5,758,083

9

such as TCP/IP or connectionless protocol such as UDP,
though TCP/IP is preferable due to its guaranteed delivery.

Each of the network managers 205, 212 is preferably a
SunNet Manager (version 2.2.2 or later) running on Solaris
2.x or Solaris 1.1 operating system. both the SunNet Man-
ager and Solaris are available from Sun Microsystems, Inc.
The SunNet Manager is described in detail in SunNet
Manager Reference Guide. by Sun Microsystems. Inc. 1994
and SunNet Manager Programmer’s Guide. by Sun
Microsystems, Inc. 1994, both of which is hereby incorpo-
rated by reference. Although the network managers 205, 212
are preferably conventional. according to the invention, the
network managers 205, 212 operate in new ways. particu-
larly with respect to interaction with the sender process 206
and the receiver process 214

FIG. 3 is a detailed block diagram of a network manage-
ment system 300 in accordance with an embodiment of the
invention. The network management system 300 includes a
sending station 302 and a receiving station 304. The sending
station 302 includes a local petwork management (NM)
console 306, a management database 308, a NM log file 310.
and an event dispatcher 312. The event dispatcher 312
receives event and traps from agent 314 over link 316. from
agent 318 over link 320. and from agent 322 over link 324.
The agents 314, 318 and 322 are used to monitor network
elements of a network (not shown). The local network
management (NM) console 306, the management database
308, the NM log file 3190, and the event dispatcher 312 form
a local NM system such as provided by a SunNet Manager
console. To implement the sharing of network management
information in accordance with the invention, the sending
station 302 further includes a sender process 326, an autho-
rization list 328 and filter files 330.

The receiving station 304 includes a local NM console
332, a management database 334, and an event dispatcher
336. The local network management (NM) console 332, the
management database 334, and the event dispatcher 312
form a local NM system such as provided by a SunNet
Manager console. To implement the sharing of network
management information in accordance with the invention,
the receiving station 304 further includes a receiver process
338 and a registration list 340.

When the receiving station 304 desires to receive infor-
mation from the sending station 302, the registration list 340
is modified to contain information identifying the particular
sending station from which network management informa-
tion desired. The registration list 340 preferable identifies a
host machine (i.e., sending station), filter file, and database.
Hence, the registration information contained in the regis-
tration list 340 specifies the particular database involved
when sending stations have multiple databases to choose
from. the appropriate event forwarding criteria (i.e.. filter
file) to be used by the sender process, and the sending
stations to which a receiving station is to register. It is
assumed here that the receiving station 304 desires network
management information from the sending station 302.

Once the receiver process 338 is initiated at the receiving
station 304. the receiver process 338 requests connection to
the sender process 326 of the sending station 302 using a
connection request 342. Upon receiving the connection
request, the sender process 326 then uses the authorization
list 328 to determine whether the receiving station 304 (or
the receiver process 338) is authorized to receive network
management information from the sender process 326. The
receiver process 338 is able to successfully register with the
sender process 326 and access a given local database, only

10

15

20

35

45

55

65

10

if that receiving station 304 is authorized to register with the
sender process 326 and access the specified database. The
authorization list 328 is used to determine whether the
receiver process 338 is so authorized. Hence, by using the
authorization list 328, unauthorized eavesdropping can be
prevented. For performance reasons, it is preferable that a
separate child sender process be spawned for each receiving
station that registers with the sending station 302 and that a
separate child receiver process be spawned for each sending
station that the receiving station 304 desires to receive
network management data from.

If the receiving station 304 is authorized. the sender
process 326 registers with the event dispatcher 312 so as to
receive all the network management information that the
event dispatcher 312 receives due to local network manage-
ment at the sending station. Here. the network management
information includes events and traps from the agents 314.
318 and 322 as well as database traps from the management
database 308.

The sender process 326 thereafter filters the network
management information (e.g.. event and traps) received
from the event dispatcher 312 using a particular one of the
filter files 330 as identified by the receiver process 338
during connection. The filtering operation discourages
unnecessary forwarding of network management informa-
tion. The network management information remaining after
the filtering is referred to as filtered data. The filtered data
can be grouped into two classes of data, namely. database
traps and non-database traps and events. The database traps
are forwarded to the receiver process 338 using a message
344,

The receiver process 338 then supplies the database traps
to the management database 334 via a link 346. The man-
agement database 334 can then be modified in accordance
with the database trap forwarded by the sender process 326.
Thereafter, the local NM console 332 can be updated in
accordance with the updates to the management database
334 using link 348. Typically, the local NM console 332 will
update its view based on the changes to the management
database 334. The non-database traps and events are for-
warded by the sender process 326 to the event dispatcher
336 directly using a message 350. The event dispatcher 336
can then update the local NM console 332 over link 352.

Preferably, as database (topology) traps are received from
the sender process 326, the receiver process 338 uses the
database Application Programming Interface (API) of the
local NM console 332 to update the local database 334 to
reflect the topology information received from the sending
station. The updating of the database 334 is preferably
achieved as follows. When the receiver process 338 receives
a database (topology) trap from the sender process 326, the
receiver process 338 reads the local database 334 to deter-
mine if the element associated with the database trap already
exists. If the element does not exist in the local database 334.
then it is added to the local database 334. If an element
already exists in the local database 334, the receiver process
338 determines whether the forwarded features of the ele-
ment match those already attributed to the element. If the
element’s characteristics in the local database 334 already
match the features reported in the database trap. the database
trap is ignored. If the element’s characteristics in the local
database 334 differ from the forwarded characteristics, the
event information in the local database 334 is changed to
match the information forwarded from the sending process
326. Of course, the local database 334 can protect its
elements (records) from being overwritten by configuring
the sender process 326 such that it does not forward database
traps for those elements not to be overwritten.

5.758.083

11

If view membership information is passed (such as with
a Background type database trap), elements are added to the
specified views if the views already exist in the local
database 334. If the view is not yet present in the local
database 334 at the receiving station 304, then the element
can be added to a temporary holding area view. The system
can also be configured so that the elements (components.
views. etc.) that are added to the local database 334 can be
left in the holding area view and even grouped in a different
holding area view for each sending station.

On each receiving station. the local event dispatcher 336
preferably receives event-related traps from the sender pro-
cess 326 of the sending station 302. The event dispatcher
336 then forwards the information to the local NM console
332. The event dispatcher 336 on the receiving station does
not receive the NM database traps forwarded by the sender
process because such topology information is sent to the
receiver process 338 on the receiving station 304.

