| hereby certify that this correspondence is being filed using EFS-Web addressed to: Mail Stop
Ex Parte Reexam, Central Reexamination Unit, Commissioner for Patents, P.O. Box 1450,
Alexandria, VA 22313-1450, on the date shown below.

Dated: April 15, 2011 Signature: /Robert T. Neufeld/
Atty. Reg. No. 48,394

Docket No. 13557.112021

(PATENT)
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
In re Reexamination of:
Yellin et al. Control No.: Not yet Assigned
Patent No.: 6,061,520 Examiner: Not Yet Assigned
Issue Date: May 9, 2000 Art Unit: Not Yet Assigned

For: METHOD AND SYSTEM FOR PERFORMING
STATIC INITIALIZATION

REQUEST FOR EX PARTE REEXAMINATION UNDER 37 C.F.R. § 1.510
Mail Stop Ex Parte Reexam

Attn: Central Reexamination Unit

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

King & Spalding, LLP (hereinafter, ‘“Requester”) submits, under the provisions of
37 C.F.R. § 1.510 et seq., a Request for Reexamination (hereinafter, “Request”) of claims 1-4
and 6-23 of U.S. Patent No. 6,061,520 (hereinafter “the 520 patent”) entitled “Method and
System for Performing Static Initialization,” issued to Yellin et al. on May 9, 2000. The ‘520
patent is provided as Exhibit 1 to the Request.

In support of its request, Requester provides the following:

o The $2520.00 fee for requesting ex parte reexamination set
forth in 37 C.F.R. § 1.20(c)(1) (37 C.F.R. § 1.510(a));

o A statement pointing out each substantial new question of
patentability based on prior patents and printed publications
(37 C.F.R. § 1.510(b)(1));

o An identification of every claim for which reexamination is
requested, and a detailed explanation of the pertinency and
manner of applying the cited prior art to every claim for
which reexamination is requested (37 C.F.R.
§ 1.510(b)(2));

o A copy of every patent or printed publication relied upon or
referred to in paragraphs (b)(1) and (b)(2) of 37 C.F.R.
§ 1.510, accompanied by an English language translation of
all the necessary and pertinent parts of any non-English
language patent or printed publication (37 C.F.R.

§ 1.510(b)3));

o A copy of the entire patent including the front face,
drawings, and specification/claims (in double column
format) for which reexamination is requested, and a copy of
any disclaimer, certificate of correction, or reexamination
certificate issued in the patent. All copies must have each
page plainly written on only one side of a sheet of paper
((37 C.F.R. § 1.510(b)(4)) (Exhibit 1); and

o A certification that a copy of the request has been served in
its entirety on the patent owner at the address as provided
for in 37 C.F.R. § 1.33(c). The name and address of the
party served must be indicated. If service was not possible,
a duplicate copy must be supplied to the Office (37 C.F.R.

§ 1.510(b)(5)).

Pursuant to 35 U.S.C. § 303, the prior art references discussed in this Request raise
“substantial new questions of patentability” with respect to claims 1-4 and 6-23 of the ‘520

patent.

TABLE OF CONTENTS

TABLE OF CONTENTS 3

I. INTRODUCTION 4

II. STATEMENT UNDER 37 C.F.R. § 1.510 (B)(1) POINTING OUT SUBSTANTIAL NEW QUESTIONS

OF PATENTABILITY 6

A, OVERVIEW OF THE 520 PATENTuttiiieiitiintesiteeseesisteesseessseessssessseessssessesssssssssessssssssssssssssssssessnsessssesssnsssses 6

B. ASPECTS OF THE LAW GOVERNING REEXAMINATION.....ccccterrreesrueessuesssseesseesssseesssesssssessanssssassnessssasssasssssassanss 9

1. CHttion Of PYiOF QFL.......ottt 9

2. “Old” prior art can raise a significant new question of patentability.. 9

3. Obviousness standard under KSRc...oooiiiiiiiiioe et 10

4. Prior art references need not be enabling in an obviousness inquiry.............................. 11

5 Claims of the patent are to be broadly construedc.cccccccooviiiiiiimiiiiiiiiiniiiiiitiieiit e 12

C. EVIDENTIARY STANDARDSceecueeertterueeeseessueeessessssessssessssessssessssessssessssessssessssessssessssesssssssssessssesssesssassssasssses 12

D. PRIOR ART REFERENCES RELIED UPON IN THIS REQUESTcuvvieiiieiiurrireeeeireiitreereeeeessrsssesreessessssssssnsesesssssssnsnees 12

E. SUPPORTING DOCUMENTS DISCUSSED IN THIS REQUEST ...uvuvviiiiiiiiirrerreeeereitrrereeeeessrsssesreessessssssssnsesesssssssssnees 13

F. CURRENT LITIGATIONuiiecttriieeeiteeseeeeteesaeeetessssesseessssessssessssesssessssessssessssessssassssesssssssssssssssssnsessssessnaesnnes 13

G. IDENTIFICATION OF SUBSTANTIAL NEW QUESTIONS OF PATENTABILITY ...ceevvueeerteesueeereessrueesseesssessssessnesnnes 14

H. OVERVIEW OF SUBSTANTIAL NEW QUESTIONS OF PATENTABILITY ..eeeveeertersueeereeesuesereesssueesseessssessaessnesnnes 14
1. DETAILED EXPLANATION UNDER 37 C.F.R. § 1.510(B)(2) OF THE PERTINENCY AND

