,
treesize(Right,S2,S,C))).

“Hence, every clause gets an extra argument that carries the
continuation, i.e., the part of the program that is still to be
executed. Before add/4 can be started, its continuation consisting
of the nested treesize/4 terms is created on the heap.

“It is precisely the creation of this continuation, and the preparation
of the arguments for add/4 that will be subject to C-ification.”
Tarau at 153.

“From this binary form we obtain the following WAM-code:

Application/Control Number:
Art Unit: 3992

95/001,548 Page 7

f1] clause_? treesize 4
(2] firstarg.? tree/2 11

[3) get_structure tree/2 var(l) % tree/2
[4] unify_variable var(5) % Left
[S] unify_variable var(6) % Right
[6) get_variable arg(2) var(1) % s0

(7] c_chunk_begin 15 var(7)
(8] put_structure treesize/4 var(8) % maka continuation

(9] write_value var(s) % Left
{10} write_variable var(5) % st
[11]) write_variable var(9) % s2

[12] write_variable var(10)
[13) push_structure treesize/4 var(10)

{14) write_value var(6)} % Right

{15) write_value var(9) % s2

(16] write_value var(3) %S

{17] write_value var(4) % C

[18] put_constant arg(2) 1 %1

{19) put_value arg(3) var(5) % s

[20] put_value arg(4) var(8) % move continuation
[21] c_chunk_end 15 var(7) % to its register

[22] execute_? add 4

Tarau at 153.

compiling a portion of the
function into at least one
native machine instruction
so that the function
includes both virtual and
native machine instruction;

“Note the presence of ¢_chunk_begin and ¢_chunk_end in the
WAM-code. The C-routine will be generated from the sequence of
instructions between them.” Tarau at 153.

“To be able to call a C-routine from the emulator we have to know
its address. Unfortunately, the linker is the only one that knows the
eventual address of a C-routine. A simple and fully portable
technique to plug the address of a C-routine into the byte code is to
C-ify the byte-code of the emulator into a huge C array of records,
containing the symbolic address of the C-chunks. After
compilation, and linking with the emulator, the linker will
automatically resolve all the missing addresses and generate
warnings for the missing C-routines. The result will be a stand
alone Prolog application (see Figure 2).” Tarau at 153.

The C-routine is compiled into native machine code:

“It is interesting to take a look at the actual assembly (Sparc,
Solaris 2.x, gcc -02) listing, which shows clearly that our objective
to have high quality code has been attained with minimal effort (H
is in %00, regs is in %ol, and P is in %02).

“EMULATOR DATA STRUCTURE:

.word xx 399

Application/Control Number: 95/001,548 Page 8

Art Unit; 3992

.byte 6
.byte 0
.half 4
.word .LLC993

C CHUNK :
xx_399:
st %00, [Yo01+32]
1d [%02] ,%g2
st %,g2, [%000]
Id [%01+20] ,%g3
Id [%01+32] ,%g2
st %g3,[%ol+12]
retl
st %g2,[%01+16]

“It can be seen that the mapping to a sequence of load-store
instructions with precomputed offsets gives efficient code, which
can be reorganized quite freely by super-scalar schedulers.” Tarau
at 154.

representing said at least
one native machine
instruction with a new
virtual machine instruction
that is executed after the
compiling of the function.

A C-call is generated in the P-code section of the emulated
program. The final argument list of the C-call (containing the
resolved address of the C-routine) is built once by the loader of the
emulator. The C-call is a new virtual machine instruction that is
executed (by the emulator) after compilation of the function:

“EMULATOR DATA STRUCTURE:
(63,7,0, (void *)xx_399},
(6,0,4,"treesize"}, /* argument of xx_399 */

“All Prolog symbols are internalized by the emulator. The Prolog
symbols that are needed by the C-chunk are put in the argument list
of the C-call on a constant offset from the current P-pointer (here
only one argument). So, the chunk can access them with a single
load operation at no extra cost, and an optimizing compiler can
take full advantage of this information and generate the most
efficient code for a particular sequence. All this is similar to
argument passing in threaded code [1].