Preferably. the event dispatcher 312 receives events pro-
duced in response to event requests launched by the NM
console 306. The event dispatcher 312 forwards the events
to the sender process 326. The sender process reformats all
traps and NM events into NM traps before forwarding them
to the event dispatcher 336 on the receiving station 304. The
event dispatcher 304 passes the traps to the local NM
console 332. A NM event is converted into a trap before
being sent to a receiving station because the local NM
(SunNet) console at the receiving station will ignore NM
events that it cannot match to one of its own event requests.
The reformatting. for example. adds an indicator to the event
information so that the receiving station can easily identify
that the event or trap was forwarded from a sending station.

Each of the local NM consoles 306, 332 of the network
management system 300 preferably has a graphical user
interface (GUI) that displays on a display screen. The GUI
enables an end-user to configure operations of the network
management system 300. For example, an end-user prefer-
ably modifies the registration list 340 using a GUL

FIGS. 4A and 4B are flow diagrams illustrating receiver
processing 400 in accordance with an embodiment of the
invention. The receiver processing 400 is carried out by a
receiver process such as the receiver process 214 of FIG. 2
or the receiver process 338 of FIG. 3.

The first operation of the receiver processing 400 is to
initialize 402 the receiver process. Then, a registration file is
read 404. Next, the receiver processing 400 requests 406
connection of the receiving station 204, 304 to the sending
station 202, 302. More particularly, the connection requested
406 is of the receiver process to the sender process. Next. a
decision 408 is made based on whether a connection has
been established. If no connection has been established, a
decision 410 determines whether a time-out has occurred. If
a time-out has not yet occurred, the processing returns to the
decision block 408. Otherwise, if a time-out has occurred,
the user is notified 412 of the failure to connect and the
receiver processing 400 ends.

On the other hand. when the decision block 408 deter-
mines that the connection has been established. a decision
414 is made based on whether data (i.e.. network manage-
ment information) has been received from the sender pro-
cess. If data has been received, the datareceived is processed
416 in the local network manager 212. 332. If. on the other
hand, data is not received from the sender process. a decision
418 is made based on whether a time-out has occurred. If a
time-out has not yet occurred, the processing returns to
repeat the decision block 414 and subsequent blocks,. If the

10

20

35

45

50

55

65

12

time-out has occurred, the receiver processing 400 skips
block 416. Hence, following block 416 or following the
decision block 418 in the case of a time-out, a decision 420
is made based on whether user input has been received. If no
user input has been received. the receiver processing 400
returns to repeat the decision block 414 and subsequent
blocks. On the other hand. if user input has been received.
a decision block 422 determines whether the user has
requested disconnection. If the user has requested
disconnection. the receiver processing 400 requests 424
disconnection from the sender process 206. 326. Subsequent
to the block 424. the receiver processing 400 ends. On the
other hand, when the decision block 422 determines that
disconnection has not been requested by the user. the
receiver processing 400 performs 426 other actions as
requested by the user. Examples of other actions requested
by the user include manual synchronization and configura-
tion of new connection. Following block 426. the receiver
processing 400 repeats the decision block 414 and subse-
quent blocks.

FIG. 5 is a flow diagram of sender processing 500 in
accordance with an embodiment of the invention. The
sender processing 500 is carried out by a sender process such
as the sender process 206 of FIG. 2 or the sender process 326
of FIG. 3.

The sender processing 500 is initiated in response to the
first connection request from a receiving station. The sender
processing 500 first initializes 502 the sender process. Dur-
ing initialization, various internal data structures and data
states are initialized. Next, the sender processing 500 reads
504 the authorization list 208, 328. The sender processing
500 then registers 506 the sender process with the network
manager 205, 312 (event dispatcher). Next. a decision block
508 determines whether a connection request has been made
by a receiver process. If a connection request has been
received at the sender process. a decision block 510 deter-
mines whether the receiver process (or receiving station) is
authorized to receive data from the sending station. The
decision block 510 determines whether the receiver process
is authorized using the authorization list 208, 328.

If the receiver process is authorized, connection of the
receiver process to the sender process is established 512.
When the comnection is requested, the receiver process
preferably also passes the sender process a database name
and the filter file name. The database name selects the
particular database from which to forward database traps
when there are multiple databases at the sending station. The
filter file name specifies the filter file that contains the filter
table with the desired filter criteria. Otherwise. if the
receiver process is not authorized, the user is notified 514
that the receiver process is unauthorized. The connection
request will fail if the receiver process passes the name of a
non-existent filter file or a database that the receiver process
is not authorized to access the selected database. Following
blocks 512 or 514 in the case of a receiver connection
request, the sender processing 500 returns to repeat the
decision block 508 and subsequent blocks.

On the other hand, when a connection request has not
been received, the decision block 508 causes the sender
processing 500 to proceed to decision block 516. The
decision block 516 determines whether data has been
received from the local network manager 205, 312 (event
dispatcher). If no data has been received from the network
manager 205, 312, the sender processing 500 returns to
repeat the decision block 508 and subsequent blocks.
Otherwise. when data has been received from the network
manager 205, 312, the sender processing 500 applies 518

5,758.083

13

filtering. The filtering operation is discussed in more detail
below with reference to FIG. 6. Generally speaking. the
filtering operation filters the data (i.e.. network management
information) so that only the data requested by the receiver
process (receiving station) remains after the filtering opera-
tion. Thereafter. a decision block 520 determines whether
there is data remaining after the filtering has been applied
518. If there is no data remaining, then there is no data to
forward to the receiver process; hence. the sender processing
500 returns to repeat the decision block 508 and subsequent
blocks. When there is data remaining after the filtering is
applied 518, the filtered data is forwarded 522 to the
appropriate receiver process. The appropriate receiver pro-
cess is the receiver process that has requested the data be
transmitted thereto. Then, following block 522, the sender
processing S00 returns to repeat decision block 508 and
subsequent blocks. When all the receiver processes that have
been registered with the sender process disconnect, then the
sender process unregisters from the network manager 205,
312 (event dispatcher) and exits thereby ending the sender
processing 500.

A receiving station can choose to register with multiple
sending stations. Also, multiple receiver processes on vari-
ous receiving stations can register with a sender process on
a given sending station and the filter criteria can be config-
ured separately for each receiving station. Preferably, for
each pair sending and receiving stations. a dedicated pair of
child processes (i.e., a child sender process and a child
receiver process) are used to manage the processing.

FIG. 6 is a flow diagram of filter processing 600 in

accordance with an embodiment of the invention. The filter

processing 600 is the processing preferably carried out by
block 518 in FIG. 5.

