UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450
Alexandria, Virginia 22313-1450
WWW.uSp10.gov

r APPLICATION NO. I FILING DATE] FIRST NAMED INVENTOR | ATTORNEY DOCKETNO. | CONFIRMATION NO. I
90/011,521 V 03/01/2011 6,192,476 13557.105128 8619
25226 7590 121207011 | EXAMINER |
MORRISON & FOERSTER LLP
755 PAGE MILL RD
[ART UNIT | PAPER NUMBER |

PALO ALTO, CA 94304-1018

DATE MAILED: 12/20/2011

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

TR AT,
/ ey, UNITED STATES PATENT AND TRADEMARK OFFICE
) '

& ;
LES S Y
\5{\~:;1—;:{"/

Nk
N
ey 27

DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)

Robert T. Neufeld, Esq.
KING & SPALDING

1180 Peachtree Street, N.E.
Atlanta, Gerogia 30309-3521

Commissioner for Patents

United States Patent and Trademark Office
P.0. Box 1450

Alexandria, VA 22313-1450

WA VSPTO.gOv

EX PARTE REEXAMINATION COMMUNICATION TRANSMITTAL FORM

REEXAMINATION CONTROL NO. 90/011,521.

PATENT NO. 6,192.476.

ART UNIT 2173.

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified ex parte reexamination proceeding (37 CFR 1.550(f)).

Where this copy is supplied after the reply by requester, 37 CFR 1.535, or the time for filing a
reply has passed, no submission on behalf of the ex parte reexamination requester will be

acknowledged or considered (37 CFR 1.550(g)).

PTOL-465 (Rev.07-04)

Control No. Patent Under Reexamination

90/011,521 6,192,476
Office Action in Ex Parte Reexamination Examiner ArtUnit
DENNIS BONSHOCK 2173

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

alX] Responsive to the communication(s) filed on 16 September 2011 . blX] This action is made FINAL.
c[] A statement under 37 CFR 1.530 has not been received from the patent owner.

A shortened statutory period for response to this action is set to expire 2 month(s) from the mailing date of this letter.

Failure to respond within the period for response will result in termination of the proceeding and issuance of an ex parte reexamination
certificate in accordance with this action. 37 CFR 1.550(d). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c).

If the period for response specified above is less than thirty (30) days, a response within the statutory minimum of thirty (30) days

will be considered timely.

Part] THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. [] Notice of References Cited by Examiner, PTO-892. 3. [:I Interview Summary, PTO-474.
2. Information Disclosure Statement, PTO/SB/08. 4. 1l .

Partll SUMMARY OF ACTION
1a.
1b.

2.

Claims 1-21 are subject to reexamination.

Claims ______ are not subject to reexamination.

Claims _____ have been canceled in the present reexamination proceeding.
Claims 8,9, 17 and 18 are patentable and/or confirmed.

Claims 1-7,10-16 and 19-21 are rejected.

Claims are objected to.

The drawings, filed on are acceptable.

has been (7a)_] approved (7b)(] disapproved.
Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or (f).

a)J Al b)[J Some* ¢)[] None of the certified copies have
1] been received.

The proposed drawing correction, filed on

ODO00OD0OXXOOK

2[] not been received.
3[] been filed in Application No. .
4[] been filed in reexamination Control No.
5[] been received by the International Bureau in PCT application No.
* See the attached detailed Office action for a list of the certified copies not received.

9. [] Since the proceeding appears to be in condition for issuance of an ex parte reexamination certificate except for formal
matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D.
11, 453 0.G. 213.

10. |:] Other:

cc: Requester (if third party requester)

U.S. Patent and Trademark Office
PTOL-466 (Rev. 08-06) Office Action in Ex Parte Reexamination Part of Paper No. 20111212

Application/Control Number: 90/011,521 Page 2
Art Unit: 2173

Final Action
Reexamination
This is an ex parte reexamination of U.S. Patent Number: 6,192 476. Patent
claims 1-7, 10-16, and 19-21 are under reexamination. Claims 8, 9, 17, and 18 are
confirmed. This is a final action in response to the request for reconsideration filed 9-

16-2011.

Affidavits
Affidavits A-O have been considered and placed on the record. Further
comments regarding content of the Affidavits can be found below in the Arguments

section.

Prior Art
Claims 1-7, 10-16, and 19-21 are reexamined on the basis of the following
references:
Fischer (U.S. Patent Number: 5,412,717)
Griffin (U.S. Patent Number: 5,958,050)

Chan (The Java Class...)

Claim Rejections - 35 USC § 102
The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that

form the basis for the rejections under this section made in this Office action:

Application/Control Number: 90/011,521 Page 3
Art Unit: 2173

A person shall be entitled to a patent unless —

(b) the invention was patented or described in a printed publication in this or a foreign country or in
public use or on sale in this country, more than one year prior to the date of application for patent in
the United States.

Claims 1-7, 10-16, and 19-21 are rejected under 35 U.S.C. 102(b) as being
anticipated by USPN 5,412,717 to Fischer. See Request 01/10/2011, pages 16-18

and Exhibit 10 Claim Chart.

Claims 8-9 and 17-18 are not included in the anticipation rejection. Fischer does not disclose the
step of setting a flag associated with said first routine to indicate that said first routine is

pd

privileged. Fischer does not teach a flag field.

Gong ‘476 describes a flag at FIG. 3 and 3: 33-40, “A privileged routine is allowed to perform
certain actions even if the routine that called the privileged routine does not have permission to
perform those same actions...a flag in a frame in the calling hierarchy corresponding to a
privileged routine is set to indicate that the privileged routine is privileged...” Also see Gong
‘476, 14: 56,- 15: 14, “One technique to track which invocation of a particular method are
enabling invocations is to set a flag (privilege flag 312) in the frame 310 corresponding to each

enabling invocation...each frame has a privilege flag value...”

See Gong ‘476 3: 33-41, “...certain routines may be ‘privileged’. A privileged routine is allowed
to perform certain actions even if the routine that called the privileged routine does not have
permission to perform those same actions...a flag in a frame in the calling hierarchy

corresponding to a privileged routine is set to indicate that the privileged routine is privileged.”

Application/Control Number: 90/011,521 Page 4
Art Unit: 2173

While Fischer ‘717 does recite (12: 58-65), “The present invention, while it primarily focuses on
defining functions which restrict the ability of a program to access...could also...be used to
extend the capabilities beyond those normally allowed...could be allowed to perform extended
functions (privileged routines).” Fischer (10:47-49) discloses the field 156 of the program
control block identifies the location in storage (157) of one or more the PAIs... Examiner asserts

that such a location pointer does not function as would the "flag" of the instant limitation.

Per claim 1, Fischer discloses a method for providing security. The Fischer disclosure
references ‘authorization entries’ within the "program authorization information," or "PAL" to

verify access authority to other code and resources. "... providing enhanced computer system

security while processing computer programs... " Fischer at 1:20-25.

Fischer discloses detecting when a request for an action is made by a principal.

Gong ‘476 describes a ‘principal’ at 2: 37-39, “A ‘principal’ is an entity in the
computer system to which permissions are granted. Examples of principals include
processes, objects and threads. A 'permission’ is an authorization by the computer
system that allows a principal to perform a particular action or function.” 3: 67 — 3:2,
“...access rights for a principal are determined dynamically based on the source of the
code that is currently being executed by the principal (e.g., thread, process). Therefore

the “program” defined in Fischer is clearly a process, executable set of code, ran by the

Application/Control Number: 90/011,521 Page 5
Art Unit: 2173

computer system (see column 9, line 19 through column 10, line 7) and requesting

usage of the computers resources (see column 10, lines 7-52).

Broadly a 'principal’ reads on Fischer's 'system monitor’ (2: 17-18) which limits the
ability of a program to be executed. See 10: 10-13, “The program control block 140 is
the data structure utilized by the system monitor to control the execution of an
associated program. Fischer (15: 56-58) also uses the te.rm 'supervisor program' for

controlling the processing of a program being executed.

See FIG. 10 (#300, call program X). Fischer inquiries into the permissions of a given
principal's PAl upon the principal's request for an action: "When the program is to

- perform a function or access a resource (detecting when request for action is made),
the associated PAI (PAI associated with the calling program) is monitored to confirm
that the operation is within the defined program limits. If the program (calling program) |
attempts to do anything outside the authorized limits, then the program execution is

halted." Id. at 2:43-48.

Fischer (2: 24-31; 7: 14-15), “The set of authorities and/or restrictions assigned to a
program to be executed are referred to herein as “program authorization information” (or

“PAI")...thereafter associated with each program to be executed.”

Application/Control Number: 90/011,521 Page 6
Art Unit: 2173

Fischer discloses a “program” that executes “operations” (2: 35) or perfo.rms a “function
(2: 43-44) (by way of a thread of execution / a ‘principal’).” Fischér discloses the
program as part of data objects r(object oriented language, where instances of a class
are instantiated as an object; See 4: 11, object oriented). Fischer discloses (10: 3-57) a
program (“originating program”) that calls a second “program.” The second program, in
turn calls a third program, such that called programs are hierarchically executed. Each
program, the ‘originating program’ or authorized subsequently called program, places a
‘program control block’ (PCB) (10: 36-37) on the execution stack (stack/call stack; load

program X), following a ‘yes’ exit from #322 or #320.

Fischer discloses in response to detecting the request, determining whether said
action is authorized based on permissions associated with a plurality of routines
in a calling hierarchy associated with said principal, wherein said permissions are.
associated with said plurality of routines based on a first association between

protection domains and permissions.

(9: 58-63), “After the PAI has been assigned, any time the system runs the associated
program (by the principal), the system software...ensures that the program safely runs
in a manner consistent with the PAl. Thus, the program has been effectively placed in a
'safety box' (124).” (determining whether said action is authorized based on

permissions...) (9: 17 — 10: 23), “The program control block 140 is loaded with program

Application/Control Number: 90/011,521 Page 7
Art Unit: 2173

authorization information such that the PAIl can be readily referenced as the associated
program is executed so as to ensure that the program performs functions and accesses
resources in conformance with its assigned authorizations. The program control block
associated with the program to be executed is located in a storage area which cannot
be modified by fhe program.” (15: 56- 16: 2), "FIGS. 10 and 11 illustrate the sequence
of operations of a supervisor program for controlling the processing of a program being
execqted in accordance with its program authorization information. The processing of a
program 'X' and its program authorization information illustrated in FIG. 10 is initiated
while the computer is executing a supervisor routine (supervisor program executing
supervisor routine, i.e., principal, controls the processing of a called program ‘X', i.e.,
nested programs / calling hierarchy). As shown in FIG. 10 at 300, a calling program
calls program ‘X’ for execution (i.e., supervisor program calls program 'X’). Thereafter,

a program control block is created for program X. The program control block created

will not be added to the top of the execution stack until it is determined that the program

is permitted to be invoked and verification is successful completed (permissions

associated with routines of calling program based on PAI defined for the calling program
and permissions/ authorization entries défined within the PAI. See ‘authorization
entries’ of PAl at 5: §5- 61) Thus, if the program fails a security check, it will not be

placed in the program execution chain.” (emphasis added)

Here the program further requests calls to other program and other functions of
varying permission levels (see column 10, lines 7-52 and column 19, lines 5-15); and

has associated with it a plurality of routines in a hierarchy, each level having an

Application/Control Number: 90/011,521 ' Page 8 .
Art Unit: 2173

associated program control block (PCB) that links to parent or child levels with their own
PCBs and lists program authorization information (PAI) for the particular sub-program

being executed (see column 10, lines 23-57 and figure 5).

The term ‘protection domains’ is defined by Gong ‘476 at 8: 55-64, “...protection
domains are used to enforce security within computer systems. A protection domain
caﬁ be viewed as a set of permissions granted to one or more principals. A permission
is an authorization by the computer system that allows a principal to execute a particular
action or function...permissions involve an authorization to perform an access to a
computer resource...” Broadly Fischer's PAl (*717, 2: 34-36) is reads on the claimed

‘protection domain.’

Fischer also incorporates by reference (6: 37) two patents which disclose data
hierarchies: USPN 4,868,877 and USPN 5,005,200. The two patents disclose an
enhanced digital signature certification which employs a “hierarchy of nested
certifications and signatures” which fairly reads on a calling hierarchy (nested certificate

hierarchy must be examined for permissions) associated with said principal.

Fischer discloses (‘'717, 6: 25-58) the association between permissions and the
plurality of routines based on a first association between protection domains and
permissions. See ‘877, 13: 5()-51, hierarchy of authority; ‘877, 15: 18-20, hierarchy of

all certificates; ‘877, 17: 26-27, authorized by antecedent certificates. See ‘200, 7: 3-7,

Application/Control Number: 90/011,521 . Page 9
Art Unit: 2173

certificates created convey authorizations, restrictions; ‘200, 7: 17-18, hierarchically
derived certificates; ‘200, 10: 50-67, digital signature accompanied by at least one valid
certificate, may be associated with one or more other valid certificates hereinafter
referred to as antecedents to that certificate; ‘200, 20: 10-12, B’s signature and the
hierarchy of all certificates and signatures which validate it are kept by A and sent along
whenever A uses this certificate; ‘200, 22: 17-23, all certificates must be accompanied
by signatures which themselves are authorized by antecedent certificates. The digital
certificates and signatures take into account permissions of programs other that the
requesting program when determining whether a requested act may be performed.
Thus Fischer's teachings are not limited to the one and only program (the requesting
program) located at the top of the call stack (execution stack), but actually require
consideration of permissions associated with a plurality of routines in the calling

hierarchy of the digital signature / certificate authorizations.

