UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria, Virginia 22313-1450

WWw.uspto.gov

| APPLICATION NO. J FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. l CONFIRMATION NO. —|
90/011,489 02/17/2011 6061520 13557.112021 8173
25226 7590 06/23/2011 | EXAMINER |
MORRISON & FOERSTER LLP

755 PAGE MILL RD ,
PALO ALTO, CA 94304-1018

| ART UNIT | PAPER NUMBER l

DATE MAILED: 06/23/2011

Please find below and/or attached an Office communication conceming this application or proceeding.

PTO-90C (Rev. 10/03)

N UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents

United States Patent and Tradernark Office
P.0.Box 1450

Alexandria, VA 22313-1450

VY USPTO.GOV

DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)

KING & SPALDING

1180 PEACHTREE STREET, N.E.

ATLANTA, GA 30309-3521

EX PARTE REEXAMINATION COMMUNICATION TRANSMITTAL FORM

REEXAMINATION CONTROL NO. 90/011,489.

PATENT NO. 6061520.

ART UNIT 3992.

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified ex parte reexamination proceeding (37 CFR 1.550(f)).

Where this copy is supplied after the reply by requester, 37 CFR 1.535, or the time for filing a
reply has passed, no submission on behalf of the ex parte reexamination requester will be
acknowledged or considered (37 CFR 1.550(g)).

PTOL-465 (Rev.07-04)

Control No. Patent Under Reexamination

90/011,489 6061520
Office Action in Ex Parte Reexamination - -
Examiner Art Unit
ERIC B. KISS 3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

a[] Requnsive to the communication(s) filed on . b[] This action is made FINAL.
cX] A statement under 37 CFR 1.530 has not been received from the patent owner.

A shortened statutory period for response to this action is set to expire 2 month(s) from the mailing date of this letter.
Failure to respond within the period for response will result in termination of the proceeding and issuance of an ex parte reexamination
certificate in accordance with this action. 37 CFR 1.550(d). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c).

If the period for response specified above is less than thirty (30) days, a response within the statutory minimum of thirty (30) days
will be considered timely.

Part!| THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. Notice of References Cited by Examiner, PTO-892. 3. [Interview Summary, PTO-474.
2. @ Information Disclosure Statement, PTO/SB/08. 4. [.

Partil SUMMARY OF ACTION
1a.
1b.

2.

Claims 1-4 and 6-23 are subject to reexamination.

Claims 5 are not subject to reexamination.

Claims _____ have been canceled in the present reexamination proceeding.
Claims 1-4.8,10.12-17.20 and 22 are patentable and/or confirmed.

Claims 6,7,9,71,18,19.21 and 23 are rejected.

Claims are objected to.

The drawings, filed on are acceptable.

has been (7a)[_] approved (7o)[] disapproved.
Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or (f).
a)(J Al b)[J Some* ¢)[] None of the certified copies have

1] been received.

The proposed drawing correction, filed on

OO00O0OXXONXK

2[C] not been received.
3[] been fited in Application No. _____ .
4[] been filed in reexamination Control No.
5[] been received by the International Bureau in PCT application No. ____
* See the attached detailed Office action for a list of the certified copies not received.

9. [Since the proceeding appears to be in condition for issuance of an ex parte reexamination certificate except for formal
matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D.
11, 453 0.G. 213.

10. [] Other:

cc: Requester (if third party requester)

U.S. Patent and Trademark Office
PTOL-466 (Rev. 08-06) Office Action in Ex Parte Reexamination Part of Paper No. 20110610

Application/Control Number: 90/011,489 Page 2
Art Unit: 3992

DETAILED ACTION
Reexamination of claims 1-4 and 6-23 of U.S. Patent 6,061,520 has been requested. In
the Order mailed March 23, 2011, reexamination was ordered for claims 1-4, 6-13, 15, 16, and
18-23, (Order Granting Ex Parte Reexamination, 3/23/2011). With this Office action, claims 14
and 17'are brought within the scope of reexamingtion. Accordinély, claims 1-4 and 6-23 of U.S.
Patent 6,061,520 are subject to reexamination.
No patent owner’s statement under 37 CFR § 1.530 has been received.

Patents and Printed Publications Cited in the Request

_The request cites the following prior art printed publications:
1. Brian T. Lewis, L. Peter Deutsch, and Theodore C. Goldstein. Clarity MCode: A
Retargetable Intermediate Representation for Compilation, ACM, IR *95, 1/95,
San Francisco, California, USA (1995) (hereinafter “Lewis”).
2. M. Cierniak & W. Li. Briki: an Optimizing Java Compiler, IEEE Compcon 97
Proceedings (Feb. 1997) (hereinafter “Cierniak™).
3. Dyer, Java Decompilers Compared, JavaWorld.com (July 1, 1997) (hereinafter
“Dyer”).

Scope of Reexamination

Of the references cited in the request, only Lewis raises a substantial new ques}ion of
patentability (SNQ). (Order at 5.)
Upon closer review of the *520 patent claims and the relevant teachings of the Lewis

reference, the examiner determines that Lewis raises an SNQ as to claims 14 and 17 of the °520

Application/Control Number: 90/011,489 Page 3
Art Unit: 3992

patent, in addition to claims 1-4, 6-13, 15, 16, and 18-23, for which reexamination was originally
ordered. |

As noted by the requester, Lewis discloses simulating execution of code without actually
running the code in order to identify the targeted output of a given section of code. (Request at
15 (citing Lewis at 126).) Once the targeted output of a given section of code is known, a
shortcut, referred to as a “CGValue,” is created, which represents the state of the individual
entries of the simulated stack, including constants, variable references, previously “egecuted”
subexpressions, and procedure or method calls. (/d.) The CGValues operate as a set of shortcut
instructions, such that “[g]ood code can be generated” when “the value of the expression is |
needed.” (Id.)

Because this new, non-cumulative teaching appears to be relevant to the featu;es asserted
to be missing from the prior art in the examiner’s reasons for allowance, there is a substantial
likelihood that a reasonable examiner would consider Lewis important in deciding whether or not
claims'1-4 and 6-23 of the *520 patent are patentable. Accordingly, Lewis raises an SNQ as to
claims 1-4 and 6-23.

Information Disclosure Statement

Where patents, publications, and other such items of information are submitted by a party
(patent owner or requ'ester) in compliance with the requirements of the rules, the requisite degree
of consideration to Ee given to such information will be normally limited by the degree to which
the party filing the information citation has explained the content and relevance of the
information. The initials of the examiner placed adjacent to the citations on the form PTO /SB

/08A and 08B or its equivalent, without an indication to the contrary in the record, do not signify

Application/Control Number: 90/011,489 _ Page 4
Art Unit: 3992 '

that the information has been considered by the examiner any further than to the extent noted
above.

The Information Disclosure Statement filed April 28, 2011, has been given due
consideration. Documents which fail to constitute prior art patents or printed publicat‘ions have
been lined through on the Form PTO/SB/08a so as not to be published on the reexamination
certificate, but have been considered by the examiner to the extent noted above. Citations to
documents that have already been cited have also been lined througfl.