The filter processing 600 begins with a decision block 602
which determines whether the host name of the data
received at the sender process (from the network manager
205 or the event dispatcher 312 thereof) matches the host
name listed in a filter table residing in or identified by the
filter files 210, 330. If not, a decision block 604 determines
whether or not the component of the data received at the
sender process matches the component listed in the filter
table. Preferably, the filter table and/or filter file for a
particular receiver process (receiving station) are selected by
the receiver process when the connection request is
accepted. If the decision block 604 determines that the
component of the data received does not match the compo-
nent in the filter table, the data received is dropped 608 and
filter processing 600 ends.

On the other hand, following the decision block 602 when
the host name matches or following the decision block 604
when the host name does not match but the component does
match. a decision block 606 determines whether the priority
level of the data received (data priority) is greater than or
equal to a priority level identified in the filter table (filter
priority level). Typically, the priority levels would be low.
medium and high. If the data priority of the data received is
less than the filter priority level, then the data is dropped 608
and the filter processing 600 ends. On the other hand, if the
data priority exceeds or is equal to the filter priority level, the
proper attributes are passed 610. The attributes to be passed
are identified in the filter table. Thereafter, the priority level
of the data received is optionally adjusted 612 in accordance
with information identified in the filter table. It is preferable
to adjust the priority of the data received to low priority
because normally the shared network management informa-
tion has a low priority regardless of the fact that the priority
might have been high at its local network manager. Follow-
ing block 612, the filter processing 600 ends.

10

25

35

45

50

55

65

14

To implement the filter processing 600. each filter table
residing in or identified by the filter files 210. 330 preferably
includes the following six fields.

1. Type—This determines the primary selection criterion
for processing a trap or event. The type can be: hostname,
component, or default. The type default filter is used if an
event or trap does not match the type criterion of any of the
other filters. If the type is hostname, this selection criterion
is satisfied if the value of the name field matches the host
name associated with the event or trap. If the type is
component. this selection criterion is satisfied if the com-
ponent type in the name field (for example.
component.router) matches the component type associated
with the event or trap.

2. Name—If the type is hostname, the name field value is
either an IP address or the hostname of a glyph in the
database. If the type is component. the name field value must
be the name of a component type (for example.
component.router), view type (for example. view.subnet, or
bus type (for example. bus.rs232). 3. Priority—This field
specifies the lowest priority event or trap that the filter will
process. For example, if “low” is specified. then events of
any priority will satisfy this criterion. The filter will be
selected if the event or trap satisfies both the name field
criterion and the priority field criterion.

4. New Priority—If a value is specified here, this is the
priority of the trap when forwarded.

5. Action—This field specifies whether an event or trap
selected by the filter should be either forwarded or ignored.

6. DB Template—This field specifies the file name of the
database template that should be used in selecting informa-
tion from the database when forwarding NM database traps.

The filter table (via the DB Template field) specifies the
database template file to determine the topology information
that should be forwarded for NM database traps that match
the Name field of the filter table. Each filter in the filter table
can specify a database template file used for elements that
match the selection criteria of the filter. The database tem-
plate files are only accessed in response to NM database
traps because non-database traps or events do not cause the
sender process to forward topology information to the
remote receiver process. The database template files specify
the information (e.g.. agents, attributes, color. connections.
and membership) to be passed or forwarded for each type of
trap (i.e., add. create, change, delete, load and background.)

Preferably, the network manager 202 or the local NM
console 306 generate six different types of NM database
traps. These representative types of NM database traps are as
follows:

1. Add—Generated when a new element is added to the
database via. for example, the database Application Pro-
grammatic Interface (APIT).

2. Background—Generated when a background image is
added to a view.

3. Create—Generated when a new element is created via
the NM console.

4. Change—Generated when attributes of the element
(such as the agents list or the screen coordinates) are
changed.

5. Delete—Generated when an element is deleted from
the database.

6. Load—Generated when a new management database is
loaded.

When the sender process 326 receives NM database traps
from the event dispatcher 312, the sender process 326 uses

5.758,083

15

the filter file 330 specified for the receiving station 304 to
determine which database template file to use in processing
the database trap. The DB Template field in the filter table
contains the database template file name. The database
template file allows you to specify additional topology
information that should be forwarded. Because the filter
table allows you to specify different DB Template files in
each filter, an end-user can use the filter selection criteria to
specify different types of topology information to forward
for different devices (by hostname or element type.

A representative DB Template file has the format shown
in Table 1 below.

TABLE 1
Database Template File Format

Trap Type Keywords (one or more can be specified)

Add membership, color, agents, attributes, connections, drop
Create membership, color, agents, attributes, connections, drop
Change membership, color, agents, attributes, connections, drop
Delete drop

Load membership, color, agents, attributes, connections, drop
Background drop

The keywords in the above table determine the forwarded
content for each of these four trap types. The keywords have
the following interpretation:

1. Membership—If specified, the view name and coordi-
nates will be passes for each view the clement belongs
to.

2. Color—If specified. the element’'s RGB values are
passed.

3. Agents—If specified, the name of each agent selected
on the element’s properties sheet is passed, and the
proxy system name is also passed for each specified
proxy agent.

4. Attributes—If specified. the entries for each attribute
specified in a schema file for that element (e.g.. IP
address or contact name) are passed.

5. Connections—If specified. information about the
simple connections to the element will be forwarded.

6. Drop—If specified. traps of this type will not be
forwarded.

Preferably, a GUI is used to configure a sender and
receiver processes of the network management system
according to the invention. By using a GUL the end-user is
able to configure the information sharing provided by the
invention with minimal effort. The GUI would allow the
user to easily define the following: (i) the list of remote
receiving stations authorized to register with the local sender
process and the databases that the receiving stations are
authorized to access, (ii) filter files and database templates
that determine the event and topology information for-
warded by the sender process, and (jii) the list of remote
management stations the receiver process will attempt to
register within the database instance and the filter file that it
will request at the sending station.

Preferably, all traps directed to the receiver process are
sent to the receiver's transient RPC number. The RPC
number is provided to the sender process as part of the
registration process. The basic format of the trap message is
preferably a series of “attribute=value” pairs. For a trap of
type “changed” generated against device “andrew” this
would look like this:

10

as

55

Xipos =0

Yipos=0
connected = lobsta
agent = hostif

agent = hostperf:andrew

These fields of the trap message could be analyzed as

follow

The first field should be “coop_forwarded by"”. Each
sender process adds one of these lines at the head of
each report. The value of this attribute should be the
name of the local host forwarding the report. This is
used by the receiver process to prevent message loops.
as well as by users. to determine who originated each
message.

The second field is the database trap type. The attribute
name in this field is usually one of the following:
changed, deleted. added. loaded. or created. The value
is the name of the clement that this trap is being
generated for.