It is noted that for the purpose of reexamination the term ‘routine’ includes within its
scope such terms as function, operation, program, method, or the concept of “access”

to a resource.

Per claim 2, Fischer discloses the step of detecting when a request for an action is made
includes detecting when a request for an action is made by a thread. Fischer’s invention
inquiries into the permissions of a given principal's PAI upon the principal's request for an

action: "When the program is to perform a function or access a resource, the associated PAI is

Application/Control Number: 90/011,521 Page 10
Art Unit: 2173

monitored to confirm that the operation is within the defined program limits. If the program
attempts to do anything outside the authorized limits, then the program execution (thread of
execution) is halted." Id. at 2:43-48. See FIGs 3A — 3D, describing authorizations found in PAls

associated with programs to be executed by thread.

See Gong ‘476, 2: 36- 3: 2, “A ‘principal’ is an entity in the computer system to which
permissions are granted...principals include processes, objects, and threads.” The ‘principal’

performs actions or functions (i.e., code is executed by the ‘principal’).

See FIG. 10, #300 Call Program X and ‘717, 15: 56-63. At this point the request for an
action by the executing thread is detected. A supervisor program for controlling the
processing of a program being executed, executing its supervisor routine (thread of

execution), detects a call to program X (detects an action).

Fischer discloses the step of determining whether said action is authorized
includes determining whether said action is authorized based on an association.
between permissions and a plurality of routines in a calling hierarchy associated

with said thread.

Fischer discloses determining whether said action is authorized includes determining

whether said action is authorized based on an association between permissions and a

Application/Control Number: 90/011,521 Page 11
Art Unit: 2173

plurality of routines in a calling hierarchy in view of associating permissions by
aggregating constraints of PAls associated with program control blocks on the
execution / call stack or by associating with the nested certifications and signature
routines in a calling hierarchy associated with a thread, as taught by USPN 4,868,877

and USPN 5,005,200.

See Fischer FIG. 5 and 10: 24-26, "FIG. 5 is an illustration of a program control block
(PCB) data structure 140 in accordance with an exemplary embodiment of the present
invention. The program control block 140 is the data structure utilized by the system

monitor to control the execution of an associated program.

The program control block 140 is Ibaded with program authorization information such
that the PAI can be readily referenced as the associated program is executed so as to
ensure that the program performs functions and accesses resources in conformance
with its assigned authorizations. The program control block associated with the program

to be executed is located in a storage area which cannot be modified by the program.

As shown in FIG. 5, an originating program (whose PCB is identified at 180) calls a
program (having a PCB 170) which will, in turn, will call the program 140 is shown in
detail in FIG. 5. Each new PCB will include a field such as 150 that points to the
'previous’ or calling program control block. A field may also be utilized to identify the
'next’ program

control block file.

Application/Control Number: 90/011,521 Page 12
Art Unit: 2173

"Thereafter, the program X's program authorizing information is combined, as appropriate,
with the PAI associated with the PCB of the calling program (association between permissions
and a plurality of routines in a calling hierarchy associated with said thread), if any. This
combined PAI, which may include multiple PAls, is then stored in an area of storage which

cannot generally be modified by the program and the address of the PAI is stored in the process

control block (PCB) as indicated in field 156 of FIG. 5. Thus, if program X is called by a

calling program, it is subject to all its own constraints as well as being combined in some

way with the constraints of the calling program, which aggregate constraints are embodied

into program X's PAI (determine whether action is authorized). In this fashion, a calling program

may not be permitted to exceed its assigned bounds by merely calling another program. There
are many alternative ways that a program's PAI could be combined with the PAI of the program
which invokes it—depending on the strategies which are applicable to the current environment,
and the inherent nature of the programs themselves. It may. even be likely that even the method
of combination is itself one of the PAI authorities, or qualifiers, of either or both the invoking or

invoked program.

For example, it is reasonable to restrict a called program to the lesser of its 'normal’ PAI
authority and that of its calling program--to ensure the calling program cannot
mischievously misuse the called program'’s greater authority to circumvent its own |

limitations.

Application/Control Number: 90/011,521 Page 13
Art Unit: 2173

On the other hand, for called programs which carefully verify their own actions, it could
bé possible to allow the called program greater inherent authority than the program
which calls it this way sensitive resources could be made available to wider use by
mediating such use through trusted sub-programs. The possibilities for such
combination must be carefully considered, not only by the designers of the underlying
control systém, but also by those who assign authority to each program. Thereafter, the
program is loaded and the hash of the program is computed based on the algorithm

specified in the program's PAIL" Fischer at 17:40-18:10. (emphasis added)

Alternately, consider Fischer’s incorporation by reference (Fischer ‘717, 6:37) of two
patents which explicitly disclose data calling hierarchies: USPN 4,868,877 and USPN
5,005,200. See USPN 5,005,200, Abstract, for disclosure of an "enhanced digital
signature certification” employing "[a] hierarchy of nested certifications and signatures.”
The ‘877 and ‘200 patents disclose a plurality of routines in a calling hierarchy
associated with a thread. An examination of the nested certificates determines whether

the action is authorized.

Per claim 3, Fischer discloses the calling hierarchy includes a first routine. For
example, Fischer discloses (10: 24-27) calling a plurality of routines: "As shown in FIG.
5, an originating program (whose PCB is identified at 180) (first routine) calls a program

(having a PCB 170) which will, in turn, will call the program 140 is shown in detail in

Application/Control Number: 90/011,521 Page 14
Art Unit: 2173

FIG. 5." The called programs associated with PCBs 180, 170, and 140 are

representative of the calling hierarchy.

Fischer discloses the step of determining whether said action is authorized further
includes determining whether a permission required to perform said action is
encompassed by at least one permission associated with said first routine.
Ffscher utilizes the PAI data structure associated with a program to determine whether
the requested action is authorized. The data structure includes a header segment 114 |
which, by way of example only, may define the type of object that follows, e.g., a
purchase order related objéct or any other type of electronic digital object. The program
authorization information is embedded in a segment 1&6 which specifies the
authorization for the object's program or programs in a manner to be described more
fully hereinafter." Fischer at 7:49-8:2. "FIGS. 10 and 11 illustrate the sequence of
operations of a supervisor program for controlling the processing of a program being
executed in accordance with its program authorization information. The processing of a
program 'X' and its program authorization information illustrated in FIG. 10 is initiated
while the computer is executing a supervisor routine. As shown in FIG. 10 at 300, a
calling program calls program X for execution. -

Thereafter, a program control block is created for program X. The program control block
created will not be added to the top of the execution stack until it is determined that the
program is permitted to be invoked and verification is successful corﬁpleted

(determining whether said action is authorized). Thus, if the program fails a security

Application/Control Number: 90/011,521 Page 15
Art Unit: 2173

check, it will not be placed in the program execution chain (will not be invoked / placed
on the call stack). In addition to creating a 'tentative' program control block, the called
program will be located through an appropriate program directory during the processing

in block 302.

See FIG. 10 and steps between calling the program at #300 and invoking / loading the
‘authorized' program onto the call stack (i.e., steps #302-#322 determine whether a
permission required to perform said action is encompassed by at least one permission

associated with said first routine).

Per claim 4, Fischer discloses the step of determining whether said action is authorized
further includes determining whether a permission required to perform said action is
encompassed by at least one permission associated with each routine in said calling

hierarchy.

Fischer discloses (17: 40-51) an embodiment wherein PAI information is aggregated, and access
is determined based on this aggregated grouping. See FIG. 5. An executing program is aware of
the hierarchy of calling programs (i.e., program 180 calls program 170, which calls program 140,
etc). Pointer fields (FIG. 5, #150) in each PCB of the execution Stack are aware of the 'previous’
or calling program control block and may also be utilized to identify the 'next' program control
block file. Fischer at 10:23-39. “There are many alternative ways that a program's PAI could be

combined with the PAI of the program which invokes it—depending on the strategies which are

Application/Control Number: 90/011,521 Page 16
Art Unit: 2173

applicable to the current environment, and the inherent nature of the programs themselves. It
may even be likely that even the method of combination is itself one of the PAI authorities, or
qualifiers, of either or both the invoking or invoked program. For example, it is reasonable to
restrict a called program to the lesser of its 'normal’ PAI authority and that of its calling program-
-to ensure the calling program cannot mischievously misuse the called program's greater
authority to circumvent its own limitations. On the other hand, for called programs which
carefully verify their own actions, it could be possible to allow the called program greater
inherent authority than the program which calls it--this way sensitive resources could be made
available to wider use by mediating such use through trusted sub-programs. The possibilities for
such combination must be carefully considered, not only by the designers of the underlying
control system, but also by those who assign authority to each program. Thereafter, the program
is loaded and the hash of the program is computed based on the algorithm specified in the

program's PAL" Fischer at 17:40-18:10.

' Per claim 5, Fischer discloses a method for providing security. The Fischer
disclosure employs "prog-ram authorization information," or "PAl," to limit a principal's
access authority to other code and resources. "More particularly, the invention relates
to a method and apparatus for providing enhanced computer system security while
processing computer programs, particularly those of unknown origin, which are

transmitted among users." Fischer at 1:20-25.

Application/Control Number: 90/011,521 Page 17
Art Unit: 2173

Fischer discloses detecting when a request for an action is made by a principal.
Fischer inquiries into the permissions of a given principal's PAl upon detecting the
principal's request for an action: "When the program is to perform a function or access a
resource (when request for an action is detected), the associated PAI is monitored to
confirm that the operation is within the defined program limits. If the program attempts to
do anything outside the authorized limits, then the program execution is halted." /d. at 2:
43-48. Therefore the “program” defined in Fischer is clearly a process, executable set of
code, ran by the computer system (see column 9, line 19 through column 10, line 7)

and requesting usage of the computers resources (see column 10, lines 7-52).

"FIGS. 10 and 11 illustrate the sequence of operations of a supervisor program
(principal thread of execution) for controlling the processing of a program being
executed in accordance with its program authoriiation information. The processing of a
program 'X' and its program authorization information illustrated in FIG. 10 is initiated
while fhe computer is executing a supervisor routine (principal). Fischer at 15: 56-16: .

11.

Fischer discloses determining whether said action is authorized based on an
association between permissions and a plurality of routines in a calling hierarchy
associated with said principal. Fischer discloses "an originating program" that "calis

a program” having a program control block, or PCB. Fischer at 10: 24-26; 10: 8-39;

Application/Control Number: 90/011,521 Page 18
Art Unit; 2173

FIG. 5. "Each new PCB will include a field... that points to the 'previous' of calling
program control block." See id. at 10: 27-29. Fischer also notes (FIG. 10; 15: 56-59) the
sequence of operations done by a “supervisor program (principal) for controlling the
processing of a program being executed in accordance with its program authorization
information.” The steps of FIG. 10 prior to step 326 relate to “determining whether said
action is authorized.” If authorization is determined, the called program is loaded
(invoked) onto the call stack at #326. A plurality of routines in a calling hierarchy are
added to the top of the call stack (routines in a calling hierarchy associated with said
principal; 16: 1-2, “placed in the program execution chain”) and each routine is

~ associated with permissions defined in its PAl. As an added routine completes its
execution, it is removed from the call stack, and subsequently called routines will be
placed on the call stack. Then, "[w]lhen a called program finishes executing, the system
removes its associated PCB from the top of the executed stack (call stack), removes the
associated program from storage, removes the associated authorizing information and
accesses the program control block immediately below it in the stack (call stack)." See
id. at 10:31-36. See PAls defined at 2: 16-48. PAI authorizing information of the
program at the top of the call stack may be combined with the PAI associated with the
program control block (PCB) of the calling program, or of multiple PAls on the call stack.
Aggregated constraints found in PAI at top of call stack provide an association between

permissions and a plurality of routines. See id. at 17:40-56.

Here the program further requests calls to other program and other functions of

varying permission levels (see column 10, lines 7-52 and column 19, lines 5-15); and

Application/Control Number: 90/011,521 Page 19
Art Unit: 2173

has associated with it a plurality of routines in a hierarchy, each level having an
associated program control block (PCB) that links to parent or child levels with their own
PCBs and lists program authorization information (PAI) for the particular sub-program

being executed (see column 10, lines 23-57 and figure 5).