MANNER OF APPLYING THE CITED PRIOR ART TO EVERY CLAIM FOR WHICH

REEXAMINATION IS REQUESTED 23
A, REJECTIONS OF CLAIMS ...oootiuiniieetititeent ettt ettt st st sses e st et sses e e ss se st asen s be s st st ssen s bensseesesensesenssnens 23
1. Claims 14 and 17 are unpatentable under 35 U.S.C. § 102(b) as being anticipated by the Lewis

FEIF@IICE. ... e ettt et ettt et e 23

2. Claims 1-4 and 6-23 are unpatentable under 35 U.S.C. § 103(a) as rendered obvious by Lewis in
view of the Java Language Specification and further in view of the Java VM Specification 23

3. Claims 1-4 and 6-23 are unpatentable under 35 U.S.C. § 103(a) as rendered obvious by Lewis in
view of Dyer and further in view Of PrOebSting.ccoocviviiiiiiiiiiiiiie et 24
Iv. CONCLUSION 25

I. INTRODUCTION

Requester secks reexamination of claims 1-4 and 6-23 of the ‘520 patent (Exhibit 1)
under 35 U.S.C. §§ 302-307 and 37 C.F.R. § 1.510 ef seq. The application for the ‘520 patent
was filed on April 7, 1998. The ‘520 patent is assigned to Sun Microsystems, Inc.

This Request for Reexamination is related to the Request for Reexamination assigned
Control No. 90/011,489, filed on Feb. 17, 2011. The U.S. Patent and Trademark Office
(“USPTO”) on March 23, 2011 granted that Request for Reexamination as to claims 1-4, 6-13,
15, 16, and 18-23 based on the Lewis reference as discussed in more detail below.

The claims of the ‘520 patent relate to a method and system for “initializing static arrays
by reducing the amount of code executed by the virtual machine to statically initialize an array.”
See ‘520 patent, Abstract. Specifically, the Examiner allowed the ‘520 patent because its claims
include the limitation of “play execution” of code, or, “simulating the code without execution.”
See Notice of Allowability (Jan. 4, 2000) (attached as Exhibit 2). However, this limitation was
well-known prior to the filing of the application for the ‘520 patent: as described in further detail
below, the Lewis reference discloses the execution of computer code in order to “maintain a
running simulation of the MCode machine’s stack.” Further, Lewis discloses a platform-
independent interpreter, i.e., a virtual machine, and also discloses the simulation of the machine
stack as an MCode instruction, and the insertion of that instruction as, among other possibilities,
a constant.

In addition to the specific disclosures of Lewis, which anticipate the ‘520 patent, the Java
Language Specification and the Java VM Specification provide a robust backbone and
development guide for combination with and application of Lewis’s simulated execution to the
Java computer programming language. The Java computer programming language was
developed in part by Frank Yellin and Richard D. Tuck, the two inventors named on the ‘520

4

patent. The Java Language Specification and Java VM Specification serve as prior art
instructional guides on how to implement and optimize Yellin and Tuck’s creation. Included are
detailed descriptions for the implementation and optimization of specific concepts such as, e.g.,
static initializers, arrays, storage into constant pools, and implementation on a virtual machine.

Further, the concept of simulated execution of byte codes against a memory without
actual execution of the byte codes in order to identify, e.g., a static initializer of an array, was
commonly used in decompilers at and prior to the time of the invention. These decompilers,
often favored by software pirates and hackers but also capable of assisting a developer to
understand underlying code, do exactly what the *520 patent claims: they simulate the execution
of compiled bytecode against a memory without actually executing the byte code in order to
identify the underlying computer code. The prior art article by Todd A. Proebsting and Scott A.
Watterson, “Krakatoa: Decompilation in Java (Does Bytecode Reveal Source?),” discusses the
role and functionality of such decompilers, specifically focusing on the simulated execution
prevalent in the Krakatoa decompiler. And the prior art article by Dave Dyer, “Java decompilers
compared,” 18 a review of three other prior art decompilers; the Dyer disclosure is especially
relevant because it shows that the prior art decompilers were used to convert Java bytecode for
static initialization of an array into a single source code instruction for performing the same
operation.

The Requester has identified these five (5) printed publications that, alone or in
combination, either anticipate or render obvious claims 1-4 and 6-23 of the ‘520 patent. The
prior art printed publications pose a significant new question of patentability and they are not
cumulative of information cited to or considered by the Examiner during prosecution of the ‘520

patent. These printed publications anticipate or render obvious each element of the ‘520 patent,

including the purportedly novel application of the “play execution” of computer code that was
the basis for the ‘520 patent’s allowability.

Accordingly, at least in view of these listed prior art references and the substantial new
questions of patentability that they raise, the Requester respectfully requests the issuance of an
order for reexamination, and further requests that claims 1-4 and 6-23 be canceled. The
Requester respectfully requests that this Request be afforded special dispatch in accordance with
35 U.S.C. § 305 and 37 C.F.R. § 1.550.

The Requester further respectfully requests that the Director provide an order of action
dates to accompany the decision ordering reexamination of the ‘520 patent.

11. STATEMENT UNDER 37 C.F.R. § 1.510 (B)(1) POINTING OUT SUBSTANTIAL
NEW QUESTIONS OF PATENTABILITY

The new prior art references not previously considered by the Examiner raise substantial
new questions with respect to the patentability of claims 1-4 and 6-23 of the *520 patent. Section
II.A provides an overview of the ‘520 patent. Section II.B summarizes certain aspects of the law
regarding reexamination. Section II.C summarizes the evidentiary standards applicable to
reexamination. Section II.D provides a list of all prior art relied upon in this Request. Section
ILE provides a list of other supporting documents discussed in this Request. Section IL.F
provides a summary of pending litigation involving the ‘520 patent. Section II.G provides an
identification of the substantial new questions of patentability raised in this Request. Section
IL.H provides an overview of the substantial new questions of patentability raised in this Request.