The next attribute is “type.” The value of this attribute is
the local NM (e.g.. SunNet Manager) component type
for the element as represented in the local database.

The next series of fields—in this example, the fields from
IP__Address to SNMP_ Timeout—are determined by
the schema definition for the component type. These
fields can be any set of attributes as determined by the
schema.

The next three attributes specify the glyph color. in terms
of red. green, and blue values. The range of values
should be an integer from 0 to 255.

Next there is a list of the views to which the element
belongs. These views are listed with one “view=
viewname” pair for each view the element should be
displayed in. Each “view=viewname” pair is to be
followed by the position information (X and Y
coordinates) that defines the position of that element
within that view. The values Xlpos and Ylpos are only
used for elements of type bus.ethernet.

The “connected” attribute indicates what elements this
element has been connected to. These connections are
“simple” connections, not manageable components.

Finally. a list of the element’s agents is added to the end
of the report. Bach entry in this list is of the form:
“agent=agentname:proxy”. In such an entry agentnam-
e:proxy represents the name of the agent that has been
enabled. followed by information defining which host
should be used as a proxy system. If an agent is not a
proxy agent. only the agent name is provided, with no
colon(*:"”) or proxy name.

Another feature of the invention concerns the synchroni-

zation of the databases at the sending station and the

5.758,083

17

receiving station. When the sending station is forwarding
network management information to the receiving station in
the form of database traps concerning topology of the
network being monitored by the sending station. it is desir-
able that the portion of the database of the receiving station
be synchronized with the database of the sending station. If
the databases are not synchronized. then a network admin-
istrator at the receiving station would visualize a view based
on stale data. Also. traps for devices not in the database of
the receiving station will be ignored. thus leading to incom-
plete monitoring of the remote network. The synchroniza-
tion of the databases can be achieved whenever the network
management system is started-up. or automatically as a user
configures, or even manually whenever the site manager
(network administrator) so requests. The synchronization
provided by the invention is automatic once a request for
synchronization is made by the receiving station. The syn-
chronization operation automatically operates to synchro-
nize the topology data contained in the database of the
receiving station with the corresponding topology data con-
tained in the database of the sending station.

FIG. 7 illustrates a flow diagram of synchronization
processing 700 in accordance with an embodiment of the
invention. First, the receiver process 214, 338 sends a
synchronization request to the sender process 206, 326.
Then. in response to the synchronization request. the sender
process 206, 326 generates 704 database traps at the sending
station. Next, the database traps are filtered 706 at the sender
process 206, 326. The filtering 706 comesponds to the
database trap filtering (block 610) performed in accordance
with the filter processing 600 shown in FIG. 6. Next, the
filtered database traps are forwarded 708 to the receiver
process 214, 338. Thereafter, the receiver process 338 causes
the database at the receiving station 204, 304 to be updated
710 in accordance with the filtered database traps. The
updating 710 in effect synchronizes the database at the
receiving station 204, 304 with the database at the sending
station 202, 302 to the extent permitted (via filtering) by the
end-user.

FIGS. 8A and 8B are flow diagrams of initialization
processing 800 according to a more detailed embodiment of
the invention. The initialization processing 800 synchro-
nizes databases of the sending station and the receiving
station upon initiation of the network management system.
Because the initialization processing 800 is done upon
initialization, the initialization processing 800 additionally
includes operations performed by the initialization operation
402 in FIG. 4A and the initialization operation 502 in FIG.
5.

The first operation of the initialization processing 800 is
to invoke 802 a parent process at the sending station and the
receiving station. Next, a decision 804 is made based on
whether the initialization sequence is configured to request
a connection at start-up. If not. the initialization processing
800 ends because in this case a connection is not requested
upon initialization. On the other hand. when the connection
is initially requested at start-up, the initialization processing
800 performs other operations to carry out the connection as
well as the synchronization operation. Namely, the initial-
ization processing 800 invokes 806 a child receiver process
at the receiving station 204. 304. Here, the receiver process
214. 338 spawns the child receiver process to interact with
a particular sending station 202. 302. Next. the child receiver
process sends 808 a synchronization/registration request to
the sender process 206. 326. The synchronization/
registration request includes a connection request as dis-
cussed above together with a request for initial synchroni-
zation.

10

15

20

35

40

45

55

18

In response to the synchronization/registration request.
the sender process 206, 326 invokes 810 a child sender
process at the sending station 202, 302. The child sender
process is used to forward the filtered data through the child
receiver process via the event dispatcher 312. By spawning
child processes the sender process and receiver process
effectively off loads processing tasks to the child processes
such that they can manage incoming requests or connections
and disconnections without being blocked by other process-
ing operations.

Next. the sender process 206, 326 invokes 812 a child
synchronization process to generate database traps and to
deliver the database traps to the sender process. In order to
generate the database traps needed at the receiving station.
the sender process invokes 812 the child synchronization
process which is a temporary process that reads through the
entire database at the sending station 202, 302 and generates
the database traps as it steps through the database. The child
synchronization process then delivers the database traps to
the sender process 206. 326 and then exits. Next, the sender
process 206, 326 forwards 814 the database traps to the child
sender process. At the child sender process. the database
traps are filtered 816. The filtering performs the same
operations as noted by block 610 in FIG. 6. After the
database traps are filtered so that only the database traps the
receiving station 204, 304 desires remain, then the filtered
database traps are forwarded 818 to the child receiver
process of the receiving station 204. 304. Thereafter. the
database at the receiving station is updated 820 in accor-
dance with the filtered database traps. The updating 820 is
carried out as discussed above.

To provide accurate synchronization between two net-
work management stations, it is preferable to uniquely
identify the data which is being synchronized and what has
been synchronized earlier. A property can be added to each
of the databases to provide the identification of the data
being synchronized. The property has a value which
uniquely identifies each object in the database. Each com-
ponent will have the property and the value of the property
will preferably take the form of “Sender__hostname™: filter _
filename: database_name”.

Synchronization is always initiated by the receiver pro-
cess. If the receiver process is currently synchronizing when
another synchronization request is initiated (i.e., a manual
synchronization request) toward the same connection, the
current synchronization operation is preferably halted and a
new synchronization process is started. The processing
associated with halting the current synchronization opera-
tion and starting a new operation is as follows. First, the
receiver process can tell the child receiver process to send a
delete request to the sender process. The child receiver
process then terminates itself. As a result of the delete
request, the sender process terminates the child sender
process. The receiver process then invokes a new child
receiver process which deletes all the elements from the
database at the receiving station having the properties for
that connection. The new child receiver process then sends
a synchronization request to the sender process. The sender
process then invokes a new child sender process and a new
child synchronization process. The new child synchroniza-
tion process generates the database traps and delivers them
to the new sender process which in turn forwards them to the
child sender process. The child sender process then filters
the database traps and forwards the filtered database traps to
the new child receiver process. Finally. the new child
receiver process will add the objects to the database at the
receiving station with the appropriate value of the new

property.

