6,073,142

23

the wrapper information to the gatekeeper. This wrapper
information tells the gatekeeper the rule history indicating
which rules fired and hence the reason the message was
gated, and the particular routing history for the message.

FIG. 19 illustrates a sample user interface of the GKI 107,
the main gatekeeper screen 1901. When a gatekeeper logs
into a GPO 106, she identifies which gatekeeper role she
has; the GKI 107 then displays in the gatekeeper screen 1901
the messages 1916 that have been gated to that gatekeeper.
For each message, there is shown the sender, location, and
the subject line of the message. In addition, a status value
1903 informs the gatekeeper whether the message has only
been gated, or reviewed. The reason 1905 that the message
has been gate is also shown, extracted from the rule history
information in the wrapper of the message.

The main gatekeeper screen 1901 also displays a list of
the mailbag folders that have been defined by the gatekeeper.

From the GKI 107, the gatekeeper can release 1909,
return 1911, forward 1913, or file 1915 any message, by
selection of the appropriate button.

The GKI 107 also provides the gatekeeper the ability to
read and edit individual messages. To review a message, the
gatekeeper selects the message and clicks on the review
button 1907. FI1G. 20 illustrates a sample screen for review-

ing messages. This screen 2001 includes specific fields 2

identifying the sender, specified recipients, subject line,
creation and arrival dates. In addition, there is shown the
reason 2003 the message was galted, the release date 2005 of
the message (which is its expiration date as determined
when the message was placed in the inbox), and its retain
date 2007, if any. The retain date 2007 is the date after which
the GPO 106 will delete the message from the inbox. These
dates may be manually changed by the gatekeeper. The
gatekeeper can edit the text of the message in the text field
2009, for example to remove offensive language, or confi-
dential information.

The gatekeeper can immediately release 2011, return
2013, or forward 2015 a gated message. Forwarding a gated
message enables the gatekeeper to send the message to
another gatekeeper for additional review, as described above
with respect to FIG. 4B; an additional screen is displayed
(not shown) into which the gatekeeper can add instructions
or information for the next gatekeeper. Forwarding a gated
message also enables the gatekeeper to send the message to
recipient(s) other than the specified recipient(s) for further
processing and disposition.

FIG. 21 illustrates a screen 2100 used by a gatekeeper
when returning a 8 message Lo the sender. When returning a
message, the gatekeeper can also include in text field 2101
an explanation to the sender of why the message was not
delivered. The gatekeeper may also move a message to a
mailbag folder.

In one embodiment, when the gatekeeper moves a mes-
sage from the inbox to one of the mailbags, the expiration
date of the message is updated according to the time
parameter of the selected mailbag. In this manner, all
messages associated with a specific mailbag have the same
expiration date. For example, a gatekeeper’s inbox may have
a interval time parameter of 10 days, the gatekeeper has set
the time parameter for a delete mailbag at 30 days, and the
last date the mailbag contents were deleted was Jan. 5, 1997.
Assume that a message is received with a timestamp of Jan.
1, 1998. When the message is indexed and placed in the
inbox of the gatekeeper, the gatekeeping message index 287
is updated with an expiration date for the message of Jan. 11,
1998. Now, assume that on Jan. 6, 1998 the gatekeeper
manually reviews the message and decides to move it to the

15

30

35

40

45

50

55

60

65

24

delete mailbag. The expiration date of the message is
automatically reset to Feb. 5, 1998, or 30 days after the last
delete. This date will be the expiration date for all messages
moved to this mailbag, up until Feb. 6, 1998, when the
expiration date will be advanced to Mar. 5, 1998.
Automated Review of Gated Messages

Automated review of gated messages is applied to those
messages in the inbox of each gatekeeper which have not
been manually reviewed prior to their individual expiration
dates. The automated review of messages is provided by
additional functionality of the GPO 106, such as part of the
program executive. Automated review applies the rules
defined by the gatekeeper in the gatekeeping rule base 289
to cach expired message in the inbox. Each gatekeeper can
wrile their own rules in the gatekeeping rule base 289 for
handling these gated messages, and can apply more detailed
analysis and handling of gated messages. Each gatekeeper
defines rules for the gatekeeping rule base 289 in the same
manner as described above for the rule base 270.

While the functional operation of the rule engine 283 is
the same as with the rule engine 210 of a REPO 102, because
the rules written by a gatekeeper may be different from the
rules at a REPO 102, a given message may be handled in a
different manner. Whereas the checkpoints of the REPO 102
are intended to operate on messages that are being rule
processed lor the first time, the rules of the gatekeeping rule
base 289 are used to apply additional, and if necessary, more
detailed review of the gated messages. More particularly,
these rules can process the messages on the rule history
information itself, in addition to all of the other properties
and attributes used in the REPOs. This allows for very
detailed rules to be applied to gated messages.

For example, if a REPO 102 gates messages greater than
1 Mb, then the gatekeeping rule base 289 rules can check the
role of the sender and release the message for certain senders
only, deleting the messages from all other senders.

The rule structure is applicable as before, with rules
having both antecedent and consequent components. The
rule actions include the gate, delete, release, and return
actions described above.

In addition, a review action, and mailbag actions are
provided for rules at the gatekeeping rule base 289. A review
action specifies that the message is to be manually reviewed
by a gatekeeper. During such review the gatekeeper admin-
istrator can edit the message. When a rule with a review
action is fired, then the rule engine 283 moves the message
to a review mailbag by updating the folder association for
the message in the gatekeeping message index 287. This
review action is useful because it helps the gatekeeper
identify messages which need 1o be specifically reviewed,
and which the gatekeeper did not previously consider or
attempt to review (since the message was automatically
reviewed due to it expiring).

Whereas the actions applied by the rules at the REPO 102
are effectively applied immediately, the actions available at
the GPO 106 include actions for moving the message into
one of the mailbags for delayed, periodic execution of the
action for the mailbag. A mailbag action takes as an argu-
ment the name of one of the mailbags in the master folder
table 290. The message is then associated with the specified
mailbag in the gatekeeping message index 287. The message
will be acted upon according to the appropriate action for the
mailbag when the time parameters of the specified mailbag
are satisfied. For example, a rule may move a message into
a mailbag with a retain date set for the end of the current
month, at which time the message is deleted with other
messages in the folder.

6,073,142

25

Referring now to FIG. 22 there is shown a flow graph of
the operation of the GPO in providing automatic review of
messages. The GPO 106 periodically awakens the distribu-
tion engine 284 as a daemon process Lo process messages
that have indexed in the inbox of each gatekeeper. For each
message in the inbox (2202), the distribution engine 284
determines 2204 whether the message is expired, that is
whether the current date is equal to, or greater than the
expiration date. If the message is not expired, the distribu-
tion engine 284 continues with the next message in the
inbox.

If the message is expired, then the distribution engine 284
invokes 2206 the rule engine 283 to apply the rules from the
gatekeeping rule base 289 to the message. These rules are
applied by the rule engine 283 as described above until one
of the rules fires, or all rules are applied. As described above,
the rule engine 283 returns an action list to the distribution
engine 284 for the message. This action list identifies the
action to be taken upon the message. Generally, the distri-
bution engine 284 updates 2208 the gatekeeping message
index 287 to indicate the specific action taken for the
message. The distribution engine 284 then updates 2210 the
distribution list, routing history, and rewraps the message, if
necessary (some actions, such as delete, do not need the
message 1o be rewrapped). The distribution engine 284 then
continues with the next message. More specifically then, the
distribution engine 284 handles the actions as follows:

On a return action, the distribution engine 284 updates the
gatekeeping message index 287 1o indicate that the message
is being returned. The distribution engine 284 rewraps the
message with updated history information, to indicate both
that the message has been handled by this gatekeeper
(storing the gatekeeper id in the wrapper) and to indicate the
action taken. The distribution engine 284 continues with the
next message.

On a delete action, the distribution engine 284 updates the
gatekeeping message index 287 1o indicate that the message
is being deleted. There is no need to rewrap the message.
The message is then deleted. The distribution engine 284
continues with the next message.

On a forward action, the distribution engine 284 updates
the gatekeeping message index 287 to indicate that the
message is released. The message is rewrapped with the
gatekeeper ID and action taken (here forward and the
reasons). The distribution list is updated to place the GPO
106 of the new recipient as the next GPO 106 on the list; the
current GPO 106 is added at the end of the distribution list.
The new recipient may be another gatekeeper, or it may be
any other recipient to whom it is useful to send the message
for further processing and response. The distribution engine
284 then sends the message to the next GPO on the distri-
bution list. The distribution engine 284 continues with the
next message.

On a release action, the distribution engine 284 updates
the gatekeeping message index 287 to indicate that the
message is released. The distribution engine 284 rewraps the
message with the updated routing history so that the current
gatekeeper, which is the first one on the routing history list,
becomes a past gatekeeper. The next gatekeeper on the
routing list is copied to the recipient list for the message.
This enables the message to be routed to another gatekeeper,
if there is one. This will happen when the original REPO that
gated the message indicated that more then one gatekeeper
was 1o review the message. In this case, after the present
gatekeeper is done, the recipient list is updated so that the
next gatekeeper may receive the message for review.

On a review action, the distribution engine 284 updates
the gatekeeping message index 287 to place the message in
the review mailbag for subsequent review by the gatekeeper.

15

20

30

35

40

45

50

55

60

65

26

As noted, an action for a message may be a mailbag
action, which is to move the message to a particular mailbag.
Here, the distribution engine 284 updates the gatekeeping
message index 287 with an ID of the mailbag (as taken from
the action). The distribution engine 284 checks whether the
time parameter for the designated mailbag has expired. If so
then, the distribution engine 284 performs the function
associated with the mailbag, whether to release, delete,
forward or so forth, the messages in the mailbag.
Distributed Gatekeeping

A release action allows a message to continue from the
GPO 106 unabated by any further rule processing by another
other REPO 102 or GPO 106. Once released, the message is
sent 1o the next GPO 106, if any on the distribution list are
included in the wrapper. This allows for continued handling
according to the original REPO 102 rules. Each GPO 106
tags the message with its ID indicating that it has reviewed
the message.

Once the last GPO 106 processes the message, the last
item on the distribution list is the original REPO 102; this
data item was placed in the wrapper by the distribution
engine 230 of the original REPO 102. Thus, the message is
returned to the REPO 102 for further distribution. The next
distribution destination may be to another GPO 106 in the
network which will apply its own rules. This feature enables
very complex rule processing, and fully distributed and
independent rule handling by any number of different GPOs
106.

When the original REPO 102 gets the message back, it
reprocesses the message and applies its rule from the rule
base 270 again. The list of gatekeepers in the wrapper who
have reviewed the message is an “innoculant,” and is used
to prevent the REPO 102 from re-gating the message back
to one of these gatekeepers, though the message may be
gated to another gatekeeper at the same GPO 106. The
REPO 102 compares the list of gatekeepers who have seen
the message, with the resulting list of gatekeepers from the
new rule firing. If there is a match, then the message is not
sent to the matching gatekeeper because that gatekeeper has
already reviewed the message once before. In this manner,
the message is gated only to gatekeepers who have not yet
reviewed the message. Reprocessing the message in this
manner is desirable because there may have been changes in
the rules of the original REPO 102 during the time period the
message was being evaluated at the various GPOs 106, but
it is assumed that a gatekeeper who has once reviewed a
message need not review it again.

In summary, the present invention, in its various
embodiments, provides a system, method, and various soft-
ware products for controlling the distribution of data objects,
including e-mail messages, on a communication network.
The present invention applies business rules which can
implement corporate communication policies, to such data
objects as they are transferred through a post office or similar
mail transfer agent. The business rules that are satisfied by
the properties and attributes of a data object generate a set
of actions to be applied to the data object. These actions are
applied to the data object. The data object may be gated such
that it is not delivered to its specified recipients, but rather
to a gatekeeper who may manually review the message, or
may allow it to be further reviewed automatically by yet
another set of business rules. In this manner, fully distributed
gatekeeping of any and all messages and data objects can be
enforced in a networked environment.

6,073,142

27

We claim:

1. A post office for receiving and redistributing e-mail

messages on a computer network, the post office comprising:

a receipt mechanism that receives an e-mail message from
a sender, the e-mail message having at least one speci-
fied recipient;

a database of business rules, each business rule specifying
an action for controlling the delivery of an e-mail
message as a function of an attribute of the e-mail
message;

a rule engine coupled to receive an e-mail message [rom
the receipt mechanism and coupled to the database to
selectively apply the business rules to the e-mail mes-
sage to determine from selected ones of the business
rules a set of actions to be applied to the e-mail
message; and

a distribution mechanism coupled to receive the set of
actions from the rule engine and apply at least one
action thereof to the e-mail message to control delivery
of the e-mail message and which in response to the rule
engine applying an action of deferring delivery of the
c-mail message, the distribution engine automatically
combines the e-mail message with a new distribution
list specifying at least one destination post office for

receiving the e-mail message for review by an admin- 2

istrator associated with the destination post office, and
a rule history specifving the business rules that were
determined to be applicable to the e-mail message by at
least one rule engine, and automatically delivers the
¢-mail message 1o a first destination post office on the
distribution list instead of a specified recipient of the
e-mail message.

2. The post office of claim 1, wherein the actions are

selected from a group comprising:

deleting an e-mail message instead of delivering the :

c-mail message 1o a specified recipient;
delivering the e-mail message to a recipient other than a
specified recipient;
returning the e-mail message to the sender; and,
deferring delivery of the e-mail message to a later time.
3. The post office of claim 1, wherein, each business rule
includes at least one antecedent, each antecedent defining an
attribute, an operator, and value, wherein the atiributes are
selected from a group including:
a number of attachments;
a size ol attachments; and
a text of the message.
4. The post office of claim 1, wherein, each business rule

includes at least one antecedent, cach antecedent defining an

attribute, an operator, and value, wherein the attribute is
determined by statistical performance data of the post office.

5. A post office for receiving and redistributing e-mail

messages on a computer network, the post office comprising:

a data base storing an organizational hierarchy of the
business, the hierarchy including a plurality of roles,
cach role associated with a user;

a receipl mechanism that receives an e-mail message from
a sender, each e-mail message having at least one user
specified as a recipient;

a database of business rules, cach business rule specifying
an action for controlling the delivery of an e-mail
message as a function of an attribute of the e-mail
message, wherein at least one business rule defines an
action for prohibiting or deferring delivery of an e-mail
message based upon a role of a recipient user in the
organizational hierarchy;

n

10

20

30

)

5

40

65

28

a rule engine coupled o receive an e-mail message from
the receipt mechanism and to the data base to selec-
tively apply the business rules to the e-mail message to
determine from selected ones of the business rules a set
of actions to be applied to the e-mail message; and

a distribution mechanism coupled to receive the set of
actions from the rule engine and apply at least one
action thereof to the e-mail message to control delivery
of the e-mail message.

6. The post office of claim 1, further comprising:

a primary message store, coupled to the receipt engine, for
receiving and non-persistently storing ¢-mail messages;
and

a seccondary message store, accessible to the distribution
engine, for receiving therefrom, and persistently stor-
ing an e-mail message in response to the rule engine
determining that the e-mail message satisfied a business
rule requiring the e-mail message to be reviewed by a
recipient other than a recipient specified by a sender of
the e-mail message.

7. The post office of claim 1, further comprising:

a primary message store, coupled to the receipt engine, for
receiving and non-persistently storing ¢-mail messages;
and

a secondary message store, coupled to the distribution
engine, for receiving therefrom, and persistently stor-
ing an e-mail message in response to the rule engine
specifying the action that the e-mail message be
reviewed by an administrator recipient prior to delivery
1o a specified recipient.

8. The post office of claim 1, wherein an e-mail message
includes at least one specified recipient, and the distribution
engine delivers the e-mail message to a non-specified recipi-
ent prior to delivery to a specified recipient.

9. The post office of claim 1, wherein:

the rule engine specifies an action of deleting the e-mail
message; and

the distribution engine automatically deletes the e-mail
message, without delivering the e-mail message to any
of its specified recipients.

10. The post office of claim 1, wherein:

the rule engine specifies an action of copying the e-mail
message; and

the distribution engine automatically copies the e-mail
message, and delivers the copy of the e-mail message
1o a recipient other than a specified recipient.

11. The post office of claim 1, wherein:

the rule engine specifies an action of returning the e-mail
message; and

the distribution engine automatically returns the e-mail
message to a sender, and does not deliver.the e-mail
message o any ol its specified recipients.

12. The post office of claim 1, wherein:

the rule engine specifies an action of deferring the e-mail
message; and

the distribution engine persistently stores the e-mail mes-
sage in a storage area for subsequent review by an
administrator, and does not deliver the e-mail message
to any of the specified recipients.

13. The post office of claim 1, wherein each action has a
priority, and the distribution engine executes a highest
priority action for each e-mail message.

14. The post office of claim 13, wherein a highest priority
is assigned to an action of gating an e-mail message o a
recipient other than a specified recipient.

6,073,142

29
15. An e-mail system comprising:
a first post office operating on a first computer;
a second post office, operating on a second computer, the
second post office comprising:

a receipt mechanism for receiving e-mail messages
from a plurality of clients, each e-mail message
having at least one specified recipient;

a database of business rules, each business rule speci-
fying an action for controlling delivery of an e-mail
message;

a rule engine coupled to receive an e-mail message
from the receipt mechanism and selectively applying
the business rules to the e-mail message to determine
a set of actions to be applied to the e-mail message
to control delivery of the e-mail message, the rule
engine specifying for at least one e-mail message an
action of deferring delivery of the message 1o its
specified recipients by delivering the message (o an
administrator associated with the first post office;

a distribution mechanism coupled to receive the at least =

one action from the rule engine and which in
response to the rule engine applying the action of
deferring delivery of the e-mail message, the distri-
bution mechanism automatically combines the
e-mail message with a new distribution list specify-
ing at least the first post office for receiving the
e-mail message for review by the administrator asso-
ciated with the first post office, and a rule history
specifying at least one business rule determined to be
applicable to the e-mail message by at least one rule
engine, and automatically delivers the e-mail mes-
sage to the first post office on the distribution list
instead of a specified recipient of the e-mail mes-
sage.
16. The e-mail system of claim 15, further comprising:
an administration application, communicatively coupled
to the first post office, for reviewing e-mail messages
delivered to the administrator.
17. A process for controlling the delivery of e-mail

message in a business, comprising:

providing to a post office a set of business rules derived
from business communication policies, each business
rule defining an action applied to an e-mail message
based on the attribute of the message;

receiving messages at the post office;

to at least one message received at the post office,
applying the business rules to the attributes of the
message o determine at least one action of deferring
delivery to be applied to the message;

automatically combining the e-mail message with a new
distribution list specifying at least one destination post
office for receiving the e-mail message for review by an
administrator associated with the destination post office
and a rule history specifying at least one business rule
determined to be applicable to the e-mail message; and

automatically delivering the e-mail message 1o a destina-
tion post office on the distribution list instead of a
specified recipient of the e-mail message.