Fischer also incorporates by reference two patents which explicitly disclose déta
hierarchies. See id. at 6:37; 16: 12-65 (incorporating by reference U.S. Patent Nos.
4,868,877 and 5,005,200 disclosing an "enhanced digital éignature certification" which
employs "[a] hierarchy of nested certificates and signatures (trust level determined).
See USPN 5,005,200 at Abstract. FIG. 10, steps 306, 308, 314, 328, 320, 324 relate to
a plurality of nested routines required to confirm digital signatures. Checking the nested
certificates for authorization is reads on claim language ‘determining whether said
action is authorized based on an association between permissions and a plurality of

routines in a calling hierarchy associated with said principal.’

Fischer discloses wherein each routine of said plurality of routines is associated
with a class. Fischer notes an object oriented approach throughout the ‘717
Specification. See FIG. 3C and related text at 7: 29-8: 44, “type of object,” “object
programs,” “data associated with this instance of the object (an instance of a class is a

class object).” As an example, Fischer discloses (8: 7-11), “The object program might

Application/Control Number: 90/011,521 Page 20
Art Unit: 2173

store...and send...(plurality of routines associated with object, where an object is an

instance of a class)..."

Fischer discloses wherein said association between permissions and said plurality
of routines is based on a second association between classes and protection

domains.

Fischer discloses an object oriented format. An instance of an object (i.e., a program
object) is derived from class template. "In one contemplated embodiment of the present
invention, programs may be part of data objects, which are written in a high-level control
language and are executed by a standardized interpreter program which executes this
high-level language. In this case, part of the interpreter's task is to verify that the
functions encouﬁtered in thé high level logic are, in fact, permissible (i.e. verify
associated permissions). If such. tasks are not permissible, the interpreter then
suppresses the execution of the program not authorized to perform such tasks." Fischer

at 3:11-20.

A protection domain is represented by the PAI associated with a calling program. The PAI
associates permission / authorities granted to the calling program. A calling program may have a
plurality of routines, as discussed above. The class, from which the program object is derived,
has an associated PAI. The program authorization information is embedded in a segment 116

which specifies the authorization for the object's program or programs in a manner to be

Application/Control Number: 90/011,521 Page 21
Art Unit: 2173

described more fully hereinafter.” "In accordance with the present invention, a PAI is associated
with programs (program objects instantiated from class objects) to be executed. FIGS. 3A
through 3D depict four exemplary approaches for associating program authorization information

with a program” Fischer at 7:14-18, 7:49-8:2.

As previously discuésed, with properly granted permissions of a calling program,
subsequent program objects are placed onto the top of the call stack / execution stack
and the most recently added program object may be subject to the combined

constraints (authorizations) of previously added program objects. “...a program’s PAI
could be combined with the PAI of the program which invokes it..." (based on a second
association beMeen classes and protection domains, where the ‘éecond association’

refers to programs objects derived from classes and their associated PAls defining

authorizations, that were previously placed on the call stack) Fischer at 17: 47-62.

Per claim 6, Fischer discloses a method for providing security by way of "program
authorization information," or "PAL," to limit a principal's access authority to other code

and resources. Fischer at 1:20-25; 2: 49-55.

Fischer discloses detecting when a request for an action is made by a principal.

See limitation addressed in rejection of claim 1 above.

Application/Control Number: 80/011,521 Page 22
Art Unit: 2173

Fischer discloses in response to detecting the request, determining whether said
action is authorized based on permissions associated with a plurality of routines
in a calling hierarchy associated with said principal, wherein a first routine in said

calling hierarchy is privileged.

Access to a calling hierarchy is disclosed, as explained above with respect to claim 1.
The limitation of "wherein a first routine in said calling hierarchy is privileged” is a

variation of the claim 1 limitation.

The Gong ‘476 specification describes a “privileged routine” ('476, 3: 33-37) as “allowed
to perfbrm certain actions even if the routine that called the privileged routine does not

have permission to perform those same actions.”

As noted above, reexamination takes a broad interpretation of claim language. The
term ‘routine’ fairly includes within its scope such terms as function, operation, program,

or method.

Fischer discloses aggregated PAI authority permissions on the call stack. The
aggregated PAI may be effectively overridden by permissions granted by a "trusted
authority.” Fischer discloses (16: 13-65) that a program may have been signed with a

public key or digital certificate, by the manufacturer, that grants a level of authority

Application/Control Number: 90/011,521 Page 23
Art Unit: 2173

(allowed to perform certain actions) to execute the program (routine). “The preferred .
methodology for determining whether the signatures are valid and whether they are
trusted by the caller and whether the authority delegated by the program is permitted to
have been delegated by the signer is taught in the inventor's U.S. Pat Nos. 4,868,877

and 5,005,200."

Fischer discloses (17: 67-18: 10), “...for called programs which carefully verify their own
actions, it could be possible to allow the called program greater inherent authority (allow
called program/routine to perform certain actions even if the program/routine that called
the privileged routine does not have permission to perform those same actions) than the
program which calls it...the possibilities for such combination must be carefully _
considered, not only by the designers of the underlying control system, but also by

those who assign authority...” See FIG. 10, steps 306, 308, 320.

In this interpretation, a privileged called routine reads on a routine that is given greater
inherent authority. The privileged called routine is referred to as a ‘first routine’, when
the PCB representing a subsequent routine (a ‘second routine’) is plébed on the call

stack.

Fischer discloses wherein the step of determining whether said action is
authorized further includes determining whether a permission required to

perform said action is encompassed by at least one permission associated with

Application/Control Number: 90/011,521 Page 24
Art Unit: 2173

each routine in said calling hierarchy between and including said first routine and
a second routine in said calling hierarchy, wherein said second routine is invoked
after said first routine, wherein said second routine is a routine for performing

said requested action.

Fischer discloses (10: 24-36) "an originating program" that "calls a pro'gram" having a program
control block, or PCB. "Each new PCB will include a field... that points to the 'previous' of
calling program control block." Then, "[w]hen a called program finishes executing, the system
removes its associated PCB from the top of the executed stack, removes the associated program
from storage, removes the associated authorizing information and accesses the program control
block immediately below it in the stack." The call stack data structure grows from the bottom
upwards. An ‘originating program’ places a PCB on the call stack and an additional PCB for
each subsequent program added to the call stack. The PCB at the top of the call stack represents
the "second routine" and the lower PCB on the call stack represents the “first routine”, arranged
as a calling hierarchy. Execution begins at the top of the stack. The "first routine" is "invoked"
and an associated PC.B is placed on the call stack. A call to a subsequent program/routine, upbn
authorization, will invoke a second routine, i.e., place PCB of second routine on call stack. See
Fischer, FIG. 11, #354 & #358, second program completes its actions and PCB is removed from
top of stack, effectively enabling thread of execution to execute next lower program (first
routine) related to next lower PCB on stack. As discussed above (17: 47-61) permissions may
be encompassed by permissions associated with each routine in said calling hierarchy (i.e. PAI

permissions / constraints may be combined / aggregated).

Application/Control Number: 90/011,521 Page 25
Art Unit: 2173

Here the program further requests calls to other program and other functions of
varying permission I‘evels (see column 10, lines 7-52 and column 19, lines 5-15); and
has associated with it a plurality of routines in a hierarchy, each level having an
associated program control block (PCB) that links to parent or child levels with their own
PCBs and lists program authorization information (PAI) for the particular sub-program

being executed (see column 10, lines 23-57 and figure 5).

Also note, "The present invention, while it primarily focuses on defining functions which restrict
the ability of a program to access resources normally allowed to users, could also, in an
appropriate environment, be used to extend the capabilities beyond those no.rmally allowed

to a user. Thus, for example, programs whose PAI is signed by an authority recognized by

the supervisor, could be allowed to perform extended functions.” Fischer at 12:58-65.

Per claim 7, Fischer wherein the step of determining whether said permission required to
perform said action is encompassed by at least one permission associated with each routine
in said calling hierarchy between and including said first routine and said second routine
further includes the steps of: determining whether said permission required is |

encompassed by at least one permission associated with said second routine.

Application/Control Number: 90/011,521 Page 26
Art Unit: 2173

Fischer discloses "én originating program" (a ‘first routine’ as it is placed in a lower position on
the call stack) that "calls a program" (calling a second routine). Following a check of
éuthorizations (if action to invoke second routine is authorized), the called routine is invoked,
and the associated PCB is placed at top of the stack, resulting in a calling hierarchy represented
by PCBs (first routine, second routine) on the call stack. As noted above (17: 40 — 1‘8: 10), the
authorizing information (constraints/permissions) found in the PAls (associatéd with the PCBs
and programs) is combined/merged as the stack grows. Due to the aggregated constraints
(permissions), the ‘routine’ at the top of the call stack may encompass at least one permission
associated with routines lower on the stack. See FIG. 10. (15: 63-67), A calling program calls
program X for execution. The associated program control block (associated with the program X)
will not be added to the top of the execution stack until it is determined that program X is
permitted to be invoked and verification is successful completed. As an example, for a call to
Program X (first routine calling second routine), steps from #306 to #326 determine whether
permission required is encompassed by at least one permission associated with said calling
routine (calling routine/ first routine determines whether it is permitted to invoke called routine /

second routine).

See 17: 52-54, “...a calling program may not be permitted to exceed its assigned

bounds by merely calling another program.”

Alternately, consider Fischer teachings (16: 26-44) of determining the level of authority
via digital certificates and a public key. USPN 5,005,200 (incorporated by reference)

teaches a hierarchy of certificates. Fischer (‘200, 30: 9-12), “The signétures and

Application/Control Number: 90/011,521 Page 27
Art Unit: 2173

certificates are then checked to ensure that they in fact are authorized as described

above in conjunction with FIG. 7.”

~ See FIG. 7 and related text at 200, 21: 45-21: 13. Fischer discloses (200, 22: 17-19), "All
certificates must be accompanied by Signatures which are themselves authorized by antecedent
certificates.” 200, 22: 50-55, “...a check is made to determine that antecedent certificates grant
sufficient authority to the sub certificate signers to permit them to validly sign the certificate...the
trust value in the certiﬁca'.te must be consistent with the antecedent... (determining whether said
permission required is encompassed by at least one permission associated with said second

routine).”

Fischer discloses in response to determining said permission required is
encompassed by at least one permission associated with said second routine,
then performing the steps of:

A) selecting a next routine from said plurality of routines in said calling hierarchy;

B) if said permission required is not encompassed by at least one permission
associated with said next routine, then transmitting a message, indicating that

said permission required is not authorized;.

C) repeating steps A and B until: said permission required is not authorized by at
least one permission associated with said next routine, there are no more
routines to select from said plurality of routines in said calling hierarchy, or

determining that said next routine is said first routine.

Application/Control Number: 90/011,521 Page 28
- Art Unit: 2173

Fischer ‘717 discloses (FIG. 10; 16: 55 — 18: 41) the sequence of operations of a
supervisor program (executing supervisor routine by principal) for controlling the
processing of a program being executed in accordance with its program authorization
information. See Fischer ‘717, 16: 26-37 referencing USPN 5,005,200, describing the
‘routines’/ verification operations iteratively called in a hierarchy. Fischer '717, 16: 40-
44, “If the manufacturer's pedigree is not acceptable (permission is not encompassed /
authorized), the routine branches...the execution of the program is suppressed...”
Fischer ‘717, 17: 23-28, “In the process of suppressing the execution of the program, an
error code or message will be returned to the calling program... (transmitting a

message, indicating that said permission required is not authorized).”

The term “routine” is not narrowly defined by the ‘476 specification and broadly reads on
a program, routine, operation, procedure, function, etc., such as calling a program to
invoke or iterating through certificates and signatures when analyzing a hierarchy of

certificates as described by Fischer 200.

As an example, see USPN 5,005,200 to Fischer (incorporated by reference) FIG. 7.
See ‘200, 16: 59-63, “...recipient analyzes the certificates associated with the signature
to determine that the proper authority has been conveyed to each certificate through its
signatures and the antecedent certificate(s) of these authorizing signatures.” ‘200, 22:

24-29, “The recipient examines every signature supplied and verifies that each

Application/Control Number: 90/011,521 Page 29
Art Unit: 2173

accurately signs its purported object...using the procedure detailed in FIG. 3. The
recipient ensures that each signature includes a corresponding validated certificate
(where the recipient is the calling program that uses various routines to verify
permissions).” Fischer ‘200, 22: 46-56, “...a check is made to ensure that all
certificates except the meta-certificate have at least one signature...a check is made to
ensure that all necessary cosignatures for all presented objects are present...a check is
made to determine that antecedent certificates grant sufficient authority to the sub
certificate signers to permit them to validly sign the certificate...the trust value in the
certificate must be consistent with the antecedent...” The certificates are nested, and a
first routine checking a first certificate for permissions, is followed by a next routine
checking a second certificate (a sub certificate) for permissions in the hierarchy of
certificates. Fischer ‘200, 22: 19-21, The chain of antecedent certificates is traced back
recursively to the meta-certificate (there are no more routines to select from said

plurality of routines in said calling hierarchy).