A. Overview of the ‘520 Patent

The ‘520 patent broadly claims a method of receiving code, simulating, or “play
executing,” the execution of computer code without actually running the code in order to identify

the target operation, and then creating an instruction or shortcut allowing the processing

component to perform the target operation. This method is the basis of claim 6, the broadest of
the claims of the ‘520 patent. In a preferred embodiment, the ‘520 patent seeks to improve
“conventional systems for initialization of static arrays by reducing the amount of code executed
by the virtual machine to statically initialize an array.” See ‘520 patent, Abstract; see also ‘520
patent, Claim 1. Claims 1, 6, 12, and 18 are the independent claims.

Claim 1 recites:

A method in a data processing system for statically initializing an array,
comprising the steps of:

compiling source code containing the array with static values to generate a
class file with a clinit method containing byte codes to statically initialize the
array to the static values;

receiving the class file into a preloader;

simulating execution of the byte codes of the clinit method against a
memory without executing the byte codes to identify the static initialization of the
array by the preloader;

storing into an output file an instruction requesting the static initialization
of the array; and

interpreting the instruction by a virtual machine to perform the static
initialization of the array.

Claim 6 recites:

A method in a data processing system, comprising the steps of:

receiving code to be run on a processing component to perform an
operation;

play executing the code without running the code on the processing
component to identify the operation if the code were run by the processing
component; and

creating an instruction for the processing component to perform the
operation.

Claim 12 recites:

A data processing system comprising:

a storage device containing:

a program with source code that statically initializes a data structure; and

class files, wherein one of the class files contains a clinit method that
statically initializes the data structure;

a memory containing:

a compiler for compiling the program and generating the class files; and

a preloader for consolidating the class files, for play executing the clinit
method to determine the static initialization the clinit method performs, and for
creating an instruction to perform the static initialization; and

a processor for running the compiler and the preloader.

And Claim 18 recites:

A computer readable medium containing instructions for controlling a data
processing system to perform a method, comprising the steps of:

receiving code to be run on a processing component to perform an
operation;

simulating execution of the code without running the code on the
processing component to identify the operation if the code were run by the
processing component; and

creating an instruction for the processing component to perform the
operation.

The 520 patent issued from U.S. Patent Application Serial No. 09/055,947. The 520
patent does not claim priority to any previous documents. During prosecution of the underlying
application for the ‘520 patent, the applicants received one Office Action, rejecting Claims 1 and
3 under 35 U.S.C. § 102(b) as anticipated by Cierniak, “Briki: an optimizing Java compiler,”
objecting to Claims 2, 4, and 5 as depending from a rejected claim, and allowing Claims 6-23.
Interestingly, the Examiner allowed claim 6, the broadest claim of the ’520 patent, but rejected
claim 1, which is merely a preferred embodiment of the broader claim 6. See Non-Final
Rejection (July 21, 1999) at 3 (attached as Exhibit 3). The Examiner noted that claim 6 (and the
other claims deemed allowable) were distinct from the prior art at least because they disclosed
“explicit operations (e.g., initialization, allocation, manipulation and simulation) with respect to

‘play’ execution.” See id. at 4. In response, the Applicant filed an Amendment, modifying claim

1 to include the following underlined language: “simulating execution of [play executing] the

byte codes of the clinit method against a memory without executing the byte codes to identify the

static initialization of the array by the preloader.” See Amendment (Oct. 19, 1999) at 2 (attached

as Exhibit 4). The Examiner then allowed the application on January 4, 2000. See Notice of
Allowability. The Examiner declared that:
the cited prior art, either singly or in combination, fails to anticipate or render
obvious the simulation of execution with respect to class initialization, without
executing byte codes. Cierniak, “Briki: An Optimizing Java Compiler,” teaches
of comparing the execution of byte codes, but fails to address the issue of
simulating the process without execution.
See id. at 2. Thus, the Examiner’s statements and the claim amendments show that the step of
simulating the execution of code without actually executing that code, i.e., “play executing” the
code, was the purportedly novel element of the application leading to its allowability.
B. Aspects of the law governing reexamination
1. Citation of prior art
Any person at any time may file a request for reexamination by the Office of any claim of
any patent on the basis of any prior art cited under the provisions of section 301.” 35 U.S.C. §
302. Section 301 limits prior art to “patents or printed publications.” 35 U.S.C. § 301.
MPEP 2128 classifies a reference as a printed publication if it is accessible to the public:
A reference is proven to be a ‘printed publication’ ‘upon a
satisfactory showing that such document has been disseminated or
otherwise made available to the extent that persons interested and

ordinarily skilled in the subject matter or art, exercising reasonable
diligence, can locate it.’

In re Wyer, 655 F.2d 221, 210 USPQ 790 (C.C.P.A. 1981) (quoting I.C.E. Corp. v. Armco Steel
Corp., 250 F. Supp. 738, 743, 148 USPQ 537, 540 (S.D.N.Y. 1966)).

2. “Old” prior art can raise a significant new question of patentability

The fact that a prior art reference was cited or even previously considered by an examiner
does not preclude use of that reference to find a substantial new question of patentability. See
35 US.C. §303(a); MPEP Section 2258.01; see also In re Swanson, 540 F.3d 1368, 1380-81

(Fed. Cir. 2008) (holding that consideration of a prior art reference in previous litigation and in

9

an original examination does not preclude a finding of a SNQ based on the same prior art
reference in reexamination).
A combination of such “old art” and art newly cited during the reexamination proceeding
may raise a SNQ. See MPEP Section 2258.01. The Patent Office may even find a SNQ based
exclusively on previously cited references.
For example, a SNQ may be based solely on old art where the old
art is being presented/viewed in a new light, or in a different way,
as compared with its use in the earlier concluded examination(s),
in view of a material new argument or interpretation presented in
the request.