18. A computer implemented process for deferring the

delivery of an e-mail message, comprising:

storing a database including an organizational hierarcy of
a business, the hierarchy including a plurality of roles,
each role associated with a user;

storing a database of business rules, each business rule
specifying an action for controlling the delivery of an

n

10

30

35

40

60

65

30

e-mail message as a function of an attribute of the
e-mail message, wherein at least one business rule
defines an action for deferring delivery of an e-mail
message based upon a role of a recipient user in the
organizational hierarchy;
receiving the e-mail message at a post office, the e¢-mail
having at least one specified recipient, the at least one
specified recipient having a role; and
applying the business rules to the e-mail message, includ-
ing responsive to the role of the at least one specified
recipient deferring the e-mail message by delivering the
c-mail message to an administrator to review the e-mail
message prior to any delivery of the e-mail message to
the at least one specified recipient.
19. The process of claim 18, further comprising:
receiving a command from the administrator specifying
an action to be applied to the e-mail message, the
command selected from one of a group consisting of:
deleting the e-mail message instead of delivering it to
its specified recipients;
copying the e-mail message and delivering the copy to
a non-specified recipient; and
returning the e-mail message to its sender without
delivering it to its specified recipients.
20. A computer implemented process for deferring the

delivery of an e-mail message, comprising:

storing a database of business rules, each business rule
specifying an action for controlling the delivery of an
e-mail message as a function of an attribute of the
c-mail message;
receiving the e-mail message at a post office, the e-mail
message having at least one specified recipient;
deflerring delivery of the e-mail message, by:
automatically combining the e-mail message with a
new distribution list specifying at least one new
destination post office for receiving the e-mail mes-
sage [or review by an administrator associated with
the destination post office and a rule history speci-
fying at least one business rule determined to be
applicable to the e-mail message; and
automatically delivering the ¢-mail message to a first
destination post office on the distribution list instead
of a specified recipient of the e-mail message;
persistently storing the e-mail message at the first desti-
nation post office until the e-mail message is reviewed;
automatically reviewing the e-mail message after a speci-
fied time interval to determine an action to be applied
to the e-mail message; and
automatically applying the action to the e-mail message.
21. A process for deferring the delivery of selected e-mail

messages, comprising:

storing a database of business rules, each business rule
specifying an action for controlling the delivery of an
e-mail message as a function of an attribute of the
e-mail message;

receiving a plurality of e-mail messages at a first post
office, each e-mail message having at least one speci-
fied recipient;

selecting at least one e-mail message from the plurality of
c-mail messages by applying at least one business rule
1o the e-mail message;

delivering each non-selected e-mail message to its speci-
fied recipients; and

deferring the selected e-mail message by:
automatically combining the selected e-mail message

with a new distribution list specifying at least one

6,073,142

31

new destination post office for receiving the e-mail
message for review by an administrator associated
with the destination post office and a rule history
specifying at least one business rule determined 1o be
applicable to the e-mail message;
automatically delivering the selected e-mail message to
a destination post office on the distribution list
instead of a specified recipient of the e-mail mes-
sage;
persisiently storing the selected e-mail message in a
storage area of the destination post office until the
selected e-mail message is reviewed prior to any further
delivery of the e-mail message to its specified recipi-
ents or to another destination post office on the distri-
bution list.
22. A computer implemented process [or reviewing an
e-mail message, comprising:
receiving the e-mail message at a first post office, the
c-mail message having at least one specified recipient;
deferring the e-mail message by:
automatically combining the selected e-mail message
with a new distribution list specifying at least one
second post office for receiving the e-mail message
for review by an administrator associated with the
second post office and a rule history specilying at
least one business rule determined to be applicable to
the e-mail message; and
automatically delivering the selected e-mail message to
an administrator at the second post office on the
distribution list instead of a specified recipient of the
¢-mail message;
persistently storing the e-mail message at the second post
office until the e-mail message is reviewed,;
automatically reviewing the e-mail message after a speci-
fied time interval to determine an action to be applied
to the e-mail message; and
automatically applying the action to the e-mail message.
23. A computer implemented process [or reviewing an

e-mail message, each e-mail message having at least one

specified recipient, the process comprising:

storing a database of business rules, cach business rule
specifying an action for controlling the delivery of an
¢-mail message as a function of an attribute of the
¢-mail message;

automatically combining e-mail message with a distribu-
tion list specifying at least one destination post office
for receiving the e-mail message for review by an
administrator associated with the destination post
office, and a rule history specifying at least one busi-
ness rule determined to be applicable to the e-mail
message;

automatically delivering the selected e-mail message 1o an

administrator at a destination post office on the distri- .

bution list instead of a specified recipient of the ¢-mail
message;

persistently storing the e-mail message delivered to the
administrator in a message store until the e-mail mes-
sage is reviewed, each e-mail message in the message
store having an expiration date;

receiving for at least one of the persistently stored e-mail
message, a command from the administrator prior to
the expiration date of the e-mail message, the command
indicating an action to be applied to the e-mail
message, and applying the action to the e-mail mes-
sage; and

10

30

35

40

45

50

60

65

32

for each e-mail message for which a command is not
received from the administrator prior to the expiration
date of the e-mail message, automatically determining
an action to be applied to the message by applying at
least one business rule to the e-mail message, and
applying the action to the e-mail message.

24. A post office for receiving and redistributing data

objects on a computer network, the post office comprising:

a receipt mechanism that receives a data object from a
sender, the data object having at least one specified
recipient;

a database of business rules, each business rule specifying
an action for controlling the delivery of a data object as
a function of an attribute of the data object;

a rule engine coupled to receive a data object from the
receipt mechanism and coupled to the database to
selectively apply the business rules to the data object o
determine from selected ones of the business rules a set
of actions to be applied to the data object; and

a distribution mechanism coupled to receive the set of
actions from the rule engine and apply at least one
action thercof to the data object to control delivery of
the data object and which in response to the rule engine
applying an action of deferring delivery of the data
object, the distribution engine automatically combines
the data object with a new distribution list specifying at
least one new destination post office for receiving the
data object for review by an administrator associated
with the destination post office and a rule history
specifying at least one business rule determined to be
applicable to the data object by at least one rule engine,
and automatically delivers the data object to a first
destination post office on the distribution list instead of
a specified recipient of the data object.

25. A computer implemented process for deferring the

delivery of a data object, comprising:

storing a database including an organizational hierarchy
ol a business, the hicrarchy including a plurality of
roles, each role associated with a user;

storing a database of business rules, each business rule
specifying an action for controlling the delivery of a
data object as a function of an attribute of the data
object, wherein at least one business rule defines an
action for deferring delivery of a data object based
upon a role of a recipient user in the organizational
hierarchy;

receiving the data object at a post office, the data object
having at least one specified recipient, the at least one
specified recipient having a role;

applying the business rules to the data object, including
responsive to the role of the recipient deferring delivery
of the data object by delivering the data object to a
recipient other than a specified recipient;

persistently storing the data object until the data object is
reviewed;

automatically reviewing the data object after a specified
time interval to determine an action to be applied to the
data object; and

automatically applying the action to the data object.

26. A process [or deferring the delivery of selected data

objects, comprising:

storing a database of business rules, each business rule
specifying an action for controlling the delivery of a
data object as a function of an attribute of the data
object;

6,073,142

33 34
receiving a plurality of data objects at a first post office, destination post office; and a rule history specifying
cach data object having at least one specified recipient; at least one business rule determined to be applicable
selecting at least one data object from the plurality of data to the data object;
objects by applying at least one business rule to the data automatically delivering the selected data object to a
cfhjc"‘ft; ; S . ’ destination post office on the distribution list instead
dclr:rin;::% [i.a(:h non-selected data object to its specified of a specified recipient of the data object; and
defcrril:l"lg th; selected data object by: persistently sl.orin.g lhshdala objfzct in a storage area until
automatically combining the selected data object with the data object is reviewed prior to any further delivery
a new distribution list specifying at least one new of the data object to its specified recipients.

destination post office for receiving the data object
for review by an administrator associated with the * & k¥ &

a2 United States Patent
Chang et al.

US006226666B1

US 6,226,666 Bl
*May 1, 2001

(10) Patent No.:
45) Date of Patent:

(54) AGENT-BASED MANAGEMENT SYSTEM
HAVING AN OPEN LAYERED
ARCHITECTURE FOR SYNCHRONOUS
AND/OR ASYNCHRONOUS MESSAGING
HANDLING

(75) Inventors: Daniel T. Chang; Neelakantan
Sundaresan, both of San Jose, CA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 US.C.
154(a)(2).

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 08/884,457

(22) Filed: Jun. 27, 1997

(51) Int. CL7 oene GO6F 15/16; GOGF 15/167

(52} VB Clisizanani 709/202; 709/201; 709/206;
709/315; 379/100.08; 379/93.24

(58) Field of Searchcocoeiivcnnivinna 709/200-205,

709/206-209, 210-219, 220-229, 230-239,
315; 370/395, 402, 455, 241, 471, 392;
379/89, 94, 100.08; 283/61; 713/201; 705/400;
232/17; 717/1; 712/17

(56) References Cited
U.S. PATENT DOCUMENTS
5,327,558 * 7/1994 Burke et al.cccniiiiiiiiiiiinnns 710/8
5,627,764 * 5/1997 Schutzman et al. .. 395/200.37
5,634,127 * 5/1997 Cloud et al. wee 395/680
5,655,081 * 8/1997 Bonnell et al.ocovciinnnna 700,202

(List continued on next page.)

Agent Management
Communication Facility

OTHER PUBLICATIONS

First International Workshop on Mobile Agents 97 (MA*97)
URL=http:www.informatik.uni—stuttgart.de/ipvr/vs/ws/
ma¥7/ma97.html.

(List continued on next page.)

Primary Examiner—Zarni Maung
Assistant Examiner—Beatriz Prieto
(74) Arntorney, Agent, or Firm—Prentiss Wayne Johnson

(57) ABSTRACT

A communication infrastructure providing communication
between agents, between agents and agent-hosting servers,
and between agent-hosting servers. The communication
infrastructure consists of three layers (from bottom to top):
Mail Facility Layer, Message Facility Layer, and Agent
Management Communication Facility Layer. The Mail
Facility Layer is the lowest layer providing a general,
semantics-free mail paradigm for asynchronous communi-
cation between distributed objects, whether they are local or
remote to each other. The Mail Facility Layer provides a
level of abstraction in terms of mail, virtual mailbox, post
office, and mail queue, and hides the details of implemen-
tation and actual transport. It is designed to provide location
transparency and to be implementable using various trans-
port protocols. The next Message Facility Layer provides a
typed messaging paradigm for asynchronous and synchro-
nous message passing between distributed objects. The
Message Facility Layer uses the Mail Facility Layer for
sending messages and [or getting responses 1o requests sent.
It allows for the association of typed message handlers with
typed messages such that the format and semantics of
messages are encapsulated through their types, are
extensible, and can be processed by the associated message
handlers. The Agent Management Communication Facility
Layer is the highest layer providing the services for inter-
agent communication between agents, agent-agentl-server
communication between an agent and an agent server, and
inter-agent-server communication between agent servers for
managing agents such as locating an agent, dispatching an
agent, retrieving an agent, ete. The key abstractions provided
in this layer include agent manager, agent, and agent iden-
tifier. It uses the Message

12 Claims, 16 Drawing Sheets

220

N

Message Facility

210

Mail Facility

US 6,226,666 B1
Page 2

U.S. PATENT DOCUMENTS

5,680,551 * 10/1997 Martino ..o.oooooeeeveveevvvveeee. 395/200.56
5,689,550 * 11/1997 Garson et al. . . 379/88.18
5715474 * 2/1998 Burke el al. ..oooooocooeereeerrenernienns 710/6
5.757.669 * 5/1998 Christie et al. 395/200.35

OTHER PUBLICATTONS

“Mobile Agent Computing”, A White Paper, Mitsubishi
Electric ITA, Feb. 28, 1997, http://www.meitca.com/HSL/
Projects/Concordia.

Voyager, ObjectSpace. 1997 http://www.objectspace.com/
Voyager/voyagerl.html.

“Voyager Core Package Technical Overview”, ObjectSpace,
Mar., 1997.

“JavaSpace Specification”, Revision 0.3, Sun Microsystems,
Inc. Mar. 1997.

N. Carriero and D. Gelernter, “Linda in Context”, Commu-
nications of the ACM., 32(4), pp. 444-458, Apr., 1989.

J. Waldo, G. Wyant, A. Wollrath and S. Kendall, “A Note on
Distributed Computing”, Sun Microsystems Laboratories
technical report SMLI TR-94-29, Nov. 1994,

D. Chess, B. Grosol, C. Harrison, D. Levine, C. Parris, and
G. Tsudik, “Itinerant Agents for Mobile Computing”, IBM
Research Report, RC 20010, IBM Research Division, Mar.
1995.

C. Harrison, D. Chess, and A. Kershenbaum, “Mobile
Agents: Are they a good idea?”, IBM Research Report, IBM
Research Division, Mar. 1995.

Aglets Workbench, IBM, URL=hitp://www.irLibm.co.jp/
aglets.

D. T. Chang and D. B. Lange, “Mobile Agents: A New
Paradigm for Distributed Object Computing on the WWW?”,
in Proceedings of the OOPSLA96 Workshop: Toward the
Integration of WWW and Distributed Object Technology,
Oct., 1996.

Concordia, Mitsubishi Electric ITA, URL=http://www.meit-
ca.com/HSL/Projects/Concordia.

“Concordia: An Infrastructure for Collaborating Mobile
Agents” Mitsubishi Electric ITA, First International Work-
shop on Mobile Agents 97 MA'97), Apr., 1997.

“The Common Object Request Broker: Architecture and
Specification”, Revision 2.0, OMG, Jul. 1995.

InfoSleuth Project, URL=http://www.mcc.com/projects/in-
fosleuth.

The Java Development Kit (JDK), URL http://java.sun.com/
products/jdk.

JKOML, IBM, URL=http://www.alphaworks.ibm.com/for-
mula/jkqml/.

Y. Labrou, “Semantics for an Agent Communication Lan-
guage”, Ph.D. Thesis, CSEE Department, University of
Maryland, Baltimore Maryland 21228-5398, Sep., 1996.
URL=http://www.cs.umbc.edu/kqml.

Visual Warchouse, IBM, URL=http://www.software.ibm-
«com/data/warehouse/vw.

Wise (Wonderful Indexing and Searching Environment),
IBM, URL=http://wisc.watson.ibm.com.

Ref: Newton’s Telecom Dictionary, Newton, H., Flatiron
Publishing, 14th Expanded and Updated Ed., Mar., 1998, see
encapsulation, Mar. 1998.*

A Gateway between MHS (X.400) and SMTP, Tang, D.,
Anzenberger, M., Markovitz P., Wallace M., National
Burcau of Standards Institute for Computer Science and
Technology, Mar. 1998.*

* cited by examiner

U.S. Patent May 1, 2001 Sheet 1 of 16 US 6,226,666 Bl

20

£ 14

12
£

LOCAL
AREA
NETWORK

Fig. 1

GATEWAY
SERVER

U.S. Patent May 1, 2001 Sheet 2 of 16 US 6,226,666 Bl

Agent Management
Communication Facility

Message Facility

Mail Facility

Fig. 2

U.S. Patent May 1, 2001 Sheet 3 of 16 US 6,226,666 Bl

sender
305
utMail 315
310, MARLE
—{ Maibox {778
[}
355 : : | 325
ot sn L AROCMAI L] }45 deliverMail ()+ ,~Z----- s—-==s 350
- T =it P Post,
. Office 2 ! . | Remote', Office,
320 : E enqueue ()1
______ v enqueve () Y dequeve () ___ yenqueve (
v _E MailQueve | i__E MailQueue | | | ! MailQueue
Eossm s s ; T .
3 40/ receiving 330/ sending E 335/ receiving
Fig. 3
receiver
405
etMail 415
410\ g () /
—] Mailbox Lo
1
: 42
455\1003! ____ _receiveMail () T _5 ________ ! 450
, Post i / retrieveMail () ! PO [Post e/
' Off s ‘"' Remote ', Office /'
. Offce ;1 _Remote * . Offce
420 A : -
I [}
' dequeue () 1 dequeued
___________ 3 1 T e e e
:__E MailQueue | :_J: MailQueue

receiving } 40 43{ receiving

US 6,226,666 B1

U.S. Patent May 1, 2001 Sheet 4 of 16
511
Message
510
KQmL Request Response
Message Message Message
7 7 I <
512 513 514
515 - 516
N ATRequest ATResponse L/
Message Message
501
Message
Handler
500
KQmL Request Response
Message ee e Message Message
Handler Handler Handler
/ / LY
502 503 504
N\ ATRequest ATResponse ¥
Message Message
Handler Handler

Fig. 5

U.S. Patent May 1, 2001

Sending a message
605

send()
Message

Sheet 5 of 16 US 6,226,666 B1

® Receiving a message
655

660 ! getContent ()

65{ ' getMail ()

PO . Post

1

. Remote , DOffice

= Mailbox

‘ name — 670
688 v receiveMail ()

Fig. 6

US 6,226,666 B1

Sheet 6 of 16

May 1, 2001

U.S. Patent

£ bio
e o o -ul}------- . ® .‘. ||||||| - ® ® a‘. IIIIIII e = ®
_ 7 A _ A
_IIIII‘I‘.II\] _IIIII_IIIII. mNN_IIIII‘IIIIJ | PRt o .Illlln
' XoqUe ' XxogUeN / ' Xoquem ' XoQUeN
\ el _ _ _ _ _ prR—— Voowey ool _ _ T oeweu L !
ogy () leneb | () rewand A () Irensd | / () revand A /
‘ : ‘ 1 | 0€.L
I
. i - - wlin
__ms_,./ & oew) T oen)
I | 5 f | ’ 1 | ; | | J
\/...f...l..\\ /......r_||\\ \/...;l....\\ /f,,.r......\/
0LL ! _ S9. " " 092
o TommmmmmmTT P "
[} I I I
Jabeuepy JaBeuepy Jabeuepy
159p uaby Buumo Wwaby 800 weby -
\ /OE /mom
Gl () abessapypuas
abessay abessaly abessay
() abessap () abessap 05/ Syl
a|puey ajpuey
GéL 0¢L

U.S. Patent May 1, 2001 Sheet 7 of 16 US 6,226,666 Bl

800
A 810 \ Sending mail via Virtual Mailbox

A user creates a mail specifying the type of content and the content.
<new Mail(type, content)>
820 S

A

The user sets the response destination for the mail so that a reply may be returned
to the destination or so that It can be returned in case of delivery failure.
<Mail.setResponseDestination(respDest)>

830 —

The user creates a virtual mailbox specifying the mailbox name
that represents the destination for the mail.
<new Mailbox(mbName)>

840 S r

The user puts the mail in the mailbox.