5,758,083

19

If the site is synchronizing daily with two other sites, the
value of the property for an object (e.g.. hostname X)
preferably contains the sender’s hostname with which the
receiver synchronizes with first. Of course. the user can
over-ride this option by manually deleting the object and
re-synchronizing with the second site.

The receiver process operates to receive all the database
traps from the sending station unless filtered out. After
receiving the database traps this receiver process updates the
database and the receiving station. With synchronization. the
topology data stored in the database at the receiving station
can be synchronized to the corresponding topology data
stored in the database at the sending station. The filtering
allows synchronization to take place for only certain types of
database traps.

A graphical user interface (GUI) can be used to provide an
end-user with a dialog box in which the user is able to select
how and when the synchronization is to occur. For example.
permission to delete an object from a database at the
receiving station can be restricted to only those sites which
are the source of the particular objects being deleted.
Another example is that the user can select an option to
synchronize at start-up which follows the processing
described above with reference to FIGS. 8A and 8B. This
type of synchronization initiation would occur on a normal
start-up or after a crash of the system. The user can also
select whether the synchronization of the databases shall
occur automatically. and if so, how often (e.g.. on a daily or
weekly basis).

FIG. 9 is a diagram of a representative network arrange-
ment 900 according to the invention. Usually, but not
necessarily, the computer processes in accordance with the
present invention and other computer processes arc resident
on one or more computers linked together by a network. The
network may be the same network or a portion of the large
overall network being managed by the network management
system according to the invention. The network may take
any suitable form. By way of example. the network arrange-
ment 900 shown in FIG. 9 includes a first computer 902
which is coupled to a transmission line 904. The network
arrangement 900 further includes a server. router or the like
906 in addition to other computers 908, 910, and 912 such
that data and instructions can be passed among the net-
worked computers. The design, construction and implemen-
tation of networks will be familiar to those of skill in the art.
A network management system according to the invention
preferably resides and executes on networked computers
such as the computers 902, 908, 910 and 912 and operates
to manage the large overall network in a distributed manner
while providing the ability to share critical network man-
agement information.

FIG. 10 is a block diagram of a representative computer
1000 suitable for use with the invention. The representative
computer 1000 is suitable for use as computers 902. 908,
910, and/or 912 of FIG. 9. The computer 1000 includes a
central processing unit (CPU) 1602 which is coupled bidi-
rectionally with random access memory (RAM) 1004 and
unidirectionally with read only memory (ROM) 1006.
Typically. the RAM 1004 is used as a “scratch pad” memory
and includes programming instructions and data. including
distributed objects and their associated code and state. for
processes currently operating on the CPU 1002. The ROM
1006 typically includes basic operating instructions. data
and objects used by the computer to perform its functions.
In addition. a mass storage device 1008, such as a hard disk.
CD ROM. magneto-optical (floptical) drive. tape drive or
the like, is coupled bidirectionally with the CPU 1002. Mass

15

35

45

65

20

storage device 1008 generally includes additional program-
ming instructions, data and objects that typically are not in
active use by the CPU. although the address space may be
accessed by the CPU 1002, e.g.. for virtual memory or the
like. The computer 1002 may optionally include an input/
output source 1010 that typically includes input media such
as a keyboard, pointer devices (e.g.. a mouse or stylus)
and/or network connections. Additional mass storage
devices (not shown) may also be connected to the CPU 1002
through a network connection. The computer 1000 further
includes a display screen 1012 for viewing text and images
generated or displayed by the computer system 1000. The
CPU 1002 together with an operating system (not shown)
operate to execute computer code. The computer code may
reside on the RAM 1004, the ROM 1006, or a mass storage
device 1008. The computer code could also reside on a
portable program medium 1014 and then be loaded or
installed onto the computer 1080 when needed. Portable
program mediums 1014 include. for example. CD-ROM:s.
PC Card devices, RAM devices. floppy disk. magnetic tape.

Additional details pertaining to the invention can be found
in “Cooperative ConSoleS™ 1.0 Administrator’s Guide.”
available from Sun Microsystems, Inc. of Mountain View.
Calif.. which is hereby incorporated by reference.

The many features and advantages of the present inven-
tion are apparent from the written description. and thus. it is
intended by the appended claims to cover all such features
and advantages of the invention. Further, since numerous
modifications and changes will readily occur to those skilled
in the art, it is not desired to limit the invention to the exact
construction and operation as illustrated and described.
Hence, all suitable modifications and equivalents may be
resorted to as falling within the scope of the invention.

What is claimed is:

1. A network management system for sharing information
between a plurality of distributed network managers. said
system comprising:

a sending machine including at least

a first network manager for managing a first network.
said first network manager receiving event and trap
information from agents associated with the first
network;

an authorization list containing information indicating
whether receiving machines are authorized to
receive the event and trap information; and

a sender process, operatively coupled to said first
network manager. for receiving the event and trap
information received by said first network manager;

a receiving machine including at least

a second network manager for managing a second
network;

a receiver process for receiving the event and trap
information; and

a registration list for identifying sender machines to
which said receiving machine is to connect to receive
event and trap information; and

a communication link connecting said sending machine

and said receiving machine.

wherein said sender process forwards the event and trap

information to said receiving machine if said authori-

zation list authorizes said receiving machine to receive
the event and trap information. and

wherein said receiver process forwards the event and trap

information received from the sender process to said

second network manager for processing thereof.

2. A network management system as recited in claim 1.
wherein said sender process filters the event and trap

5.758.083

21

information. and then forwards the filtered event and trap
information to said receiving machine if said authorization
list authorizes said receiving machine to receive the event
and trap information.

3. A network management system as recited in claim 2,
wherein said sending machine further includes a filter file
containing filter tables. the filter tables are utilized by said
sender process to filter the event and trap information.

4. A network management system as recited in claim 1.
wherein said first network manager maintains a first data-
base and said second network manager maintains a second
database,

wherein said sender process receives a synchronization

request from said receiver process and in response
thereto generates a database trap for each record in the
first database and then forwards the database traps to
said receiver process, and

wherein said receiver process receives the database traps

from said sender process and then synchronizes the
second database to the first database in accordance with
the database traps.