See id.
3. Obviousness standard under KSR

The Supreme Court recently relaxed the Federal Circuit’s requirement of a
“teaching/suggestion/motivation test,” and instead held that “[t]he combination of familiar
elements according to known methods is likely to be obvious when it does no more than yield
predictable results.” KSR Int’l Co. v. Teleflex Inc. et al., 550 U.S. 398, 416 (2007). The Court
noted that “[w]hen a work is available in one field of endeavor, design incentives and other
market forces can prompt variations of it, either in the same field or a different one. If a person
of ordinary skill can implement a predictable variation” of an existing system, then “§103(a)
likely bars its patentability.” Id. at 417. KSR also held that “if a technique has been used to
improve one device, and a person of ordinary skill in the art would recognize that it would
improve similar devices in the same way, using the technique is obvious” if within his or her
skill. See id.

On October 10, 2007, after the prosecution of the ‘520 patent had come to a close, the

USPTO released Examination Guidelines for Determining Obviousness Under 35 U.S.C. 103(a)

10

in View of the Supreme Court Decision in KSR Int’l Co. v. Teleflex Inc., 72 Fed. Reg. 195 at
57526 (the “PTO Guidelines”). The PTO Guidelines adopt the rationales from the KSR decision
for determining obviousness. One of the rationales is “*Obvious to Try’ — Choosing from a
Finite Number of Identified, Predictable Solutions, With a Reasonable Expectation of Success.”
To reject a claim on this basis, the PTO Guidelines note that pertinent factors to consider are
whether “there had been a finite number of identified, predictable potential solutions to the
recognized need or problem,” and “one of ordinary skill in the art could have pursued the known
potential solutions with a reasonable expectation of success.” Id. at 57532. The PTO Guidelines
have been incorporated into the MPEP’s examination guidelines for determining obviousness
under 35 U.S.C. § 103. See MPEP 2141.

Additionally, the Federal Circuit has applied the KSR obviousness standard to combine
multiple embodiments disclosed in a single prior art reference. Boston Sci. Scimed, Inc.v.
Cordis Corp., No.2008-1073, 2009 U.S. App. LEXIS 588, at *24 (Fed. Cir. Jan. 15, 2009)
(holding that a person of ordinary skill would have been motivated to combine one embodiment
found in a patent reference with a second, separate embodiment found in the same patent
reference).

4, Prior art references need not be enabling in an obviousness inquiry

Moreover, prior art references need not be enabling in the context of an obviousness
inquiry. As stated in the MPEP:

35 U.S.C. 103(a) REJECTIONS AND USE OF INOPERATIVE PRIOR ART

“Even if a reference discloses an inoperative device, it is prior art
for all that it teaches.” Beckman Instrumentsv. LKB Produkter
AB, 892 F.2d 1547, 1551, 13 USPQ2d 1301, 1304 (Fed. Cir.
1989). Therefore, “a non-enabling reference may qualify as prior
art for the purpose of determining obviousness under 35 U.S.C.

11

103.” Symbol Techs. Inc. v. Opticon Inc., 935 F.2d 1569, 1578, 19
USPQ2d 1241, 1247 (Fed. Cir. 1991).

MPEP 2121.01; see also MPEP 2145; Amgen Inc. v. Hoechst Marion Roussel, Inc., 314 F.3d
1313, 1357 (Fed. Cir. 2003) (holding that under 35 U.S.C. § 103, “a reference need not be
enabled; it qualifies as prior art, regardless, for whatever is disclosed therein.”) (citations to other
cases omitted).
S. Claims of the patent are to be broadly construed
In a reexamination proceeding, claims are to be given their broadest construction
consistent with the specification. See In re Icon Health & Fitness, Inc., 496 F.3d 1374, 1379
(Fed. Cir. 2007) (“During reexamination, as with original examination, the PTO must give
claims their broadest reasonable construction consistent with the specification.”).
C. Evidentiary standards
If the prior references raise a substantial question of patentability of at least one claim of
the patent, then a substantial new question of patentability is present. See MPEP 2242. A prior
art patent or printed publication raises a substantial question of patentability where there is a
substantial likelihood that a reasonable examiner would consider the prior art patent or printed
publication important in deciding whether or not the claim is patentable. /d.
D. Prior art references relied upon in this Request
In accordance with 37 C.F.R. § 1.510, reexamination of claims 1-4 and 6-23 of the ‘520
patent is requested in view of the prior art publications listed below, which raise substantial new
questions of patentability. This Request will demonstrate how claims 1-4 and 6-23 of the ‘520
patent are anticipated or rendered obvious in view of the following prior art references:
1. Brian T. Lewis, L. Peter Deutsch, and Theodore C. Goldstein. Clarity
MCode: A Retargetable Intermediate Representation for Compilation, ACM,
IR 95, 1/95, San Francisco, California, USA (1995) (hereinafter “Lewis”),

provided as Exhibit 5.

12

James Gosling, Bill Joy, & Guy Stecle. The Java™ Language Specification,
Addison-Wesley (Ist ed. 1996) (hereinafter the “Java Language
Specification”), provided as Exhibit 6.