Application/Control Number: 95/001,548 Page 9
Art Unit: 3992 '

“There is no need for the C-chunk to directly access the Prolog
symbol table. The final argument list of the C-call is built once by
the loader of the emulator.” Tarau at 154.

The proposed rejection of claims 1-4 under 35 U.S.C. 102(b) as being anticipated by

Tarau is not adopted.

Although Tarau does disclose generating a new virtual machine instruction that
represents or references one or more native instructions that can be executed instead of said first
virtual machine instruction (see Tarau as applied above in the rejection of claim 8), the
generation does not take place at runtime as required by claims 1-4. Instead, the instructions are
generated and compiled and linked with the emulator code to produce a new executable

emulator. See Tarau at 152.

Application/Control Number: 95/001,548 + Page 10

Art Unit: 3992

C. Magnusson

The proposed rejection of claims 1-4 and 8 under 35 U.S.C. 102(b) as being

anticipated by Magnusson is adopted. .

The following claim chart shows the correspondence between the 205 patent claims and

pertinent teachings of Magnusson.

*205 Patent

Magnusson

1. In a computer system, a
method for increasing the
execution speed of virtual
machine instructions at
runtime, the method
comprising:

“Traditional simulation of a target architecture by interpreting
object code can be improved by translating the object code to an
intermediate format. This approach is called interpretive
translation. Despite a substantial performance improvement over
traditional interpretation, a large part of the overhead is
unnecessary. An alternative approach is block translation, where
one or more simulated instructions are translated to directly
executable code. This approach has several drawbacks.

“We discuss the problems with block translation, analyse the
overhead of interpretive translation, and describe a hybrid
approach--partial translation--that combines the benefits of both

| approaches. Partial translation implements an intermediate format

that supports the addition of run-time generated code whenever
appropriate. The performance limit (slowdown) of interpretive
translation is around 15, and real implementations have achieved
20-30. Partial translation will perform considerably better. Finally,
we present results from an aggressive implementation of
interpretive translation, and results from a proof-of-concept
implementation of partial translation.” Magnusson at 3.

receiving first virtual
machine instruction;

“Figure 4 illustrates how of [sic] interpreting an intermediate
format can be combined with direct execution of generated code.
Assume that we wish to translate a sequence M88100 instructions
to native SPARC code. The intermediate code is in a 64-bit
format, where the first 32 bits points to the code that simulates the
corresponding instruction. The second 32 bits contain parameters
for the instruction. Each 88k instruction is translated to this
format.

“When execution of the program reaches the first instruction in the
block, the service routine being jumped to is actually a run-time
generated block of SPARC code. When this block has completed,

Application/Control Number:

Art Unit: 3992

95/001,548 Page 11

it will dispatch the first instruction after the block. ‘Dispatch’ here
means reading the intermediate format and jumping to the pointer
containing the first 32 bits.” Magnusson at 8.

The “intermediate code” instructions of Magnusson are machine
instructions for a software emulated M88100 microprocessor and
correspond to the claimed “virtual machine instructions”
(consistent with the explicit definition in col. 4, lines 10-12 of the
'205 patent).

The intermediate code instructions are read, i.e., received, at run-
time by the partial translation system and interpreted or
translated.

The first instruction in a block of intermediate code chosen to be
translated corresponds to the claimed “first virtual machine
instruction.” Examples include the “r7 = [r5]” instruction on p. 8
of Magnusson and the “or.ur31,r0,16416" instruction on p. 13 of
Magnusson.

generating, at runtime, a
new virtual machine
instruction that represents
or references one or more
native instructions that can
be executed instead of said
first virtual machine
instruction;

“There are two ways of combining the threaded code model with
block translation. Either the internal format includes a direct
pointer to the compiled block, or we introduce a new instruction,
TRANSLATED. This instruction takes as a parameter a pointer to
the translated block, and handles generic entry/exit issues. In the
former approach, the previous instruction dispatches the decoded
block directly (by jumping to it), and entry/exit code needs to be
compiled into every block. Both approaches have the advantage
that re-entry needs no special checks.” Magnusson at 9.

and executing said new
virtual machine instruction
instead of said first virtual
machine instruction.