5. A system as recited in claim 1. wherein the second
network is distinct from the first network.

6. A network management system for sharing information
between a plurality of distributed network managers, said
system comprising:

a first network manager for managing a first network;

a second network manager for managing a second net-

work;

information sharing means for sharing information

between said first network manager and said second
network manager; and

an authorization list containing information indicating

whether said second network manager is are authorized
to receive the information from

wherein said information sharing means operates to for-

wards the information to said second network manager
if said authorization list authorizes said second network
manager to receive the information.

7. A system as recited in claim 6, wherein the second
network is distinct from the first network, and wherein the
information being shared includes event or trap information.

8. A system as recited in claim 7,

wherein the first network includes a first set of agents and

the second network includes a second set of agents. and
wherein each of the agents generates events or traps.
and

wherein the information being shared between said first

and second network managers includes one or more of
the events or traps generated by the agents.

9. A system as recited in claim 6, wherein said information
sharing means comprises:

filter means for filtering the information before being

transferred to said second network manager; and
means for transferring the filtered information from said
first network manager to said second network manager.

10. A system as recited in claim 9, wherein said first
network manager maintains a first database of topology data
for the first network and the second network manager
maintains a second database of topology data for the second
network, and

wherein said system further comprises means for auto-

matically synchronizing topology data between said
first and second databases.

11. A network management system for sharing informa-
tion between a plurality of distributed network managers,
said system comprising

25

35

45

55

65

22
a first network manager for managing a first network.,

a second network manager for managing a second net-
work; and information sharing means for sharing topol-
ogy data between said first network manager and said
second network manager, said first network manager
maintains a first database of topology data for the first
network and the second network manager maintains a
second database of topology data for the second
network. and said information sharing means automati-
cally synchronizes topology data between said first and
second databases.

12. A computer-implemented method for sharing network
management data between first and second network
managers, the first network manager locally managing a first
network. and the second network manager locally managing
a second network. said method comprising the steps of:

(a) connecting a receiver process associated with the
second network to a sender process associated with the
first network;

(b) receiving, at the sender process. network management
data for the first network;

(c) forwarding the network management data from the
sender process to the receiver process; and

(d) processing the network management data in the sec-
ond network manager.

13. A computer-implemented method as recited in claim
12. wherein the network management data includes event
and trap data.

14. A computer-implemented method as recited in claim
13. wherein the trap data includes one or both of database
traps and non-database traps.

15. A computer-implemented method as recited in claim
12. wherein said method further comprises: (e) filtering.
prior to said forwarding (c), the network management data
at the sender process to produce filtered data for the receiver
process.

16. A computer-implemented method as recited in claim
12,

wherein the first network manager maintains a first data-
base and the second network manager maintains a
second database, and

wherein said method further comprises: (¢) automatically
synchronizing the second database to the first database.

17. A computer-implemented method as recited in claim
16, wherein said synchronizing (e) comprises the steps of:

(e1) sending a synchronization request from the receiver
process to the sender process;

(e2) generating database traps for the entire contents of
the first database;

(e3) forwarding the database traps to the receiver process;
and

(e4) updating the second database in accordance with the
database traps.

18. A computer-implemented method as recited in claim
17, wherein said synchronizing (e) further comprises the
step of: (e5) filtering the database traps prior to said for-
warding (e3) and said updating (e4).

19. A computer-implemented method for sharing network
management data between first and second network
managers, the first network manager locally managing a first
network, and the second network manager locally managing
a second network. said method comprising the steps of:

(a) connecting a receiver process associated with the
second network to a sender process associated with the
first network;

5,758,083

23

(b) receiving, at the sender process, network management
data for the first network;

(c) filtering the network management data at the sender
process to produce filtered data for the receiver process;

(d) forwarding the filtered data from the sender process to
the receiver process; and

(e) processing the filtered data in the second network
manager.

20. A computer-implemented method as recited in claim

19. wherein said filtering (c) comprises the steps of:
(c1) providing a filter table to the sender process; and
(c2) filtering the network management data at the sender
process in accordance with the filter table.
21. A computer-implemented method as recited in claim
20. wherein during said connection (a). the receiver process
identifies the filter table to the sender process.
22. A computer-implemented method as recited in claim
20, wherein the first and second networks include network
elements and network domains, wherein said filtering (c2)
filters out at least a portion of the network management data
based on one of a type of network elements or a name of
network domains.
23. A computer-implemented method as recited in claim
19.
wherein the first network manager maintains a first data-
base and the second network manager maintains a
second database, and
wherein said method further comprises: (f) automatically
synchronizing the second database to the first database.
24. A computer-implemented method as recited in claim
19. wherein said synchronizing (f) comprises the steps of:
(f1) sending a synchronization request from the receiver
process to the sender process;
(f2) generating database traps for the entire contents of the
first database;
(f3) forwarding the database traps to the receiver process;
and
(f4) updating the second database in accordance with the
database traps.
25. A computer-implemented method as recited in claim
24. wherein said synchronizing (f) further comprises the step
of: (f5) filtering the database traps prior to said forwarding
(f3) and said updating (f4).
26. A computer program product. comprising:
a computer usable medium having computer readable
code embodied therein to implement sharing of net-
work management data between first and second net-
work managers, the first network manager locally man-
ages a first network and the second network manager
locally manages a second network, and
wherein said computer readable code comprises:
first computer readable program code devices config-
ured to cause a computer to effect connecting a
receiver process associated with the second network
to a sender process associated with the first network;

second computer readable program code devices con-
figured to cause a computer to effect receiving, at the
sender process, network management data for the
first network;

third computer readable program code devices config-
ured to cause a computer to effect forwarding the
network management data from the sender process to
the receiver process; and

fourth computer readable program code devices con-
figured to cause a computer to effect processing the
network management data in the second network
manager.

10

15

35

45

55

65

24

27. A computer program product as recited in claim 26.
wherein the network management data includes event and
trap data, and wherein the trap data includes one or both of
database traps and non-database traps.

28. A computer program product as recited in claim 26.

wherein said computer readable code further comprises:
fifth computer readable program code devices config-

ured to cause a computer to effect filtering of the
network management data at the sender process to
produce filtered data. and

wherein said third computer readable program code
devices are configured to cause a computer to effect
forwarding of the filtered data from the sender process
to the receiver process.

29. A computer program product as recited in claim 26,
wherein the first network manager maintains a first database
and the second network manager maintains a second
database, and

wherein said computer readable code further comprises:
fifth computer readable program code devices config-

ured to cause a computer to effect synchronization of
the second database to the first database.