Sun Microsystems Computer Corp. The Java™ Virtual Machine
Specification, Release 1.0 Beta DRAFT, (Aug. 21, 1995) (herecinafter the
“Java VM Specification”), provided as Exhibit 7.

Dave Dyer, Java Decompilers Compared, JavaWorld.com (July 1, 1997)
(hereinafter “Dyer”), provided as Exhibit 8.

Todd A. Proebsting and Scott A. Watterson. Krakatoa: Decompilation in
Java (Does Bytecode Reveal Source?), Proceedings of the Third USENIX
Conference on Object-Oriented Technologies and Systems, Portland, Oregon
(June 1997) (hereinafter “Proebsting”), provided as Exhibit 9.

E. Supporting documents discussed in this Request

The following documents are provided to assist the Examiner in understanding the

Request, including claim charts and references providing background information:

1.

2.

3.

Claim Chart based on Lewis, provided as Exhibit 10.

Claim Chart based on Lewis, the Java Language Specification, and the Java
VM Specification, provided as Exhibit 11.

Claim Chart based on Lewis, Dyer, and Proebsting, provided as Exhibit 12.

F. Current Litigation

The Requester is aware of at least one current litigation matter involving the ‘520 patent.

On August 12, 2010, Oracle America, Inc. filed a complaint in the U.S. District Court for the

Northern District of California alleging that Google, Inc. infringed the ‘520 patent. The case is

styled Oracle America, Inc. v. Google, Inc., Civil Action No.: 3:10-cv-03561 WHA. A Joint

Case Management Statement for the case, dated November 18, 2010, provides for a claim

construction hearing in the case to take place on April 20, 2011. Non-expert discovery will end

on July 29, 2011. The deadline for filing dispositive motions is September 8, 2011.

13

G. Identification of Substantial New Questions of Patentability
In this Request, substantial new questions of patentability for claims 1-4 and 6-23 of the
‘520 patent are identified in accordance with 37 CFR § 1.510(b)(1) as follows:
1. Anticipation under 35 U.S.C. § 102(b) based on the Lewis reference.

a. Claims 14 and 17 are unpatentable under 35 U.S.C. § 102(b) as being
anticipated by Lewis.

2. Obviousness under 35 U.S.C. § 103(a) based on the Lewis, Java Language
Specification, and Java VM Specification references.

a. Claims 1-4 and 6-23 are unpatentable under 35 U.S.C. § 103(a) as

being obvious over Lewis in view of the Java Language Specification
and further in view of the Java VM Specification.

3. Obviousness under 35 US.C. § 103(a) based on the Lewis, Dyer and
Proebsting references.

a. Claims 1-4 and 6-23 are unpatentable under 35 U.S.C. § 103(a) as
being obvious over Lewis in view of Dyer and further in view of
Proebsting.

H. Overview of Substantial New Questions of Patentability

As discussed above, claim 6 of the ‘520 patent broadly claims a method of receiving
code, simulating the execution of (or “play executing”) that code without actually running the
code in order to identify the target operation, and then creating an instruction or shortcut
allowing the processing component to perform the target operation. And claim 1 generally
applies this method to the static initialization of arrays, with the specification of the ‘520 patent
focusing largely on applying the method of Claim 1 to the <clinit> method to perform static
initialization.

As discussed above, during prosecution, the patentability of claims 1 and 6 hinged on the
method step of execution of computer code without actually executing that code. But this

execution method was publicly known, available, and practiced at the time of the invention of

14

the ‘520 patent. In fact, the Lewis reference is a Sun Microsystems printed publication
disclosing the very same “play execution” that Sun Microsystems would later attempt to patent
in the underlying application for the ‘520 patent, which was filed over three years after the
publication of the Lewis article. The USPTO recently issued an Order Granting Ex Parte
Reexamination based on the Lewis reference as to claims 1-4, 6-13, 15, 16, and 18-23. The
application of the Lewis reference to claims 14 and 17 is described in more detail below and in
the attached claim chart. Also, and in addition to the application of the Lewis reference to claims
14 and 17, this Request outlines below (and more specifically in the attached claim charts) the
combination of the Lewis disclosure with the well-known provisions of the Java Language
Specification and Java VM Specification and also with the well-known decompiler technology as
disclosed by Dyer and Proebsting, rendering obvious claims 1-4 and 6-23 of the ‘520 patent.

Lewis reference

Lewis discloses a “high-level, machine-independent intermediate representation [called]
MCode (for “middle code™). See Lewis at 119. Since the Lewis reference was published in
January of 1995 it is prior art to the ‘520 patent under 35 U.S.C. § 102(b), given a priority date
for the 520 patent of April 7, 1998. The Lewis reference was not in front of the Patent Office
during the prosecution of the application that matured into the ‘520 patent nor is it cumulative to
the prior art considered by the Patent Office during the prosecution of the 520 patent.

Lewis is a publication discussing Sun Microsystems’ development of a dialect of the C++
computer programming language, labeled “Clarity C++.” See Lewis at 119. The Lewis
disclosure is primarily directed to the discussion of a high-level, machine-independent
intermediate code representation tool for support in the compilation of the Clarity language. See

id. Lewis refers to this representation of code as MCode. See id. The Lewis code generator play

15

executes computer code in order to “maintain a running simulation of the MCode machine’s
stack.” See id. at 126. Thus, Lewis discloses simulating execution of code to generate MCode
instructions, including instructions for statically initializing an array. More specifically, and as
related to claim 14, Lewis discloses an interpreter that is platform-independent, i.e., a virtual
machine. See Lewis at 127. The platform-independent virtual machine disclosed by Lewis is
capable of, and indeed is directed towards, the implementation of an instruction which is created
from simulated code: “MCode calls to other MCode procedures are implemented using SPARC
instructions and execute the procedure’s machine language entry code.” Lewis at 127.