“When execution of the program reaches the first instruction in the
block, the service routine being jumped to is actually a run-time
generated block of SPARC code.” Magnusson at 8.

2. The method of claim 1,
further comprising
overwriting a selected
virtual machine instruction
with a new virtual machine
instruction, the new virtual
machine instruction
specifying execution of the
at least one native machine

“There are two ways of combining the threaded code model with
block translation. Either the internal format includes a direct
pointer to the compiled block, or we introduce a new instruction,
TRANSLATED. This instruction takes as a parameter a pointer to
the translated block, and handles generic entry/exit issues. In the
former approach, the previous instruction dispatches the decoded
block directly (by jumping to it), and entry/exit code needs to be
compiled into every block. Both approaches have the advantage
that re-entry needs no special checks.” Magnusson at 9.

Application/Control Number:
Art Unit: 3992

95/001,548 Page 12

instruction.

“When execution of the program reaches the first instruction in the
block, the service routine being jumped to is actually a run-time
generated block of SPARC code.” Magnusson at 8.

3. The method of claim 2,
wherein the new virtual
machine instruction
includes a pointer to the at
least one native machine
instruction.

“Either the internal format includes a direct pointer to the
compiled block, or we introduce a new instruction,
TRANSLATED. This instruction takes as a parameter a pointer to
the translated block, and handles generic entry/exit issues.”
Magnusson at 9.

4. The method of claim 2,
further comprising storing
the selected virtual machine
instruction before it is
overwritten.

“During translation of the block, we estimate that the block will
take 8 cycles if executed (in this example, one cycle per
instruction except memory accesses which take two). We first
check if there are 8 or more cycles left, otherwise we abort to exit
0. Exit 0 dispatches the first instruction of the block as if it had
been an interpreted instruction. It does this by loading the
corresponding rOP value and branching to the interpretation code.
Of course, it knows exactly where to branch to. The overhead of
unsuccessfully attempting to dispatch the block is 5 instructions,
of which two are branches and none are memory accesses.”
Magnusson at 11.

8. In a computer system, a
method for increasing the
execution speed of virtual
machine instructions, the
method comprising:

“Traditional simulation of a target architecture by interpreting
object code can be improved by translating the object code to an
intermediate format. This approach is called interpretive
translation. Despite a substantial performance improvement over
traditional interpretation, a large part of the overhead is.
unnecessary. An alternative approach is block translation, where
one or more simulated instructions are translated to directly

.executable code. This approach has several drawbacks.

“We discuss the problems with block translation, analyse the
overhead of interpretive translation, and describe a hybrid
approach--partial translation--that combines the benefits of both
approaches. Partial translation implements an intermediate format
that supports the addition of run-time generated code whenever
appropriate. The performance limit (slowdown) of interpretive
translation is around 135, and real implementations have achieved
20-30. Partial translation will perform considerably better. Finally,
we present results from an aggressive implementation of
interpretive translation, and results from a proof-of-concept

Application/Control Number:
Art Unit: 3992

95/001,548 Page 13

implementation of partial translation.” Magnusson at 3.

inputting virtual machine
instructions for a function;

“Figure 4 illustrates how of [sic] interpreting an intermediate
format can be combined with direct execution of generated code.
Assume that we wish to translate a sequence M88100 instructions
to native SPARC code. The intermediate code is in a 64-bit
format, where the first 32 bits points to the code that simulates the
corresponding instruction. The second 32 bits contain parameters
for the instruction. Each 88k instruction is translated to this
format.