Per claim 10, Fischer discloses a computer-readable medium version of the limitations addressed
in claim 1 above. See ‘Fischer 4: 63; ‘717 FIG. 3 and 7: 14-35,”...FIG. 3A ...exemplifies how
program authorization information is stored...in association with a program...identifies the
location on disk 98 of the associated program...an indicator 84, 90,...96...which identifies the
location of its associated program authorization information, e.g., PAI 1....stored in a separate
memory device 100...stored in the same memory media as its associated program (computer

readable medium) ...”

Application/Control Number: 80/011,521 Page 30
Art Unit: 2173

Claims 11-16 are computer readable medium versions of claims 2-7 respectively. See
limitations addressed in claims 2-7 and 10 above. Per claim 15, see “sequence of

instructions” as shown in Fischer ‘717, FIGs. 10 & 11.

Claims 19-21 are system versions of claims 1, 3, and 4 respectively. See limitations

addressed above. Fischer ‘717 teaches (Abstract; 4: 24-61) a system.

Claim Rejections - 35 USC § 103
The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set
forth in section 102 of this title, if the differences between the subject matter sought to be patented and
the prior art are such that the subject matter as a whole would have been obvious at the time the
invention was made to a person having ordinary skill in the art to which said subject matter pertains.
Patentability shall not be negatived by the manner in which the invention was made.

Claims 1-7, 10-16, 19-21 are rejected under 35 U.S.C. 103(a) as being obvious over

USPN 5,958,050 to Griffin in combination with Chan.

Regarding claims 8-9 and 17-18, there are no obvious teachings in Griffin or Chan suggesting
setting a flag associated with said first routine to indicate that said first routine is privileged; and
the step of determining that said next routine is said first routine includes determining that a flag

associated with said next routine indicates said next routine is privileged.

Application/Control Number: 90/011,521 Page 31
Art Unit: 2173

Per claim 1, Griffin discloses (1: 22-25) a method for providing security, i.e., "for

management of trust relationships among code segments to be executed inside a trust boundary."

Griffin discloses (9: 56-64) detecting when a request for an action is made by a
principal, e.g., checking the relevant security provisions when it receives a request for
"execution access for the class." "If it is determined that clearance to trust is required to
grant a particular access, a path of trust must be found before the access will be
granted by the trust manager. Clearance to trust might be required, for example, where
a policy claim states that a particular class must be checked prior to being executed and
'the access requested in execution access for the class. This requirement is set by a
MustCheckClaim policy claim." Griffin infers the ‘principal’ by (‘050, §: 22-24) disclosing
a client computer 10...under the direction of...a program it is executing (execution
process / thread- maps to claim term ‘principal’). Griffin suggests (‘050, 7: 44) the

‘principal’ may be executing a Web browser 16. See ‘050, 6: 33-51 & FIG. 3.

Griffin discloses in response to detecting the request, determining whether said
action is authorized based on permissions associated with a plurality of foutines
in a calling hierarchy associated with said principal, wherein said permissions are
associated with said plurality of routines based on a first association between

protection domains and permissions.

"The trust manager system also includes a code examiner adapted to analyze a portion

of code to determine potential resource use of the portion of code (detecting the

Application/Control Number: 90/011,521 Page 32
Art Unit: 2173

request) and a trust evaluator adapted to evaluate certificate requirements of the portion
of code based oﬁ policy rules extracted from the policy file and the potential resource
use specified by the code examiner (determining whether said' action is authorized
based on permissions associated with said principal). The trust evaluator also
determines, from certificates from the certificate repository and a code identifier
identifying the portion of code, whether execution of the portion of code is allowed by
the policy rules given the potential resource use, the code supplier and applicable
certificates." Griffin, 3:33-57. For example, "[ijn one embodiment of a trust manager
according to the present inventri{on, the trust manager examines each new class before it
is allowed to load (association between protection domains and permissions), execute
or otherwise gain control of resources by examining a set of claims (permissions) in a
policy file and a certificate repository (associated protection domain)." Griffin, 3:.34'38'
“A certificate contains one or more claims, where a claim is a data structure defining a
security policy of assertion about a class... (permissions)" Griffin, 3: 42-45. In
response to detecting the request, determining whether said action is authorized by
performed by a 'code examiner' and a 'trust evaluator.! Griffin, 3: 47-49. “When a new
class is introduced to local computer 100, modifications to class loader 124 cause a
trust manager 122 to be called before a new class is loaded. The code of the class is
also provided to a code analyzer 120 (code examiner/ detécting the request) which
determines what classes are called and what possible computer resources might be
used by the code. With this information, the trust manager reads

certificates...(permissions associated with a plurality of routines / reads and proves the

Application/Control Number: 90/011,521 ’ Page 33
Art Unit: 2173

hierarchy of certificates / permissions recursively back to a ‘policy claim’, through
plurality of routines / determines whether said action is authorized).” Griffin, 6: 52-57.
The nested hierarchy of certificates required to be read and proven are reads on the

“plurality of routines.”

"The operation of the system shown in FIG. 3 will now be described with reference to the
flowcharts of FIGS. 4 and 5. Once a class is obtained by local computer 100, usually in
response to navigation to a site which sends out Java applets, the class loader attempts to -
load the class. Because of the hooks placed in the standard class loader 124 (trust
management modifications to classloader.c in the standard Java runtime), the class loader

124 does not pass the class on to applet runtime executive 126 unless it receives an
"OK-to-load" signal from trust manager 122. Code analyzer 120 determines a unique
identifier for the class (S 1), as well as a superclass reference, a list of subclasses for the class,
methods of the class and a hash code of the class. Once code analyzer 120 determines

this information, it passes the information to trust manager 122." Griffin, 7:10-25.

See Griffin, FIGs. 4 & 5. "If, at step S6, the trust manager determines that a subclass or method
needs to be checked, that is doﬁe (S7) by the process described in FIG. 5 as in step S3. If the trust
manager finds that claim to load a class with the checked subclass or method (S8) or the trust
manager determined in step S6 that checking was not required, the trust manager instructs the

class loader (via an OK-to-load signal, or otherwise) to load the class (S9). If, at step S4 or step

Application/Control Number: 90/011,521 Page 34
Art Unit: 2173

S8 the trust manager cannot prove the required claim, the trust manager instructs the class loader
not to load the class (S 10). At the conclusion of the process, the trust manager instructs the class
loader to either load or not load the class. It should be understood that the trust manager's output
is not limited to use in making a load/no load decision, but to the more general question of trust
or no trust. For example, the trust manager's determination could be used to decide whether to
execute code or not (in most cases, controlling code loading and code execution can achieve the

same security goals), whether to forward a message or not, or to perform a security function or

not." Griffin, 7:48-67.

This claim element would further have been obvious at the time of the invention to one of
ordinary skill in the art from the teachings of Griffin, in combination with Chan. Chan notes that
programs like web browsers typically define security managers. Chan discloses details of the
JAVA class libraries and specifically notes "[a] security manager enforces security policies
related to what a program is allowed to do." Chan, 1188. Chan deploys its security management
system by, in part, referencing the source of the code currently being executed on the stack. In
further detail: "A security manager enforces security policies related to what a program is
allowed to do [A]pplications like Web browsers typically define a security manager and use
System.setSecurityManager to install it...” Chan, 1188. For example, Chan discloses eertain
"Execution Stack Information,” whereby "[t]he execution stack (call stack) is a record of the
method calls that were made from the main program (principal thread / process calls made to
first routine, second routine, etc.) to the current method." Chan, 1189. Tlﬁs execution stack

"indicates all the methods that are in progress and pending termination of the current method

Application/Control Number: 90/011,521 Page 35
Art Unit: 2173

call." Id More specifically, consider an exemplary embodiment disclosed by Chan: "For
example, if main() calls foo(), which in turn calls bar(), the execution stack when executing
inside bar() would be bar() -> foo() -> main(). For some methods to perform some of the
permission checking (routines), they may need to inspect the execution stack to find out
information about the current execution context (first association). The SecurityManager class
provides protected methods that can be used by subclasses of the SecurityManager for this
purpose.”" Chan, 1189. Thus it is clear that Chan, in response to detecting a request from a
method currently on the execution stack, will determine whether the requested acti(;n is

authorized based on the permissions associated with the cascading hierarchy of calls.

Therefore it would have been obvious, to one of ordinary skill in the art, at the time of the
invention to modify Griffin's disclosure of trusted execution of a web browser, with the teachings
of Chan that provide more text book detail regarding the routines of a security manager as

defined for a web browser.

Per claim 2, Griffin discloses detecting when a request for an action is made by a thread; the
step of determining whether said action is authorized includes determining whether said
action is authorized based on an association between permissions and a plurality of

routines in a calling hierarchy associated with said thread.

Application/Control Number: 90/011,521 Page 36
Art Unit: 2173

"The preferred embodiment for use with Java applets includes the class loader and
runtime executive from the Java runtime system, modified according to the present

invention."

For ‘example, "[iln one embodiment of a trust manager according to the present
invention, the trust manager examines (trust manager process execution thread
examines) each new class before it is allowed to load (load into calling hierarchy),
execute or otherwise gain control of resources by examining a set of claims in a policy
file and a certificate repository (examine each class's association between permissions
and plurality of routines in calling hierarchy)." Griffin, 3: 34-38. "If it is determined that
clearance to trust is required to grant a particular access, a path of trust must be found
before the access will be granted by the trust manager. Clearance to trust

might be required, for example, where a policy claim states that a particular class must
be checked prior to being executed and the access requested in executipn access for
the class.

This requirement is set by a MustCheckClaim policy claim." Griffin, 9:56-63. "If, at step
S6, the trust manager determines that a subclass or method needs to be checked, that
is done (S7) by the process (process execution thread) described in FIG. 5 as in step
S3... the trust manager's determination could be used to decide whether to execute
code or not (in most cases, controlling code loading and code execution can achieve

the same security goals)...." Griffin, 7:48-67.

Application/Control Number: 90/011,521 Page 37
Art Unit; 2173

This claim element would further have been obvious at the time of the invention to one
of ordinary skill in the art from the teachings of Griffin in combination with Chan. Chan
discloses that "[a] security manager enforces security policies related to what a program
is allowed to' do." Chan, 1188. “[A]pplications like Web browsers typically define a
security manager ...” Chan, 1188. For example, Chan discloses certain "Execution
Stack Information," whereby "[t]he execution stack is a record of the method calls that
were made from the main.program to the current method."-Chan, 1189. This execution
stack "indicates all the methods that are in progress ahd pending termination of the

current method call." Id.

Per claim 3, Chan discloses (1189) a calling hierarchy that includes a first routine, as

described in the hierarchy of calls described with reference to the execution stack.

Griffin discloses the step of determining whether said action is authorized further
includes determining whether a permission required to perform said action is

encompassed by at least one permission associated with said first routine.

"If it is determined that clearance to trust is required (whether said action is authorized) to grant a
particular access, a path of trust must be found (determining whether a permission required to
perform said action is encompassed) before the access will be granted by the trust manager.”
Griffin, 9:56-63. “...Proving is done by finding a chain of claims from a claim about the class

being loaded (check permissions associated with said first routine, where ‘first routine’ is

Application/Control Number: 90/011,521 Page 38
Art Unit: 2173

associated with routine loaded on execution stack) to a claim setting out a policy statement. A
certificate contains one or more claims, where a claim is a data structure defining a security
policy of assertion about a class, package of classes, or an entity to be trusted or not
trusted.....}The trust evaluator also determines, from certiﬁcates»from the certiﬁcate repository
and a code identifier identifying the portion of code, whether execution of the

portion of code is allowed (determining whether said action is authorized) by the policy rules

given the potential resource use, the code supplier and applicable certificates." Griffin, 3:33-57.

Per claim 4, Griffin discloses a method wherein the step of determining whether said action is
authorized further includes determining whether a permission required to perform said
action is encompassed by at least one permission associated with each routine in said

calling hierarchy.

For example, "[i]n one embodiment of a trust manager according to the present invention, the
trust manager examines each new class (determine authorization by examining each new class
for permissions associated) before it is allowed to load (before adding routine to call stack /
calling hierarchy), execute or otherwise gain control of resources by examining a set of claims in
a policy file and a certificate repository." Griffin, 3:34-38. "The operation of the system shown
in FIG. 3 will now be described with reference to the flowcharts of FIGS. 4 and 5. Once a class
is obtained by local computer 100, usually in response to navigation to a site which sends out
Java applets, the class loader attempts to load the class. Because of the hooks placed in the

standard class loader 124 (trust management modifications to classloader.c in the standard Java

Application/Control Number: 90/011,521 Page 39
Art Unit: 2173

runtime), the class loader 124 does not pass the class on to applet runtime executive 126 unless it
receives an "OK-to-load" signal from trust manager 122. Code analyzer 120 determines a unique
identifier for the class (S 1), as well as a superclass reference, a list of subclasses for the

class, methods of the class and a hash code of the class. Once code analyzer 120 determines

this information, it passes the information to trust manager 122." Griffin, 7:10-25.

"If it is determined that clearance to trust is required to grant a particular access, a path
of trust must be found before the access will be granted by the trust manager.
Clearance to trust might be required, for example, where a policy claim states that a
particular class must be checked prior to being executed and the access requested in
execution access for the class.