Flg. 8 <Mail.putMail(mail)>

900 Virtual mailbox
S 920

The mallbox gets the local main post office.

930 <PostOﬂlceRMI.getLocalPostOlflceQ>

The mailbox sends the mall through the local main post office.
<PostOffice.sendMail(mbName, mail)

Fig. 9

U.S. Patent May 1, 2001 Sheet 8 of 16 US 6,226,666 B1

1000

1010 Local main post office

The local main post office extracts the destination post office name from the mailbox name
and uses it to find the destination post office, whether local or remote.

1020 :

The local main post office generates and sets the mail id for the mail.
<Mail.setMailld(mailld)>

1030
AN ‘

The local main post office sets the destination for the mail specifying the mailbox name.
<Mail.setDestination(mbName)>

1040 \ Y
The local mail post office delivers the mall to the destination post office
specifying the mailbox id, which is extracted from the mailbox name.
<PostOfficeRMI.deliverMall(mbld, mail)>

1100 e
1120 Destination post office
The destination post office obtains the receiving mail queue
1130 for the mail using the mallbox id.

The destination post office puts the mail in the mail queue.
<MallQueue.enqueue(mail)>

Fig. 11

U.S. Patent May 1, 2001 Sheet 9 of 16 US 6,226,666 B1

1200
\A

1210 Receiving mail via Virtual Mailbox

A user creates a (virtual) mailbox specifying the mailbox name
that represents the location of the mail?

<new Mailpox(mbName)>
1220 v
The user gets the mail from the mailbox.
<Mail.getMail()>
Fig. 12
1300 \ 1310 Virtual mailbox

The mailbox gets the local main post office.
<PostOfficeRMI.getLocalPostOffice()>

1320
N ‘

The mailbox receives the mail through the local main post office.
<PostOffice.receiveMail{(mbName)>

1410 Local main post office

The local main post office extracts the location post office name from the mailbox name
and uses it to find the location post office, whether local or remote.

f
1420 — r
The local mall post office retrieves the mail from the location post office

specifying the mailbox Id, which is extracted frem the mailbox name.
<PostOfficeRMl.retrieveMail(mbld, mail)>

Fig. 14

1500
a
o S Location post office

[The location post office obtains the receiving mail queue for the mail using the mailbox id.|
1520

y

The location post office %ets the mail from the mall queue.|
<MailQueue.dequeue()>

Fig. 15

U.S. Patent May 1, 2001 Sheet 10 of 16 US 6,226,666 B1

1600 & 1610 Sending message
A user creates a message of a particular type.
<e.g., new KQMLMessage()>
1620
The user sets the sender of the inessage.
1630 <Message.selSender()>
The user sets the receiver of the message.
<Message.setReceiver()>
1640 ‘
The user sets other attributes of the message as needed.
<e.g., KQMLMessage.setPerformative(perf)>
. 1650 The user sends the message.
Flg 1 6 <Message.send()>
1700
1710 - e Message

The message creates a mail specifying the type of content and the content.
The type of content is the type of the message and the content is the message.

<new Mail(type, content)>
1720 =)
The message sets the response destination for the mail so that a re{)ly
may be returned to that destination or so that it can be returned in case of delivery failure.
The response destination is the sender (mailbox) of the message.
<Mail.setResponseDestination{respDest)>

1730 Y

The messadge creates a virtual mailbox specifying the mailbox name
that represents the destination for the mail.
The mailbox name [s the receiver (mailbox) of the message.
<new Mailbox(mbName)>

v

The message puts the mail in the mailbox.

Flg . 1 7 <Mail.putMail{mail)>

1800
1810 ‘“-—~.,_\‘ Receiving message

A user creates a virtual mailbox specifying the mailbox name
that represents the location of the mail.
<new Mailbox(mbName)>

1620 “~IThe user gets the mail from the mailbox.
1830 \ <Mail.getMail()-

The user gets the content of the mail, which is the message.

Fig. 18 <Mail.getContent()>

U.S. Patent May 1, 2001 Sheet 11 of 16 US 6,226,666 B1

1900\ 1910 < Sending request message

A user creates a request message.
<new RequestMessage()>

1920

A

The user sets the receiver of the message.
<MessagLe.setReceiver(}>

1930 |
The user sets the sender of the message.
1940 \ «MessagLe.setSender{b
The user sets other attributes of the message as needed.
<e.q., RequestMessage.setOperation(oper)>

1950 —_ v

The user sends the message.
<RequestMessage.send()>

Fig. 19

2000
~a 2010\ Receiving Request Message

The system creates a {virtual) mailbox
specifying the mailbox name that represents the mailbox.
<new Mailbox(mbName)>

2020 —__ v
The system gets the mail from the mailbox.
<Mall.getMail()>

2030
\ y

The system gets the content of the mail, which is a clone of the request message.
<Mail.getContent()>

2040

y

The system sets the status of the request message to indicate that it is a clone.
<RequestMessage.setClone()>

2050

The system creates a request message handler.
<new FlequeslMessaggHandler{):-

2060
\

The system asks the request message handler to handle the (cloned) request message.
<RequestMessageHandler.handleMessage(reqc)>
Fig. 20

U.S. Patent May 1, 2001 Sheet 12 of 16 US 6,226,666 B1

2110 Request Message Handler
2100
4 |The handler handies the message and generates the result.]

2120

one
way
attribute set

2125 \
Imscards the resuit.

2130
¥

The handler creates a response message.
<new ResponseMessage(resull)>

2140 5

N A

The handler sets the correlation id of the response message.

The correlation id is set to be the message id of the request message.
<HesponseMessage.selCorrelallonld{corrld)>

2150\]

The handler sets the receiver of the response message.
The receiver Is set to be the sender of the request message.
<Message.setRecelver(recelver >

2160
3

The handler sets the sender of the response message.
The sender is set to be the receiver of the request message.
<Message.setSender(sender)>

2170)

The handler sends the response message.
<Message.send()>

Fig .21

U.S. Patent May 1, 2001 Sheet 13 of 16 US 6,226,666 B1

2200~

2210 No result in one-way mode

The request message s sent as a one-way request message,
(<RequestMessage.setOneway()>),
and the result is discarded.

Fig. 22

2310 \G‘etling result in deferred mode

The user checks If the result has arrived.l,
<RequestMessage.checkResult()>

2300
i 2340 \

No
pIDelay or other processing.|

Result
arrived?

Yes

2330
¥

The user gets the result.

-:RegueslMessage.getHesull!p

Fig. 23

2400 -
A 2410 Getting result in synchronous mode

The user waits for the result until it arrives and gets it.
<F!equesll\nessage.getﬂesuit{-1)>

Fig. 24

U.S. Patent May 1, 2001 Sheet 14 of 16 US 6,226,666 B1

Sending an agent a message, user events

2500 251
\A =10 ﬁ A user gets the local main agent manager.
<AqentManager.getLocalAgLenlManager{):-

2520
[The user creates a message of a particular type (e.g., KQMLMessagel.l
2530

The user sets the attributes of the message as needed.
<e.g., KQMLMessage.setPerformative(perf)>

2540

\4
The user sends the message through the local main agent manager.

<AgentManager.sendMessage(ald, msg)>

rig. 25

2600 g

Sending an agent a message, local main agent manager events

2610
[The local main agent manager sets the receiver of the message.
The receiver is set to the owning agent manager utl (string form)
concatenated with the egent id (string form).
<Message.setRece ver(receiver)>

2620 S

The local main agent manager sets the sender of the message.
The sender is set to its url (string form).
<Message.setSender(sender)>

2630 — v

The local main agent manager sends the message.
<Messagg.send[)>

Fig. 26

U.S. Patent May 1, 2001 Sheet 15 of 16 US 6,226,666 B1

2700

Sending an agent a message, owning agent manager events

| The owning agent manager creates a (virtual) mailbox
2710 - specifying the mailbox name that represents the mailbox.
The mailbox name is the string form of its url.

<new Mailbox(mbName)>

2720
Y

The owning agent manager gets the mail from the mailbox.
<Mailbox.getMail ()>

2730
A4
The owning agent manager geis the content of the mail,
which is the message.
<Mail.getCo ntent()>

2740

The owning agent manager gets the receiver of the message.
The receiver Is the agent id (string form).
<Message.getReceiver()>

2750 -

\"“\—-._\‘

The owning agent manager gets the managed (and owned) agent.
«<AgenlManager.getAgent(aid)>

2760

Man-
aged
agent exisls
locally?

2770 N

\ 4 4 N

The owning agent manager asks The owning agent manager gets the destination of the
the agent to handle the message.| | owned agent. The destination is the URL (string form)
<Agent.handleMessage()> of the destination agent manager.

2780 —__
\
The owning agent manager sets the receiver of the message.
The recelver Is set to the destination agent manager URL (string form)
concatenated with the agfenl id (string torm).
<Message.setRecelver(receiver)>

2790

A

The owning agent manager sends the message.
<Message.send()>

Fig. 27

U.S. Patent May 1, 2001 Sheet 16 of 16 US 6,226,666 B1

2800 <

Sending an agent a message, destination agent manager events

"
2010] The destination agent manager creates a virtual mailbox
specifying the mailbox name that represents its mailbox.
The mailbox name Is the string form of its url.
<new Mailbox(mbName)>

2820
\
The destination agent manager gets the mai! from the mailbox.
<Maiibox.getMail()>
2830 ~
0 ~_ !
The destination agent manager gets the content of the mail,
which is the message.
<Mail.getContent()>
2840 y

The destination agent manager gets the receiver of the message.
The receiver is the agent id (string form).

<Message.getReceiver()>
2850 i

The destination agent manager gets the managed agent.

<AgentManager.getAgent(aid)>
2860 \ |

The destination agent manager asks the agent to handle the message.
<Agent.handleMessage()>

Fig. 28

US 6,226,666 Bl

1
AGENT-BASED MANAGEMENT SYSTEM
HAVING AN OPEN LAYERED
ARCHITECTURE FOR SYNCHRONOUS
AND/OR ASYNCHRONOUS MESSAGING
HANDLING

A portion of the Disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to agent computer
programs, including mobile agents, intelligent agents, col-
laborating agents, internet agents, and task-specific agents,

and more particularly to a communication infrastructure for |

communication between agents, between agents and agent-
hosting servers, and between agent-hosting servers.

2. Description of the Related Art

Java virtual machines are rapidly becoming available on
all kinds of computing platforms, from portables to desktops
to workstations to mainframes. For the first time in com-
puting history, there may soon be available a virtual, homo-
gencous platform for distributed and parallel computing on
a global scale. The basic elements of this computing plat-
form are distributed Java objects. Prior to JDK 1.1 [The Java
Development Kit (JDK), URL=http://java.sun.com/
products/jdk], one had to use the low-level socket-based
class library (java.net package) for communication between
distributed Java objects. With JDK 1.1, one can now use
Java RMI (Remote Method Invocation) for direct method
invocation between Java distributed objects. Java RMI
raises the level of communication to that of objects, and it
can pass objects by value using Java object Serialization.
However, Java RMI is stationary (remote objects), rigid
(predefined methods calls), point-to-point, and connection-
oriented. Therefore, it is still too low-level and inflexible for
direct use in many applications, such as agent-based appli-
cations.

The term “agent”™ has been used to mean different things
in different contexts [D. Chess, B. Grosof, C. Harrison, D.
Levine, C. Paris, and G. Tsudik, “Itinerant Agents for
Mobile Computing”, IBM Research Report, RC 20010, IBM
Research Division, March 1995; C. Harrison, D. Chess, and
A. Kershenbaum, “Mobile Agents: Are they a good idea?”,
IBM Research Report, IBM Research Division, March
1995.]—from intelligent agents to internet agents to mobile
agents to task-specific agents to user agents, just (o name a
few. A key, distinct characteristic of agents, from our
perspective, is that agents are autonomous. An agent has its

own identity, thread of execution, and lifecycle. It is this s

characteristic that makes the agent system, and specifically
Java agent system, a unique, flexible and powerful paradigm
for distributed and parallel computing [D. T. Chang and D.
B. Lange, “Mobile Agents: A New Paradigm for Distributed
Object Computing on the WWW?”, in Proceedings of the
OOPSLA9 Workshop: Toward the Integration of WWW
and Distributed Object Technology, October, 1996; MA’97
(First International Workshop on Mobile Agents 97), URL=
http:www.informatik.uni-stuttgart.deripvr/vs/ws/
ma971ma97 html].

Given that Java agents are autonomous and can be execut-
ing independently on various Java virtual machines through-

10

15

30

35

40

45

50

60

65

2

out a vast computer network, what makes them useful and
powerlul in carrying out parallel and distributed computing
is that they must be able to communicate with each other in
a dynamic and flexible fashion: the mechanism must allow
agents to communicate when one of the agents moves to a
different address space (mobile agents), when they must
communicate at a higher level than methods calls (intelligent
agents), when they need to communicate as a group
(collaborating agents), and when a part of computer network
is down or one of the agents is not available (disconnected
operation).

Most of the currently available Java agent systems have
focused their support on agent mobility. They provide lim-
ited support for inter-agent communication. Among these,
Voyvager [Voyager, ObjectSpace, URL=http://
www.objectspace.com/Vovager/voyager.html; “Voyager
Core Package Technical Overview”, ObjectSpace, March,
1997], Concordia [Concordia, Mitsubishi Electric ITA,
URLs=http://www.meitca.com/HSL/Projects/Concordia;
“Concordia: An Infrastructure for Collaborating Mobile
Agents”, Mitsubishi Electric ITA, in First International
Workshop on Mobile Agents 97 (MA'97), April, 1997;
“Mobile Agent Computing”, A White Paper, Mitsubishi
Electric ITA, Feb. 28, 1997], and Aglets [Aglets Workbench,
IBM, URL=htip://www.trl.ibm.co.jp/aglets] are the best
known.

Voyager defines the notion of a virtual object, which is
basically a proxy to a remote object. In Voyager any object
can be virtualized using a program called ve, which is a
utility for converting regular classes to virtual classes.
Messages are sent—via method calls—to remote objects
through their local virtual references. Voyager messages can
be sent in a synchronous, deferred, or asynchronous (one-
way) mode. Object mobility is achieved through sending a
“move” message (0 a remote object.

Concordia supports two types of asynchronous distributed
events for inter-agent communication: selected events and
group-oriented events. In the select-event messaging, an
agent registers the type of events it would like to receive
with an event manager. When the event manager receives an
cvent of the registered type it forwards the event to the
registered agent. Concordia also supports group-oriented
events. An agent can join a group of agents. When one of the
agents initiates an event, the event is forwarded to all the
agents in the group. Agent mobility is achieved through the
use of itineraries, which involves message passing between
collaborating Concordia servers.

In Aglets, agents can communicate with each other by
sending messages through their proxies. The messages can
be sent in a synchronous or deferred mode. Agent mobility
is achieved by directly dispatching an agent (through its
proxy) or through the use of itineraries. This involves
message passing between collaborating agent contexts using
the agent transfer protocol.

CORBA [The Common Object Request Broker: Archi-
tecture and Specification, Revision 2.0, OMG, July 1995]
provides an architecture for stationary objects to communi-
cate with each other in a distributed and heterogeneous
environment. It defines a framework for remote method
invocation using the I[1OP (Internet Inter-ORB Protocol).
Under the cover this involves sending request messages and
receiving response messages between collaborating hosts.

KOQML is a language of communication lor intelligent
agents. KQML is based on using primitives called perfor-
matives. Performatives define permissible actions or opera-
tions that agents use for communication. A performative has

US 6,226,666 Bl

3

a name (which specifies what the performative means) and
the following fields: sender, receiver, language (language of
actual communication: prolog, SQL etc.), ontology (term
definitions for the content), correlation id, and content.

JavaSpace [“JavaSpace Specification”, Revision 0.3, Sun
Microsystems, Inc. March 1997] is a Java adaptation for the
internet of the pattern-matching shared memory paradigm
provided by Linda [. Carricro and D. Gelemter, “Linda in
Context”, Communications of the ACM., 32(4), pp.
444458, April, 1989].

Conventional methods have failed to provide a uniform,
flexible and robust underlying communication infrastructure
for agent systems for communication between agents,
between agents and agent-hosting servers, and between
agent-hosting servers, Thus, there is a clearly felt need for a
method of, system for, and computer program product for,
providing a flexible and robust underlying communication
infrastructure for agent systems for communication between
agents, between agents and agent-hosting servers, and
between agent-hosting servers.

SUMMARY OF THE INVENTION

A communication infrastructure providing communica-
tion between agents, between agents and agent-hosting
servers, and between agent-hosting servers. The infrastruc-

ture meets technical requirements for flexibility and robust- -

ness: extensible types of messages, asynchronous and syn-
chronous message passing, queuing, disconnected
operation, inter-agent communication, and inter-agent-
server communication. The communication infrastructure
consists of three layers (from bottom to top): Mail Facility
Layer, Message Facility Layer, and Agent Management
Communication Facility Layer. The communication infra-
structure has an open architecture in that a lower layer is
designed to be more general than upper layers and can be
used independent of the upper layers. Each upper layer,
however, is designed to use and depends on the lower layers.
The Mail Facility Layer is the lowest layer providing a
general, semantics-free mail paradigm for asynchronous
communication between distributed objects, whether they
are local or remote to each other. The Mail Facility Laver
provides a level of absiraction in terms of mail, virtual
mailbox, post office, and mail queue, and hides the details of
implementation and actual transport. It is designed to pro-
vide location transparency and to be implementable using
various transport protocols. The next Message Facility
Layer provides a typed messaging paradigm for asynchro-
nous and synchronous message passing between distributed
objects, whether they are local or remote to each other. The
Message Facility Laver uses the Mail Facility Layer for
sending messages and, where appropriate, for getting
responses 1o requests sent. It allows for the association of
typed message handlers with typed messages such that the
format and semantics of messages are encapsulated through
their types, are extensible, and can be processed by the
associated message handlers. The Agent Management Com-
munication Facility Layer is the highest layer providing the
services for inter-agent communication between agents,
agent-agent-server communication between an agent and an
agent server, and inter-agent-server communication between
agent servers for managing agents such as locating an agent,
dispatching an agent, retrieving an agent, etc. The key
abstractions provided in this layer include agent manager,
agent, and agent identifier. It uses the Message Facility
Layer and Mail Facility Laver to carry out the communica-
tion.