“When execution of the program reaches the first instruction in the
block, the service routine being jumped to is actually a run-time
generated block of SPARC code. When this block has completed,
it will dispatch the first instruction after the block. ‘Dispatch’ here
means reading the intermediate format and jumping to the pointer
containing the first 32 bits.” Magnusson at 8.

The “intermediate code” instructions of Magnusson are machine
instructions for a software emulated M88100 microprocessor and
correspond to the claimed “virtual machine instructions”
(consistent with the explicit definition in col. 4, lines 10-12 of the
'205 patent).

The intermediate code instructions are read, i.e., inputted, at run-
time by the partial translation system and interpreted or
translated.

Magnusson further discloses an example block of intermediate
code chosen for translation wherein the block comprises a portion
of a function (defined as, “A software routine (also called a
subroutine, procedure, member, and method)”’; see col. 4, lines
18-19 of the "205 patent):

“Consider the following example code:

label: r7 = [r5] ; read next word from source
[9] = (7 , store it to destination
s=r5+4 ; increment source pointer
=9 +4 ; increment destination pointer
cmp rl3,r9 ; finished?

br ne,<label> ; if not, continue

“The example code is written in pseudo-assembler, since the
discussion is processor independent. The example code above
might occur inside a block copy routine. Each iteration would take

120-180 instructions in a simulator based on interpretive

Application/Control Number: 95/001,548

Art Unit: 3992

Page 14

translation, i.e. assuming a slowdown of 20-30.” Magnusson at 8-
9.

compiling a portion of the
function into at least one
native machine instruction
so that the function
includes both virtual and
native machine instruction;

In the block copy routine example, Magnusson at 8-12, the
translated block of code is native machine code, but in the event of
certain runtime errors, the simulator can default to dispatching
and interpreting the intermediate code instead, and therefore, the
function includes both virtual and native machine instructions:

“The third check done upon entry is to assert that the instruction
pipeline looks the same as the translation routine thought it would.
The code generated in the translated block assumes a particular
content in the pipeline. This is not likely to change, but this check
is necessary for sake of correctness. It could be optimised away by
dispatching this block of code directly only by other translated
blocks, and checking the instruction pipeline only in the
TRANSLATED pseudo-instruction. If this check fails, then the
instructions are interpreted instead, so we branch to exit 0.”
Magnusson at 11.

representing said at least
one native machine
instruction with a new
virtual machine instruction
that is executed after the
compiling of the function.

“There are two ways of combining the threaded code model with
block translation. Either the internal format includes a direct
pointer to the compiled block, or we introduce a new instruction,
TRANSLATED. This instruction takes as a parameter a pointer to
the translated block, and handles generic entry/exit issues. In the
former approach, the previous instruction dispatches the decoded
block directly (by jumping to it), and entry/exit code needs to be
compiled into every block. Both approaches have the advantage
that re-entry needs no special checks.” Magnusson at 9.

“When execution of the program reaches the first instruction in the
block, the service routine being jumped to is actually a run-time
generated block of SPARC code.” Magnusson at 8.

D. The Walters 593 patent in view of Tarau

The proposed rejection of claims 1-4 and 8 under 35 U.S.C. 103(a) as being obvious

over the Walters *593 patent in view of Tarau is not adopted.

Application/Control Number: 95/001,548 Page 15
Art Unit: 3992

The Supreme Court in KSR noted that the analysis supporting a rejection under 35 U.S.C.
103 should be made explicit. KSR Int’l Co. v. Teleflex Inc., 550-U.S. 398, 418 (2007). The Court
quoting In re Kahn, 44i F.3d 977,988, 78 USPQ2d 1329, 1336 (Fed. Cir. 2006), stated that
“[R]ejections on obviousness cannot be sustained by mere conclusory statements; instead, there
must be some articulated reasoning with some rational underpinning to support the legal
conclusion of obviousness.’” Id.