This requirement is set by a MustCheckClaim policy claim.” Griffin, 9:56-63.

Per claim S, Griffin discloses a method for providing security,

"The present invention relates to the field of trust management in a distributed control
environment. More specifically, one embodiment of the invention provides for
management of trust relationships among code segments to be executed inside a trust

boundary." Griffin, 1: 21-25.

Griffin discloses detecting when a request for an action is made by a principal.
Griffin does this by, e.g., checking the relevant security provisions when it (when the
executing process / principal makes a request) receives a request for "execution access

for the class.” Griffin, 9:61-62. "If it is determined that clearance to trust is required to

Application/Control Number: 90/011,521 Page 40
Art Unit: 2173

grant a particular access, a path of trust must be found before the access will be
granted by the trust manager. Clearance to trust (by executing process / principal) might
be required, for example, where a policy claim states that a particular class must be
checked prior to being executed and the access requested in execution access for the
class. This requirement is set by a MustCheckClaim policy claim." Griffin, 9:56-64. "...
while the trust manager described above uses a trust decision to decide whether or not
to load a class, in a variant of that trust manager, all classes might be loaded and the
trust decision is used to decide whether or not to execute the code..." Griffin, 10:49-56.
"Certificates are signed so that they are difficult to falsify. The trust manager system |
also includes a code examiner adapted to analyze a portion of code to determine
potential resource use (detecting when a request for an action is made by a principal) of

the portion of code..." Griffin, 3:33-57.

Griffin discloses determining whether said action is authorized based on an association
between permissions and a plurality of routines in a calling hierarchy associated with said

principal.

"The operation of the system shown in FIG. 3 will now be described with reference to
the flowcharts of FIGS. 4 and 5. Once a class is obtained by local computer 100 (by
executing process on computer, i.e., the principal), usually in response to navigation to
a site which sends out Java applets, the class loader aﬁempts to load the class.

Because of the hooks placed in the standard class loader 124 (trust management

Application/Control Number: 90/011,521 Page 41
Art Unit: 2173

modifications to classloader.c in the standard Java runtime), the class loader 124 does
not pass the class on to applet runtime executive 126 unless it receives an "OK-to-load"
signal from trust manager 122 (if action is authorized). Code analyzer 120 determines a
unique identifier for the class (S 1), as well as a superclass reference, a list of
subclasses for the class, methods of the class and a hash code of the class. Once code
analyzer 120 determines this information, it passes the information to trust manager
122." Griffin, 7:10-25. See Griffin FIGs 4 & 5. "... the trust manager instructs the
class loader to either load (load onto calling hierarchy / call stack) or not load the class...
" Griffin, 7:48-67. "In one embodiment of a trust manager according to the present
invention, the trust manager

examines each new class before it is allowed to load, execute or otherwise gain co.ntrol
of resources by examining a set of claims in a policy file and a certificate repository. The
trust manager proves a claim before allowing a class to be loaded if a policy statement
requires proof. Proving is done by finding a chain of claims from a claim about the class
being loaded to a claim setting out a policy statement (association between permissions
and a plurality of routines in a calling hierarchy associated with said principal). A
certificate contains one or more claims, where a claim is a data structure defining a
security policy of assertion about a class, package of classes, or an entity to be trusted
or not trusted. Certificates are signed so that fhey are difficult to falsify. The trust
manager system aléo includes a code examiner adapted to analyze a portion of code to
determine potential resource use of the portion of code and a trust evaluator adapted to

evaluate certificate requirements of the portion of code based on policy rules extracted

Application/Control Number: 90/011,521 Page 42
Art Unit: 2173

from the policy file and the potential resource use specified by the code examiner. The

' .

trust evaluator also determines, from certificates from the certificate repository and a
code identifier identifying the portion of code, whether execution of the portion of code is

allowed by the policy rules given the potential resource use, the code supplier and

applicable certificates.” Griffin, 3:33-57.

Chan provides supporting details regarding security manager functionality typically
found in Web browsers (where web browsers were disclosed by Griffin). Chan
discloses that "[a] security manager enforces security policies related to what a program
is allowed to do." Chan, 1188. Chan deploys its security man'agement system by, in
part referencing the source of the code currently being executed on the stack. "A
security manager enforces security policies (permissions) related to what a program is
allowed to do [A]pplications like Web browsers typically define a security manager
and use System.setSecurityManager to install it..." Chan, 1188. Chan discloses
certain "Execution Stack Information,” (calling hierarchy) whereby "[t]he

execution stack is a record of the method calls that were made from the main program
to the current method." Chan, 1189. This execution stack "indicates all the methods
that are in progress and pending termination of the current method call." /d. For some
methods to perform some of the permission checking, they may need to inspect the
execution stack to find out information about the current execution context (calling

hierarchy associated with said principal). The SecurityManager class provides protected

Application/Control Number: 90/011,521 Page 43
Art Unit: 2173

methods that can be used by subclasses of the SecurityManager for this purpose.”

Chan, 1189.

Griffin discloses each routine of said plurality of routines is associated with a
class. Griffin discloses (6: 48-51) class loaders from a Java runtime system. Such a

class loader evaluates routines associated with a class.

Griffin discloses said association between permissions and said plurality of
routines is based on a second association between classes and protection

domains.

"If it is determined that clearance to trust is required to grant a particular access (association
between permissions and plurality of routines), a path of trust must be found before the access
will be granted by the trust manager. Clearance to trust might be required, for example, where a
policy claim states that a particular class must be checked prior (second association between
classes to be loaded and trust / protection domains) to being executed and the access requested in
execution access for the class. This requirement is set by a MustCheckClaim policy claim.”

Griffin, 9:56-63.

Per claim 6, Griffin discloses (1: 22-25) a method for providing security. "The present
invention relates to the field of trust management in a distributed control environment. More

specifically, one embodiment of the invention provides for management of trust relationships

Application/Control Number: 90/011,521 Page 44
Art Unit: 2173

among code segments to be executed inside a trust boundary." See Griffin method claims 1-12,

11:63-14: 13.

Griffin discloses detecting when a request for an action is made by a principal.

See limitations addressed in claim 1 above.

Griffin discloses in response to detecting the request, determining whether said action is
“authorized based on permissions associated with a plurality of routines in a calling
hierarchy associated with said principal, wherein a first routine in said calling hierarchy is

privileged.

Claim 6 differs from claim 1 with the recitation, “wherein a first routine in said calling

hierarchy is privileged.”

Gong ‘476 discusses the term ‘privileged’ at 3: 33-37; 6: 35-39; 13: 22-35: “...certain routines
may be ‘privileged’. A privileged routine is allowed to perform certain actions even if the
routine that called the privileged routine does not have permission to perform those same
actions.” “When determining whether a thread is able to perform an action, only the permissions
associated with the privileged routine and the routines above the privileged routine in the calling

hierarchy of the thread are inspected.” “...a method may cause itself to be privileged (i.e. enable

Applicatioh/ControI Number: 90/011,521 Page 45
Art Unit: 2173

the privilege mechanism) by invoking a method of a privilege object called, for example,

beginPrivilege.”

Broadly Gong ‘476 discloses (3: 3-11) the term ‘routine’ includes within its scope such terms as
functions or methods. Actions are authorized based on permissions associated with calling
routines (authorized called routines invoked and placed on the call stack). “A calling hierarchy
indicates the routines (e.g. functions, methods) that have been invoked (and placed on the call

~ stack) by or on behalf of a principal (e.g. thread, process) but have not been exited.”

Broadly Griffin discloses (4: 49-57) that "[t]he process of proving a claim is one of verifying the
claimant, a level of trust in the claimant and the authorization of that claimant (prove by
verifying claim is privileged), typically using' other claims. This leads to a chain of claims ending
with a known trust claim or claimant. A claim makes an assertion. An assertion could be that a
particular element can be trusted, that a particular class should not be trusted, that a particular

class can be trusted, etc."

Griffin in view of Chan discloses the step of determining whether said action is
authorized further includes determining whether a permission required to perform
said action is encompassed by at least one permission associated with each

routine in said calling hierarchy between and including said first routine and a

Application/Control Number: 90/011,521 Page 46
Art Unit: 2173 '

second routine in said calling hierarchy, wherein said second routine is invoked
after said first routine, wherein said second routine is a routine for performing

said requested action.

A calling hierarchy represents the sequence of calls to routines (calls to programs /
procedures / functions/ methods / operations, etc), where a requested action (by calling
routine) to load the routine (action requesting to invoke/load called routine) on the call
stack (an action to invok.e a routiné) is made by the principal thread or process of
execution. [f each routine requested to be loaded is authorized to be loaded, it is
éequentially placed on the call stack / execution stack (invoked). The routine
associated with the top of the call stack represents the 'second routine.’ The routine

associated with the position just prior to the second routine represents the first routine.’

Chan discloses that "[a] security manager enforces security policies related to what a program is
allowed to do." Chan, 1188. Chan deploys its security management system by, in part,
referencing the source of the code currently being executed on the stack. In further detail: "A
security manager enforces security policies related to what a program is allowed to do
[A]pplications like Web browsers typically define a security manager and use
System.setSecurityManager to install it...” Chan, 1188. Chan discloses certain "Execution
Stack Information,” whereby "[t]he execution stack is a record of the method calls (calls to
routines) that were made from the main program (from the principal) to the current method."

Chan, 1189. This execution stack "indicates all the methods that are in progress (each routine in

Application/Control Number: 90/011,521 Page 47
Art Unit: 2173

a calling hierarchy) and pending termination of the current method call." Id. (where current
method call references the top of the stack or otherwise the ‘second routine; first routine is

referenced after the second routine exits execution).’

"... For some methods to perform some of the permission checking, they may need to
inspect the execution stack to find out information about the current execution context.
The SecurityManager class provides protected methods that can be used by subclasses
of the SecurityManager for this purpose.” Chan, 1189. Thus it is clear that Chan, in
response to detecting a request from a method currently on the execution stack, will
determine whether the requested action is authorized based on the permissions
associated with the cascading hierarchy df calls (permissions assbciated with each
routine in said calling-hierarchy / permissions of routines prior to the ‘second routine’,

i.e. permissions of the firstyroutine).

Per claim 7, Griffin in view of Chan discloses the step of determining whether said
permission required to perform said action is encompassed by at least one permission
associated with each routine in said calling hierarchy between and including said first
routine and said second routine further includes the steps of: determining whether said
permission required is encompassed by at least one permission associated with said second
routine; and in response to determining said permission reqliired is encompassed by at

least one permission associated with said second routine, then performing the steps of:

Application/Control Number: 90/011,521 , . Page 48
Art Unit: 2173

A) selecting a next routine from said plurality of routines in said calling hierarchy,
B) if said permission required is not encompassed by at least one permission
associated with said next routine, then transmitting a message indicating that
said permission required is not authorized, and C) repeating steps A and B until:
said permission required is not authorized by at least one permission associated
with said next routine, there are no more routines to select from said plurality of
routines in said calling hierarchy, or determining that said next routine is said

first routine.

Griffin discloses (9: 12-16) that "[t]he trust manager will keep searching for a path
through the web of claims, using hints as needed, moving up and down along a path
(repeat with next routine) as dead ends are encountered. Eventually, the trust manager
may exhaust all possible hints and have searched all available claims. "If it is
determined that clearance to trust is required to grant a particular access, a path of trust
must be found before the access will be granted by the trust manager.... " Griffin, 9:56-
64. Griffin discloses (13: 17-18),”...when a path of trust cannot be found after a finite

search, denying the object the access.”

Chan discloses that "[a] security manager enforces security policies related to what a
program is allowed to do." Chan, 1188. Chan deploys its security management system
by, in part, referencing the source of the code currently being executed on the stack. In

further detail: "A security manager enforces security policies related to what a program

Application/Control Number: 90/011,521 Page 49
Art Unit: 2173

is allowed to do[A]pplications like Web browsers typically define a security

manager... " Chan, 1188.

Chan discloses certain "Execution Stack Information," whereby "[t]he execution stack is
a record of the method calls that were made from the main program to the current
method." Chan, 1189. This execution stack "indicates all the methods that are in

progress and pending termination of the current method call." /d.

Chan discloses (Chan, 1189) a recursive inspection of the call stack, until there are no
more routines to select from: "For example, if main() calls foo(), which in turn calls bar(),
the execution stack when executing inside bar() would be bar() -> foo() -> main(). For
some methods to perform some of the permission checking, théy may need to inspect

the execution stack to find out information about the current execution context...”

Griffin discloses “denying the object the access” when a path'of trust cannot be found.
Griffin fails to disclose transmitting a message indicating that said required permission is
not author}zed. It would be obvious to transmit a message indicating that said required
‘permission’ is not authorized. See Giriffin, FIG. 5, last step. To transmit such a
message would be within the skill level of one of ordinary skill in the art apd would

provide useful information to a program operator.”