The present invention has the advantage of providing a
flexible and robust underlying communication infrastructure

10

15

30

35

40

45

50

55

60

65

4

for agent systems for communication between agents,
between agents and agent-hosting servers, and belween
agent-hosting servers.

The present invention has the further advantage of pro-
viding extensible types of messages.

The present invention has the further advantage of pro-
viding asynchronous and synchronous message passing,.

The present invention has the further advantage of pro-
viding queuing of message passing.

The present invention has the further advantage ol pro-
viding disconnected operation for inter-agent communica-
tion and inter-agent-server communication.

The present invention has the further advantage of allow-
ing implementations of various messaging paradigms 1o
support distributed objects and agent mobility.

T She present invention has the further advantage of
allowing implementations of various abstractions to be
easily be built on top of the Mail Facility Layer, and
facilitating multiple protocol implementations through the
Mail Facility Layer.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference is now made to
the Description of the Preferred Embodiment in conjunction
with the attached Drawings, in which:

FIG. 1 is a block diagram of a distributed computer
system used in performing the method of the present
invention, forming part of the apparatus of the present
invention, and which may use the article of manufacture
comprising a computer-readable storage medium having a
computer program embodied in said medium which may
cause the computer system to practice the present invention;

FIG. 2 is a block diagram of an agent communication
infrastructure in accordance with the present invention;

FIG. 3 illustrates sending a mail through a virtual mailbox
using the Mail Facility Layer of the present invention;

FIG. 4 illustrates receiving a mail through a virtual
mailbox using the Mail Facility Layer of the present inven-
tion;

FIG. 5 illustrates a type hierarchy of messages and a type
hierarchy of message handlers in accordance with the Mes-
sage Facility Layer of the present invention;

FIG. 6 illustrates sending and receiving of a message
using the Message Facility Layer of the present invention;

FIG. 7 illustrates agent communication in accordance
with the Agent Management Communication Facility Layer
of the present invention;

FIG. 8 is a flowchart illustrating the operations preferred
in carrying out the send mail portion of the present inven-
tion;

FIG. 9 is a flowchart illustrating the operations preferred
in carrying out the virtual mailbox portion of the present
invention when sending mail;

FIG. 10 is a flowchart illustrating the operations preferred
in carrying out the local main post office portion of the
present invention when sending mail;

FIG. 11 is a flowchart illustrating the operations preferred
in carrying out the destination post office portion of the
present invention;

FIG. 12 is a lowchart illustrating the operations preferred
in carrying out the receive mail portion of the present
invention;

US 6,226,666 Bl

5

FIG. 13 is a flowchart illustrating the operations preferred
in carrying out the virtual mail box portion of the present
invention when receiving mail;

FIG. 14 is a flowchart illustrating the operations preferred
in carrying out the local main post office portion of the
present invention when receiving mail;

FIG. 15 is a flowchart illustrating the operations preferred
in carrying out the location post office portion of the present
invention;

FIG. 16 is a flowchart illustrating the operations preferred
in carrying out the send message portion of the present
invention;

FIG. 17 is a flowchart illustrating the operations preferred
in carrying oul the message portion of the present invention;

FIG. 18 is a flowchart illustrating the operations preferred
in carrying oul the receive message portion of the present
invention;

FIG. 19 is a flowchart illustrating the operations preferred
in carrying out the Request/Response Messaging portion of
the present invention when sending a request message;

FIG. 20 is a flowchart illustrating the operations preferred
in carrying out the Request/Response Messaging portion of
the present invention when receiving a request message;

FIG. 21 is a flowchart illustrating the operations preferred
in carrying out the Request/Response Messaging portion of
the present invention when handling a request message;

FIG. 22 is a flowchart illustrating the operations preferred
in carrying out the one-way mode of the Request/Response
Messaging portion of the present invention;

FIG. 23 is a flowchart illustrating the operations preferred
in carrying out the deferred mode of the Request/Response
Messaging portion of the present invention;

FIG. 24 is a flowchart illustrating the operations preferred

in carrying out the synchronous mode of the Request/ :

Response Messaging portion of the present invention;

FIG. 25 is a flowchart illustrating the operations preferred
in carrying out the agent communication portion of the
present invention when a user sends an agent a message;

FIG. 26 is a flowchart illustrating the operations preferred
in carrying out the agent communication portion of the
present invention when a local main agent manager facili-
fates an agent message;

FIG. 27 is a flowchart illustrating the operations preferred
in carrying out the agent communication portion of the
present invention when an owning agent manager facilitates
an agent message; and

FIG. 28 is a flowchart illustrating the operations preferred
in carrying out the agent communication portion of the

present invention when a destination agent manager facili- 3

tates an agent message.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference now to the figures and in particular with 53

reference to FIG. 1, there is depicted a pictorial represen-
tation of a distributed computer system 8 which may be
utilized to implement the method of, system for, and article
of manufacture of the present invention. As may be seen,
distributed computer system 8 may include a plurality of
networks 10 and 32, which may be Local Area Networks
(LAN), intranet networks, or internet networks, each of
which preferably includes a plurality of individual comput-
ers 12 and 30, respectively. Of course, those skilled in the art
will appreciate that a plurality of Intelligent Work Stations
(IWS) coupled to a host processor may be utilized for each
such network.

(

30

45

6

As is common in such data processing systems, each
individual computer may be coupled to a storage device 14
and/or a printer/output device 16. One or more such storage
devices 14 may be utilized, in accordance with the present
invention, to store the various computer programs which
may be accessed and executed by a user within the distrib-
uted computer system 8, in accordance with the present
invention. In a manner well known in the prior art, each such
compuler program may be stored within a storage device 14.

Still referring to FIG. 1, it may be seen that distributed
compuler system 8 may also include multiple mainframe
computers, such as mainframe computer 18, which may be
preferably coupled to Local Area Network 10 by means of
communication link 22. Mainframe computer 18 may also
be coupled to a storage device 20 which may serve as remote
storage for Local Area Network 10 which may be coupled
via communications controller 26 and communications link
34 to a gateway server 28. Gateway server 28 is preferably
an individual computer or Intelligent Work Station which
serves 1o link Local Area Network 32 to Local Area Network
10.

As discussed above with respect to Local Area Network
32 and Local Area Network 10, a plurality of server com-
puter programs may be stored within storage device 20 and
executed by mainframe computer 18. Similarly, a plurality
of client computer programs may be stored within storage
devices 14 and executed by individual computers 12 such
that distributed client/server computer programs are pro-
vided. Of course, those skilled in the art will appreciate that
the mainframe computer 18 may be located a great geo-
graphical distance from Local Area Network 10, and
similarly, Local Area Network 10 may be located a substan-
tial distance from Local Area Network 32. That is, Local
Area Network 32 may be located in California while Local
Area Network 10 may be located within Texas and main-
frame computer 18 may be located in New York.

As will be appreciated upon reference to the foregoing, it
is often desirable for a user within one portion of distributed
data processing syslem 8 to executle agent compuler pro-
grams on one or more portions of data processing system S.
For example, the user may execute a client computer pro-
gram on computer 12 which dispatches a mobile agent to
execute on mainframe 18. After obtaining services or infor-
mation from mainframe 18, the mobile agent may transfer to
computer 30 to obtain further services or information from
computer 30. Finally, the mobile agent may be retrieved
from computer 30 back to computer 12.

System Architecture

The communication infrastructure consists of three layers
(from bottom to top):

Mail Facility Layer 210;

Message Facility Layer 220; and

Agent Management Communication Facility Layer 230.

The communication infrastructure has an open architec-
ture in that a lower layer is designed to be more general than
upper layers and can be used independent of the upper
layers. Each upper layer, however, is designed to use and
depends on the lower layers. FIG. 2 illustrates how the Agent
Management Communication Facility Layer 230 uses and
depends upon the lower Message Facility Layer 220 and
Mail Facility Layer 210. FIG. 2 also illustrates how the
Message Facility Layer 220 uses and depends upon the
lower Mail Facility Layer 210. However, FIG. 2 also illus-
trates how the lower Message Facility Layer 220 and Mail
Facility Layer 210 may be used independently of the upper
Agent Management Communication Facility Layer 230, and

US 6,226,666 Bl

7

how the lower Mail Facility Layer 210 may be used inde-
pendently of the upper Message Facility Layer 220.

The Mail Facility Layer 210 is the lowest layer and the
foundation of the communication infrastructure. It provides
a general, semantics-free mail paradigm for asynchronous
communication between distributed objects such as Java
objects, whether they are local or remote to each other. The
Mail Facility Layer 210 provides a level of abstraction in
terms of mail, virtual mailbox, post office, and mail queue,
and hides the details of implementation and actual transport.
It is designed to provide location transparency and to be
implementable using various transport protocols. Table 2
comprises a package index of the preferred embodiment of
the present invention; Table 4 comprises class definitions of
the mail package of the preferred embodiment of the present
invention; Table 5 comprises class definitions of the mail
implementation package of the preferred embodiment of the
present invention; Table 8 comprises a class hierarchy of the
preferred embodiment of the present invention; and Table 9
comprises an index of all fields and methods of the preferred
embodiment of the present invention.

The next layer in the communication infrastructure is the
Message Facility Layer 220. It provides a typed messaging,
paradigm for asynchronous and synchronous message pass-

ing between Java objects, whether they are local or remote 2

to each other. The Message Facility Layer 220 uses the Mail
Facility Layer 210 for sending messages and, where
appropriate, for getting responses 1o requests sent. It allows
for the association of typed message handlers with typed
messages such that the format and semantics of messages
are encapsulated through their types, are extensible, and can
be processed by the associaled message handlers. Table 6
comprises class definitions of the message package of the
preferred embodiment of the present invention, and Table 7
comprises class definitions of the message handler package
of the preferred embodiment of the present invention.

The Agent Management Communication Facility Layer
230 1s the highest layer of the communication infrastructure.
It provides the services for inter-agent communication
between agenls, agent-agent-server communication between
an agent and an agent server, and inter-agent-server com-
munication between agent servers for managing agents such
as locating an agent, dispatching an agent, retracting an
agent, etc. The key abstractions provided in this layer
include agent manager, agent, and agent identifier. It uses the
Message Facility Layer 220 and Mail Facility Layer 210 to
carry oul the communication. Table 3 comprises class defi-
nitions ol the agent package of the preferred embodiment of
the present invention.

Mail Facility

The Mail Facility Layer 210 provides an asynchronous
mail delivery service. Java objects, whether they are local or
remote to each other, can use the facility to communicate
with each other in an asynchronous manner. A key concept
and innovation is that of the virtual mailbox. To send a mail
305, one needs to simply open a virtual mailbox 310 with the
name 315 that represents the destination for the mail 305 and
put the mail in the virtual mailbox 310. The Mail Facility
Layer 210 will do the rest and deliver the mail 305 to the
physical destination represented by the name 315, be it local
or remote. This is shown in FIG. 3, where Mail 305, Mailbox
310, PostOffice 320, PORemote 325, and MailQueue 330
are Java classes or interfaces.

To receive a mail 405, one again needs to simply open a
virtual mailbox 410 with the name 415 that represents the
location for the mail and get the mail 405 from the virtual
mailbox 410. The Mail Facility Layer 210 will do the rest

15

20

30

35

40

45

50

55

60

65

8

and retrieve the mail 405 from the physical location repre-
sented by the name 415, be it local or remote, as illustrated
in FIG. 4.

The Mail Facility Layer 210 uses the abstraction of post
office (320, 325, 420, and 425) and mail queue (330, 335,
340, 435, and 440) to encapsulate and hide the details of
implementation and actual transport. The post office can be
implemented using various transport protocols (345 and
445) and can support multiple transport protocols at the
same time. The mail queue (330, 335, 340, 435, and 440)
provides the store and forward, and persistence capabilities
to support asynchronous and disconnected operations.

Each mail (305 and 405) is designed to have an unique
identifier, a correlation identifier, which can be used to
correlate related mail, e.g., between responses and requests.
To allow for content of various types to be sent and received
by mail, each mail has a type specification which is exten-
sible and which does not require name registralion. An
example of this is given in the discussion of the Message
Facility Layer 220. A mail can be given a priority to facilitate
its processing by the receiver.

As mentioned before, the virtual mailbox (310 and 410)
provides location transparency when sending and receiving
mail. Each virtual mailbox 310 is associated with a name
315 which represents some destination or location, local or
remote. The name 315 ties it with a certain post office 325,
which is the logical home of the virtual mailbox 310. When
sending a mail 305, one simply puts it in a virtual mailbox
310 with the appropriate name 315. When receiving a mail
405, one gets it from a virtual mailbox 410 with the
appropriate name 415. If needed, one can specify the type or
correlation identifier of the mail to be received.

The post office (320, 325, 420, and 425) does the actual
sending and receiving of mail. Each post office (320, 325,
420, and 425) is associated with a name (355, 350, 455, and
450 respectively) which represents its location and
identification, and which may include the specification of
the mail transport protocol (345, 445) (M, IIOP, or
MOQSeries, for example) to be used by the post office. If the
protocol is not specified, the default protocol is implied. A
mail 305 can be sent through any known local post office
320, which in turn will deliver the mail 305 to the appro-
priate destination post office 325. A mail 405 can be received
through any known local post office 420, which in turn will
retrieve the mail from the appropriate location post office
425, which is the physical location of the mail to be
received. If needed, one can specify the type or correlation
identifier of the mail to be received.

The post office 320 stores mail in mail queues (330 and
340). It maintains various receiving mail queues 340 for the
virtual mailboxes that it owns. Additionally it maintains
some sending mail queues 330 which allow it to handle
disconnected operation and to optimize mail delivery. The
quality of service provided by a mail queue depends on its
implementation (e.g., in memory, using files, using
databases).

From the above discussion it can be seen that the Mail
Facility Layer 210 is a general purpose, asynchronous mail
delivery service for Java objects. It forms a flexible and
robust foundation for the communication infrastructure. It
provides virtual mailboxes for one to send and receive mail
in a location transparent manner. The mail can contain
various types of content with extensible type specifications.
And it utilizes mail queues to provide store and forward, and
persistence capabilities.

Message Facility

The Message Facility Layer 220 provides a typed mes-
sage paradigm for asynchronous and synchronous message

US 6,226,666 Bl

9

passing between Java objects, whether they are local or
remote to each other. It allows for the association of typed
message handlers (501, 502, 503, 504, 505, and 506) with
typed messages (511, 512, 513, 514, 515, and 516
respectively) such that the format and semantics of messages
are encapsulated through their types and can be processed by
the associated message handlers. As such, both messages
and their associated message handlers can be easily
extended and doing so without the need of a naming
authority. The message type hierarchy 510 and the associ-
ated message handler type hierarchy 500 are illustrated in
FIG. 5, where Message 511 , MessageHandler 501, ctc. are
Java interfaces or classes, and arrows are used to indicate
inheritance.

An important consideration in the design of the Message
Facility Layer 220 is that, in general, agents need to com-
municate with each other using many different types of
messages: evenl messages [“Concordia: An Infrastructure
for Collaborating Mobile Agents”, Mitsubishi Electric ITA,
in First International Workshop on Mobile Agents 97
(MA’97), April, 1997; “Mobile Agent Computing”, A White
Paper, Mitsubishi Electric ITA, Feb. 28, 1997], KQML
messages [InfoSleuth Project, URL=http://www.mce.com/

projects/infosleuth; JKOML, IBM, URL=http:// 2

objects.yamato.ibm.com/JKQML/index-e.html; Y. Labrou,
“Semantics for an Agent Communication Language”, Ph.D.
thesis, CSEE department, University of Maryland, Balti-
more Md. 21228-5398, September, 1996. URL=http://
www.cs.umbe.edu/kgml], method invocation messages [The
Common Object Request Broker: Architecture and
Specification, Revision 2.0, OMG, July 1995], request/
response messages [Aglets Workbench, IBM, URL=htp://
www.trl.ibm.co jp/aglets], ete. A similar consideration is
that agent-hosting servers also need to communicate with
cach other using many different types of messages in order
to manage agents: agent transfer messages [Aglets
Workbench, IBM, URL=http://www.irl.ibm.cojp/aglets],
agenl query messages, slatistics gathering messages, elc.
Therefore, a key requirement in the design of the Message
Facility Layer 220 is that it must support multiple types of
messages and message handlers, and that it must support
their extension and identification with ease. These are
accomplished through the use of Java interface/class hier-
archies and design patterns.

The Message Facility Layer 220 allows for asynchronous
and synchronous message passing. Certain types of
messages, such as event messages and KOML. messages, are
asynchronous in nature and are sent one-way. Other
messages, such as method invocation messages and agent
transfer messages, involve responses and can be sent in one
of three different modes: synchronous (waiting for
responses) 2400 of FIG. 24, deferred (getting responses at a
later time) 2300 of FIG. 23, or one-way (asynchronous,
discarding the responses) 2200 of FIG. 22.

A key design decision and innovation is to integrate the
allowed message passing mode with the type of messages
rather than treat it as orthogonal to the type of messages.
This is based on the observation that for messages such as
event messages or KQML messages, it does not make sense
to send them in a synchronous or deferred mode. This also
allows message definers the freedom to choose the appro-
priate mode(s) for their types of messages. Table 1 shows
exemplary message tyvpes in accordance with the preferred
embodiment of the present invention.

15

20

30

35

40

45

50

60

65

TABLE 1
Mode
Message Type Asynchronous One-Way Synchronous Deferred
Event X
KOML X
Request/Response X X X
Agent Transfer X X

To send a message 605 of FIG. 6 via the Message Facility
Layer 220, a user first creates a message 605 and then calls
send() which creates a mail 610 specilying the type of
content and the content wherein the type of content is the
type of the message and the content is the message 605. The
message 605 also creates a virtual mailbox 615 specifying
the virtual mailbox name 620 that represents the destination
for the mail 625, which is the receiver virtual mailbox of the
message 605. Thereafter, the message 605 puts the mail 610
in the virtual mailbox 615 which causes the Mail Facility
Laver 210 to deliver the message 605 to the destination 625.