The request relies exclusively on the Claim Chart attached as Exhibit 19 to provide the
factual basis supporting the proposed rejection, (Request at 39). However, the claim chart
contains conclusory statements that certain claim features would have been obvious “based on
the separate disclosures of each of the following prior art references, which individuaily disclose
this limitation in the context of the subject matter of the Walters *593 patent,” without providing
a legally tenable rationale for combining the cited teachings under § 103. (Exhibit 19 at 4, 6, and
16-17 (citing the claim charts of Exhibits 11 through 18).)

E. The Walters *593 patent in view of Magnusson

The proposed rejection of claims 1-4 and 8 under 35 U.S.C. 103(a) as being obvious
over the Walters "593 patent in-view of Magnusson is not adopted.

The request relies exclusively on the Claim Chart attached as Exhibit 19 to provide the
factual basis supporting the proposed rejection, (Request at 40). _However, the claim ;hart
contains conclusory statements that certain claim features would have been obvious “based on
the separate disclosures of each of the following prior art references, which individually disclose

this limitation in the context of the subject matter of the Walters *593 patent,” without providing

Application/Control Number: 95/001,548 Page 16
Art Unit; 3992

a legally tenable rationale for combining the cited teachings under § 103. (Exhibit 19 at 4, 6, and

16-17 (citing the claim charts of Exhibits 11 through 18).)

Application/Control Number: 95/001,548 ~ Page 17
Art Unit: 3992

V. CONCLUSION

Because the requester did not request reexamination of claims 5-7 and 9-14 and did not
assert the existence of a substantial new question of patentability (SNQ) for such clairﬁs, claims
5-7 and 9-14 will not be reexamined. See Sony Computer Entertainment A'merica Inc. v. Dudas,
85 USPQ2d 1594 (E.D. Va 2006) (“[W]hile the PTO in its discretion may review claims for
which inter partes review was not requested, nothing in the statute compels it to do s0.”).

The patent owner is reminded of the continuing responsibility under 37 CFR 1~.565(a) to
apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving
Patent No. 6,910,205 throughout the course of this reexamination proceeding. The third party
requester is also reminded of the ability to similarly apprise the Office of any such activity or
proceeding throughout the course of this reexamination proceeding. See MPEP §§ 2267, 2282
and 2286.

Any paper filed with the USPTO, i.e., any submission made, by either the patent owner
or the third party requester must be served on every other party in the reexamination
proceeding, including any other third party requester that is part of the proceeding due to
merger of the reexamination proceedings. As proc‘>f of service, the party submitting the paper to
the Office must attach a Certificate of Service to the paper, which sets forth the name and
address of the party served and the method of service. Pépers filed without the requirqd
Certificate of Service may be denied consideration. 37 CFR 1.903; MPEP 2666.06.

In order to ensure full consideration of any amendments, affidavits or declarations, or
other documents as evidence of patentability, such documents must be submitted in response to

this Office action. Submissions after the next Office action, which is intended to be an Action

Application/Control Number: 95/001,548 . Pagel8
Art Unit: 3992

Closing Prosecution (ACP), will be governed by 37 CFR 1.116(b) and (d), which will be strictly
enforced.
All correspondence relating to this inter partes reexamination proceeding should be

directed:

By Mail to: Mail Stop Inter Partes Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
United States Patent & Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

By FAX to: (571)273-9900
Central Reexamination Unit

By EFS: Registered users may submit via the electronic filing system EFS-WEB, at
https://efs.uspto.gov/efile/myportal/efs-registered :
By hand: Customer Service Window
Randolph Building

401 Dulany St.
‘Alexandria, VA 22314

Any inquiry concerning this communication or earlier communications from the
examiner, or as to the status of this proceeding, should be directed to the Central Reexamination
Unit at telephone number (571) 272-7705. '

/Eric B. Kiss/
Primary Examiner, Art Unit 3992

Conferees:

/Mary Steelman/
Primary Examiner CRU 3992

Al

	2011-08-19 Reexam - Non-Final Action