Application/Control Number: 90/011,521 Page 50
Art Unit: 2173

Chan shows that methods of the Security Manager can throw an exception. It would be
obvious to one of ordinary skill in the art to create within the exception code block a
message to be transmitted indicating that said permission required is not authorized.

Such a modification would be well within the skills of one of ordinary skill in the art.

Claim 10 is a computer readable medium version of limitations addressed in'claim 1 above.
Griffin discloses (FIG. 2) a computer, including a CPU and hard drive and (FIG. 3) the trust
manager software componénts stored on a client computer being protected. See Griffin (7: 15-
17) “trust management modifications to classloader.c in the standard Java runtime” in reference

to code modifications stored on a computer readable medium of a trusted delegation system.

See limitations of claims 11-16 addressed above in claims 2-7 respectively.

Claim 19 is a system version of limitations addressed in claim 1 above. Griffin discloses (3: 47;
6:33-34; 14: 14-60) a system that performs the methods steps previously discussed. “FIG. 3 is a
detailed block diagram of a trust management system which can provide the access control for a

local computer 100.”

Claims 20 and 21 are system versions of limitations addressed in claims 3 and 4 above.

Application/Control Number: 90/011,521 Page 51
Art Unit: 2173

Additional teachings by Organick are cumulative to the art. Proposed rejections in view of

Organick are held in abeyance.

In summary, claims 1-7, 10-16, and 19-21 are rejected. Claims 8- 9 and 17-18 are

confirmed, as there are no prior art disclosures of the "setting a flag” limitation.

Response to Arguments
This is a response to the request for reconsideration filed 9-16-2011, in response

to the non-final action mailed 6-16-2011.

Arguments against the 35 U.S.C. 102(b) rejections over Fischer:

IvV.
A

1.

The Patent Owner argues (from page 23) that Fischer's System Monitor does not
meet the claimed requesting principal.

As directed toward by the patent owner, in the interview Agenda of 8-12-2011,
the “principal” is defined in the ‘476 specification (2: 35-38) as “an entity in the computer

system to which permissions are granted” (e.g., processes, objects, and threads). In

Application/Control Number: 90/011,521 Page 52
Art Unit: 2173

Fischer the “system monitor” (or alterhately the program) is being compared to the
claimed "principal”, here the system monitor is a software component that “builds” a
data structure including a set of authorities, referred to as "program authorization
information” or PAI (see column 2, lines 16-27). The system monitor further utilizes a
"program control block" or PCB to control execution of the program (see column 10,
lines 8-54), where the PCB picks through a stack of associated programs to determine

authorizations granted at each level.

The Patent Owner argues that Fischer does not disclose “detecting when a
request for an action is made by a principal’, because the system monitor does not
request an action.

The Examiner respectfully submits that the system monitor utilizes the PCB to
"control the execution of an associated program”, where the PCB is further loaded with
program authorization information (PAIl) referenced to make sure that the associated
program has the sufficient authorizations (see column 10, lines 8-54). So the system
monitor, in conjunction with the PCB and PAI request execution of a program, request a
checking of associated permission, and request transfer of execution between

hierarchically arranged program blocks.

The Patent Owner argues that if the system monitor is identified as the

“principal”, then Fischer does not disclose “a plurality of routines in a calling hierarchy

Application/Control Number: 90/011,521 Page 53
Art Unit: 2173

associated with said principal”, because the programs are not associated with the
system monitor.

The Examiner respectfully submits that the system monitor limits the ability of a
program about to execute, by providing linkages to associated PCB and PAI information
(see column 2, lines 16-27). The system monitor utilizes a program control block (PCB)
for each level of a plurality of levels of a program (see column 9, line 64 through column

10, line 53).

2.

The Patent Owner argues (from page 25) that Fischer's “Program” does not meet
the claimed requesting principle, as if Fischer's program is identified as the “principal,”
then Fischer does not disclose “permissions assbciated with a pluraliity of routines in a
calling hierarchy associated with said principal”.

The Examiner respectfully submits that Fischer’'s program can also be read as
the principle. Again the claimed "principle" is defined as: form the ‘476 specification (2:
35-38) as (1) “an entity in the computer system to which permissions are granted” (e.g.,
processes, objects, and threads), (2) where the principle makes “a réquest for an
action”, and (3) where "a plurality of routines in a calling hierarchy associated with said
principal". The Examiner will now éddress how each of these characterizations of the
“principle" are met by Fischer'é program:

(1) The program is clearly a process (executable set of code) ran by the

computer system (see column 9, line 19 through column 10, line 7) and requesting

Application/Control Number: 90/011,521 Page 54
Art Unit: 2173

usage of the computers resources (see column 10, lines 7-52 and column 2, lines 34-
49).

(2) The program further requests calls to other programs and other functions
of varying permission levels (see column 10, lines 7-52 and column 19, lines 5-15).

(3) The program further has associated with it a plurality of routines in a
hierarchy, each level having an associated program control block (PCB) that links to
parent or child levels with their own PCBs and lists program authorization information
(PAI) for the particular sub-program being executed (see column 10, lines 23-57 and

figure 5).

1.

The broad meaning of the Patent Owner's “routine” is pointed toward on page 26
of the response stating that:

“Further, according to Professor Goldberg' s declaration, "a program in an object-
oriented language (e.g. Java and C++) may include routines. In the context of the ‘476
Patent, one of ordinary skill would understand that a routine is a portion of code (i.e. a
set of executable instructions or statements) within a program that may be called from
other routines - hence the existence of a ‘calling hierarchy' of routines. For example, as
noted ih the '476 Patent, a routine may be a function or method ('476, 2:38)." (Goldberg
Declaration, paragraph 17.) Thus, Fischer's programs do not disclose "a plurality of

routines in a calling hierarchy" as expressly required by the claims and therefore the

Application/Control Number: 90/011,521 Page 55
Art Unit: 2173

PAls' assignment to the program does not meet "permissions associated with a plurality

"s

of routines in a calling hierarchy.

The Patent Owner argues that Fischer's PAl is associated with a program and
thus cannot meet “permissions associated with a plurality of routines in a calling
hierarchy.

The Examiner respectfully submits that Fischer's program has a plurality of sub-
programs each with their own PCBs that define permissions for the program at various
hierarchically arranged levels, where each of these sub-programs or routines, called by
the parent program, have their own PAls (program authorization informaﬁon) (see

column 10, lines 23-57 and figure 5).

The Patent Owner argues (from page 26) that program are not routines... and
“determining whether said action is authorized based on permissions associated with a
plurality of routines in a calling hierarchy associated with said principle”.

The Examiner respectfully submits that in Fischer the parent program is the
principle, and the parent program comprises a plurality of sub-programs or routines.
Each of these hierarchically arranged routines have an associated program control
block (PCB) that defines the individual permissions (via PAI) for the sub-program

routine (see column 10, lines 23-57 and figure 5).

Application/Control Number: 90/011,521 Page 56
Art Unit: 2173

2.

The Patent Owner argues (from page 27) that the “hierarchy of nested
certificates and signatures” is not a plurality of routines in a calling hierarchy.

The Examiner respectfully submits that the certificates and signatures are not
being treated as the routines, the routines are the sub-program elements of the parent
program, that each have associated sub-program control blocks (PCBs) that contain the

certificates and signatures (PAIl), used to determine permissions at each level.

The Patent Owner argues that although these routines may check certificates
associated with a PAI, Fischer does not disclose determihing whether an action is
permitted based on permissions associated with these checking routines.

The Examiner respectfully submits that Fischer teaches, in column 2, lines 16-36,
the “PAl defines the range of operations that a program may execute and/or defines

those operations that a program cannot perform.”

The Patent Owner argues (from page 28) that Fischer does not disclose the
claimed "each routine of said plurality of routines is associated with a class” and "a
second association between classes and protection domains”.

The Examiner respectfully submits that Fischer teaches, in column 3, lines 11-20

and column 7, line 29 through column 8, line 49, a system in which object oriented

Application/Control Number: 90/011,521 Page 57
Art Unit: 2173

programing is used for custom programs using a generic parent class. Here a parent
originating program, defines a protection domain for the parent class, sub-class routines

have their own respective protection domains.

The Patent Owner argues (from page 29) that that Fischer does not disclose the
claimed “a second association between classes and protection domains”.

The Examiner respectfully submits that Fischer teaches, in column 3, lines 11-20,
if a parent program / class task is not permissible execution of child programs / classes
will be suppressed, yet successful confirmation of security / authority of a parent

program still may require confirmation of a child programs security.

The Patent Owner argues, from paragraphs 21 and 22 of the Goldberg
declaration that every portion of the program in Fischer has the same permissions, and
thus Fischer does not provide a mechanism for associating different permission with
different portions of code.

The Examiner respectfully submits that Fischer teaches, in column 10, lines 8-57,
different program control blocks (PCBs) associated with sub-prégrams (routines), each
.having their own assigned program authorization information (PAI) defining the set of
permissions for that particular program segment, thereby allows different subsets of

code to have different associated permissions.

Application/Control Number: 90/011,521 Page 58
Art Unit: 2173 |

The Patent Owner argues (on page 32) that Fischer doesn’t teach a first routine
in said calling hierarchy being privileged and further determining a permission
associated with routine in the calling hierarchy and further argues that “unlike Fischer,
the claimed first, privileged routine is not performing the requested action: the
subsequently called second routine is performing the action" (from paragraph 24 of the
Goldberg declaration). |

The Examiner respectfully submits that in Fischer a parent routine can be
privileged (having access granted in the PAl), as the program executes however, sub- -
programs (routines) that are executed have their program control block (PCB) checked
to assure that there permissions (PAl) are being watched és well, these sub
permissions defining “a range of operations that a program may execute and / or
defines those operations that a program cannot perform” (see column 2, lines 34-48 and
column 10, lines 8-57). These programs are not checked until they are called as can be

seen from the flow diagram in figure 5.

The Patent Owner only argues dependent claims "for at least the same reasons

as their respective independent claims.”

Application/Control Number: 90/011,521 Page 59
Art Unit: 2173

The Patent Owner argues against the order being granted as the "current
rejection resurrects a nearly identical rejection made and overcome in the original
examination".

The Examiner respectfully submits that as pointed out in the order the hierarchy
of nested permissions is being viewed in a new light, considering the program control
blocks (PCB) and associated program authorization information (PAl) to be a hierarchy

of sub-programs each with its own assigned authorization.

Arguments against the 35 U.S.C. 103(a) rejections over Griffin in combination with
Chan:

A.

1.

The Patent Owner argues that neither Griffin nor Chan teach or suggest a
"principal” that requests an action, where the same "principal” is associated with "a
plurality of routines in a calling hierarchy,” and those routines are associafed with
“permissions.”

The Examiner respectfully submits that Griffin’s program can be read as the
“principle”. Again the claimed ’;principle" is defined as: form the ‘476 specification (2:
35-38) as (1) “an entity in the computer system to which permissions are granted” (e.g.,

processes, objects, and threads), (2) where the principle makes “a request for an

Application/Control Number: 90/011,521 Page 60
Art Unit: 2173

action”, and (3) where "a plurality of routines in a calling hierarchy associated with said
principal". The Examiner will now address how each of these characterizations of the
“principle" are met by Fischer's program:

(1) The program is clearly a process (executable set of code) ran by the
computer system (see column 3, lines 46-57) where the program is requesting usage of
the computers resources (see column 3, lines 46-57, column 6, lines 37-44, and column
7, lines 15-25).

(2) The program further requests calls to other sub-programs (routines) of
varying permission levels (see column 7, lines 15-25).

(3) The program further has associated with it a plurality of routines in a
hierarchy, each level having an associated class that need be examined to determine
potential resource use of the portion of code for the particular sub-program being

executed (see column 3, lines 33-57 and in figure 5).

The Patent Owner argues (from page 37) that "as Professor Goldberg explains,
. however, "this 'principal' is not associated with 'a plurality of routines in a-calling
hierarchy' that are associated with 'permissions.™ (Goldberg Declaration, paragraph 29.)
"On the contrary,” Professor Goldberg continues, "Griffin's 'trust manager instructs the
class loader to either load or not load the class,’ or to grant 'trust or no trust,’ or 'execute
code or not." (Goldberg Declaration, paragraph 29 citing Griffin at 7: 58-64.)”

The Examiner respectfully submits that the parent program (principle) is

associated with a plurality of sub-class calls (routines) that need be evaluated for their

Application/Control Number: 90/011,521 Page 61
Art Unit: 2173

associated permissions (see column 7, lines 14-25). Just because a parent calling
program is granted full system rights doesn't mean a program that is calls should have
the same rights, each of the program segments (portions of code) of Griffin can be
evaluated for authority. Alternately, a "claimant" may be used to define a chain of

claims with a known trust level.

The Patent Owner argues (form page 38) against an alternaté mapping of the
principle to the Griffin reference’s “trust manager”.

The Examiner respectfully submits that though the mapping to the program
appears to be a clearer mapping, a mapping to the "tru.st manager” still seems
appropriate, as trust manager is a code segment that requests consideration of the
access rights to each of the program elements and sub-program elements (see column
3, lines 32-57). With regard to an “association" with a plurality of routines in a hierarchy,
the trust manager is the program element that provides checks of potentially every
program and sub-program that is called to maintain security in the delegation system

(see column 6, lines 33-47).