To receive a message via the Message Facility Layer 220,
a user creales a virtual mailbox 665 specifying the virtual
mailbox name 670 that represents the physical location 675
of the mail. The user then gets the mail 660, whose content
is the message 655, from the virtual mailbox 665 which
causes the Mail Facility Layer 210 to get the mail 660 from
the location post office 675 through the local main post office
680 into the virtual mailbox 665.

In summary, the Message Facility Layer 220 is a general
purpose, message passing service for Java objects and uses
the Mail Facility Layer 210 for actual message delivery. It
serves as a flexible middle layer for the communication
infrastructure. It provides an extensible framework for han-
dling typed messages and associated handlers, and it allows
for message passing, where appropriate, in asynchronous,
synchronous, or deferred mode.

Agent Management Communication Facility

The Agent Management Communication Facility Layer
230 is the highest layer of the communication infrastructure.
It is designed to provide a uniform scheme for handling
inter-agent communication, whether the agents involved are
stationary or mobile, and inter-agent-server communication.
It uses the Message Facility Layer 220 and Mail Facility
Layer 210 to carry oul the communication.

A key abstraction provided is that of an agent manager
(705, 710, and 715). An agent manager manages a group of
agents, stationary or mobile, and is responsible for working
with other agent managers to locate an agent, send a
message to an agent, dispalch an agent, retrieve an agent,
ctc. Each agent is autonomous and has an agent identifier
which uniquely identifies it regardless whether it moves or
not. The message passing between agents is illustrated in
FIG. 7, where AgentManager (705, 710, and 715) and Agent
(720 and 725) are Java classes.

Inter-agent Communication

Communication between mobile agents is done through
the collaboration of agent managers. A mobile agent’s
owning agent manager is aware of an agent’s whercabouts
at all times and can cause appropriate message forwarding to
the current location of an agent. A local agent manager
manages agents located at the local agent manager’s location
or system. If there are one or more local agent managers at
a location, then a local main agent manager is the default
agent manager. If a mobile agent moves 1o a location other
than that of its owning agent manager, then the managing
agent manager at that current location of the agent is known
as a destination agent manager.

US 6,226,666 Bl

11

Each agent manager (705, 710, and 715) owns one or
more virtual mailboxes (730, 735, 740, and 790) and uses
them to exchange messages (745, 750, and 755) via mail
(760, 765, 770, and 785). For example, if an agent manager
705 is asked to send a message 745 to an agent 720, it will
generate a mail 760 (with the message 745 encapsulated as
its content) and put in the owning agent manager’s virtual
mailbox 730. The owning agent manager 710 then will, at an
appropriate time, receive the message 750, thus causing a
mail 765 to be retrieved from its virtual mailbox 735. If the
agent 720 is owned and managed by owning agent manager
710, then the owning agent manager 710 will locate the
agent 720 and request the agent 720 to handle the message
750.

If the agent 725 is owned, but not managed by, agent
manager 710, then the message needs to be redirected to the
managing destination agent manager 715. In this situation,
owning agent manager 710 generates a mail 785 (with the
message 750 encapsulated as its content) and puts the mail
785 in the destination agent manager’s 715 virtual mailbox
790. The destination agent manager 715 then will, at an
appropriate time, receive the message 7535, thus causing a
mail 770 to be retrieved from its virtual mailbox 740. The
destination agent manager 715 will then locate the agent 725
and request the agent 725 to handle the message 755.

From the above discussion it can be seen that the present
invention provides a uniform facility for communication
between agents, whether they are stationary or mobile, and
for communication between agent managers for the purpose
of managing agents, ¢.g., transferring an agent to a new
location.

Referring next to FIG. 8 through FIG. 28, flowcharts
illustrating operations preferred in carrying out the present
invention are shown. In the flowcharts, the graphical con-
ventions of a diamond for a test or decision and a rectangle
for a process or function are used. These conventions are
well understood by those skilled in the art, and the How-
charts are sufficient to enable one of ordinary skill to write
code in any suitable computer programming language.

Mail Facility Laver Preferred Embodiment

Referring first to FIG. 8 through FIG. 15, the operations
preferred in carrying out the Mail Facility Layer 210 of the
present invention are illustrated. FIG. 8 through FIG. 11
illustrate the operations preferred in sending mail, and FIG.
12 through FIG. 15 illustrate the operations preferred in
receiving mail. To send mail, a user creates a mail 305
specifying the type of content and the content by use of API
(Application Program Interface) <new Mail(type,
content)>(process block 810 of FIG. 8). The user may also
sel a response destination for the mail 305 so that a reply
may be returned to that destination or so that the mail 305
can be returned in case of delivery failure, <Mail.
setResponseDestination(respDest)>(process block 820).
The user then creates a virtual destination mailbox 310 by
specifying a virtual mailbox name 315 that represents a
destination for the mail 325, <new Mailbox(mbName)>
(process block 830). The virtual mailbox name 315 com-
prises a post office name 350 and a mailbox id. The post
office name 350 comprises a protocol, host, port, and post
office id. This supports multiple protocols (e.g., RMI, which
is the default), and the protocol determines the type of post
office to be used for sending/receiving mail (e.g., an RMI
post office is used in process block 920). Thereafter, the user
puts the mail 305 in the virtual mailbox 310, <Mail.putMail
(mail)>(process block 840).

Referring next to FIG. 9, the operations preferred in
carrying out the virtual mailbox (310 and 900) portion of the

15

20

30

35

40

45

50

55

60

65

12

Mail Facility Layer 210 of the present invention are illus-
trated. After the mail 305 has been put into the virtual
mailbox 310 by process block 840, process block 920 of
FIG. 9 causes the virtual mailbox 310 to get the local main
post office 320, <PostOfficeRMI.getLocal PostOffice()>, and
process block 930 sends the mail 305 through the local main
post office 320, <PostOffice.sendMail(mbName, mail)>.

Referring now to FIG. 10, the operations preferred in
carrying oul the local main post office (320 and 1000)
portion of the Mail Facility Layer 210 of the present
invention are illustrated. The local main post office 320
extracts the destination post office name 350 from the virtual
mailbox name 315 and uses it to find the destination post
office 325, whether local or remote (process block 1010). If
the destination post office is not available, then the local
main post office 320 may put the mail 305 in the sending
mail queue 330 and repeat this step later. This supports
disconnected operation. Thereafter, the local main post
oflice 320 generates and sets the mail id for the mail,
<Mail.setMailld(mailld)>(process block 1020), and sets the
destination for the mail specifying the virtual mailbox name
315, <Mail. setDestination(mbName)>(process block 1030).
Process block 1040 then causes the local mail post office 320
to deliver the mail 305 to the destination post office 325
specifying the mailbox id, which is extracted from the
virtual mailbox name, <PostOfficeRMI.deliverMail(mbld,
mail)>.

Referring now to FIG. 11, the operations preferred in
carrying out the destination post office (325 and 1100)
portion of the Mail Facility Layer 210 of the present
invention are illustrated. After the mail 305 is received at the
destination post office 325, the destination post office 325
obtains the receiving mail queue 335 for the mail 305 using
the mailbox id (process block 1120), and then the destination
post office 325 puts the mail 305 in the mail queue 335,
<MailQueue.enqueue(mail)>(process block 1130). Different
types of mail queues may provide different quality of
service. For example, in-memory mail queue
<MemMailQueue>provides fast access, whereas database
mail queue <SQLMailQueue>provides persistent storage of
mail. The use of these is determined by the post office and
is transparent to the user.

Referring now to FIG. 12 through FIG. 15, the operations
preferred in receiving mail are illustrated. Referring first 1o
FIG. 12, the user operations preferred in receiving mail via
a virtual mailbox 410 are illustrated. A user creates a virtual
mailbox 410 specifying the virtual mailbox name 415 that
represents the physical location of the mail located at post
office 425, <new Mailbox(mbName)>(process block 1210).
Thereafter, the user gets the mail 405 from the virtual
mailbox 410, <Mail.getMail()>(process block 1220).
Alternatively, the user may get the mail with a specific type
of content or a specific correlation identifier. The correlation
identifier or correlation id associates two or more pieces of
mail, for example a mail object and a reply to that mail
object.

Referring next to FIG. 13, the operations preferred in the
virtual mailbox 410 when receiving mail are illustrated. In
response to the user getting the mail 405 from the virtual
mailbox 410 (process block 1220), the virtual mailbox 410
gets the local main post office 420,
<PostOfficeRMI.getLocalPostOflice()>(process block
1310), and thereafter the virtual mailbox 410 receives the
mail 405 through the local main post office 420,
<PostOffice.receiveMail(mbName)>(process block 1320).
Alternatively, the virtual mailbox may receive the mail with
a specific type of content or a specific correlation id.

US 6,226,666 Bl

13

Referring next to FIG. 14, the operations preferred in the
local main post office 420 when receiving mail are illus-
trated. In responsc to the virtual mailbox 410 getting the
local main post office 420 (process block 1320), the local
main post office 420 extracts the location post office name
450 from the virtual mailbox name 415 and uses it to find the
location post office 425, whether local or remote (process
block 1410). The location post office is the physical location
of the mail to be received. If the location post office 425 is
not available, the local main post office 420 will repeat
process block 1410 later, thus supporting disconnected
operation. Thereafter, the local mail post office 420 retrieves
the mail 405 from the location post office 425 specifying the
mailbox id, which is extracted from the virtual mailbox
name 415, <PostOfficeRMI.retrieveMail(mbld, mail)>
(process block 1420).

Referring next to FIG. 15, the operations preferred in the
location post office 425 when receiving mail are illustrated.
In response to the local mail post office 420 retrieving the
mail 405 {rom the location post office 425 (process block
1420), the location post office 425 obtains the receiving mail
queue 435 for the mail 405 using the mailbox id (process
block 1510), and then gets the mail 405 from the mail queue
435, <MailQueue.dequeue()>(process block 1520).
Alternatively, the location post office 425 may get the mail

with a specific type of content or a specific correlation id. 2

The mail obtained by process block 1520 is returned to
process block 1420 which causes the mail to be returned to
process block 1320 which causes the mail to be returned to
process block 1220.

Message Facility Layer Preferred Embodiment

Referring now to FIG. 16 through FIG. 18, the operations
preferred in carrying out the Message Facility Layer 220 of
the present invention are illustrated. FIG. 16 illustrates
sending a message, FIG. 17 illustrates the sending of a
message via the Mail Facility Layer 210, and FIG. 18
illustrates the receiving of a message.

Referring first to FIG. 16 illustrating the operations pre-
ferred in sending a message, a user creales a message 605 of
a particular type, <e.g., new KOQMIMessage()=(process
block 1610). The user sets the sender of the message,
<Message.setSender()>(process block 1620); sets the
receiver of the message, <Message.setReceiver()>(process
block 1630), and sets other attributes of the message as
needed, <e.g., KOMILMessage.setPerformative(pero)>
(process block 1640). The user then sends the message,
<Message. send()>(process block 1650).

Referring next to FIG. 17 illustrating the operations
preferred in the sending of a message 605 via the Mail
Facility Layer 210, the message 605 creates a mail 610
specifying the type of content and the content wherein the
type of content is the type of the message and the content is
the message 605, <new Mail(type, content)>(process block
1710). The message 605 may also set a response destination
for the mail 610 so that a reply may be returned to the
destination or so that it can be returned in case of delivery
failure, <Mail.setResponseDestination(respDest)>(process
block 1720). The response destination is the sender virtual
mailbox of the message. The message 605 also creates a
virtual mailbox 615 specifying the virtual mailbox name 620
that represents the destination for the mail 625, <new
Mailbox(mbName)>(process block 1730), which is the
receiver virtual mailbox of the message 605. Therealter, the
message 605 puts the mail 610 in the virtual mailbox 615,
<Mail.putMail(mail)>(process block 1740), which invokes
the Virtual Mailbox processing 900 of the Mail Facility
Layer 210 starting with process block 920 of FIG. 9 wherein
the message 605 is the user of the Mail Facility Layer 210.

15

20

30

35

40

45

50

55

60

65

14

Referring next to FIG. 18 illustrating the operations
preferred in the receiving of a message via the Message
Facility Layer 220, a user creates a virtual mailbox 665
specifying the virtual mailbox name 670 that represents the
physical location 675 of the mail, <new Mailbox
(mbName)> (process block 1810). The user then gets the
mail 660 from the virtual mailbox 665, <Mail.getMail()>
(process block 1820), which invokes the Virtual Mailbox
processing 1300 of the Mail Facility Layer 210 starting with
process block 1310 of FIG. 13 wherein the message 655 is
the user of the Mail Facility Layer 210. After process block
1320 has received the mail 660 into the virtual mailbox 665
from the local main post office 680, the user gets the content
of the mail 660, which is the message 655,
<Mail.getContent()>(process block 1830). Alternatively,
process block 1820 may allow the user to optionally get the
mail with a specific type of content which represents the type
of message to be received.

Request/Response Messaging Preferred Embodiment

Referring next to FIG. 19 through FIG. 24, the operations
preferred in carrying out the Request/Response Messaging
of the present invention are illustrated. FIG. 19 illustrates the
operations preferred in sending a request message; FIG. 20
illustrates the operations preferred in receiving a request
message; FIG. 21 illustrates the operations preferred in
carrying out the Request Message Handler; FIG. 22 illus-
trates the operations prelerred in a one-way mode of
Request/Response Messaging; FIG. 23 illustrates the opera-
tions preferred in a deferred mode of Request/Response
Messaging; and FIG. 24 illustrates the operations preferred
in a synchronous mode of Request/Response Messaging,.

Referring next to FIG. 19 illustrating the operations
preferred in the sending of a request message, a user first
creales a request message, <new chuestMessage()>
(process block 1910). The user sets the receiver of the
message, <Message.setReceiver()>(process block 1920); the
sender of the message, <Message. setsender()>(process
block 1930); and other attributes of the message as needed,
<e.g., RequestMessage.setOperation(oper)=(process block
1940). Thereafter, the user sends the message,
<RequestMessage.send()>(process block 1950) which
invokes process block 1650 of FIG. 16 and processing
continues by the Message Facility Layer 220.

Referring next to FIG. 20 illusirating the operations
preferred in the receiving of a request message, the system
(e.g., an agent manager) first creates a virtual mailbox
specifying the virtual mailbox name that represents the
virtual mailbox, <new Mailbox(mbName)>(process block
2010). The system then gets the mail from the virtual
mailbox, <Mail.getMail()>(process block 2020), using the
virtual mailbox processing 1300 of FIG. 13, and the content
of the mail, which is a clone of the request message,
<Mail.getContent(>(process block 2030). Thereafter, the
system sets the status of the request message to indicate that
it is a clone, <RequestMessage.setClone()>(process block
2040). The system then creates a request message handler,
<new RequestMessageHandler()>(process block 2050), and
the system asks the request message handler to handle the
(cloned) request message,
<RequestMessageHandler.handleMessage(reqe)>(process
block 2060).

Referring next to FIG. 21 illustrating the operations
preferred in the carrying out of the Request Message
Handler, the handler handles the message and generates a
result (process block 2110). Therealter, the Request Message
Handler determines if a one-way attribute is set
(<RequestMessage.isOneway()>) (decision block 2120),

US 6,226,666 Bl

15

and if the one-way attribute is set, then process block 2125
discards the result. Returning now to decision block 2120, if
the one-way attribute is not set, then the Request Message
Handler creates a response message, <new
ResponseMessage(result)>(process block 2130). Thereafter,
the Request Message Handler sets a correlation identifier or
correlation id of the response message to be the message
identifier or message id of the request message,
<ResponseMessage.setCorrelationld(corrld)>(process
block 2140). The Request Message Handler also sets the
receiver of the response message to be the sender of the
request message, <Message.setReceiver(receiver)>(process
block 2150), and sets the sender of the response message to
be the receiver of the request message, <Message.setSender
(sender)>(process block 2160). Thereafter, the Request
Message Handler sends the response message,
<Message.send()>(process block 2170), invoking process
block 1650 of the sending message portion 1600 of the
Message Facility Layer 220.

Referring next to FIG. 22, FIG. 23, and FIG. 24, three
modes of sending the request message and getting the result
are illustrated: one-way in FIG. 22, deferred in FIG. 23, or
synchronous in FIG. 24.

Referring first to FIG. 22 illustrating the operations pre-

ferred in a one-way mode of Request/Response Messaging, 2

if the request message mode is set to one-way before sending
(<RequestMessage.setOneway()>), then the request mes-
sage is sent as a one-way request message, and the result is
discarded (process block 2210).

Referring next to FIG. 23 illustrating the operations
preferred in a deferred mode of Request/Response
Messaging, the user first checks if the result has arrived,
<RequestMessage.checkResult()>(process block 2310).
Thereafter, the user determines if a the result has arrived
(decision block 2320), and if the result has arrived, then the
user gels the result (process block 2330). Returning now to
decision block 2320, if the resull has not arrived, then the
user can repeat process block 2310 and decision block 2320
at a later time.

Referring next to FIG. 24 illustrating the operations
preferred in a synchronous mode of Request/Response
Messaging, the user waits for the result until the result
arrives, and gets it, <RequestMessage.getResult(-1)>
(process block 2410).

Agent Communication Facility Layer Preferred Embodi-
ment

Referring next to FIG. 25 through FIG. 28, the operations
preferred in carrying out the Agent Communication Facility
Layer 230 of the present invention are illustrated. FIG. 25
illustrates the operations preferred in carrying out the agent
communication portion of the present invention when a user
sends an agent a message; FIG. 26 illusirates the operations
preferred in carrying out the agent communication portion of
the present invention when a local agent manager facilitates
an agent message; FIG. 27 illustrates the operations pre-
ferred in carrying out the agent communication portion of
the present invention when an owning agent manager facili-
tates an agent message; and FIG. 28 illustrates the operations
preferred in carrying out the agent communication portion of
the present invention when a destination agent manager
facilitates an agent message.