As can be seen from Figure 1 of the Lewis reference, reproduced below, the MCode
generator receives code that is configured to be run on a processing component to perform an

operation. See Lewis at 121.

Linkable
MCade
pbject files

Clariry Clarity
Editor darabase

Figmre 1: The development-tune porton of the Clanty MU ode system

As disclosed in Figure 1, the components of the Lewis system “receive” code to be run
on a processing component. For example, the “MCode generator” block in Fig. 1 receives
Clarity C++ code. This Clarity C++ code necessarily results in the performance of an operation.

The MCode developed by Lewis seeks to “reduce program memory requirements.” See
Lewis at 122. MCode reduces the program memory requirements by creating a “pickle,” i.e. “a

compact, platform independent encoding of the MCode information into a sequence of bytes.

This pickle can later be internalized or unpickled to reconstruct the original MCode. The MCode

16

for each procedure is pickled separately to support procedure-at-a-time processing.” See Lewis
at 125.

The Lewis reference simulates execution of the code without actually running the code in
order to identify the targeted output of a given section of code. “The code generator ‘executes’
MCode instructions in order to maintain a running simulation of the MCode machine’s stack.”
See Lewis at 126. Once the targeted output of a given section of code is known, a shortcut,
referred to as a “CGValue,” is created, which represents the state of the individual entries of the
simulated stack. “These entries include constants, variable references, previously ‘executed’
subexpressions, and procedure or method calls.” See id. These CGValues operate as a set of
shortcut instructions, such that “[g]ood code can be generated” when “the value of the expression
is needed.” See id. In other words, an instruction is created (the CGValue) as a constant and
stored for later reference; such storage of constants inherently discloses entry into a constant
pool.

More specifically, and as related to claim 17, Lewis discloses the entry of a constant as a
“CGValue.” “The second C++ base class, CGValue, describes values during compilation. The
code generator ‘executes’ MCode instructions in order to maintain a running simulation of the
MCode machine’s stack. Concrete subclasses of CGValue represent the state of the individual
entries on the simulated stack. These entries include constants, variable references, previously
‘executed’ subexpressions, and procedure or method calls.” See Lewis at 126. Here, Lewis
implements a CGValue, which represents a simulation of the machine’s stack. See id. This can
include an array: “MCode’s types currently include integer, real, pointer, array, procedure, bit
field, struct, union, interface, implementation, and void.” See id. at 122. Thus Lewis anticipates

the disclosure of claim 17 of the ‘520 patent, the created instruction includes an entry into a

17

constant pool. Requester further notes that a SNQ was found in the related reexamination
(Control No. 90/011,489) with respect to claim 2 which is similar to claim 17.

A reasonable examiner would have considered the teachings of the Lewis reference to be
important in determining whether or not claims 14 and 17 of the ‘520 patent were patentable. As
detailed in the claim chart in Exhibit 10, the Lewis reference anticipates claims 14 and 17 of the
‘520 patent. For this reason, the Lewis reference raises a substantial new question of
patentability with respect to claims 14 and 17 of the ‘520 patent.

Lewis in view of Java Language Specification and the Java VM Specification

Lewis, as described above, is prior art to the ‘520 patent under 35 U.S.C. § 102(b), given
a priority date for the ‘520 patent of April 7, 1998, and was not before Patent Office during the
prosecution of the application that matured into the ‘520 patent nor is it cumulative to the prior
art considered by the Patent Office during the prosecution of the ‘520 patent. The Java
Language Specification, First Edition, was published in 1996, and is thus also prior art to the
‘520 patent under 35 U.S.C. § 102(b). And the Java VM Specification was published on August
21, 1995, and is therefore prior art to the ‘520 patent under 35 U.S.C. § 102(b).

The Java VM Specification and twenty-one of the 800+ pages of the Java Language
Specification are listed as being considered by the Examiner, but the combination of the Lewis
reference in view of the entire Java Language Specification and the Java VM Specification was
not in front of the Patent Office during the prosecution of the application that matured into the
‘520 patent nor is the combination cumulative to the prior art considered by the Patent Office
during the prosecution of the ‘520 patent.

The Lewis reference, as disclosed above, clearly recites the “play execution” that was the

key reason for the patentability of the ‘520 patent. One of ordinary skill in the art would have

18

looked to apply the simulated, or “play” execution of Lewis to the predominant computer
languages in widespread use, including the ubiquitous Java computer programming language.
The motivation to combine the Lewis reference with the Java Language Specification and the
Java VM Specification is reinforced by the fact that Peter Deutsch, a co-author of the Lewis
reference, also participated in reviewing drafts of the Java Language Specification. See Java
Language Specification at xxiv.

The Java computer programming language was developed in part by Frank Yellin and
Richard D. Tuck, the two inventors named on the ‘520 patent. See Java Language Specification
at xxiii (“The final form of the language was defined by James Gosling, Bill Joy, Guy Steele,
Richard Tuck, Frank Yellin, and Arthur van Hoff, with help from Graham Hamilton, Tim
Lindholm and many other friends and colleagues.”) (emphasis added). The Java computer
programming language, like the C++ language referenced in Lewis, is a class-based, object-
oriented programming language. See id.; see also Lewis at 119 (“The Clarity C++ programming
language is a dialect of C++ being developed in Sun Microsystems Laboratories.”). A key
functionality of the Java computer programming language is its ability to allow developers to
write a program one time and then be able to run it anywhere on the Internet, through the use of
virtual machines. See Java Language Specification at xxiii & 1.