30. A computer program product as recited in claim 29,
wherein said fifth computer readable code devices com-
prises:

computer readable program code devices configured to
cause a computer to effect sending a synchronization
request from the receiver process to the sender process;

computer readable program code devices configured to
cause a computer to effect generating database traps for
the entire contents of the first database;

computer readable program code devices configured to
cause a computer to effect forwarding the database
traps to the receiver process; and

computer readable program code devices configured to
cause a computer to effect updating the second database
in accordance with the database traps.

31. A computer program product as recited in claim 30,
wherein said fifth computer readable code devices further
comprises:

computer readable program code devices configured to
cause a computer to effect filtering the database traps
prior to their being forwarded to the receiver process.

32. A computer-implemented method for synchronizing a
first database of a first network management station to a
second database of a second network management station,
comprising the steps of:

(a) sending a synchronization request from the second
network management station to the first network man-
agement station to request synchronization of the sec-
ond database to the first database;

(b) generating, at the first network management station.
database traps for the entire contents of the first data-
base;

(c) forwarding the database traps from the first network
management station to the second network manage-
ment station; and

(d) updating the second database in accordance with the
database traps.

33. A computer-implemented method as recited in claim
32. wherein said method further comprises the step of: ()
filtering the database traps prior to said forwarding (c) and
said updating (d).

34. A computer program product. comprising:

a computer usable medium having computer readable

code embodied therein to implement synchronization

5.758.083

25

of a first database of a first network management station
to a second database of a second network management
station. and

wherein said computer readable code comprises:

first computer readable program code devices config-
ured to cause a computer to effect sending a syn-
chronization request from the second network man-
agement station to the first network management
station to request synchronization of the second
database to the first database;

second computer readable program code devices con-
figured to cause a computer to effect generating. at
the first network management station, database traps
for the entire contents of the first database;

third computer readable program code devices config-
ured to cause a computer to effect forwarding the
database traps from the first network management
station to the second network management station:
and

fourth computer readable program code devices con-
figured to cause a computer to effect updating the
second database in accordance with the database
traps.

35. A computer program product as recited in claim 34,
wherein said computer readable code devices further com-
prises:)

fifth computer readable program code devices configured

to cause a computer to effect filtering the database traps

26

prior to the forwarding by said third computer readable
program code devices.

36. A computer-implemented method as recited in claim

19, wherein said connecting (a) comprises:

(al) determining whether the receiver process of the
second network is authorized to receive the network
management data from the sender process of the first
network; and

(a2) connecting the receiver process associated with the
second network to the sender process associated with
the first network if said determining (al) determines
that the receiver process is authorized to receive the
network management data from the sender process.

37. A computer program product as recited in claim 26,

15 wherein said first computer readable program code devices

include:

computer readable program code for determining whether
the receiver process of the second network is autho-
rized to receive the network management data from the
sender process of the first network; and

computer readable program code for connecting the
receiver process associated with the second network to
the sender process associated with the first network if
said determining (al) determines that the receiver pro-
cess is authorized to receive the network management
data from the sender process.

* *® * * %

United States Patent i

Jones

US005832221A

5,832,221
Nov. 3, 1998

(111 Patent Number:
[45] Date of Patent:

[54] UNIVERSAL MESSAGE STORAGE SYSTEM

[75] Inventor: Mark Alan Jones, New Providence,

N.J.

[73] Assignee: AT&T Corp, Middletown, N.I.

[21] Appl. No.: 581,653

[22] Filed: Dec. 29, 1995

[51] Int. CL° GO6F 15/56
[52] USHCL. ... 375/200.36; 379/88
[58] Field of Search ... 379/88; 395/200.03,
395/200.08, 616, 200.36, 200.55, 200.43;
T07/200; 345/326

[56] References Cited

U.S. PATENT DOCUMENTS

4,837,798 6/1989 Cohen et al. ...cccovivinienrsecenne. 379/88
5,255305 10/E003" Sabtar icusimininiiiimiais 379/88
5,333,266 7/1994 Boaz et al. . 395/200.36
5,452,351 9/1995 SAUAT eoeoreveeeeeeeseeeereeseee e 379/88
5,613,108 3/1997 Morikawa 395/616
5,632,011 5/1997 Landfield et al. .. 345/326
5647002 7/1997 BrUNSON wooeeeoveeeereeeeseeeeeeneees 379/88

OTHER PUBLICATIONS

Syd Weinstein, The Elm Reference Guide (The Elm Mail
System Version 2.4), pp. 1-29, Oct. 1992.

Syd Weinstein, The Elm Users Guide (The Elm Mail System
Version 2.4), pp. 1-12 Oct. 1992.

Syd Weinstein, File name limit.c, The Elm Mail System,
Revision 5.4, pp. 1-7 May 1994.

Hilal et al., Designing Large Electronic Mail Systems, IEEL,
pp. 402409 Dec. 1988.

Barbara et al., The Gold Mailer, IEEE, pp. 92-99 Dec. 1993.

Primary Examiner—Richard L. Ellis
Assistant Examiner—Patrice L. Winder

[57] ABSTRACT

A message storage system, for use with a communication
network and in which a network presence is provided for an
entity, stores a message from a sender to a network presence.
The message slorage system accepts a query including a
specified property, and generates a mailbox including the
stored message when one of the message properties is the
specified property. A software agent processes the stored
message in accordance with a processing preference
included in attributes associated with the entity. The mes-
sage storage syslem generates a summary of the message
and updates the summary ol the message in response o
modifications to the message.

11 Claims, 2 Drawing Sheets

500 600
SENDING RECEIVING
ENTITY ENTITY
719 1[750
~— MESSAGE J
COMPOSITION MESSAGE
SERVICE - HANDLING
AGENT
72L MESSAGE MESSAGE
DELIVERY |=— STORAGE
SERVICE AGENT
N
760
MESSAGE MESSAGE
DIRECTORY
STORAGE STORAGE
SERVICE MEDIA SERVICE
\
700 740 730

5,832,221

Sheet 1 of 2

Nov. 3, 1998

U.S. Patent

L C D |

=L swona

=~ Y30V

=~

) ISOH
| "ddd"N300N " |NOLLOINNOY.

802 ¢

1SOH
NOILIINNOI

(GATTES
ALHYd-QuIHL)
1SOH
IS

=i

a01¢

800¢

1SOH
INOH =

v0l¢

Y002 /

IR

U.S. Patent Nov. 3, 1998 Sheet 2 of 2 5,832,221
FIG. 2
500 600
SENDING RECEIVING
ENTITY ENTITY
710 Y 750
~— MESSAGE J
COMPOSITION MESSAGE
SERVICE 100 HANDLING
I AGENT
720 [MESSAGE MESSAGE
"™ DELIVERY |[=— STORAGE
SERVICE AGENT
S
760
MESSAGE MESSAGE
Dgﬁ%}gﬁ* STORAGE STORAGE
MEDIA SERVICE
\ \
700 740 730

5,832,221

1
UNIVERSAL MESSAGE STORAGE SYSTEM

BACKGROUND OF THE INVENTION

The present invention relates to a computer-based com-
munication network service, and, more particularly, is
directed to a system in which entities are represented by
network presences associated with handle identifiers used as
addresses.