Referring next to FIG. 25 illustrating the operations
preferred in carrying out the agent communication facility
layer portion of the present invention when a user sends an
agent a message, a user first gets the local main agent
manager 705, <AgentManager.getlocalAgentManager()>
(process block 2510), wherein the local main agent manager

15

20

30

35

40

45

50

55

60

65

16

is the default agent manager for managing agents located at
the local main agent manager’s location or syslem.
Thereafter, the user creates a message 745 of a particular
type (e.g., KQMLMessage) (process block 2520), and sets
the attributes of the message as needed, <e.g.,
KOMLMessage.setPerformative(perl)>(process block
2530). The user then sends the message through the local
main agent manager 705, <AgentManager.sendMessage
(aid, msg)>(process block 2540).

Referring next to FIG. 26 illustrating the operations
preferred in carrying out the agent communication facility
layer portion of the present invention when a local agent
manager facilitates an agent message, the local main agent
manager 705 first sets the receiver of the message to the
owning agent manager 710 URL (Uniform Resource
Locator) in string form concatenated with the agent id in
string form, <Message.setReceiver(receiver)>(process
block 2610). The owning agent manager is aware of an
agent’s whereabouls at all times and can cause appropriate
message forwarding to the current location of an agent. The
local main agent manager 705 also sets the sender of the
message to the its URL (string form), <Message. setSender
(sender)>(process block 2620), and then sends the message,
<Message.send()>(process block 2630), invoking process
block 1650 of the sending message portion 1600 of the
Message Facility Layer 220.

Referring next to FIG. 27 illustrating the operations
preferred in carrying out the agent communication facility
layer portion of the present invention when an owning agent
manager facilitates an agent message, the owning agent
manager 710 first creates a virtual mailbox 735 specifying
the virtual mailbox name 775 that represents it’s virtual
mailbox wherein the virtual mailbox name is a string form
of its URL., <new Mailbox(mbName)>(process block 2710).
Thereafier, the owning agent manager 710 gets the mail 765
from the virtual mailbox 735, <Mailbox.getMail(>(process
block 2720), and gets the content of the mail 765, which is
the message 750, <Mail.getContent()>(process block 2730).
The owning agent manager 710 also gets the receiver 720 of
the message wherein the receiver is the agent id in siring
form, <Message.getRecciver)>(process block 2740), and
gets the managed and owned agent 720,
<AgentManager.getAgent(aid)>(process block 2750).
Thereafter, the owning agent manager 710 determines if an
agent 720 exists locally (decision block 2760), and if the
agent 720 exists locally, then the owning agent manager 710
asks the managed agent 720 (managed agent if local) to
handle the message 750, <Agent.handleMessage()>(process
block 2770). Returning now to decision block 2760, if the
agent does not exist locally (if the agent has moved to a
location managed by a different agent manager 715), then
the owning agent manager 710 gets the destination 715 of
the owned agent 725 wherein the destination is the URL in
string form of the destination agent manager 715 (process
block 2775). This is the situation where the agent 725 has
moved away from il’s owning agent manager 710. When-
ever it does so, the owning agent manager 710 is informed
of it’s new destination and the destination agent manager
715. Thereafter, the owning agent manager 710 sets the
receiver of the message wherein the receiver is set to the
destination agent manager 715 URL in string form concat-
enated with the agent id in string form,
<Message.setReceiver(receiver>(process block 2780). The
owning agent manager 710 then sends the message 755,
<Message.send()>(process block 2790).

Referring next to FIG. 28 illustrating the operations
preferred in carrying out the agent communication portion of

US 6,226,666 Bl

17

the present invention when a destination agent manager
facilitates an agentl message, the destination agent manager
creates a virtual mailbox specifving the virtual mailbox
name that represents it’s virtual mailbox wherein the virtual
mailbox name is a string form of it’s URL, <new Mailbox
(mbName)>(process block 2810). The destination agent
manager is the managing agent manager at the current
location of the agent if the agent moves to a location other
than that of its owning agent manager. Thereafler, the
destination agent manager gets the mail from the virtual
mailbox, <Mailbox.getMail()>(process block 2820); gets
the content of the mail which is the message,
<Mail.getContent()>(process block 2830); and gets the
receiver of the message wherein the receiver is the agent id
in string form, <Message.getReceiver()>(process block
2840). The destination agent manager then gets the managed
and owned agent, <AgentManager.getAgent(aid)>(process
block 2850), and asks the managed agent to handle the
message, <Agent.handleMessage()>(process block 2860).
Although the present invention has been particularly
shown and described with reference to a preferred
embodiment, it will be understood by those skilled in the art
that various changes in form and detail may be made without
departing from the spirit and the scope of the invention.

TABLE 2

API User’s Guide Class Hierarchy Index
Package Index

Other Packages

package com.ibm jma.agent

package com.ibm jma.mail

package com.ibm jma.mail.input
package com.ibm jma.message

package com.ibm.jma.message.handler

TABLE 3

All Packages Class Hierarchy Index

package com.ibm.jma.agent

Class Index

Agent

AgentlD

AgentManager

Exception Index

AgentException

All Packages Class Hierarchy This Package Previous
Next Index

Class com.ibm jma.agent.Agent

java.lang.Object

.. . com.ibm. jma.agent.Agent

public abstract class Agent

extends Object

implements Cloneable, MessageHandler

This is the abstract, Toot class of all agents, stationary or
mobile. Each agent has a globally unique identifier and is
managed by an agent manager. An agenl can communicate
with other agents using messages.

See Also:

AgentManager, AgentID, Message

Constructor Index

Agent()

Method Index

getlD()
Gets the identifier of this agent.

15

20

30

L)

5

40

45

50

60

18
GetManager()
Gets the (current) agent manager of this agent.

getMessage Types()
Gets the message types which can be handled by this
agent.
handleMessage(Message)
Handles the specified message.
init(AgentManager, AgentID, Object)
Consltructors
Agent
protected Agent()
Methods
init
protected void init(AgentManager am, AgentlD aid,
Object init)
getlD
public final AgentID getID()
Gets the identifier of this agent

getManager
public final AgentManager getManager()
Gets the (current) agent manager of this agent.
handleMessage
public boolean handleMessage(Message msg)
Handles the specified message.
getMessageTypes
public String getMessagetypes()
Gets the message types which can be handled by this
agent
Returns:
message types concatenated in a string and separated
by spaces.
All Packages Class Hierarchy This Package Previous
Next Index
All Package Class Hierarchy This Package Previous Next
Index
Class com.ibm.jma.agent. AgentID
java.lang.object
.. . com.ibm.jma.agent. AgentID
public final class AgentID
extends Object
implements Serializable
An AgentlD object encapsulates an agent’s identifier.
Constructor Index
AgentID(byte[])
Constructs an agent identifier from the specified byte
array representation.
AgentID(String)
Constructs an agent identifier from the specified string
representation.
Method Index
equals(Object)
Test if the specified object is an agent identifier and is
equal to this agent identifier.
getlD()
Gets the byte array representation of this agent identifier.
hashCode()
Returns the hash code for this agent identifier.
toString()
Gets the string representation of this agent identifier.
Constructors
AgentlD
public AgentID(byte bid[])
Construets an agent identifier from the specified byte
array representation.

US 6,226,666 Bl

19
AgentID
public AgentID(String sid)
Constructs an agent identifier from the specified
string representation.
Methods
getlD
public byte[] get()
Gets the byle array representation of this agent
identifier.
toString
public String toString()
Gets the string representation of this agent identifier.
Overrides:
toString in class Object
equals
public boolean equals(Object obj)
Test if the specified object is an agent identifier and
is equal to this agent identifier.
Overrides:
cquals in class Object
hashCode
public int hashcode()
Returns the hash code for this agent identifier.
Overrides:
hashCode in class Object
All Packages Class Hierarchy This Package Previous
Next Index
All Packages Class Hierarchy This Package Previous
Next Index
Class com.ibm.jma.agent. AgentManager
java.lang.Object
.. com.ibm.jma.agent. AgentManager
public final class AgentManager
extends Object
implements MessageHandler
An agenl manager manages agents, slationary or mobile,
including their communication, mobility, etc. Each agent
manager may collaborate with other agent managers to
accomplish its tasks.
See Also:
Agent, AgentlD, Message
Field Index
DEFAULT AM_NAME
DEFAULT PORT NUMBER
DEFAULT _PROTOCOL
Method Index
createAgent(URL, String, Object)
Creates an agent with the specified codebase, class
name, and initialization.
dispatchAgent(agent, String)
Dispatches an agent to the specified destination.
getAgent(AgentID)
Gets the agent managed by this agent manager with the
specified agent identifier.
getAgents()
Gets all agents managed by this agent manager.
getDestination(Agent 1D)
Gets the destination of the agent owned by this agent
manager.
getlocal AgentManager()
Gets the local agent manager.
getMessageTypes()
Gets the message types which can be handled by this
agent manager.

10

15

30

35

40

45

50

60

65

20
getName()
Gets the name of this agent manager.
getURL()

Gets the url of this agent manager.
handleMessage(Message)
Handles the specified message.
retrieve Agent(AgentlD)
Retrieves the agent with the specified agent identifier.
sendMessage(AgentID, Message)
Sends the specified message to the agent with the
specified identifier.
Fields
DEFAULT _AM_NAME
public static final String DEFAULT AM_NAME
DEFAULT PROTOCOL
protected static final String DEFAULT PROTOCOL
DEFAULT _PORT_ NUMBER
protected static final int DEFAULT_PORT __
NUMBER
Methods
getlocalAgentManager
public static AgentManager getl.ocalAgentManager()
Gets the local agent manager
getURL
public URL getURLY()
Gelts the url of this agent manager.
getName
public String getName()
Gets the name of this agent manager.
handleMessage
public boolean handleMessage(Message msg)
Handles the specified message.
Returns:
true if the specified message can be handled.
getMessageTypes
public String getMessageTypes()
Gels the message types which can be handled by this
agent manager.

Returns:
message types concatenated in a string and separated
by spaces
createAgent
public Agent createAgent(URL codebase, Siring
classname, Object init) throws agentException
Creates an agent with the specified codebase, class
name, and initialization. The newly created agent
is owned by this agent manage.
send Message
public void sendMessage(AgentID aid, Message; msg)
Sends the specified message 1o the agent with the
specified identifier.
dispatchAgent
public void dispatchAgent(Agent a, String dest)
Dispatches an agent to the specified destination.
retrieve Agent
public Agent retrieve Agent(AgentID aid)
Retrieves the agent with the specified agent identi-
fier.
getAgent
public Agent getAgent(AgentID aid)
Gets the agent managed by this agent manager with
the specified agent identifier.
getAgents

US 6,226,666 Bl

21

public Enumeration getAgents()
Gets all agents managed by this agent manager.
getDestination
public String getDestination(AgentlD aid)
Gets the destination of the agent owned by this agent 3
manager.
All Packages Class Hierarchy This Package Previous
Next Index
All Packages Class Hierarchy This Package Precarious
Next Index
Class com.ibm.jma.agent. AgentException
java.lang.Object
.. . javalang. Throwable
.. . java.lang.Exception
.. . com.ibm.jma.agent. AgentException
public class AgentException
extends Exception
Constructor Index
AgentException()
public AgentException(String)
Constructors
AgentException
public AgentException()
AgentException
public AgentException(String s)
All Packages Class Hierarchy This Package Previous
Next Index

10

15

TABLE 4 =

All Packages Class Hierarchy Index
package com.ibm.jma.mail

Interface Index

MailQueue

PostOffice
Class Index

Mail
Mailbox

URL

All Packages Class Hierarchy This Package Previous
Index

Interface com.ibm.jma.mail.MailQueue

35

40

22
open()
Opens this mail queue for processing of mail.
size()

Returns the number of mail in this mail queue.
Methods
getName
public abstract siring getName()
Returns the name of this mail queue.
enqueue
public abstract void enqueue(Mail mail)
Adds a mail to this mail queue.
Parameters:
mail—the mail to be added
dequeue
public abstract Mail dequeue()
Removes a mail {rom this mail queue.
Returns:
a mail
dequeue
public abstract Mail dequeue(String type)
Removes a mail with the specified content type from
this mail queue.
Returns:
a mail with the specified content type
dequeue
public abstract Mail dequeue(byte corrId[])
Removes a mail with the specified correlation id from
this mail queue.
Returns:
a mail with the specified correlation id
isEmpty
public abstract boolean isEmpty()
Tests if this mail queue has no mail.
size
public abstract int size()
Returns the number of mail in this mail queue.
open
public abstract void open()
Opens this mail queue for processing of mail.
close
public abstract void close()
Closes this mail queue to disallow processing of

public interface MailQueue e mail.
This interface is implemented by all mail queues. All Packages Class Hierarchy This Package Previous
See Also: Next Index
Miail All Packages Class Hierarchy This Package Previous
Method Index & Next Index _ .
E % Interface com.ibm jma.mail. PostOffice
close() it

Closes this mail queue to disallow processing of mail publig IalRINCS Pealitics

o) i ’ The PostOffice interface is used to represent post office

dequeuc() : : . facility in Jamaica. It provides APIs for sending and receiv-

Removes a mail from this mail queue. ing mails between post offices and mail boxes.
dequeue(byte[]) 55 See Also:

Removes a mail with the specified correlation id from PostOffice RMI

this mail queue. Method Index

dequeue(String) receiveMail(String)

Removes a mail with the specified content type from o0 This method receives mail from a mailbox with name

this mail queue. “mbName”

enqueue(Mail) receiveMail(String, byte[])

Adds a mail to this mail queue. This method receives mail that has a correlation id
getName() “corrld” from the mail box of name “mbName”

Returns the name of this mail queue. 65 receiveMail(String, byte[], long)
isEmpty() This method receives mail with correlation id “corrld”

Tests if this mail queue has no mail.

with timed wait of “waitTime” milliscconds from

US 6,226,666 Bl

23

mailbox “mbName™ when it times out a null mail
object is returned
receiveMail(String, long)

This method receives mail with timed wait of “wait-
Time” milliseconds from a mailbox “mbName”.

receiveMail(String, String)

This method receives mail of “type” type from a
mailbox with name “mbName”

receiveMail(String, String, long)

This method receives mail of type “type” with timed
wail of “wailTime” milliseconds from mailbox
“mbName” when it times out a null mail object is
returned

sendMail(String, Mail)

This method sends a mail “mail” to a mailbox with

name “mbName”
Methods
sendMail

public abstract byte[] sendMail(String mbName, Mail
mail)

This method sends a mail “mail” to a mailbox with
name “mbName”

Parameters:
mbName—Name of the mailbox to which the mail has
to be sent

mail—The mail object that has to be sent
Returns:
A byte array that identifies the mail
receiveMail
public abstract Mail receiveMail(String mbName)
This method receives mail from a mailbox with
name “mbName”
Parameters:
mbName—Name of the mailbox from which to receive
mail
Returns:
The received mail object
receiveMail
public abstract Mail receiveMail(String mbName,
String type)
This method receives mail of type “type” from a
mailbox with name “mbName”
Parameters:
mbName
mail
type—Type of the mail that is to be received
Returns:
The received mail object

Name of the mailbox from which 1o receive

receiveMail
public abstract Mail receiveMail(String mbName, byte
corrld[])
This method receives mail that has a correlation id
“corrld” from the mail box of name “mbName”
Parameters:
mbName—Name of the mailbox from which to receive
mail

corrld—Correlation id of the mail that is to be received
Returns:
The received mail object
receiveMail
public abstract Mail receiveMail(String mbName, long
wait Time)
This method receives mail with timed wait of
“wailTime,” milliseconds [rom a mailbox
“mbName”.

10

15

35

40

45

50

60

65

24

Parameters:
mbName—Name of the mailbox from which to receive
waitTime—The number of milliseconds to wait
receiveMail
public abstract Mail receiveMail(String mbName,

String type, long waitTime)

This method receives mail of tyvpe “type” with tie
wait of “waitTime” milliseconds from mailbox
“mbName” when it times out a null mail object is
returned

Parameters:
mbName—Name of the mail box from which to
receive
type—Type of the mail to be received
wait Time—Number of milliseconds to wait
Returns:
The received mail object

receiveMail
public abstract Mail receiveMail(String mbName, byte
corrld[], long waitTime)

This method receives mail with correlation id “cor-
rld” with timed wait of “waitTime” milliseconds
from mailbox “mbName”™ when it times out a null
mail object is returned

Parameters:
mbName—Name of the mail box from which to
receive
corrld—Correlation Id of the mail to be received
wailTime—Number of milliseconds 1o wail

All Packages Class Hierarchy This Package Previous

Next Index

All Packages Class Hierarchy This Package Previous

Next Index

Class com.ibm jma.mail. Mail

java.lang.object

.. . com.ibm.jma.mail.Mail

public class Mail

extends Object

implements Serializable

A Mail object is used to transport typed content. Each
ail has a type and a content. The format and semantics of

the content depends on the content type.

constructor Index
Mail()
Mail(Mail)
Mail(String, Object)

Constructs a mail with the specified content type and

content.

Methods Index
getContent()

Returns the content of this mail.
getCorrelationlD()

Returns the correlation id.
getDestination()

Returns the destination of this mail.
getMaillD()

Returns the mail id of this mail.
gelPriority()

Returns the priority of this mail
getResponseDestination()

Returns the response destination of this mail.
getType()

Returns the content type of this mail.
setCorrelationld(byte[])

US 6,226,666 Bl

25
Sets the correlation id for the mail that this mail
corresponds to.
setDestination(String)
Sets the destination of this mail
setMailld(byte[])
Sets the mail id of this mail.
setPriority(int)
Sets the priority of this mail.

n

setResponseDestination(String)

10
Sets the response destination of this mail.

toString()
Returns a string representing this mail.

Constructors

Mail 15

public Mail(String type, Object content)
Contructs a mail with the specified content type and
conlenlt.
Parameters:
type—the content type of this mail
content—the content of this mail
Mail
protected Mail()
Mail
protected Mail(Mail m)
Methods
toString
public String toString()
Returns a string representing this mail.
Overrides:
toString in class Object
getType
public String getType()
Returns the content type of this mail.
getContent
public Object getContent()
Returns the content of this mail.
setMailld
public void setMailld(byte id[])
Sets the mail id of this mail.
getMailld
public byte[] getMailld()
Returns the mail id of this mail.
selCorrelationld
public void setCorrelationld(byte id[])
Sets the correlation id for the mail that this mail
corresponds to. Required for a response mail.
getcorrelationld
public byte[] getCorrelationld()
Returns the correlation id.
selPriority
public void setPriority(int priority))
Sets the priority of this rail. The priority ranges from
1 to 10. The default is 5.
getPriority
public int getPriority()
Returns the priority of this mail

30

35

40

45

50

setDestination o
public void setDestination(String dest)
Sets the destination of this mail
getDestination
public String getDestination() 65

Returns the destination of this mail.
setResponseDestination

26

public void setResponseDestination(String respDest)
Sets the response destination of this mail.

getResponseDestination
public String getResponseDestination()
Returns the response destination of this mail

All Packages Class Hierarchy This Package Previous
Next Index

All Packages Class Hierarchy This Package Previous
Next Index

Class com.ibm.jma.mail.Mailbox

java.lang.object

. . . com.ibm.jma.mail. Mailbox

public class Mailbox

extends Object

A Mailbox object is used to send (put) and receive (get)
mail. A mailbox is virtual. To send a mail, one simply opens
a mailbox with the name that represents the destination for
the mail and puts the mail in the mailbox. To receive a mail,
one again simply opens a mailbox with the name that
represents the location for the mail and gets the mail from
the mailbox.