Additional References

The examiner is aware of the following references cited in the request in reexamination
control no. 90/011,647:

1. Brian T. Lewis, L. Peter Deutsch, and Theodore C. Goldstein. Clarity MCode: A
Retargetable Intermediate Represen{ation for Compilation, ACM, IR 95, 1/95,
San Francisco, Cali_fomia, USA (1995);

2. James Gosling, Bill Joy, & Guy Steele. The Java™ Language Specification,
Addison-Wesley (1% ed. 1996);

3. Sun Microsystems Computer Corp. The Java™ Virtual Machine Specification,
Release 1.0 Beta DRAFT;

4, Dave Dyer, Java Decompilers Compared, JavaWorld.com (July 1, 1997); and

5. Todd A. Proebsting and Scott A. Watterson. Krakatoa: Decompilation.in Java
(Does Bytecode Reveal Source?), Proceedings of the Third USENIX Conference

on Object-Oriented Technologies and Systems, Portland, Oregon (June 1997).

Application/Control Number: 90/011,489 Page 5
Art Unit: 3992

As noted above, Lewis and Dyer have also been cited with the request for reexamination
in this reexamination proceeding. The most relevant teachings and shortcomings of Dyer have
previously been discussed in this reexamination proceeding. (Order at 7-8.)

The Java Language Specification has been cited by the patent owner in the IDS filed
April 28, 2011, in this reexamination proceeding. The Java Language Specification has also
been incorporated by reference in the *520 patent.

The particular version of the Java VM Specification cited in the *647 reexamination is
only a partial copy with an uncertain publication date. Specifically, while the cover page the
Java VM Speciﬁcatioh bears a date of August 21, 1995, each of pp. 3-57 (the provided copy ends
with p. 57) contains a footer bearing a date stamp with one of the following different dates:
March 4, 1996; August 22, 1995; Febrﬁary 29, 1996; August 7, 1995; December 6, 1995; and -
December 5, 1995. A 1997 version of the Java VM Specification has been incorporated by
reference in the ’520 patent.

To the extent that the Java Language Specification and the Java VM Speciﬁcation are
relevant, the >520 patent appears to disclose the relevant content throughout as admitted prior art.
*520 patent passim (especially cols. 1 and 2). While the Java Language Specification’and the
Java VM Specification provide useful background information, they do not appear to provide a
new, noncumulative technical teaching that a reasonable examiner would consider important in
deciding whether or not a claim of the *520 patent is patentable.

The Proebsting reference has been cited on an attached form PTO-892.

The most relevant portion of Proebsting teaches decompiling Java bytecode into Java

source by using a decompiler that performs a symbolic execution of the bytecode to create the

Application/Control Number: 90/011,489 Page 6
Art Unit: 3992

corresponding Java source expressions. Proebsting at Abstract and p. 2. More speciﬁcally, the
symbolic execution simulates the Ja\;a Virtual MachiAne’s evaluation stack with strings that
represent the source-level expressions being compounded. Id. This teaching is, however,
substantially cumulative to the previously considered teachings of Cierniak applied by the
examiner during prosecution of the *520 patent. Specifically, the portions of Cierniak relied
upon by the examiner also taught decompiling Java bytecode into Java source by using a
decompiler that performs a symbolic execution of the bytecode tb create the corresponding Java
source expressions. Cierniak at pp. 181-82 (“To convert a sequence of bytecodes contained in a
basic block to high-level ekpressions and statements, we symbolically execute each baSic block
using a temporary stack to emulate a Java virtual machine.”); 947 App., Non-Final Rejection at
3. Just as the Office cannot initiate a second examination on grounds that had previously been
overcome based on the applied teaching of Cierniak, the Office cannot substitute the
substantially cumulative teaching of Proebsting and effectively question the judgment of the
examiner in allowing the >520 patent claims. See In re Swanson, 540 F.3d 1368, 1380 (Fed. Cir.
2008) (evaluating the scope of the SNQ requirement); MPEP § 2242.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the
basis for the rejections under this section made in this Office action:
A person shall be entitled to a patent unless -
* (b) the invention was patented or described in a printed publication in this or a foreign

country or in public use or on sale in this country, more than one year prior to the date of
application for patent in the United States.

Application/Control Number: 90/011,489
Art Unit: 3992

Page 7

Claims 6, 7,9, 11, 18, 19, 21, and 23 are rejected under 35 U.S.C. 102(b) as being

anticipated by Lewis.

The following claim chart provides a comparison of the features of Lewis with the

features of the claimed invention.

’520 Patent Claims

Lewis

6. A method in a data processing system,
comprising the steps of:

“We use MCode to compile Clarity programs
at execution time (i.e., on-the-fly) into SPARC
code for the Solaris operating system.” Lewis
at 119 (footnote omitted).

receiving code to be run on a processing
component to perform an operation;

“The runtime component of the MCode system
is illustrated in Figure 2. The MCode runtime
in an MCode-containing executable’
internalizes the MCode for each procedure as
needed, when the procedure is first called.”
Lewis at 120. :

play executing the code without running the
code on the processing component to identify
the operation if the code were run by the
processing component; and

“The code generator ‘executes’ MCode
instructions in order to maintain a running
simulation of the MCode machine’s stack.
Concrete subclasses of CGValue represent the
state of the individual entries on the simulated
stack. These entries include constants, variable
references, previously ‘executed’
subexpressions, and procedure or method calls.
The simulated stack records information about
operands until the MCode instructions that use
them are encountered. Machine code for
(sub)expressions is only generated when the
value of those expressions is needed.” Lewis at
126.

creating an instruction for the processing
component to perform the operation.

“The simulated stack records information
about operands until the MCode instructions
that use them are encountered. Machine code
for (sub)expressions is only generated when
the value of those expressions is needed. Good
code can be generated at that time because the
destination (a register or memory) is known.”
Lewis at 126.

Application/Control Number: 90/011,489
Art Unit: 3992

Page 8

“The code generator currently produces
SPARC code of approximately the quality of
the SunPRO C compiler at the default —-O2
optimization level.” Lewis at 120.

7. The method of claim 6 wherein the
operation initializes a data structure, and
wherein the play executing step includes the
step of:

play executing the code to identify the
initialization of the data structure.

“The code generator ‘executes’ MCode
instructions in order to maintain a running
simulation of the MCode machine’s stack.
Concrete subclasses of CGValue represent the
state of the individual entries on the simulated
stack. These entries include constants, variable
references, previously ‘executed’
subexpressions, and procedure or method calls.
The simulated stack records information about
operands until the MCode instructions that use
them are encountered.” Lewis at 126.

The creation of new entries on the simulated
MCode machine stack represents the
initialization of data structures by the MCode
instructions.

9. The method of claim 6 further including the
step of:

running the created instruction on the
processing component to perform the
operation.

“We use MCode to compile Clarity programs
at execution time (i.e., on-the-fly) into SPARC
code for the Solaris operating system.” Lewis
at 119 (footnote omitted).

11. The method of claim 6 wherein the
operation has an effect on memory, and
wherein the play executing step includes the
step of:

play executing the code to identify the effect
on the memory.