The Patent Owner argues (from page 39) that there is no teaching in Griffin or
Chan that suggests determining authorization by checking permissions associated with
the disclosed "methods that are in progress."

The Examiner respectfully submits that the claim is not so limiting to only check

for the permissions of a currently executing section of code, this would appear

Application/Control Number: 90/011,521 Page 62
Art Unit: 2173

counterproductive to check the security of a code segment while executing and
providing permissions to the program element. Griffin specifically teaches, in column 3,
lines 32-57, making a determination of whether execution of the portion of code is
allowed by the policy rules. Where a trust manager examines each new class before it
is allowed to load. This however does not preclude a program from running yet
checking upon call to sub-program / sub-class / sub-routine for associated sub-
permissions (see column 7, lines 10-67). Chan further teaches a security manager that
evaluates class / subclass permissions about the “current execution contht" (see

pages 1188 and 1189).

2,

The Patent Owner argues that the claimed “The Combination Does Not Disclose
the Claiméd "permissions associated with a plurality of routines in a calling hierarchy"
(Claims 1-7, 10-16, 19- 21)”.

| The Examiner respectfully submits that Griffin teaches that the program further
has associated with it a plurality of routines in a hierarchy, each level having an
associated class that need be examined to determine a level of trust for the portion of
code and potential resource use of the portion of code, in the particular sub-program

being executed (see column 3, lines 33-57 and in figure 5).

Application/Control Number: 90/011,521 Page 63
Art Unit: 2173

3.

The Patent Owner argues (from page 41) that “The Combination Does Not
Disclose the Claimed "plurality of routines in a calling hierarchy associated with [the]
principal" (Claims 1-7, 10-16, 19-21)".

The Examiner respectfully submits that the plurality of sub-program / sub-class /
sub-routine, are each “associated" with the parent calling program that initiated their

execution (see column 7, lines 10-67).

The Patent Owner argues (from page 42) that moreover, alternative mappings for
the required "plurality of routines in a calling hierarchy associated with said principal”
similarly fail to disclose the claimed elements. For example, as Professor Goldberg
indicates, "Griffin's trust manager routines that evaluate new classes against certificates
fail to disclose the required' 'plurality of routines' at least because Griffin' s certificates
are not associated with the trust manager routines, but rather with the new class to be
loaded." (Goldberg Declaration, paragraph 37.)

The Examiner respectfully submits that if the “trust manager” were interpreted to
be the principle, the trust manager shows and association with the sub-programs / sub-
classes / sub-routines, as it is the trust manager that decides whether each is executed
or precluded from execution and / or limited as to which system resources it may access
(see column 6, lines 33-51). Here the trust manager examines each new class / sub-
class before allowing it to use system resources by examining the set of claims the

program makes as well as certificates of authentication (see column 3, lines 32-56).

' Application/Control Number: 90/011,521 Page 64
Art Unit: 2173

4.

The Patent Owner argues that “The Combination Does Not Disclose the Claimed
"each routine.., is associated with a class" and "a second association between classes
and protection domains" (Claims 5, 14)".

The Examiner respectfully submits Griffin teaches a principle that is associated
with a class that is evaluated to determine the permission for the “principle” program,
and that a plurality of sub-programs / sub-classes / sub-routines fall under the “principle”
program in a hierarchy, each level having an associated class that need be examined fo
determine potential resource use of the portion of code, for the particular sub-program

being executed (see column 3, lines 33-57 and in figure 5).

5.

The Patent Owner argues (from page 44) that “The Combination Does Not
Disclose the Claimed "first routine in said calling hierarchy is privileged" (Claims 6, 7,
15, 16).”

The Examiner respectfully submits that the specifics of the privileged routine

being argued are not claimed. More specifically, as stated from representative

Claim 6, the limitation argued is:

wherein a first routine in said calling hierarchy is privileged

»

Application/Control Number: 90/011,521 Page 65
Art Unit: 2173

Since the interpretation of the limitation is the basis for the arguments, the
Examiner’s interpretation is now given. The claim, as interpreted by the examiner,
pertains to a system in which certain routines are granted privileges to certain computer
resources, where a routine that has been granted authorization is deemed “privileged".

As stated in the eighth paragraph of MPEP 2101{R2].11.C.,

“Office personnel are to give claims their broadest reasonable
interpretation in light of the supporting disclosure. In re Morris, 127 F.3d

1048, 1054-55, 44 USPQ2d 1023,1027-28 (Fed. Cir. 1997).”

With regard to the argument, Griffin teaches, a global proving that sub-classes
are acceptable, via verifying a “claimant” (tree of trusted claims) (see column 4, lines
39-54). Thereby, if the claimant can be trusted then the claim as a whole, with all it's

sub-structure, will be assumed to be authenticated / true.

6.

The Patent Owner argues that “The Combination Does Not Disclose the Claimed
"permission associated with each routine in said calling hierarchy" (Claims 6, 7, 15,
16)".

The Examiner respectfully submits that Griffin teaches that the program further
has associated with it a plurality of routines in a hierarchy, each level having an

associated class that need be examined to determine potential resource use of the

Application/Control Number: 90/011,521 Page 66
Art Unit: 2173

portion of code, for the particular sub-program being executed (see column 3, lines 33-

57 and in figure 5).

1.

The Patent Owner argues that the combination changes the principle of
operation of Griffin.

The Examiner respectfully submits that the addition of Chan merely defines a use
of Class Libraries usable via the Java applets and associated “class loadér” used with in
the Griffin reference (see column 6, lines 33-51) and defines details regarding how a
security manager evaluates class / subclass permissions about the “current execution
context" (see pages 1188 and 1189). Where clarification of permission checking
during the operation of a class / sub-class structure in a program does not change the
operation of either reference. Here Griffin’s trust manager examines each new class
before it is allowed to load but may not even be called till mid-execution of the program.
This does not preclude a program from running yet checking upon call to sub-program /

sub-class / sub-routine for associated sub-permissions (see column 7, lines 10-67).

2.
The Patent Owner argues that the combination of Griffin and Chan is based upon

impermissible hindsight reasoning.

Application/Control Number: 90/011,521 Page 67
Art Unit: 2173

In response to applicant's argument that the examiner's conclusion of
obviousness is based upon improper hindsight reasoning, it must be recognized that
any judgment on obviousness is in a sense necessarily a reconstruction based upon
hindsight reasoning. But so long as it takes into account only knowledge which was
within the level of ordinary skill at the time the claimed invention was made, and does
not include knowledge gleaned only from the applicant's disclosure, such a
reconstruction is proper. See In re McLaughlin, 443 F.2d 1392, 170 USPQ 209 (CCPA
1971). Griffin’s inclusion of Java Class structures would have lead one of ordinary skill
in the art to a guide for "Java Class Library", and considered the resultant combination/

-~

definition a state of the art at the time.

3.

The Patent Owner argues that the Requestor's reasons to combine are
insufficient.

The Examiner respectfully submits that a prima facie case of obviousness has
been shown through the 6-16-2011 office action stating that “it would have been
obvious, to one of ordinary skill in the art, at the time of the invention to modify Griffin's
disclosure of trusted execution of a web browser, with the teachings of Chan that
provide more text book detail regarding the routines of a security manager as defined
for a web browser.” A guide (Chan) describing the operation of a class structure of
specific software used in the other reference (Griffin) merely incorporates known

structure of the specified software programing language.

Application/Control Number: 90/011,521 Page 68
Art Unit: 2173

The Patent Owner argues (from page 49) that "Griffin fails to disclose
determining authorization for an action requested by a thread based on permissions
associated with the thread's routines." (Goldberg Declaration, paragraph 50.) "On the
contrary, Griffin discloses determining the trustworthiness of a new class before it is
loaded or executed." (/d., paragraph 50) "Chan also does not disclose associating
routines and permissions in the manner required." (Goldberg Declaration, paragraph
51.) Accordingly, cléims 2, 3, 11, 12, and 20 are patentable over the combination of

Griffin and Chan.

The Examiner respectfully submits that the claim is not so limiting to only check
for the permissions of a currently executing section of code, this would appear
countefproductive to check the security of a code segment while executing and
providing permissions to the program element. Griffin specifically teaches, in column 3,
lines 32-57, making a determination of whether execution of the portion of code is
allowed by the policy rules. Where a trust manager examines each new class before it
is allowed to load. This however does not preclude a program from running yet
checking upon call to sub-program / sub-class / sub-routine for associated sub- -
permissions (see column 7, lines 10-67). Chan further te?aches a security manager that
evaluates class / subclass permissions about the “current execution context" (see

pages 1188 and 1189).

Application/Control Number: 90/011,521 Page 69
Art Unit: 2173

The Patent Owner argues that "Griffin and Chan fail to disclose 'a first routine’
with 'a permission required to perform said action [being] encompassed by at least one
permission associated with said first routine," as required by these claims. (ld.,
paragraph 51.) "In contrast to this routine/permission association," Professor Goldberg
points out that "Griffin 'examines each new class before it is allowed to execute' to
determine trustworthiness, and consequently does not render obvious the recited
features of claims 3, 12, and 20." (Goldberg Declaration at paragraph 51 citing Griffin at
Abstract.)” "Chan also does not disclose associating routines and permissions in the
manner required." (Goldberg Declaration, paragraph 51.) Accordingly, claims 2, 3, 11,

12, and 20 are patentable over the combination of Griffin and Chan.

The Examiner respectfully submits that The Examiner respectfully submits that
Griffin teaches that each of a plurality of sub-programs / sub-classes / sub-routines in a
hierarchy has an associated class that need be examined to determine a permission for
the code segment (see column 3, lines 33-57 and in figure 5). Where "...Proving is
done by finding a chain of claims from a claim about the class being loaded (check
permissions associated with said first routine, where 'first routine' is associated with
routine loaded on execution stéck) to a claim setting out a policy statement. A certificate
contains one or more claims, where a claim is a data structure defining a security policy
of assertion about a class, package of classes, or an entity to be trusted or not trusted
..... The trust evaluator also determines, from certificates from the certificate repository
and a code identifier identifying the portion of code, whether execution of the portion of

code is allowed (determining whether said action is authorized) by the policy rules given

Application/Control Number: 90/011,521 Page 70
Art Unit: 2173

the potential resource use, the code supplier and applicable certificates.” Griffin, 3:33-

57.

The Patent Owner argues that Griffin's teaching to determine the trustworthiness
of a class by checking potentially hierarchical certificates fails to teach or suggest the
recited "at least one permission associated with each routine in [a] calling hierarchy," as
required by claims 4, 13, and 21 in the '476 Patent.

The Examiner respectfully submits that Griffin teaches a principle that is
associated with a class that is evaluated to determine the permission for the “principle”
program, and that a plurality of sub-programs / sub-classes / sub-routines fal'l under the
“principle” prograrﬁ in a hierarchy, each level having an associated class that need be
examined to determine potential resource use of the portion of code, for the particular

sub-program being executed (see column 3, lines 33-57 and in figure 5).

The Patent Owner argues that "Claims 7 and 16 are also patentable over the
cited combination,” according to Professor Goldberg, as "Griffin would not transmité
message indicating the 'permission required' for a routine in a calling hierarchy is not
authorized because Griffin does not associate permissions with routines in a calling
hierarchy." (Goldberg Declaration, paragraph 53.)

The Examiner respectfully submits that Griffin teaches that each of a plurality of
sub-programs / sub-classes / sub-routines in a hierarchy has an associated class that

need be examined to determine a trust level (see column 3, lines 33-57 and in figure 5).

Application/Control Number: 90/011,521 Page 71
Art Unit: 2173

VI.

A.

The Patent Owner argues that “the claimed invention satisfied a long—felt need"
and fuﬁher argues against the prior art approach of using a "sand box".

The Examiner respectfully submits that Patent Owner appears to show that the
prior art is nothing more than a "sand box” approach to Java security. The references
however, provide advanced layered authentication schemes that provide for selective
access outside of the "box", while containing routines with security concerns within the

"box" (see column 1, line 60 through column 2, line 48 of Fischer).

B.

The Patent Owner argues that “the claimed invention led to commercial
success”.

The Examiner respectfully submits that the evidence of commercial success is
not convincing as there is no one to one mapping between the claims and what is
taught in Exhibit F. Therefore it cannot be seen that the Oracle implemented security
model was the same Patent Owners claimed work. The mere fact that a product using
the general idea of the cIaimed invention has had commercial success does not
necessarily make the claimed invention novel.

To be given substantial weight in the determination of obviousness or

nonobviousness, evidence of secondary considerations must be relevant to the subject

Application/Control Number: 30/011 ,521 Page 72
Art Unit: 2173 '

matter as claimed, in this case the Examiner does not see a nexus between the merits

of the claimed invention and the evidence of secondary considerations.

C.

The Patent Owner argues that "the claimed invention received industry praise
soon after its introduction”.