See Also:

Mail

Constructor Index

Mailbox(String)

Constructs (opens) a mailbox with the specified name.

Method Index

getMail()

Gets (receives) a mail from this mailbox.

getMail(byte[])

Gets (receives) a mail with the specified correlation id
from this mailbox.

(byteMail[], long)

Gets (receives) a mail with the specified correlation id
from this mailbox , waiting if the mail arrives within
the specified wait time.

getMail(long)

Gets (receives) a mail from this mailbox, waiting if the
mail arrives with the specified wait time.

getMail(String)

Gets (receives) a mail with the specified content type
from this mailbox.

getMail(String, long)

Gels (receives) a mail with the specified content type
from this mailbox, waiting il the mail arrives within
the specified wait time.

getName()

Returns the name of this mailbox.

getMail(Mail)

Puts a mail in this mailbox (i.e., sends a mail to this
mailbox).

Constructors
Mailbox
public Mailbox(String name)
Constructs (opens) a mailbox with the specified
name.
Methods
getName
public String getName()
Returns the name of this mailbox.
putMail

public byte[] putMail(Mail mail)

Puts a mail in this mailbox (i.e., sends a mail to this
mailbox).

US 6,226,666 Bl

27

Parameters:
mail—the mail to be sent

Returns:
the mail id of the mail sent
getMail
public Mail getMail()
Gets (receives) a mail from this mailbox. If there is
no mail, it returns null.
Returns:
a mail

getMail
public Mail getMail(long waitTime)

Gets (receives) a mail from this mailbox, waiting if
the mail arrives within the specified wait time. If
the wail time is set to -1, it waits forever until the
mail arrives.

Returns:
a mail

getMail
public Mail getMail(String type)
Gets (receives) a mail with the specified content type
from this mailbox. If there is no such mail, it
returns null.

Returns:
a mail with the specified content type
getMail
public Mail getMail(String type, long wailTime)

Gets (receives) a mail with the specified content type
from this mailbox, waiting if the mail arrives
within the specified wait time. If the wait time is
sel to =1, 1t waits forever until the mail arrives.

Paramelters:
type—the content type of the mail to be received
waitTime—the time (in msecs) to wait for the mail to
arrive
Returns:
a mail with the specified content type
getMail
public Mail getMail(byte corrld[])

Gets (receives) a mail with the specified correlation
id from this mailbox. If there is no such mail, it
returns null.

Returns:
a mail with the specified correlation id
getMail
public Mail getMail(byte corrld[], long waitTime)

Gets (receives) a mail with the specified correlation
id from this mailbox waiting if the mail arrives
within the specified wait time. If the wait time is
set 1o -1, it waits forever until the mail arrives.

Parameters:
corrld—the correlation id of the mail to be received
waitTime—the time (in msecs) to wait for the mail to
arrive
Returns:
a mail with the specified correlation id
All Packages Class Hierarchy This Package Previous

Next Index

All Packages class Hierarchy This Package Previous Next

Index

Class com.ibm.jma.mail. URL
java.lang.Object
.. com.ibm.ima.mail. URL

public final class URL

10

15

30

35

40

45

50

60

65

28

extends Object
implements Serializable
Constructor Index
URL(String)
URL(String, String, int, String)
Methods Index
equals(URL)
getlile()
getHost()
getName()
getPort()
getProtocol()
getRef()
setRef(String)
toString()
Constructurs
URL
public URL(String spec) throws MalformedURLEx-
ception
URL
public URL(String protocol, String hostName, int
portNumber, String filename) throws Malforme-
dURLException
Methods
getProtocol
public String getProtocol()
getHost
public String getHost()
getPort
public int getPort()
getlile
public String getFile()
setRef
public void setRef(String ref)
getRel
public String getRef()
equals
public boolean equals(TR obj)
toString
public String toString()
Overrides:
toString in class Object
getName
public String getName()
All Packages Class Hierarchy This Package Previous

Next Index

TABLE 5

All Packages Class Hierarchy Index
package com.ibm.jma.mail.impl
Interface Index
PostOfficeRemoteRMI

Class Index

MemMailQueue

POServre

PostOfficeRMI

SOL MailQuecue

Exception Index
NoSuchMailException
NotImplementedException

All Packages Class Hierarchy This Package Previous

Next Index

US 6,226,666 Bl

29

Interface
com.ibm jma.mail.impl.PostOfficeRemote RMI
public interface PostOfficeRemoteRMI
extends Remote
Methods Index
deliverMail(String, Mail)
a deliverMail(String, Mail[])
retrieveMail(String, byte[], long)
retrieveMail(String, long)
retrieveMail(String, String, long)
Methods
getName
public abstract String getName() throws RemoteExcep-
tion
deliverMail
public abstract void deliverMail(String mbld, Mail
mail) throws RemoteException
deliverMail
public abstract void deliverMail(String mbld, Mail
mails[]) throws RemoteException
retrieveMail
public abstract Mail retrieveMail(string mbld, long
waitTime) throws RemoteException
retrieveMail
public abstract Mail retrieveMail(String mbld, String
type, long waitTime) throws RemoteException
retrieveMail
public abstract Mail retrieveMail(String mbld, byte
corrld[], long waitTime) throws RemoteException
All Packages Class Hierarchy This Package Previous

Next Index

All Packages Class Hicrarchy This Package Previous

Next Index

Class
com.ibm.jma.mail.impl.MemMailQueue
Java.lang.object
. . com.ibm.jma.mail.impl. MemMailQueue
public class MemMailQueue
extends Object
implements Mail Queue
Constructor Index
MemMailQueue()
Method Index
close()
dequeue()
dequeue(byte[])
dequeue(String)
enqueue(Mail)
getName()
isEmpty()
open()
size()
Constructors
MemMailQueue
public MemMailQueue()
Methods
getName
public Siring getName()
isEmpty
public synchronized boolean isEmpty()
size
public int size()

10

—

5

30

35

40

45

50

60

30

cnqueuc

public synchronized void enqueue(Mail mail)
dequeue

public synchronized Mail dequeue()
dequeue

public synchronized Mail dequeue(byte corrld[])
dequeue

public synchronized Mail dequeue(siring mailtype)
open

public void open()
close

public void close()
All Packages Class Hierarchy This Package Previous

Next Index

All Packages Class Hierarchy This Package Previous

Next Index

Class com.ibmjma.mail.impl.POServer
java.lang.object

. java.awt.Component

. java.awt.Container

. java.awl. Window

. java.awt.Frame
.. . com.ibm.jma.mail.impl.POServer
public class POServer
extends Frame
implements ItemListener
Constructor Index
POServer(String)
Method Index
action(Event, Object)
ItemStateChanged(ItemEvent)
main(String[])
minimumSize()
preferredSize()
Constructors
POServer

public POServer(String n)
Methods
preferredSize

public Dimension preferredSize()
Overrides:

preferredSize in class Container
minimumSize

public Dimension minimumsize()
Overrides:

minimumSize in class Container
itemStateChanged

public void itemStateChanged(ltemEvent evt)
action

public boolean action(Event evt, Object arg)
Overrides:

action in class Component
main

public static void main(String args{])
All Packages Class Hierarchy This Package Previous

Next Index

All Packages Class Hierarchy This Package Previous

Next Index

Class

com.ibm.jma.mail.impl. PostOffice RMI
java.lang-Object

.. . java.rmi.server.RemoteObject

US 6,226,666 Bl

31

... Java.rmi.server.RemoteServer
.. . java.rmi.server. UnicastRemoteObject
.. . com.ibm.jma.mail.impl. Postoffice RMI
public class PostOfficeRMI
extends UnicastRemoteObject
implements PostOfficeRemoteRM, PostOffice
Method Index
deliverMail(String, Mail)
deliverMail(String, Mail[])
getlocalPostOffice()
getName()
recciveMail(String)
receiveMail(String, byte[])
receiveMail(String, byte[], long)
receive Mail(String, long)
receiveMail(String, String)
receiveMail(String, String, long)
retrieveMail(String, byte[], long)
retrieveMail(String, long)
retrieveMail(String, String, long)
sendMail(String, Mail)
Methods
getlocalPostOffice
public static synchronized PostOfficeRMI
getlocalPostOffice() throws Rer
getName
public String getName() throws RemoteException
deliverMail
public void deliverMail(String mbld, Mail mail) throws
RemoteException
deliverMail
public void deliverMail(String mbld, Mail maillist[])
throws RemoteException
retrieveMail
public Mail retrieveMail(String mbld, long waitTime)
throws RemoteException, Illegal
retrieveMail
public Mail retrieveMail(String mbld, String type, long
waitTime) throws RemoteException, Illegal
retrieveMail
public Mail retrieveMail(String mbld, byte corrld[],
long waitTime) throws RemoteException, Illegal
sendMail
public byte[] sendMail(String mbName, Mail mail)
receiveMail
public Mail receiveMail(String mbName)
receiveMail
public Mail receiveMail(String mbName, long
wait Time)
receiveMail
public Mail receiveMail(String mbName, String type)
receiveMail
public Mail receiveMail(String mbName, String type,
long waitTime)
receiveMail
public Mail receiveMail(String mbName, byte corrld
(D
receiveMail
public Mail receiveMail(String mbName, byte corrld[],
long waitTime)
All Packages Class Hierarchy This Package Previous

Next Index

10

15

30

35

40

45

60

65

32
All Packages Class Hierarchy This Package Previous

Next Index

Class
com.ibm.jma.mail.impl.SQLMailQueue
java.lang.object
.. . com.ibm.jma.mail.impl.SQLMailQueue
public class SQLMailQueue
Constructor Index
SQL MailQueue(String)
Method Index
close()
dequeue()
dequeue(byte[])
dequeue(String)
enqueue(Mail)
getName()
isEmpty()
open()
size()
Constructors
SQL MailQueue
public SQLMailQueue(String name)
Methods
getName
public String getName()
cnqueuc
public synchronized void enqueue(Mail mail)
dequeue
public synchronized Mail dequeue()
dequeue
public synchronized Mail dequeuve(byte corrld[])
dequeue
public synchronized Mail dequeue(String mailtype)
isEmpty
public synchronized boolean isEmpty()
size
public int size()
open
public void open()
close
public void close()
All Packages Class Hierarchy This Package Previous

Next Index

All Packages Class Hierarchy This Package Previous

Next Index

Class
com.ibm.jma.mail.impl.NoSuchMailException
java.lang,.Object
java.lang. Throwable
java.lang.Exception
com.ibm.jma.mail.impl.NoSuchMailException
public final class NoSuchMailException
extends Exception
Constructor Index
NoSuchMailException()
NOSuchMailException(byte[])
Constructors
NoSuchMail Exception

public NoSuchMailException()
NoSuchMailException

public NoSuchMailException (byte corrId[])
All Packages Class Hierarchy This Package Previous

Next Index

US 6,226,666 Bl

33
All Packages Class Hierarchy This Package Previous
Next Index

Class
com.ibm.jma.mail.impl.NotImplementedException
java.lang.Object 5
.. . java.lang. Throwable
.. . Java.lang.Exception

. . com.ibm.jma.mail.impl.NotImplemented Exception
public final class NotImplementedException
extends Exception
constructor Index
Notlmplemented Exception()
public Not ImplementedException(Object)
Constructors

10

15

NotlmplementedException
public NotImplementedException()
NotlmplementedException
public NotlmplementedException(Object obj) A
All Packages Class Hierarchy This Package Previous -
Next Index

o

TABLE 6
All Packages Class Hierarchy Index
package com.ibm.jma.message
Class Index
ATRequestMessage
ATResponseMessage 4
KOMILMessage
Message
RequestMessage
ResponseMessage i
All Packages Class Hierarchy This Package Previous ™
Next Index
Class
com.ibm.jma.message. ATRequestMessage
Java.lang.Object
. . com.ibm.jma.message. Message
. . com.ibm.jma.message.RequestMessage
.. . com.ibm jma.message ATRequestMessage
public class ATRequestMessage
extends RequestMessage
An ATRequestMessage object is used 1o send agent
transfer requests.
See Also:
RequestMessage
Constructor Index
ATRequestMessage
Constructors
ATRequestMessage
public ATRequestMessage() e
All Packages Class Hierarchy This Package Previous
Next Index
All Packages Class Hierarchy This Package Previous
Next Index
Class

40

45

50

com.ibm.jma.message. ATResponseMessage %
java.lang.object
.. com.ibm.jma.message. Message
.. com.ibm jma.message.ResponseMessage
. com.ibm.jma.message. ATResponseMessage 65

public class ATResponseMessage
extends ResponseMessage

34

A ATResponseMessage object is used to send back the
result of an agent request message.
See Also:
RequestMessage
Constructor Index
ATResponseMessage(Object)
Constructs an agent transler response message with the
specified result.
Method Index
getParameters()
Gets the parameters of the result.
setParameters(Hashtable)
Sets the parameters of the result
Constructors
ATResponseMessage
public ATResponseMessage(Object result)
Constructs an agent transfer response message with
the specified result.

Methods

setParameters
public void setparameters(Hashtable params)
Sets the parameters of the result
getParameters
public Hashtable getparameters()
Gets the parameters of the result.
All Packages Class Hierarchy This Package Previous
Next Index
All Packages Class Hierarchy This Package Previous

¥ Next Index

Class
com.ibm.jma.message. KQMI . Message
Java.lang.object
... com.ibm.jma.message. Message
.. . com.ibm.jma.message. KQMLMessage
public class KQOMI.Message
extends Message
A KOMILMessage object is used to send messages fol-
lowing the KQML format and protocol.
Constructor Index
KOMIL.Message()
Constructs a KOML message.
Method Index
getContent()
Gets the content
getlnReplyTo()
Gels the identifier that this message is replying to.
GetlnReplyWith()
Gets the identifier that this message is to be relied with.
getlanguage()
Gels the content language.
getOntology()
Gets the content ontology.
getPerformative()
Gets the performative.
setContent(Object)
Sets the content.
setlnReplyTo(String)
Sets the identifier that this message is replying to.
setLanguage(String)
Sets the content language.
selOntology(String)
Sets the content ontology.
sctPerformative(String)

US 6,226,666 Bl

35

Sets the performative.
setReplyWith(String)
Sets the identifier that this message is to be relied with.
Constructors
KOMILMessage
public KQMI Message()
Constructs a KOML message.
Methods
setperformative
public void setPerformative(String pert)
Sets the performative.
getPerformative
public String getperformative()
Gets the performative.
setlnReplyTo
public void setlnReplyTo(String int)
Sets the identifier that this message is replying to.
getlnReplyTo
public String getlnReplyTo()
Gets the identifier that this message is replying to.
setReplyWith
public void setReplyWith(String rw)

10

15

Sets the identifier that this message is to be relied >

with.
getnReplyWith
public String getInReplyWith()

Gets the identifier that this message is to be relied .

with,
setlanguage
public void setlanguage(String lang)
Sets the content language.
getlanguage
public String getLanguage()
Gets the content language.
selOntology
public void setOntology(String onto)
Sets the content ontology.
getOntology
public String getOntology()
Gets the content ontology.
setContent
public void setContent(Object content)
Sels the content.
getContent
public Object getContent()
Gets the content.
All Packages Class Hierarchy This Package Previous
Next Index
All Packages Class Hicrarchy This Package Previous
Next Index
Class com.ibm.jma.message. Message
java.lang.object

. . com.ibm.jma.message. Message

public abstract class Message

extends Object

implements Serializable

This is the abstract, root class of all types of messages. A
Message object is used to encapsulate the information which
is to be sent from a sender to a receiver. Its class name
represents its type, which determines its format and seman-
tics. Each type of messages may be associated with a
corresponding type of message handlers which are designed
to handle the messages.

35

40

45

60

36
See Also:
MessageHandler
Field Index
maillD
Constructor Index
Message()
Method Index
getReceiver()
Gets the receiver mailbox of this message.
getReceiverMB()
Gets the sender of this message.
getSender()
Gets the sender mailbox of this message.
getSenderMB()
Gets the sender mailbox of this message
send()
Sends this message to the receiver.
setReceiver(String)
Sets the receiver of this message.
setSender(String)
Sets the sender of this message.
Fields
mailld
protected byte mailld[]
Conslructors
Message
public Message()
setsender
public void setSender(String sender)
Sets the sender of this message.
getSender
public String getSender()
Gets the sender of this message.
getSenderMB
public String getSenderMB()
Gets the sender mailbox of this message.
setReceiver
public void setReceiver(String receiver)
Sets the receiver of this message.
getReceiver
public String getReceiver()
Gets the receiver of this message.
getReceiverMB
public String getReceiverMB()
Gets the receiver mailbox of this message.
send
public void send()

Sends this message to the recciver. This operation
uses the Jamaica Mail Facility
(com.ibm.jma.mail) to accomplish its task.