“The code generator ‘executes’ MCode
instructions in order to maintain a running
simulation of the MCode machine’s stack..
Concrete subclasses of CGValue represent the
state of the individual entries on the simulated
stack. These entries include constants, variable
references, previously ‘executed’
subexpressions, and procedure or method calls.
The simulated stack records information about
operands until the MCode instructions that use
them are encountered. Machine code for
(sub)expressions is only generated when the
value of those expressions is needed. Good
code can be generated at that time because the

Application/Control Number: 90/011,489
Art Unit: 3992

Page 9

destination (a register or memory) is known.”
Lewis at 126.

18. A computer-readable medium containing
instructions for controlling a data processing
system to perform a method, comprising the
steps of:

“We use MCode to compile Clarity programs
at execution time (i.e., on-the-fly) into SPARC
code for the Solaris operating system.” Lewis
at 119 (footnote omitted).

These execution-time operations cannot be
realized without the use of some form of
computer-readable medium.

receiving code to be run on a processing
component to perform an operation;

“The runtime component of the MCode system
is illustrated in Figure 2. The MCode runtime
in an MCode-containing executable
internalizes the MCode for each procedure as
needed, when the procedure is first called.”
Lewis at 120.

simulating execution of the code without
running the code on the processing component
to identify the operation if the code were run
by the processing component; and

“The code generator ‘executes’ MCode
instructions in order to maintain a running
simulation of the MCode machine’s stack.
Concrete subclasses of CGValue represent the
state of the individual entries on the simulated
stack. These entries include constants, variable
references, previously ‘executed’
subexpressions, and procedure or method calls.
The simulated stack records information about
operands until the MCode instructions that use
them are encountered. Machine code for
(sub)expressions is only generated when the
value of those expressions is needed.” Lewis at
126.

creating an instruction for the processing
component to perform the operation.

“The simulated stack records information
about operands until the MCode instructions
that use them are encountered. Machine code
for (sub)expressions is only generated when
the value of those expressions is needed. Good
code can be generated at that time because the
destination (a register or memory) is known.”
Lewis at 126.

“The code generator currently produces

Application/Control Number: 90/011,489
Art Unit: 3992

Page 10

SPARC code of approximately the quality of
the SunPRO C compiler at the default —O2
optimization level.” Lewis at 120.

19. The computer-readable medium of claim
18 wherein the operation initializes a data
structure, and wherein the simulating step
includes the step of:

simulating execution of the code to identify the
initialization of the data structure.

“The code generator ‘executes’ MCode
instructions in order to maintain a running
simulation of the MCode machine’s stack.
Concrete subclasses of CGValue represent the
state of the individual entries on the simulated
stack. These entries include constants, variable
references, previously ‘executed’
subexpressions, and procedure or method calls.
The simulated stack records information about
operands until the MCode instructions that use
them are encountered.” Lewis at 126.

The creation of new entries on the simulated
MCode machine stack represents the
initialization of data structures by the MCode
instructions.

21. The computer-readable medium of claim
18 further including the step of:

running the created instruction on the
processing component to perform the
operation.

“We use MCode to compile Clarity programs
at execution time (i.e., on-the-fly) into SPARC
code for the Solaris operating system.” Lewis
at 119 (footnote omitted).

23. The computer-readable medium of claim
18 wherein the operation has an effect on
memory, and wherein the simulating step
includes the step of:

simulating execution of the code to identify the
effect on the memory.

-“The code generator ‘executes’ MCode

instructions in order to maintain a running
simulation of the MCode machine’s stack.
Concrete subclasses of CGValue represent the
state of the individual entries on the simulated
stack. These entries include constants, variable
references, previously ‘executed’
subexpressions, and procedure or method calls.
The simulated stack records information about
operands until the MCode instructions that use
them are encountered. Machine code for
(sub)expressions is only generated when the
value of those expressions is needed. Good
code can be generated at that time because the
destination (a register or memory) is known.”
Lewis at 126.

Application/Control Number: 90/011,489 Page 11
Art Unit: 3992

L |

Confirmed Claims

Claims 1-4, 8, 10, 12-17, 20, and 22 are confirmed.

Claims 1-4 and 12-17

Although the request alleges that Lewis anticipates claims 1-4 and 12-17, Lewis fails to
disclose or suggest any of the claim features regarding static initialization of an array or class
files with clinit methods.

The first two steps of claim 1 are admitted prior art in the context of the ordinary
operation of a Java programming language compiler and a Java virtual machine, as described in
the background of the *520 patent. However, there does not appear to be a legally tenable
rationale for combining the Java programming language teachings with the teachings of Lewis to
arrive at the claimed subject matter. Lewis does describe a strong resemblance between Java (at
the time called Oak) and the MCode system, but Lewis also identifies significant intentional
design differences between the two systems, weighing against a finding of obviousness:

The Oak compilation system [Gosling 95] strongly resembles the MCode system in that it

also supports a machine-independent intermediate representation that is either interpreted

or compiled on-the-fly. Like MCode, the Oak IR is stack-based and contains a substantial
amount of type information. However, Oak instructions are more concrete. There are
specific instructions for operating on particular sizes and kinds of the primitive data
types. MCode instructions, on the other hand, are higher-level and refer to MCode type
information for operand size and other instruction properties. Also, MCode’s control
instructions are left abstract, while the Oak control constructs are represented in terms of
jumps. Oak is intended for building application programs, while Clarity, as a systems
programming language, must support full SPARC ABI interoperation and the use of

existing tools.

Lewis at 122,

Application/Control Number: 90/011,489 Page 12
Art Unit: 3992

Claims 8 and 20

As noted above, Lewis fails to disclose or suggest the static initialization of an array or
identifying such static initialization, and this deficiency is not readily cured by resorting to the)
cited Dyer, Java Programming Language Specification (or the equivalent admitted prior art), or
Proebsting references.

The Dyer reference describes the results of testing 3 different JAVA decompilers:
DejaVu, Mocha, and WingDis version 2.06. Dyer at 1. In the context of decompiling code
containing a static initializer, the decompilers produced varying results, but there‘does not appear
to be an indication that any of the decompilers identified the static initialization as such, e.g., the
keyword stat ic does not appear in any of the segments of example decompiled code
corresponding to static initializers. See Dyer at 3-4 and 9-10. Instead, the fact that the ~original
code contained a static initialization of an array appears to have been identified only by the
author as a known test input. Further, there is no discussion in Dyer as to how any of the
decompilers achieved the illustrated results, i.e., it is not clear whether any of the decompilers
disclosed by Dyer simulated execution of byte codes against a memory without execu%ing the

byte codes.

Claims 10 and 22

Lewis fails to disclose or suggest interpreting the created instruction by a virtual machine

to perform the operation.

Application/Control Number: 90/011,489 Page 13
Art Unit: 3992

Conclusion

In order to ensure full consideration of any amendments, affidavits or declarations, or
other docurﬁents as evidence of patentability, such documents must be submitted in response to
this Office action. Submissions after the next Office action, which is intended to be a final
action, will be governed by the requirements of 37 CFR 1.116, after final rejection an&i 37 CFR
41.33 after appeal, which will be strictly enforced.