The Java Language Specification is a prior art instructional guide on how to implement
and optimize Yellin and Tuck’s creation. The Java Language Specification teaches all aspects of
the ‘520 patent save the play execution taught by Lewis. For example, the Java Language
Specification teaches static initialization, see, e.g., Java Language Specification at 128, the
initialization of arrays, see, e.g., id., the utilization of virtual machines, see, e.g., id. at 201-202,

the initialization of static fields from constants, see, e.g., id. at 221, allocation of a stack, see,

19

e.g., id. at 336, the compilation to and reading of byte codes, see, e.g., id. at 1, and every other
limitation of the ‘520 patent. Exhibit 11 provides exemplary disclosures of the abundant and
detailed disclosures of these limitations within the Java Language Specification. Further, the
Java VM Specification is an instruction guide, taking the developer through a step-by-step guide
of the Java virtual machine structure for the implementation of the Java Language tool kit
described in the Java Language Specification.

It would have been obvious to one of ordinary skill in the art at the time of the invention
to take the play execution taught by Sun Microsystems’ Lewis publication and apply it to Sun
Microsystems’ well-known Java computer programming language, using the Java Language
Specification and the Java VM Specification as instructional guides. By taking this natural step,
the artisan would be in possession of all aspects of the technology later claimed by the
application that led to the ‘520 patent.

A reasonable examiner would have considered the teachings of the Lewis reference in
view of the Java Language Specification and the Java VM Specification to be important in
determining whether or not claims 1-4 and 6-23 of the ‘520 patent were patentable. As detailed
in the claim chart in Exhibit 11, Lewis in view of Java Language Specification and further in
view of Java VM Specification renders obvious claims 1-4 and 6-23 of the ‘520 patent. For this
reason, the Lewis reference in view of the Java Language Specification and further in view of the
Java VM Specification combination raises a substantial new question of patentability with
respect to claims 1-4 and 6-23 of the ‘520 patent.

Lewis in view of Dver and Proebsting

Lewis, as described above, is prior art to the ‘520 patent under 35 U.S.C. § 102(b), given

a priority date for the ‘520 patent of April 7, 1998. Dyer was published on July 1, 1997, and is

20

thus prior art to the ‘520 patent under 35 U.S.C. § 102(a). And Proebsting was published in June
of 1997, and is thus also prior art to the ‘520 patent under 35 U.S.C. § 102(a). Neither Lewis,
nor Dyer, nor Proebsting was in front of the Patent Office during the prosecution of the
application that matured into the ‘520 patent, nor is the combination of Lewis, Dyer, and
Proebsting cumulative of the prior art considered by the Patent Office during the prosecution of
the ‘520 patent.

Lewis, as discussed above, is a publication discussing Sun Microsystems’ development
of a dialect of the C++ computer programming language, labeled “Clarity C++.” See Lewis at
119. The Lewis code generator play executes computer code in order to “maintain a running
simulation of the MCode machine’s stack.” See id. at 126.

This play execution was well-known in the prior art, as evidenced by the prevalence of
various decompilers. Proebsting provides a detailed disclosure of one of these decompilers, and
the means by which a decompiler is able to take compiled byte code and deconstruct that code to
identify the underlying source code. For example, Proebsting discloses “decompiling Java
bytecode into Java source.” See Proebsting at Abstract. This decompilation is possible because
the decompiler performs a “[s]ymbolic execution of the bytecode [to] create[] the corresponding

2

Java source expressions.” See id. at § 2. Even more specifically, this decompilation method
works because “[sJymbolic execution simulates the Java Virtual Machine’s evaluation stack with
strings that represent the source-level expressions being compounded.” Id. This disclosure
provides a clear and fully operable decompiler system (the Krakatoa decompiler system) that
play executes computer code against a memory without executing the byte codes to identify the

underlying code, which may inherently include static initializers and the static initialization of an

array.

21

Along with the Krakatoa decompiler disclosed by Proebsting, numerous other
decompilers were available in the prior art. The Dyer reference is a prior art article disclosing
not only a review of three popular decompilers, but also the results of their decompilation, in the
form of actual underlying computer code. As part of Dyer’s review of the DejaVu, Mocha, and
WingDis decompilers, the Dyer reference describes identifying the static initialization of an
array. For example, Dyer discloses that the WingDis compiler, “[w]hen decompiling this same
static initializer . . . produced equally beautiful and syntactically correct code.” See Dyer at 3.
With respect to the “explicit operations” discussed by the Examiner, see Non-Final Rejection at
4, Dyer discloses sections of code which allow for “static initializer(s)” and the manipulation of
code using “inline code inside constructors,” see Dyer at 3. Thus, the Dyer reference discloses
explicit operations (e.g., static initializers) with respect to “play” execution (such as that
disclosed in Proebsting).

The fact that some of Dyer’s decompiled code may be considered “illegal” should not
detract from the fact that the decompilation of static array initialization byte code into a single
expression or instruction was a well-known technique at the time the ‘520 patent was filed. In
fact, the ‘520 patent discloses creating a constant pool entry that is not a standard Java virtual
machine construct. Thus, one of ordinary skill in the art would have considered this contant pool
construct (i.c., CONSTANT Array (see ‘520 patent at 8:54-9:13)) as an “illegal” Java constant
pool entry. Regardless, Dyer discloses that the WingDis decompiler produced “syntactically

2

correct code.” Dyer at 3. That is, it was not “illegal” code. Accordingly, Dyer shows that a
person of ordinary skill would arrive at an operable embodiment of the ‘520 patent claims by

combining the well-known decompilation techniques of Dyer and Proebsting with the Lewis

System.