All Packages Class Hierarchy This Package Previous

Next Index

All Packages Class Hierarchy This Package Previous

Next Index

Class

com.ibm.jma.message.RequestMessage

java.lang.Object

com.ibm.jma.message. Message

.. . com.ibm jma.message.RequestMessage

public class RequestMessage

extends Message

A RequestMessage object is used to send messages which

65 return a result. A request message can be sent in three

different modes: one-way (asynchronous, discarding the
result), synchronous (blocking until the result arrives), or

US 6,226,666 Bl

37

deferred (obtaining the result at a later time). The result of
a request message is contained in a response message.
See Also:
Constructs a request message.
Constructor Index
RequestMessage()
Constructs a request message
Method Index
checkResult()
Tests if the result has arrived.
getMessagelD()
Gets the message id.
getOperation()
Gets the operation to be performed by the receiver of
this message.
getParameters()
Gets the parameters ol the operation.
getResuli()
Gets the result.
getResult()
Gets the result if it arrives within the specified wait
time.
isClone()
Tests if this message is a clone.
isOneway()
Tests if the messaging mode is one-way.
isRead()
Tests if the result has been read.
isSend()
Tests if this message has been sent
send()
Sends this message.
setClone()
Indicates that this message is a clone.
setMessagelD(byie[])
Sets the message id.
setOneway()
Sets the messaging mode to one-way.
setOperation(String)
Sets the operation to be performed by the receiver of
this message.
setParameters(Hashtable)
Sets the parameters ol the operation.
Constructors
RequestMessage
public RequestMessage()
Constructs a request message.
Methods
setMessageld
protected void setMessagelD(byte msgld[])
Sets the message id.
getMessageld
public byte[] getMessageld()
Gets the message id.
setOneway
public void setoneway()
Sets the messaging mode to one-way. The result, if
any, will be discarded.
isOneway
public boolean isoneway()
Tests if the messaging mode is one-way.
selOperation
public void setoperation(String oper)

10

30

35

40

45

50

55

60

65

38

Sets the operation to be performed by the receiver of
this message.
gelOperation
public String getoperation()
Gets the operation to be performed by the receiver of
this message.
selparamelers
public void setParameters(Hashtable params)
Sets the parameters of the operation.

getParameters
public Hashtable getparameters()
Gets the parameters of the operation.
send
public void send()
Sends this message.
Overrides:
send in class Message
isSent
public boolean isSent()

Tests if this message has been sent

setClone
public void setclone()

Indicates that this message is a clone.

isClone
public boolean isclone()

Tests if this message is a clone.

checkResult
public boolean checkResult()

Tests if the result has arrived.

getResult
public Object getResult()

Gets the result. If the result has not arrived, returns

null.
getResult
public Object getResult(long waitTime)

Gets the result if it arrives within the specified wait
time. If the wait time is set to =1, waits forever
until the result arrives.

Returns:
the result
isRead
public boolean isread()

Tests if the result has been read.

All Packages Class Hierarchy This Package Previous
Next Index

All Packages Class Hierarchy This Package Previous
Next Index

Class

com.ibm.jma.message.ResponseMessage

java.lang.Object

com.ibm.jma.message. Message

com.ibm.jma.message. ResponseMessage

public class ResponseMessage

extends Message

A ResponseMessage object is used to send back the result
of a request message.

See Also:

RequestMessage

Constructor Index

ResponseMessage(Object)

Conslructs a response message with the specified
result.
Method Index

getCorrelationld()

US 6,226,666 Bl

39

Gets the correlation id.

getResuli()
Gets the result that this message contains.
setCorrelationld(byte[])
Sets the correlation id for the corresponding request mes-
sage.
Constructors
ResponseMessage
public ResponseMessage(Object result)
Constructs a response message with the specified
result.
Methods
setCorrelationld
public void setCorrelationld(byte corrld[])
Sets the correlation id for the corresponding request
message.
getCorrelationld
public byte[] getCorrelationld()
Gets the correlation id.
getResult
public Object getResult()
Gets the result that this message contains.
All Packages Class Hierarchy This Package Previous
Next Index

TABLE 7

All Packages Class Hierarchy Index
package com.ibm.jma.message.handler
Interface Index
MessageHandler
Class Index
Al'RequestMessageHandler
AT'ResponseMessageHandler
KOMLMessageHandler
KSQLMessageHandler
RequestMessageHandler
ResponseMessagHandler
All Package Class Hierarchy This Package Previous Next
Index
Interface
com.ibm.jma.message.handler MessageHandler
public interface MessageHandler
This interface is implemented by all message handlers.
Each type of message handlers is designed to handle an
associated type(s) of messages.
See Also:
Message
Method Index
getMessage Types()
Gets the message types which can be handled by this
message handler.
handleMessage(Message)
Handles the specified message.
Methods
handleMessage
public abstract boolean handleMessage(Message msg)
Handles the specified message.
Returns:
true if the specified message can be handled.
getMessageType
public abstract String getMessageTypes()
Gets the message types which can be handled by this
message handler.

Returns:
message lypes concatenated in a string and separated
by spaces

All Packages Class Hierarchy This Package Previous
5 Next Index
All Packages Class Hierarchy This Package Previous
Next Index
Class
com.ibm.jma.message.handler. ATRequestMessage Han-
10 dler
java.lang.object
. com.ibm.jma.message.handler. ATRequestMessage
Handler
public class ATRequestMessageHandler
extends RequestMessageHandler
The handler for handling agent transfer request messages.
See Also:
Message
Constructor Index
ATRequestMessageHandler()
Method Index
getMessage Types()
Gets the message types which can be handled by this
message handler.
handleMessage(Message)
Handles the specified message.
Constructors

15

ATRequestMessageHandler

public ATRequestMessageHandler()
handleMessage

public boolean handleMessage(Message msg)

Handles the specified message.

Returns:

true if the specified message can be handled.
Overrides:

handleMessage in class RequestMessageHandler

30

35

getMessageTypes
public String getMessageTypes()
Gets the message types which can be handled by this
message handler.
Returns:
message lypes concatenated in a siring and separated
by spaces
Overrides:
getMessageTypes in class RequestMessageHandler
All Package Class Hierarchy This Package Previous Next
Index
All Packages Class Hierarchy This Package Previous
Next Index
Class
com.ibm.j ma. message.handler. ATResponseMes-
sageHandler
java.lang.object
com.ibm.jma.message.handler.Re-
sponseMessageHandler
com.ibm.jma.message.handler. ATRe-
sponseMessageHandler
public class ATResponseMessageHandler
extends ResponseMessagHandler
The handler for handling agent transfer response mes-
sages.
See Also:
Message
Constructor Index

40

45

60

US 6,226,666 Bl

41 42
AlResponseMessageHandler() Returns:
Method Index message lypes concatenated in a siring and separated
getMessage Types() by spaces) - :
Gets the message can be handled by this message All Packages Class Hierarchy This Package Previous

5 Next Index
All Packages Class Hierarchy This Package Previous
Next Index

handler.
handleMessage(Message)
Handles the specified message.

Class
Constructors com.ibm jma.message handler. KSQLMessageHandler
ATResponseMessageHandler 10 java.lang.Object
public ATResponseMessageHandler() ... com.ibm.jma.message.handler. RSQLMessageHandler
Methods public class KSQLMessageHandler
handleMessage extends KOMI.MessageHandler
public boolean handleMessage(Message msg) The handler for handling KOML messages whose content
Handles the specified message. 15 language is SQL.
Returns: See Also:
true if the specified message can be handled. KQMLMessage, KOMLMessageHandler
Overrides: Constructor Index
handleMessage in class ResponseMessageHandler 5 KSQILMessageHandler()
getMessageTypes - Method Index
public String getMessage Types() handleMessage(Message)
Gets the message types which can be handled by this Handles the specified message.
message handler. Constructors
Returns: 25 KSQLMessageHandler
message lypes concatenated in a string and separated public KSQI.MessageHandler()
by spaces Methods
Overrides: handleMessage
getMessage Types in class ResponseMessageHandler public boolcan handleMessage(Message msg)
All Packages Class Hicrarchy This Package Previous 30 Handles the specified message.
Next Index Returns:
All Packages Class Hierarchy This Package Previous true if the specified message can be handled.
Next Index Overrides:
Class handleMessage in class KQMLMessageHandler
com.ibm.jma.message.handler KOMLMessageHandler 35 All Packages Class Hierarchy This Package Previous
java.lang.object Next Index
com.ibm.jma.message.handler. KQMLM- All Packages Class Hierarchy This Package Previous
essageHandler Next Index
public class KQMI.MessageHandler Class
extends Object 40 com.ibm.jma.message.handler.RequestMessageHandler
implements MessageHandler Java.lang.Object
The handler for handling KOML messages. $ W@ com.ibm.jma.message.handler.Re-
See Also: questMessageHandler
KQMI Message, KSQI MessageHandler » public classt RequestMessageHandler
Constructor Index extends Object

implements MessageHandler

The handler for handling request messages.
See Also:

RequestMessage

Constructor Index
RequestMessageHandler()

KQMILMessageHandler()
Method Index
getMessage Types()
Gets the message types which can be handled by this so
message handler.

handleMessage(Message) Method Index
Handles the specified message. getMessage Types()
Constructors g& Gets the message types which can be handled by this
KQMLMessageHandler - message handler.
public KOMILMessageHandler() handleMessage(Message)
Methods Handles the specified message.
handleMessage Constructors
public boolean handleMessage(Message msg) s RequestMessageHandler
Handles the specified message. public RequestMessageHandler()
Returns: Methods
true if the specified message can be handled. handleMessage
getMessageTypes public boolean haaneMcssagc{Mcssagc reqc))
public String getMessage Types() 65 Handles the specified message.
Gets the message types which can be handled by this Returns:

message handler. true if the specified message can be handled.

US 6,226,666 Bl

43

getMessage Types
public String getMessage Types()
Gets the message types which can be handled by this
message handler.
Returns:
message Lypes concatenated in a string and separated
by spaces
All Packages Class Hierarchy This Package Previous
Next Index
All Packages Class Hierarchy This Package Previous
Next Index
Class
com.ibm.jma.message.handler.ResponseMessageHandler
jJava.lang.object
" com.ibm.jma.message.handler.Re-
sponseMessageHandler
public class ResponseMessageHandler
extends Object
implements MessageHandler
The handler for handling response messages.
See Also:
Message
Constructor Index
ResponseMessagHandler()
Method Index
getMessageTypes()
Gets the message types which can be handled by this
message handler.
Handles the specified message.
ResponseMessageHandler
public ResponseMessageHandler()
handleMessage
public boolean handleMessage(Message msg)
Handles the specified message.
Returns:
true if the specified message can be handled.
getMessage'Types
public String getMessageTypes()
Gets the message types which can be handled by this
message handler.
Returns:
message types concatenated in a string and separated
by spaces
All Packages Class Hierarchy This Package Previous
Next Index
TABLE 8
All Packages Index
Class Hicrarchy
class java.lang.Object
class com.ibm.jma.agent.Agent (implements
java.lang.Cloneable,
com.ibm.jma.message.handler. MessageHandler)
class com.ibm.jma.agent. AgentManager (implements
java.io.Serializable)
class com.ibm.jma.agent. AgentManager (implements
com.ibm.jma.message.handler.MessageHandler)
class java.awt.Component (implements
java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable)
class java.awt.Container
class java.awt. Window
class java.awtl.Frame
java.awt.MenuContainer)
class com.ibm.jma.mail.impl.POServer (implements
java.awt.event.ltemListener)

(implements

10

15

30

35

40

45

50

55

60

65

44

class com.ibm.jma.message.handler, KQMLM-
essageHandler (implements
com.ibm.jma.message.handler. MessageHandler)
class com.ibm.jma.message.handler. KSQLM-
essageHandler
class com.ibm.jma.mail.Mail (implements
java.io.Serializable)
interface com.ibm jma.mail. MailQueue
class com.ibm.jma.mail. Mailbox
class com.ibm.jma.mail.impl.MemMailQueue
(implements com.ibm.jma.mail.MailQueue)
class com.ibm.jma.message. Message (implements
java.io.Serializable)
class com.ibm.jma.message. KQMLMessage
class com.ibm.jma.message.RequestMessage
class com.ibm.jma.message. ATRequestMessage
class com.ibm.jma.message.ResponseMessage
class com.ibm.jma.message. ATResponseMessage
interface com.ibm.jma.message.handler.Mes-
sageHandler
interface com.ibm jma.mail.PostOffice
interface com.ibm.jma.mail.impl.PostOfficeR-
emoteRMI (extends java.rmi.Remote)
class java.rmi.server.RemoteObject (implements
java.rmi.Remolte, java.io.Serializable)
class java.rmi.server.RemoteServer
class javaimi.server. UnicastRemoteObject
class com.ibm.jma.mail.impl.PostOffice RMI
(implements
com.ibm.jma.mail.impl. PostOfficeRemoteRMI,
com.ibm.jma.mail PostOffice)
class com.ibm.jma.message.handler.Re-
questMessageHandler (implements
com.ibm.jma.message.handler.MessageHandler)
class com.ibm.jma.message.handler-
ATRequestMessageHandler
class com.ibm.jma.message.handler.Re-
sponseMessageHandler (implements
com.ibm.jma.message.handier. MessageHandler)
class com.ibm.jma.message.handler. ATRe-
sponseMessageHandler
class com.ibm.jma.mail.impl.SOLMailQuecue
(implements com.ibm.jma.mail.MailQueuc)
class java.lang.Throwable (implements
java.io.Serializable)
class java.lang.Exception
class com.ibm.jma.agent. AgentException
class com.ibm.jma.mail.impl.NoSuchMailException
class com.ibm.jma.mail.impl.Nolmplemented
Exception
class com.ibm.jma.mail.URL (implements
java.io.Serializable)

TABLE 9
All Packages Class Hierarchy ABCDEFGHIJKL
MNOPQRSTUVWXYZ
Index of all Fields and Methods
A
action(Event, Object). Method in class com.ibm.jma-
.mail.impl.POServer
Ageni(). Constructor for class com.ibm.jma.agent. Agent
AgentException(). Constructor for class com.ibm.j-
ma.agent. AgentException
AgentException(String). Constructor for class com.ibm.j-
ma.agent. AgentException
AgentID(byte[]). Constructor for class com.ibm.j-
ma.agent. AgentID

US 6,226,666 Bl

45

Constructs an agent identifier from the specified byte
array representation.

AgentID(String). Constructor for class com.ibm.j-
ma.agent. AgentID
Constructs an agent identifier from the specified string

representation.

Al'RequestMessage(). Constructor for class com.ibm j-
ma.message. ATRequesiMessage

ATRequestMessageHandler(). Constructor for class
com.ibm.jma.message.handler. ATRequestMessage-
Handler

ATResponseMessage(Object). Constructor for class
com.ibm.jma.message. ATResponseMessage
Constructs an agent transfer response message with the

specified result.

ATResponseMessageHandler(). Constructor for class
com.ibm.jma.message.handler. ATRe-
sponseMessageHandler

(&

checkResult(). Method in class com.ibm.jma.mes-
sage.RequestMessage
Tests if the result has arrived.

close(). Method in interface com.ibm.jma.mail.Mail-
Queue
Closes this mail queue to disallow processing of mail.

close(). Method in class com.ibm.jma.mail.impl.Mem-
MailQueue

close(). Method in class com.ibm.jma.mail.impl.SQL-
MailQueue

createAgent(URL, String, Object). Method in class
com.ibm.jma.agent. AgentManager
Creates an agent with the specified codebase, class

name, and initialization.

D

DEFAULT AM_ NAME. Static wvariable in class
com.ibm.jma.agent. AgentManager

DEFAULT _PORT NUMBER. Static variable in class
com.ibm.jma.agent.AgentManager

DEFAULT _PROTOCOL. Static variable in class com.ib-
m.jma.agent.AgentManager

deliverMail(String, Mail). Method in interface com.ibm.j-
ma.mail.impl.PostOfficeRemote RMI

deliverMail(String, Mail). Method in class com.ibm.jma-
.mail.impl.PostOffice RMI

deliverMail (String, Mail[]). Method in interface com.ib-
m.jma.mail.impl. PostOflice Remote RMI

deliverMail(String, Mail[]). Method in class com.ibm.j-
ma.mail.impl.PostOfficeRMI

dequeue(). Method in interface com.ibm.jma.mail. Mail-
Queue
Removes a mail from this mail queue.

dequeue(). Method in class com.ibm jma.mail.impl. Mail-

Queue

dequeue(). Method in class com.ibm.jma.mail.impl.Mail-
Queue

dequeue(byte[]). Method in interface com.ibm.jma.mail.
MailQueue
Removes a mail with the specified correlation id from

this mail queue.

dequeue(byte[]). Method in class com.ibm.jma.mail.imp-
1.MemMailQuene

dequeue(byte[). Method in class com.ibm jma.mail.imp-

1.SQLMailQucue

10

15

30

35

40

45

50

60

65

46
dequeue(String). Method in interface com.ibm.jma.mail-
MailQueue
Removes a mail with the specified content type from
this mail queue.
dequeue(String). Method in class com.ibm.jma.mail.imp-
l.MemMailQueue
dequeue(String). Method in class com.ibm.jma.mail.imp-
1.SQLMailQueue
dispatchAgent(Agent, String). Method in class com.ib-
m.jma.agent. AgentManager
Dispatches an agent 1o the specified destination.
E
enqueue(Mail). Method in interface com.ibm.jma.mail-
-MailQueue
Adds a mail to this mail queue.
enqueue(Mail). Method in class com.ibm.jma.mail.imp-
1.MemMailQueue
enqueue(Mail). Method in class com.ibm.jma.mail.imp-
1.SQLMailQueue
equals(Object). Method in class com.ibm.jma.agent.
AgentlD
Test if the specified object is an agent identifier and is
equal to this agent identifier.
equals(URL). Method in class com.ibm.jma.mail. URL
G
getAgent(AgentlD). Method in class com.ibm.jma.agent.
AgentManager
Gets the agent managed by this agent manager with the
specified agent identifier.
getAgents(). Method in class com.ibm. jma.agent. Agent-
Manager
Gets all agents managed by this agent manager.
getContent(). Method in class com.ibm.jma.mes-
sage. KQMI.Message
Gets the content.
getContent(). Method in class com.ibm.jma.mail.Mail
Returns the content of this mail.
getCorrelationID(). Method in class com.ibm.jma.mail-
-Mail
Returns the correlation id.
getcorrelationld() Method in class com.ibm jma.message.
ResponseMessage
Gets the correlation id.
getDestination(). Method in class com.ibm.jma.mail.Mail
Returns the destination of this mail.
getDestination(AgentID). Method in class com.ibm.j-
ma.agent.AgentManager
Gets the destination of the agent owned by this agent
manager.
getFile(). Method in class com.ibm.jma.mail. URL
getHost(). Method in class com.ibm.jma.mail. URL
getlD(). Method in class com.ibm. jma.agent.Agent
Gets the identifier of this agent.
getlD(). Method in class com.ibm.jma.agent. AgentID
Gels the byte array representation of this agent identi-
fier.
getInReplyTo.() Method in class com.ibm.jma.mes-
sage. KOMIL.Message
Gets the identifier that this message is replying to.
getlnReplyWith(). Method in class com.ibm.jma.mes-
sage. KOMILMessage
Gets the identifier that this message is to be relied with.
getLanguage(). Method in class com.ibm.jma.mes-

sage. KOMI. Message