Extensions of time under 37 CFR 1.136(a) will not be permitted in these proceedings
because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a
reexamination proceeding. Additionally, 35 U.S.C. 305 requires that reexamination ﬁroceedings
"will be conducted with special dispatch" (37 CFR 1.550(a)). Extension of time in ex parte
reexamination proceedings are provided for in 37 CFR 1.550(c).

The patent owner is reminded of the continuing responsibility under 37 CFR 1.565(a) to
apprise the Office of any litigation activity, or other.prior or concurrent proceeding, ir;volving
Patent No. 6,061,520 throughout the course of this reexamination proceeding. The third party
requester is also reminded of the ability to similarly apprise the Office of any such activity or
proceeding throughout the course of this reexamination proceeding. See MPEP §§ 2207, 2282

and 2286.

Application/Control Number: 90/011,489 Page 14
Art Unit: 3992

All correspondence relating to this ex parte reexamination proceeding should be directed:

By Mail to: Mail Stop Ex Parte Reexam
: Central Reexamination Unit
Commissioner for Patents
United States Patent & Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

By FAX to: (571) 273-9900
Central Reexamination Unit
By hand: Customer Service Window
Randolph Building

401 Dulany Street
Alexandria, VA 22314

Any inquiry concerning this communication should be directed to Central Reexamination

Unit at telephone number (571) 272-7705.

/Eric B. Kiss/
Primary Examiner, Art Unit 3992

Conferees: 2 ' :

. Lopprtnoa 3722

S
A

Application/Control No. Applican.t(s)/.Patent Under
90/011,489 e nation
Notice of References Cited . .
Examiner Art Unit
ERIC B. KISS 3992 Page 1 of 1
U.S. PATENT DOCUMENTS
* c°unt5%i‘é'2?«'lfmhé§?£§£ Code MMD-$$YY Name Classification
A | US-
B | US-
c | US-
D | US-
E | US-
F | US-
G | US-
H | US-
|| US-
J | US-
K | US-
L | US-
M | US-
FOREIGN PATENT DOCUMENTS
* Coumg%ﬁ,‘ﬂ,’;‘m‘mﬁzmﬁg Code MM??‘Y?YY Country Name Classification
N
0o
P
Q
R
S
T
NON-PATENT DOCUMENTS .
* Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
U Todd A Proebsting and Scott A. Wat@erson. Krakatoa: Decor_npilation in Java (Does Bytecode Reveal Source?), Proceedings of
the Third USENIX Conference on Object-Oriented Technologies and Systems, Portland, Oregon (June 1997).
\Y
w
X

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

U.$. Patent and Trademark Office
PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 20110610

Exhibit 9

The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems
Portland, Oregon, June 1997

Krakatoa: Decompilation in Java
(Does Bytecode Reveal Source?)

.

Todd A. Proebsting, Scott A. Watterson
The University of Arizona

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Krakatoa: Decompilation in Java
(Does Bytecode Reveal Source?)

Todd A. Proebsting Scott A. Watterson
The Universily of Arizona *

Abstract

This paper presents our technique for automati-
cally decompiling Java bytecode into Java source.
Our technique reconstructs source-level expres-
sions from bytecode, and reconstructs readable,
high-level control statements from primitive goto-
like branches. TFewer than a dozen simple code-
rewriting rules reconstruct the high-level state-
ments.

1 Introduction

Decompilation transforms a low-level language into
a high-level language. The Java Virtual Machine
(JVM) specifies a low-level bytecode language for a
stack-based machine [LY97]. This language defines
203 operators, with most of the control flow speci-
fied by simple explicit transfers and lahels. Compil-
ing a Java class yields a class file that contains type
information and bytecode. The JVM requires a sig-
nificant amount of type information from the class
files for object linking. Furthermore, the bytecode
must be verifiably well-behaved in order to ensure
safe execution. Decompilation systems can exploit
this type information and well-behaved property to
recover Java source code from the class file.

We present. a technique for transforming low-level
Java bytecode into legal Java source code. Our sys-
tem, Krakatona,' performs type inference lo issue
local variahle declarations. The verifier does the
same type ol type inference, and the techniques are

Address: Departmient of Computer Science, Uni-
versity of Arizona, Tueson. A7 85721: Email: {todd,
saw}@cs.arizona.edu.

"Krakatoa is a voleano located in the Sunda Sirait be-
tween Javia and Snmatra. Its 1983 eruption threw five cubic
miles of debris into the air and was heard 2200 miles away
in Australia.

well known. Presently, we focus our research on
two subproblems: recovering source-level expres-
sions and synthesizing high-level control constructs
from goto-like primitives.

Krakatoa uses a stack-simulation technique to re-
cover expressions and perform type inference. Ex-
pression recovery creates source-level assignments
and comparisons from primitive bytecode opera-
tions. We extend Ramshaw’s goto-elimination al-
gorithm to structure (and create source for) ar-
bitrary reducible control flow graphs. This tech-
nique produces source code with loops and multi-
level break’s. Subsequent techniques recover more
intuitive constructs (e.g., if statements) via apph-
cation of simple code rewrite rules.

Traditional decompilation systems use graph
transformations to recover high-level control con-
structs. These systems require the anthor of the
decompiler to anticipate all high-level control id-
ioms. When faced with an unexpected language
idiom, these systems either abort, or prodice gotas
(illegal in Java). Krakatoa represents a different ap-
proach. Krakatoa first produces legal Java source
given legal Java bytecode with arbitrary reducible
control flow, and then recovers intnitive high-level
constructs from this soirce.

Figure 1 gives the five steps of decompilation
performed hy Krakatoa. [First, the erpression
builder reads bytecode. recovers expressions and
type information, and produces a control flow
graph (CFG). Next. the sequencer orders the CFG
nodes for Ramshaw’s goto-elimination technique.
Ramshaw’s algorithm produces a convoluted—vet.
legal—.Java abstract syntax tree (AST). Our sys-
tem then transforms this AST into a less convo-
luted AST using a set of simple rewrites. The final
phase produces Java source hy traversing the AST,

Java Bytecodes

Expression Builder

Flow graph with expressions and conditional gotos

Nede Sequencer

Augmented Flow graph

Goto Eliminator (Ramshaw’s Algorithm})

Java AST

Code Simplifier

Restructured Java AST

Final Java printer

Java Source

Figure 1: Java Bytecode Necompilation System

2 Expression Recovery

Java bytecodes bear a very close correspondence
to Java source. As a result, recovering expres-
sions from Java bytecode is often simple—nwch
simpler than recovering expressions from machine
language. Java class files include information that
makes recovering high-level operations like field ref-
erences easy. The fact that the bytecade must be
well-behiaved (i.e., verifiable) also simplifies analy-
sis. Figure 2 gives a sample program and its abbre-
viated disassembly. Note the level of type informa-
tion in the disassembly produced by Sun’s javap
utility.