The Examiner respectfully submits that the Exhibits J, K, and L show an
improved sandbox approach with added class / sub-class security policies, where the
references applied supra are directed at the same or similar improvements, with an

earlier filing date.

D.
The Patent Owner argues that “the claimed invention was copied by Google;’.
The Examiner respectfully submits that this is the goal of this reexamination to

prove or disprove this point, in view of the substantial new question of patentability of

the claimed invention.

Litigation Reminder

The patent Owner is reminded of the continuing responsibility under 37 CFR
1.565(a) to apprise the Office of any litigation activity, or other prior or concurrent

proceeding, involving Patent Number: 5,694,322 throughout the course of this

Application/Control Number: 90/011,521 Page 73
Art Unit: 2173

reexamination proceeding. The third part requester is also reminded of the ability to
similarly apprise the Office of any such activity or proceeding throughout the course of

this reexamination proceeding. See MPEP §§ 2207, 2282 and 2286.

Conclusion

THIS ACTION IS MADE FINAL.

A shortened statutory period for response to this action is set to expire 2 months
from the mailin-g date of this action.

Extensions of time dnder 37 CFR 1.136(a) do not apply.in reexamination
proceedings. The provisions of 37 CFR 1.136 apply only to "an applicant" and not to
parties in a reexamination proceeding. Further, in 35 U.S.C. 305 and in 37 CFR
1.550(a), it is required that reexamination proceedings "will be conducted with special
dispatch within the Office."

Extensions of time in reexamination proceedings are provided for in 37
CFR 1.550(c). A request for extension of time must be filed on or before the day on
which a response to this action is due, and it must be accompanied by the petition fee
set forth in 37 CFR 1.17(g). The mere filing of a request Will not effect any extension of
time. An extension of time will be granted only for sufficient cause, and for a reasonable
time specified.

| The filing of a timelyifirst response to this final rejection will be construed as
including a request to extend the shortened statutory period for an additional month,

which will be granted even if previous extensions have been granted. In no event

Application/Control Number: 90/011,521
Art Unit: 2173

Page 74

however, will the statutory peried for response expire later than SIX MONTHS from the

mailing date of the final action. See MPEP § 2265.

All correspondence relating to this ex parte reexamination proceeding should be

directed:

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents

United States Patent & Trademark Office

P.O. Box 1450

Alexandria, VA 22313-1450

By FAX to: (571) 273-9900

Central Reexamination Unit

By hand: Customer Service Window

Randolph Building
401 Dulany Street

Alexandria, VA 22314

Application/Control Number: 90/011,521 Page 75
Art Unit: 2173

Registered users of EFS-Web may alternatively submit such correspondence via
the electronic filing system EFS-Web, at

https://sp0rtal.uspto.gov/authenticate/authenticateuserlocalepf.html.

EFS-Web offers the benefit of quick submission to the particular area of the
Office that needs to act on the correspondence. Also, EFS-Web submissions are "soft
scanned" (i.e., electronically uploaded.) directly into the official file for the reexamination
proceeding, which offers parties the opportunity to review the content of their
submissions after the "soft scanning” process is complete. Any inquiry concerning this
communication should be directed to the Central Reexamination Unit at telephone

number (571) 272-7705.

/Dennis G. Bonshock/

Primary Examiner, Art Unit 2173

Central Reexamination Unit 3992
A8

N

Best Available Copy

Auggend igt gt the
i lragemek M e 4
el pticn wnkes ¢ erotays

’ < !I‘“q,
I i Papunmh Roaueo ATl 1L 00 pOrians are auitsd 10 mEoand 1 8 cafiee

Complete If Known

Docke Nutlseor Patei Nurnber
37 C.F.R. 1.501 154892800500 6.192.476
INFORMATION DISCLOSURE v
CITATION IN A PATENT

Li GONG

[CCUTR A 1Y) Art Urat

She - 1 i of 3 February 26, 2000 3992

U.S. PATENT DOCUMENTS

- N Lessamant Nusg ey 2

Taamnigr | e b Gubtlans
eiee . . o0

nRan tie Nomoer Kexd Corde” o Aecivem) MO0

FOREIGN PATENT DOCUMENTS

o '

Fuanvre: e Dicunont Number Date Caaantry Thse Suibciasa 7,
: Yas N3
gt Ng

rrance aidi MPER 2
d party svusantes T

NON PATENT LITERATURE DOCUMENT“

o fre a\:l' e fnr DA lﬂ‘\ 28 s
bty N . i
OEVELOPER.ANDROID.COM (Augusl 24, 2611). "Andraid Developm" Package
g '!V NARE Java.Security,” located at <http:i‘developer.andioid.comirelerence lavassceuniy/package-
P summary himix. 135t visited on Augusi 27, 2011, & pages
. . s GOLDSTEIN. T. (November 29. 1996). " The Gat oway unou ity Model in [he Java Electionic
~ ! N Commerce Framework.” The Java L/eclrontc_(,onnng/mgg Framework, 1% pages. .
% 3, GONG, L. iMay/June 1997). ~Java Socuri y: Presen! and Near Future,” (EFE Mluo op. 14419
["l 4 GONG, L. et al. {2003). “Elemenis of Secunty Policy,” (,haplnr 13 Ingide dava’™ Platlorm
L4 1Security, Second Edttion. Addison-Wesley: Boston. MA. pp. 57-86.
. 5 GONG. L ¢ al. {2003). “Entarcing Security Palicy.” Chapter & in Inside Java' - 2 Plallorm
i 1Secunty. _Second Edition. Addison-Wesley: Bosion, MA, pp.87-112, .
6 GONG. L. et al. (December 2009). “Java Secunly: A Ten Year Retrospective.” Computer
.l _|Secumy Appucal/ans_g_og[gﬁ'w 2099 ACSAC 09, Honolulu, HL. 5 pages.) .
. KOVED. L. el al. 11998]. “The Evoiution of Security.” IBM Systems Journal 37(3), 17
) pages.
LADUE, M D. {1997}, "When Java Was One: Threats From Hoslile Byte Code.” located at
8 -http'iv’csrc.nisl.gownisscn997’.'pvoceedzngsf1 04.pdf». last vizited on September 7. 2011, 12
e L. }PPAGES. e e -
' MCGRAW. G. et al. (May . -99/) “Unders Idndmg the Ke Vo 516 Java Security - The Sandbox
| 19 and Authentication.” tocated at <hip:/wvay. ;dvaworla comijavawarldiw-05- 194 7;w-05-
. security.himl-, 1ast visited on August 2 2011, 5 pages.
ORACLE AMERICA.INC. [2004). “Jaya ™ 2 pldllo"‘n Standard Ed. 5.0: Java.Security Class
I ¢ /1 10 Protection Domain,” located ai
iy ,\7 ’ ~htip#download.oracie.comfjavase/1.5 Ordacs/apiijavassecurity/ProtoctionDomain.himis, lasi
visited on Augusl 27, 2011, 4 pages.

ey A
Esammer | o .7 7 Nate -
Signature N s - Considurod ’L - i\ - 1

pa-1482921 &~

P

Best Available Copy

Attt bur v U
Potrnat i Tedomadk Cetiee i

NG R0 FaperiGt Redin nn AC 0! T94S B DL1a00S 010 ergunn) 1 10.0ane & 2 AT OF N1 mahiet ubent f HISHIAYT 3 Y3 OME 0rato a1 et

INFORMATION DISCLOSURE
CITATION IN A PATENT

Complcte if Known

Docket Nuinbe Patent Nuaixy

37 CFR 1501 154892800500 6.192.4756

Apphoan

Li GONG

Issuer Gate At Ui

Shaot

Fobrpary 20, 2001 3992

o [oti 3

:

0!

AR T

ORACLE AMERICA. INC. (2004). “Java™™ 2 Platiorm Standard Ed. 6. Java.Securily Class
Protection Domain,” focated at
<http://dewnload.oracle.comfavaser'1.5.0idocsiapiiavassecurity/ProlectionDomain. htmbs | fast
visitedon August27, 2011, Spages. .
PAWLAN, M. (May 1998). “JDK 1.2: Now Features and Funciionality.” localed at
<htip:/www pawlan.conymonica‘artclesjdk 1 2teatu s/, las! visiled on August 3.2011. 7
pages.

SHAH. R. {December 1, 1996). "Java APls: Playing Monapoly wilh Java via the JECF .~
JavaWond. located at <htipZiwww javaworld.comvjavaworidiw- 12- 19967w-12-
commerceapi.himl>, last visited on February 13, 2010, 4 pages.

WEBBASEDPROGRAMING.COM (1998). "Web Bascd Frogramming Tuiorials. Java 1.2
Unleashed.” Incated at <htip:/iwww.webbasedprogramming.com/Java-1.2-
Unleashad’ch03.htm:. las! visited on August 3, 2011, 26 pages.

MAZIERES. D. (Augus! 8. 2011}. "Expert Report of Pref. David Maziores. Ph.D. Regarding the
Invatidity of the '447 Patent.” Civil Action No 3:10-cv-0355 1-WHA. presented to Oraclo
Amarica. Inc. by Googie. Inc., on August 8. 2011, 41 pages.

.,..-_._ " 3 . __,__
—
FiN

16.

MAZIERES. D. {August 8, 2011). “Exhibil A ~ Curriculum Vita, David Maziores.” Expert Report
ol Prol. David Maziérez, Ph.D. Regarding the Invalicity of the *447 Patenl, Civil Action No.
3110-cv-0356 1 -WHA, presented tc Oracle America, Inc. by Google, inc., on August 8, 2011. 9
pagoes.

MAZIERES, D. (August 8, 2011). “Exhibit B - Raferences Considared.,” Expert Report of Prof.
David Maziéres, Ph.D. Regarding the Invalidity of the "447 Patent, Civil Action No. 3:10-cv-

MAZIERES. D. {August 8. 2011). "Exhibil B - Relerences Considersd (Revised:.” E«pert
Report of Prof. David Maziéres, Ph.D. Regarding the Invalidity of the *247 Patent, Civit Action
No. 3:10-cv-0356 1-WHA. presented lo Oracle America, ing. by Google, Inc.. on Auguel &,
2011, 2 pages.

03561-WHA, presentod 1o Qracle America, inc. by Gooagle, inc.. en August 8, 2611, 7 pages. |

MAZIERES. D. (August 8.2011). "Exhibil C - US Patont No. 5.958.050.° Expert Report of
Prol. Dawvid Maziéres, Ph.D. Regarding the Invalidity of the 447 Patent, Civil Aciion Ne. 3;10-
ev-03561-WHA, presenied o Oracle Ainerica, Inc. by Google, Inc.. on August 8, 2011. 10

20.

pages. -
MAZIERES. D. {August 8, 2011},
Invalidity of the *476 Patent,” Civil Action No. 3:10-cv-03561-WHA. presented to Oracle
America, Inc. by Google. Inc.. on August 8, 2011, 49 pages.

Expert Report of Prol. David Mazieras. Ph.0. Regardng e |

MAZIERES. D. (August 8, 2011). “Exhioil B - Relerences Considered.” Expert Report of Pral.
David Maziéres. Ph.D. Regarding the Invalidity ol the “476 Patent. Givil Acticn No. 3:10-cv-
03561-WHA, presented to Oracle America, In. by Google., Inc., on August 8, 2011, 7 pages.

f\(7] e
\{{_‘,

MAZIERES, D. {August 8, 201 1). "Exhibit B - Releronces Considered (Revised),” Expert
Heport of Prot. David Mazieres. Ph.D. Regarding the Invalicity of the *476 Patent. Civil Action
No. 3:10-cv-03561-WHA. presented lo Oracle America. Inc. by Gaogle, Inc.. on August §,

2011. 2 pages. -

aamner

Sighatute ~

pa- 1482927

:// M (7 g?\::;ideuatl g A\ AR i \

Best Available Copy

A
IO Potknt aag Trassmak €

M, UG DEPARTMENT

Undat ine Papgiwer, Reaudnn Act of 1968 ng pessons aea requred 10 (n3{2no 1o a toflacton of sninraaton unlgss 2 deplage 3 vahd OME eainrdd nurber

37 C.F.R. 1.501

INFORMATION DISCLOSURE

CITATION IN A PATENT

Shunl

Complete it Known
Dotket Numbe Patent Nurmte:
1548928006500 6.192.47¢
Apphican
L GONG
Issue Date Art il
Febiuary 20 2001 3902

MAZIERES. D. {August 8, 201 11" Exhibit C - U.5. Patent No. 5,412.717." Exper! Ropor of

y f;é {’7 23 Prot. David Maziéres, Ph.D. Regarding the Invalidity o the 476 Patent, Civil Action No. 3:10-
N Y 1T Cv-035561-WHA, presonted to Oracle America. Inc. by Googie, Inc.. on August 8. 2011, 47
pages. .
CTEAANINGE Dot rotes citation il not s

Gk kb

Thit panty iequestan s i3 place »

Examme
Sitmatine

Date
Cansidoied

7
SV,
e L

pa-1482921

	2011-12-20 Reexam - Final Rejection