22

A reasonable examiner would have considered the teachings of Lewis in view of Dyer
and further in view of Proebsting to be important in determining whether or not the claims of the
‘520 patent were patentable. As detailed in the claim chart in Exhibit 12, Lewis in combination
with Dyer and Proebsting renders obvious claims 1-4 and 6-23 of the ‘520 patent. For this
reason, the Lewis reference in view of Dyer and further in view of Proebsting raises a substantial
new question of patentability with respect to claims 1-4 and 6-23 of the ‘520 patent.

III. DETAILED EXPLANATION UNDER 37 C.F.R. § 1510(B)(2) OF THE

PERTINENCY AND MANNER OF APPLYING THE CITED PRIOR ART TO
EVERY CLAIM FOR WHICH REEXAMINATION IS REQUESTED

The detailed explanation herein under 37 C.F.R. § 1.510(b)(2) comprises a summary of
the reasons for unpatentability of the claims (set forth below) supported by detailed Claim
Charts. This detailed explanation describes the pertinence and manner of applying the prior art
references to the claims of the 520 patent.

A, Rejections of Claims

1. Claims 14 and 17 are unpatentable under 35 U.S.C. § 102(b) as being
anticipated by the Lewis reference.

The Lewis reference was published in January of 1995. The printed publication is prior
art to the ‘520 patent under 35 U.S.C. § 102(b). The Lewis reference was not in front of the
Patent Office during the prosecution of the application that matured into the ‘520 patent nor is it
cumulative of the prior art considered by the Patent Office during the prosecution of the ‘520
patent. As set forth in detail in the Claim Chart attached as Exhibit 10, the Lewis reference
discloses ecach of the elements of claims 14 and 17 of the ‘520 patent.

2. Claims 1-4 and 6-23 are unpatentable under 35 U.S.C. § 103(a) as

rendered obvious by Lewis in view of the Java Language Specification
and further in view of the Java VM Specification.

23

The Lewis reference was published in January of 1995. The printed publication is prior
art to the ‘520 patent under 35 U.S.C. § 102(b). The Java Language Specification, First Edition,
was published in 1996, and is thus also prior art to the ‘520 patent under 35 U.S.C. § 102(b).
The Java VM Specification was published on August 21, 1995, and is therefore prior art to the
‘520 patent under 35 U.S.C. § 102(b). The combination of the Lewis reference, the Java
Language Specification and the Java VM Specification was not in front of the Patent Office
during the prosecution of the application that matured into the ‘520 patent, nor is it cumulative of
the prior art considered by the Patent Office during the prosecution of the ‘520 patent. As set
forth in detail in the Claim Chart attached as Exhibit 11, Lewis in view of the Java Language
Specification and the Java VM Specification renders obvious each of the elements of claims 1-4
and 6-23 of the ‘520 patent.

3. Claims 1-4 and 6-23 are unpatentable under 35 U.S.C. § 103(a) as

rendered obvious by Lewis in view of Dyer and further in view of
Proebsting.

The Lewis reference was published in January of 1995. The printed publication is prior
art to the ‘520 patent under 35 U.S.C. § 102(b). The Dyer reference was published on July 1,
1997. 1t is prior art to the ‘520 patent under 35 U.S.C. § 102(a). And the Proebsting reference
was published in June of 1997. 1t is prior art to the ‘520 patent under 35 U.S.C. § 102(a). The
combination of Lewis in view of Dyer and further in view of Proebsting was not in front of the
Patent Office during the prosecution of the application that matured into the ‘520 patent, nor is
the combination cumulative to the prior art considered by the Patent Office during the
prosecution of the ‘520 patent. As set forth in detail in the Claim Chart attached as Exhibit 12,
Lewis in view of Dyer and further in view of Proebsting renders obvious each of the elements of

claims 1-4 and 6-23 of the ‘520 patent.

24

Iv. CONCLUSION

For the reasons provided herein, Requester respectfully submits that the prior art
submitted herewith raises substantial new questions of patentability as to claims 1-4 and 6-23 of
the ‘520 patent because, as discussed above, claims 1-4 and 6-23 of the ‘520 patent are either
anticipated or rendered obvious in view of the prior art publications discussed herein.
Accordingly, reexamination of claims 1-4 and 6-23 of the ‘520 patent is respectfully requested,
finally rejecting these claims.

The undersigned further notes the standards set forth at 37 C.F.R. 1.550(f) wherein the
reexamination Requester will be sent copies of Office actions issued during the reexamination
proceedings as well as served (by the patent owner) with any document filed in the
reexamination proceeding in accordance with 37 C.F.R. 1.248. (See MPEP §§ 2264 and 2266.)

If the Patent Office determines that a fee and/or other relief is required, Requester
petitions for any required relief including authorizing the Commissioner to charge the cost of
such petitions and/or other fees due in connection with the filing of this document to Deposit

Account No. 11-0980 referencing Docket No. 13557.112021.

As identified in the attached Certificate of Service and in accordance with 37 C.F.R.
§§ 1.33(c) and 1.510(b)(5), a copy of the present request is being served to the address of the

attorney or agent of record.

April 15, 2011 Respectfully submitted,

By Robert T. Neufeld
Patent Attorney
Registration No. 48,394
KING & SPALDING LLP
1180 Peachtree Street
Atlanta, Georgia 30309

25

	2011-04-15 Receipt of Orig. Ex Parte Request by Third Party