Symbolic execution of the bytecode creates the
corresponding Java source expressions. Tt also cre-
ates conditional and unconditional gota’s, which
will be removed by subsequent. decompilation steps.
Symbolic execution simulates the Java Virtual Ma-
chine’s evahiation stack with strings that represent
the source-level expressions heing computed. Tor

class foo {
int sam;

int bar(int a, int b) {
- if (sam > a) {
b = ax*2;
¥
return b;
}
}

Compiled from foo.java

class foo extends java.lang.Object {
int sam;
int bar(int,int);

Method int bar(int,int)
0 aload_o0

getfield #3 <Field foo.sam I>

iload_1

if_icmple 12

1load_1

iconst_2

10 imul

11 istore_2

12 iload_2

13 ireturn

W W G =

Figure 2: Simple Method and Bytecode Disassem-
bly (via javap -c).

instance, iload_1, which loads the value of the
first local variable—with type int-—could be rep-
resented on the stack as “i1”. Similarly, if i1 and
2 were the top two elements of the symbolic stack,
and the next. bytecode were iadd (integer addition),
those elements would be popped off the stack and
replaced with “(11+2)”. The symbolic execution
of some expressions, like assignment, requires emit-
ting Java source.

Our algorithim recovers expressions one basic
block at a time. Some basic blocks (such as those
produced by the conditional expression operation,
A?R:(7) do not begin with empty stacks, so some
information is required 10 propogate from prede-
cessors. Also, basic hlocks that begin exception-
handling blocks-—which are easily identified— begin
with the raised exception on the stack.

Figure 3 provides the step-by-step decompilation
of the bytecode in Figure 2. The initial aload_0

instruction pushes a Java reference onto the stack.
In virtual functions, the “0’th” local variable, a0,
always refers to this. The getfield instruction
references a named field, “sam”, of the current top
of stack. Therefore, the “this” is popped and
replaced with “this.sam”. iload_1 pushes “i1”
onto the stack. The ifcmple compares the top two
stack elements and branches to the appropriate in-
struction if the lower is less than or equal to the
top element. Symbolically executing the ifemple
requires popping the top two elements and emit-
ting the appropriate conditional branch. Translat-
ing the remaining instructions is similar.

Most. of the bytecode instructions are equally
simple to symbolically execute. Unfortunately, a
few require more information. Some of the stack
manipulation routines (e.g., pop2, dup2, etc.) de-
pend on byte offsets from the stack top. For in-
stance, pop2 removes the top 8 bytes from the
stack, whether those 8 bytes represent one 8-byte
double value, or two 4-byte scalar values. To cor-
rectly simulate these instructions the symbolic ex-
ecution keeps track of the size (and type) of each
stack element.

3 Instruction Ordering

After recovering expressions, conditional and un-
conditional goto’s (along with implicit fall through
behavior) determine control flow. Java, however,
has no goto statement, so its control flow must he
expressed with structured statements.

Ramshaw presented an algorithm for eliminating
goto’s from Pascal programs while preserving the
program’s structure [Ram88). This algorithm re-
places each goto with a multilevel break to a sur-
rounding loop. The algorithm determines the ap-
propropriale locations for these surrounding loops.
We trivially extended his algorithm to use multi-
level continue’s.

Ramshaw’s (extended) algorithm replaces each
forward goto with a break and each backward
goto with a continue. Tlis algorithm inserts a loop
that ends just hefore the targei of each break state-
ment. Likewise, il inserts a loop that siaris just.
before the target of each continue. These loops
ensure that each control-transfer statement jumps
to the correct instruction. Fach newly-inserted
foop must also end with a break stalement, so
that contreol will fall omt of the loop. Fignure 4
shows an example of this techuigue. Additional
loops and hreak/eontinue’s create a strnctured

program with exactly the same control flow as the
goto-only program.

Ramshaw’s algorithm requires two inputs: the
control flow graph, and an instruction ordering. His
algorithm encodes this order into the flow graph
using augmenling edges, snch that every instrue-
tion has an augmenting edge to the next instruc-
tion in sequence. These angmenting edges occur
between every pair of physically adjacent instruc-
tions even if actual control flow between them is
impossible. He proves that if this angmented graph
is reducible, then a structurally equivalent [PKT73]
program can be created without goto’s. How-
ever, Ramshaw provides no algorithm for finding
a reducible angmented flow graph from a given re-
ducible flow graph.

The control-flow graphs of Java programs are
reducible. Therefore, the compiled bytecode will
likely form a reducible control-low graph. Unfor-
tunately, simple optimizations like loop inversion
create irredncible angmented flow graphs. The flow
graph of the program in Figure 8 has this problem
hecanse the augmenting edge between the first two
statements creates a “jump” into the body of the
loop formed by the next seven statemeuts.

To utilize Ramshaw's algorithm, we developed an
algorithm that orders a reducible graph’s instrue-
tions such that the resulting augmented graph is
also reducible.

3.1 Augmenting the Flow Graph

Creating a reducible augmented flow graph re-
quires that nwo angmenting edge enters a loop any-
where other than at its header. Preventing this
is simple—when ordering the instructions, make
the header first and contiguously order the loop’s
inslrnctions. Becanse physical adjacency deter-
mines angmenting edges, contignously ordering the
instructions gnaraniees that the only augmenting
edge entering the loop from the outside will be en-
Lering at 1he top, which will not affect redncibility
if it is the loop’s header.

A loop with nn nested loops inside is easy to
order—simply remove the back edges and topo-
logically sort the remaining directed. acyclic graph
{DAG). Handling interior loops requires replacing
them with a single placeholder node in the graph
and separately ordering hoth the loop and the sir-
rounding graph. Afer ordering both, re-insert. 1he
loop’s nades at itz placeholder. Re-ordering in-
stenetions may change whether or not one instric-
vion falls thyough to another as it did in the original

Bytecode Symbolic Stack Emitted Source
aload.Q "this"
getfield #3 <Field foo.sam I> | "this.sam"
iload_1 "this.sam", "i1"
if_icmple 12 if (this.sam <= i1) goto L12
iload.1 "l
iconst 2 vige, w2v
imul "(i1#2)"
istore 2 i2 = (i1#2)
12: iload 2 ni2v L12:
ireturn return i2

Figure 3: Symbolic Execution of Bytecode

stmi0

if ezprl goto L1;
if expr2 goto 1.2;
L1: stmil

L.2: stmt2

stmi()
1.2: for (; ;) {
Ll: for (;;) {
if exzprl break I.1;
if expr2 break 1.2;
break L.1;
} /70
stmt]
break 1.2;

Y /712

stmi?2

Figure 4: Ramshaw’s Goto Elimination: Before and After

ordering. Where implicit. control flow has changed,
the algorithm must add new branches to restore
the original control flow. Whenever possible, the
topological sort attempts to maintain the original
fall-through behavior.

This algorithm produces a reducible angmented
graph. DBecanse all loops are ordered separately,
and laid ont contiguously, the only angmenting
edge entering from outside enters at the top. The
topological sort of the loop (minus its backedges)
guarantees that this top node is the loop header and
that no.internal edges cause irreducibility. Qutside
edges into the loop header cannot make a loop irre-
ducible. Therefore, the resulting augmented graph
15 reducible.

Loops are not the only blocks of instructions
which must be ordered contignously. Txception
handling regions must form contiguous sections of
mstroctions. Class files specify which instructions
are in which regions. Qur algorithm orders those
regions contignously by treating them like loops.

After applying this technigue to create a total or-

dering of the nodes (the angmenting path), Kraka-
toa can apply Ramshaw’s technique to eliminate
goto’s.

4 Code Transformations

4.1 Program Points

After applying Ramshaw’s algorithm for eliminat-
ing goto’s, Krakatoa has a complex, yet legal, Java
AST (see Figure 9). Krakatoa then proceeds to
recover more of the natural high-level constructs
of the original program (e.g. if-then-else, etc.).
Krakatoa uses a program point analysis to snmma-
rize a program’s control-flow and to guide recover-
ing high-level constructs. A program point is a syn-
tactic location in a program. Fvery statement. has a
program point hoth before and after it. These pro-
gram pomis have 1wo properties: reachability and
equitalence class. .

A program point is unreachable if and only if it is
preceded along all execution paths by an uncondi-

tional jump statement, (i.e. return, throw, break,
or continne). For instance, in Figure 5, program
point 3, ®3, is unreachable, since it is preceded by a
return statement. &g is reachable, however, since
one of the branches in the preceding if statement
does not. end with a jump statement.

Two program points are equivalent (denoted as
b, = @) if and only if future computation of the
program is the same from both points. For in-
stance, the program point before a break state-
ment is equivalent to the program point after the
loop it exits ($3 and g in Fignre 6). As an ex-
ample, in Figure 6, ®;, &y, &4, &5, $g, and &7 are
equivalent, as are program points &3 and $5.

Both reachability and equivalence are simple
to compnte via standard control-flow analyses
[ASUS8E).

4.2 AST Rewrite Rules

Krakatoa performs a series of AST rewriting trans-
formations to recover as many of the “natural® pro-
gram constructs as it can {(e.g. if-then-else, etc.).
Krakatoa applies these rewriting rules repeatedly
nutil no changes occur. We have fonnd that the
few rules below are sufficient to retrieve high-level
constrancts of the Java langnage, including if-then-
else statements, and short-circuit evalnation of ex-
pressions. Tach rewriting rule reduces the size of
the AST, thus ensuring termination.

‘Table 1 summarizes the rules, which we describe
helow in greater detail. Many of these rules gen-
eralize. Those that apply to for-loops often apply
to other loops. Many rules have several symmetric
cases. For example, the first rule in Table 1 re-
moves an empty else-branch from an if-then-else
statement—there is a symmetric rule for removing
an empty then-branch by negating the predicate.

4.3 if-then-else Rewriting Rules

The first transformation shown in Table 1 changes
an if-then-else statement into an if-then state-
ment when the else branch is empty. This trans-
formation is always legal.

The second transformation creates an if-then-
elsestatement, from an if-then statement, by hoist-
ing the subsequent statement list into the else-part.
Our algorithm performs this transformation if and
only il no reachable program point. in Stmtlist! is
equivalent to the program point before Stmtlist2.
Essentially, this means that no statement. in the

then-branch (Stmthist!) can reach Stmtlist2 di-
rectly.

4.4 Loop Rewriting Rules

The third rule in Table 1 removes nseless continue
statements. If the program point after a continue
statement is equivalent to the program point hefore
the continue statement, then that continue can
be removed.

The fourth rule creates a short-circuit, test ex-
pression within a for-loop by eliminating an inte-
rior if statement. Doing so requires that the loop
body begin with an if-then-else statement, and
that the then branch of that statement consists
of a single jump to a program point eguivalent to
breaking ont of the loop.

The fifth transformation provides an example of
transforming loops into if statements. A loop is
eqnivalent to an if if it can never repeat. itself, and if
all simple break statements can be safely removed
during the transformation. A loop never repeats
if its last program point is nnreachable. break’s
may be removed if the immediately following (un-
reachable) program point is equivalent to the last
program point in the loop (®; in Table 1). The
transformation replaces the loop with an if state-
ment, and deletes all of the break statements for
that loop.

4.5 Short Circuit Evaluation

Rewriting Rules

The sixth rnle shown in Table 1 recovers a short-
cirenit. Or conditional. Short-circuit Or’s exist
when two adjacent conditionals guard the same
statement list and failure of either will canse a
branch to eguivalent locations.

The last transformation in Table 1 recovers short-
cirenit And expressions. This transformation is ap-
plicable whenever a simple if statement represents
the entire body of another.

5 Status

We have implemented a prototype Java decompiler,
Krakatoa, in Java. We have run Krakatoa on a
number of elass files, including some 1o which we
had no sairee code access. We examined the out put
of Krakatoa by hand, and Krakatoa appears to re-
cover high-level constructs very well. Figures 7-10
provide an example of the stages of decompilation.

[Rule Before After Conditions
- if expr { if ezpr {
E:xmmate Stmtlist Stmtlist None
e } else { })
. if ezpr {
Create if er;;;img” Stmtlist1 Stmtlistl contains no
if"—t.hen-else } ' ’ } else { reachable program
&, : Stmtlist2 } Stmtlist2 points equivalent to &;.
for (45 .;C) { for (A;B ;0) {
Delete Stmtlist Stmtlist b ~ P,
Continues ®;, continue &, } Gl
}
for (A ;B ;C) {
if expr { for (A ;
& } elg‘::"{mp 3 and not expr ;
Move i ‘S"tmtlisfl C){ ®, =~ Py, X is either a
Conditianals } - Stmllist] break or continne
Stmitlist? } Stmtlist2
}
®,
for (stmt ; expr ;) { Stmthst contains no
Stmtlist stmt reachable program
Remove P, if expr { points equivalent to
Loop } Stmilist/ ®,. The program point
b, } after any hreak must be
equivalent to @;.
if expri |
P X .
. N9
} else { if er;;z‘l or expr? {
. o A
Create Short & if em;;r,, { 1 X and Y are equivalent.
Circuit Or’s 2 } else { else { qumps. (le., &) =~ &,.)
Stmtlist } Stmilist
1
}
if expril {
if expr? if expri and erpr?
(,'!'eatfe Short.. gtmt{list ! J§;1y7¢1i.q; expr? Neither if stmt has an
Circuit And’s) } else branch
}

Table I: Canonical Code Transformation Rules

b,
if(a<b){

®,

return a;

&3 // (nnreachable)
else {

D4

a=nh;

&5

Figure 5: Reachable Points

IFFigure 7 shows the original source code of a sam-
ple program. Figure 8 shows the resulis of expres-
sion decompilation on the bytecode of this program.
Figure 9 shows the results of applying Ramshaw’s
algorithm to the decompiled expression graph. Fig-
ure 10 shows the result of the grammar rewrit-
ing rules applied to the ontput of Ramshaw’s al-
gorithm. Obviously, using DeMorgan’s laws wonld
simplify the boolean expressions. Future versions
of Krakatoa will do so.

For the JVM dup operators, which duplicate
stack elements, Krakatoa simply creates a tempo-
rary variable to hold the duplicated value. This
vields unnatural, but easily readable, decompila-
tions. A more difficult problem is onr failure to
recover the conditional-expression operator, “? :”.
This operation presents Lwo difficnlties: it requires
determining short-circnit operators during expres-
sion recovery, and it requires that expression. recov-
ery handle non-empty stacks at basic block bound-
aries. Fortunately, the short-circuit. problem can he
handled easily with four simple graph-writing rules
given in [Cif93]. The non-empty stack problem is
difficult hecanse it requires combining expressions
in onr symbolic stack upon entering a basic hlock
with multiple predecessors. Krakatoa again nses a
temporary variable to hold the result of each branch
of the conditional expression, and then assigns this
temparary value to the conditional expression. We
are currently investigating other solutions to this
problem.

&y /] { o, By, b5, B¢, D7 }
for (;;){

b,

if (a<h){
@3 // {®a}
break;
®4 // (unreachable)

else {
®5
continne;
&g // (unreachable)

& // (mreachable)

Fignre 6: Equivalent Points

Appendix B contains additional examples of
Krakatoa’s ontput.

6 Countermeasures

Krakatoa is very effective al reproducing readable
Java sonrce from Java bytecode. This may be
alarming to those who want to protect their source
code from unwanted copying. Unfortunately, there
are few conntermeasnres.

One could introduce irredncible control-flow
through hogus conditional jumps to foil Ramshaw’s
algorithm. This, however, only stops the recre-
ation of high-level consiructs. Krakatoa could sim-
ply prodice source code in a Java-like language ex-
tended with goto’s.

One conld introcuce bizarre stack hehavior to foi
expression recovery. This is difficult, however, be-
canse the behavior cannot be so bizarre as to yield
unverifiable bytecode. It is possible, however, to
create many boghs threads of control (i.e., threads
that will never execute) that will confuse the ex-
pression recavery mechanism in basic blocks that
are entered with non-empty stacks.

One code obfuscation technique that is modestly
effective ix 1o change the class file’s symbol Lahle to
comain bizarre names for fields and methods. So
long as cooperating classes agree on these names,
the ¢lass files will link and execute correctly [vV986,
Srio6].

Another suggested solution is 1o nse dedicated

class foo {
void foo(int x, int y) {

while ((x + ¥y < 10) && (x > 5)) {

i ((y > x) If (v < 100)) {

X=y;
}
else {
x += 100;
}
}
}
}
Figure 7: Original Source
class foo {

void foa(int i1, int 12) {
Ip3:for (;;) {
if ((it + i2) >= 10) break Ip3;
if [{(i1 > 5)) break 1p3;
Ip2: for (;;){
Ipt - for (;;){
if (12 > i1) break Ipl;
if }((12 >= 100)) break lp?;
break 1p2;
}// 1p1
i1 =12
continue Ip3;
} /1 1p2
11 += 100;
continue lp3;
Y7/ 1p3
return,;
}
}

Figure 9: After Goto Flimination (Ramshaw’s

Algorithm)

class foo {
void foo(int i1, int i2) {
goto 1.4;
L1: if (i2 > il) goto 1.2;
if (i2 >= 100) goto L3;
L2: 1l = i2;
goto 1.4;
L3: 11 4= 100;
L4: if ((i1+i2)>=10) goto L5;
if (i1 > 5) goto L1;
L5: return;
} // foo
} //foo

Figure 8: After Expression Decompilation

class foo {
void foo(int il, int 12} {
Ipd: for (H(11+i2)>=10)&&((i1>5));) {
if (12 >31) |] {((i2 >= 100)) {
i1 = i?;
} // then
else {
it += 100,
}

}// 1p3

return;

}

Figure 10: After AST Transformation (Final De-

compilation Results)

hardware and encryption to protect class files
[Wil97].

Many traditional countermeasures to reverse-
engineering will not work for Java bytecode. Tt is
impossible to mix code and data. Tt is impossible to
Jjnmp to the middle of instructions. It is impossible
to generate bytecade and then jump to it.

7 Related Work

Ramshaw presented a technique for eliminating
goto’s in Pascal programs by replacing them with
multilevel break’s and surronnding loops [Ram88§].
lle made no attempt to recover high-level control
constructs. All high-level control structures were
provided by the original Pascal.

Several decompilation systems have used a se-
ries of graph transformations to recover high-level
constructs [Lic85, Cif93]. These systems encounter
difficulties in the presence of nested loops, and
other arbitrarily control flow. Multilevel break’s
cause considerable problems. Txception handling
introduces another difficulty to such systems, as
the control flow graph can be entered in several
places. Krakatoa easily creates multi-level break’s
and continue’s; and is able to eliminate virtnally
all of the unnecessary ones via successive applica-
tion of the rewrite rules.

“Mocha” (version 1 beta 1) [vV96] is a Java de-
compiler written by Manpeter van Vlet. Mocha
uses graph transformations to recover high-level
constructs. Mocha often aborts when it confronts
tangled—yet structured-—control flow (including
multi-level break’s and continue’s). The system
does issne type declarations, and uses debugging in-
formation (when present) 1o recover local variable
names.

Other graph transformation systems used node-
splitting to transform an unstructured graph to a
structured graph [WO78, PKT73, Wil77]. Peter-
son, Kasami, and Tokura present a proof that every
flow graph can be transformed into an equivalent
well-formed Aow graph. Williams and Qssher use a
similar technique, but they recognize five unstruc-
tured sub-graphs, and replace those with equivalent,
strnctnured graphs. Node-splitting preserves the ex-
ecution sequence of a program, but not the struc-
ture. We do not consider this reasonable for de-
compilation.

Baker presents a technigue for producing pro-
grams from flow graphs [Bak77]. Baker gener-
ates sirmmary control low information to guide her

graph transformations. Qur goal is similar, since
the output of the decompiler should be as readable
as possible. Tler technique structures old FOR-
TRAN programs for readability. As a result, her
technigue may leave some goto’s in the resulting
programs, which is not allowed in Java.

Other technigues for eliminating goto’s have
been proposed [EI194, Amm92, AKPW83, AM75].
These techniques may change the structure of the
program, and may add condition variables, or cre-
ate subrontines.

8 Conclusion

In this paper, we present a technique for decom-
piling Java hytecode into Java source. Qur decom-
piler, Krakatoa, produces syntactically legal Java
sonrce from legal, reducible Java bytecode. We fo-
cus on two subproblems of decompilation: recov-
ery of expressions from Java’s stack-based byte-
code, and recovery of high-level control-flow con-
structs. We present. our stack simulation method
for recovering expressions. We present an extension
of Ramshaw’s goto elimination technigue that can
be applied to any reducible control-flow graph.
We also present a small, yet powerful, set of code
rewriting rules for recovering the natural high-level
control-flow constructs of the Java source language.
These rewrite rules enable Krakatoa to successfully
decompile many class files that graph transforma-
tion systems faill. If Krakatoa is presented with
a high-level langnage idiom that it does not rec-
ognize, it may leave unnecessary breaks or con-
tinues in the code. It will still produce legal Java,
however. 1f a system relies on a graph transforma-
tion system to produce high-level constructs, it will
fail when presented with an unexpected construct.
Our techniques, combined with the abundant
type information available in class files, make de-
compilation of Java bytecode quite effective.

9 Acknowledgment
Sanmya Debray helped develop the instruction or-
dering algorithm.

References

[AKPWS83] J.R. Allen, Ken Kennedy, Carrie

Porterfield. and Joe Warren. Conver-

[AMT5)

[Amm92]

[ASUSE)

[Bak77]

[Cif93]

(F1194]

[1ic&5)

[1.Y97)

sion of control dependence to data de-
pendence. pages 177-189, 1983.

.. Asheroft and Z. Manna. Translating
programs schemas to while-schemas.
SIAM Journal of Computing, 4(2):125-
146, 1975.

Zahira Ammarguellat. A control-flow
normalization algorithm aud its com-
plexity. IELE Transactions on Soft-
ware Engineering, 18(2):237-250, 1992.

A. V. Aho, R. Sethi, and J. D. Ull-
man. Compilers: Principles, Tech-
nigues, and Tools. Addison-Wesley,
Reading, Massachusetts, 1986.

Brenda S. Baker. An algorithm for
structuring flowgraphs. Journal of the
Association for Computing Machinery,
24(1):98-120, January 1977.

Cristina Cifuentes. A structuring al-
gorithm for decompilation. In Pro-
ceedings of the XIX Conferencia Lali-
noamericana de Informatica, pages
267-276, Buenos Aires, Argentina, Au-
gust 1993. :

Ana M. Erosa and Laurie J. [endren.
Taming control flow: A structured ap-
proach to eliminating goto statements.
pages 229-240. International Confer-
ence on Computer Langnages, May
1994.

Ulrike Lichtblau. Decompilation of
control structures by means of graph
transformations. In C. F. M. Ni-
vat Hartmut Tihrig and .J. Thatcher,
editors, Mathematical foundations of
software development: Proceedings of
the International Joint Conference on
Theory and Practice of Software De-
velopment (TAPSOFT 85): volume |
- Colloguium on Trees in Algebra and
Programming (CAAP “85), volume 185
of Lecture Notes in Computer Science,
pages 284-297. Springer-Verlag, March
1985.

Thin Lindholm and Frank Yellin. The
Java Virtual Machine Specification.
The Java Series. Addison- \Wesley, 1997.

(PKT73]

[RamB8]

[Sri96]

[vV96)

[Wil77]

[Wil97]

[WOT8)

W.W. Peterson, T. Kasami, and
N. Toknra. On the capabilities of while,
repeat and exit statements. Commu-
mications of the ACM, 16(8):503-512,
1973. :

Lyle Ramshaw. FEliminating go to’s
while preserving program structure.
Journal of the Association for Compul-
ing Machinery, 35(4):893~920, October
1988.

KB Sriram. Hashjava. url:
http://www.sbktech.org/hashjava.html,
1996.

Hanpeter van Vliet. Mocha. current
url: http://www.brouhaha.com/~eric/
computers/mocha-b1.zip, 1996.

M.IT. Williams. Generating stric-
tured flow diagrams: The nature of
unstructuredness. Computer Journal,
20(1):45-50, 1977.

U. G. Wilhelm. Cryptographically
protected ohjects, May 1997. A
french version appeared in the Pro-
ceedings of RenPar’9, Lausanne, CTIL
http://1sevwww.epfl.ch/ wilhelm/
CryPO.html.

M.T1. Williams and H.L. Ossher. Con-
version of nnstructured flow diagrams
to structured. Computer Journal,
21(2):161-167, 1978. :

A Additional Rewriting Rules

We anticipate using a few other tree rewriting rules
that might improve readability of our code. The
anticipated rules build more natural for-loops. Ta-
ble 2 presents addition code transformation rules

that could be applied by Krakatoa.

We expect.

to add these rules as we re-implement Krakatoa in

Java.

B Sample Decompiler Output

We've ncinded a representative sampling of
Krakatoa's onipmt on a classfile that implements

sets in lava. The original Java source is on the left
and Krakatoa's ontpat is on the right. Table 3 pro-
vides onginal sonrce class definitions as well as the

}

Rule Before After Conditions
I
. - for (1°; expr ; update) {
]n?]"de for (; CEPY update.) { Stintlist ! is a simple statement
Init. Stmtlist :

}

for (init ; expr ;) {
Include Stmtlist
Update U
%, }

for (init ; eaxpr ; V) {

}

Stintlist contains no
reachable program
points equivalent to ®,.
7 is a simple statement

Stmtlist

Table 2: Additional Code Transformation Rules

| Original Source

Output from Krakatoa

import java.io.PrintStream;
import java.util.Vector;

public class Set
implements Cloneable {

// class variables
static boolean echo_ops;

// instance variables
protected Vector members;

// functions are defnied here....

import java.io.PrintStream;
import java.util.Vector;

public class Set
extends java.lang.Object

implements java.lang.Cloneable {

static boolean echo_ops;

protected java.util.Vector members;

// functions are defined here...

Table 3: Class definiiion output from Krakatoa

corresponding Krakatoa output. Table 4 provides
original source of several small functions together
with Krakatoa output for those functions. Table 5
shows a larger function in original sonrce as well as
Krakatoa output for that function.

Original Source

Output from Krakatoa —I

public boolean isMember(Object o) {

return (members.contains(o));
} // isMember

public boolean isMember(
java.lang.Object locall) {
return this.members.contains(locall);
} // isMember

public void addMember(Object o) {

if (!(isMember(o))) {
members . addElement (o) ;

} // then

} // addMember

public void addMember (
java.lang.Object locali) {

if !'((this.isMember(locall) '= 0)) {
this.members.addElement(locall)
} // then
return;
} // addMember

public void removeMember(Object o) {

members.removeElement (o) ;

} // removeMember

public void removeMember(
java.lang.0bject locall) {

this.members.removeElement(locall)
return;
} // removeMember

public int size() {
return members.size();

} // size

public int size() {
return this.members.size();

} // size

boolean equals(Set s) {
Set d1, d42;

d1 = difference(s);
d2 = s.difference(this);

return ((di.size() == 0) 22
(d2.size() == 0));

boolean equals(Set locall) {
Set local2;
Set local3;

local2 = this.difference(locall);

local3 = locall.difference(this);

if '(((local2.size() '= 0) ||

'((local3d.size() == 0)))) {

return 1;

} // then

else {
return O;

} // i

} // equals

Table 4: Member Fanctions: Original Source and Krakatoa output

Original Source

Output from Krakatoa

// This returns a NEW set, with all of
// the elements from this set and
// Set s.
public Set union(Set s) {
Set out;
int size;
int i;
Object obj;

if (echo_ops) {
System.out.println("unioning");

3

out = new Set();

out.members = (Vector) members.clone();

size = s.size();
for (i = 0; i < size; i++) {
obj = s.members.elementAt(i);
if ('(out.isMember(obj))) {
out .addMember(obj);
} // then

} // for

return out;
} // union

public Set union(Set locall) {
Set local2;
int local3;
int localé4;
java.lang.0Object locals;

if 1((Set.echo_ops == 0)) {
java.lang.System.out.println("unioning");
} // then

local2 = new Set();

((java.util.Vector)
this.members.clone());

local2.members =

local3 = locall.size();
local4 = 0;
loop3 :
for (; '('(local4 < local3)) ;) {
locals =

locall.members.elementAt(local4d);
if 1((local2.isMember(iocalk) != 0)) {
local2.addMember(locals)
} // then
local4 += 1;
} // loop3

return local2;
} // union

Table 5: Member functions: Original Source and Krakatoa output,

	2011-06-23 Reexam - Non-Final Action