Communication by messaging is becoming steadily more
popular. Advantages of messaging relative to a personal
conversation include more efficient use of communication
capacity, that is, text based electronic mail requires far less
channel capacity than an equivalent voice message; more
time efficient due to less need for time consuming ritual
social inquiries; opportunity for more careful composition;
and capability of including various types of communication,
that is, the message can be in a multimedia format including
audio, video and/or text. Furthermore, if the message is
broadcast, its composition effort is amortized across the
recipients. Also, the message can be buffered when a recipi-
ent is unavailable or unwilling to receive the message
immediately; the recipient has more time to plan their
response; an electronic message is easy 1o capture and place
in long term storage; and software can be used to assist in
composing and organizing messages.

One problem with presently available forms of messaging
is that it is necessary to determine and remember addressing
information which is substantially unrelated to the identity
of the recipient. Voice and facsimile messages require a
telephone number. Electronic mail messages require an
address usually comprising an assigned user name and
electronic domain name, and possibly information indicat-
ing a communication service provider. Also, the format of an
electronic mail address can differ depending on the com-
munication provider.

Telephone numbers are difficult to remember, usually
change when a person moves or swilches jobs, can be
obtained through a directory having only a very limited
number of search fields and may lack privacy as it is fairly
casy lo associale address information with a telephone
number.

Personal telephone numbers, such as the proposed AT&T
500/700 personal number services, assign a telephone num-
ber 1o a subscriber, and associate the assigned telephone
number with a destination telephone number and, optionally,
a backup telephone number having a voice recording and
storage device. Callers call the assigned telephone number,
and calls are automatically routed to the destination tele-
phone number. If the destination telephone number does not
accept the call, then the call is automatically routed to the
backup telephone number. The destination telephone num-
ber may be changed frequently by the subscriber. These
personal number services mask changes in the subscriber’s
telephone number, that is, allow a subscriber to have a single
telephone number even while travelling or moving
frequently, and provide increased privacy. However, the
personal numbers are still difficult to remember, can be
obtained through a directory having only a very limited
number of search fields, are accessible through only one
medium, and, due to reliance on a telephone number, are tied
into a particular addressing infrastructure which has limited
call management options.

Electronic mail addresses are often difficult to remember,
usually change when a person switches jobs or communi-
cation carriers, and are difficult to obtain due to lack of
universal directory services.

15

30

35

40

45

50

55

60

65

2

Another problem with presently available forms of mes-
saging is that if someone is reachable by a variety of
message types, €.g., voice mail, facsimile and electronic
mail on several networks, a sender is not sure which type of
message will be most effective at reaching the intended
recipient.

A further problem with presently available forms of
messaging is that there may be a conversion problem
between an available sending device, such as a twelve-key
telephone, and a preferred receiving device, such as a
facsimile machine. Also, there may be a conversion problem
between the form of the originating message, e.g., voice
mail, and the preferred form of rececived message, e.g.,
electronic mail. Products for converting the form of the
message, such as the AT&T INTUITY product for a PBX/
LAN environment, have been introduced, but have not yet
achieved widespread usage. A proposed Multipurpose Inter-
net Multimedia Extension (MIME) specification for Internet
electronic mail allows senders to provide content in
multiple, alternative formats but conversion issues have not
been resolved.

SUMMARY OF THE INVENTION

A message storage syslem, for use with a communication
network and in which a network presence is provided for an
entily, stores a message from a sender to the network
presence.

In an aspect of the invention, the message storage system
accepts a query including a specified property, and gencrates
a mailbox including the stored message when one of the
message properties is the specified property.

In another aspect of the invention, the message storage
system oblains proxy objects [rom a proxy storage.

In an aspect of the invention, a software agent processes
the stored message in accordance with a processing prefer-
ence included in attributes associated with the entity.

It is not intended that the invention be summarized here
in its entirety. Rather, further [eatures, aspects and advan-
tages of the invention are set forth in or are apparent from
the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a communications network
according to the present invention; and

FIG. 2 is a block diagram showing the logical relationship
of various services according to the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

An entity is represented by at least one handle, described
in detail below. Generally, a handle is a more abstract
representation of the entity than is found in the prior art, and
avoids the problems of prior art entity representations asso-
ciated with their insufficiently abstract (i.e., too physical)
nature. Each handle provides a distinct cyberpresence iden-
tifier for an entity.

Directory services, as described in the present disclosure,
provide more flexibility than prior art directory services.
When used with handles according to the present disclosure,
directory services provide further enhanced fexibility.
Generally, a network directory service provides information
about entities and finds entities based on descriptive queries.
Some of the directory information is publicly available,
whereas other of the directory information is not publicly
available but is usable by the directory service for derefer-

5,832,221

3

encing addresses. Entities specify the desired privacy level
(s) of their directory information. The service provides one
or more global and specialized network directories, which
may be physically distributed across multiple hosts in the
network.

Message composition and delivery services, as described
in the present disclosure, provide more flexibility than prior
art message composition and delivery services. When used
with handles according to the present disclosure, message
composition and delivery services provide further enhanced
flexibility. Generally, message delivery services provide for
specification of policies by entities as to the forwarding of
messages to specific endpoints or to a universal message
storage facility, notification of message receipt and retrieval
of messages. Message nofification and retrieval may be
according to entity specified criteria, such as priority to
particular senders or to particular subjects.

Message storage services, as described in the present
disclosure, provide more flexibility than prior art message

storage services. When used with handles according to the

present disclosure, message storage services provide further
enhanced fAexibility.

An important feature of the present disclosure is the
application to objects such as messages and cyberpresences
of information retrieval techniques, such as vector space
models, which have heretofore been applied only to docu-
ments. Generally, flexibility is accomplished by applying
information retrieval techniques to objects, rather than by
relying primarily on more structured database query tech-
niques.

Network Envirement

Referring now 1o the drawings, and in particular to FIG.
1, there is illustrated a network which is generally assumed
as the environment in the present disclosure. The network
shown in FIG. 1 comprises a communication network 100,
home host computers 200, service host computers 210,
connection host computers 220, gateways 1o other networks
such as a local area network (LLAN) 230, software executed
on the various computers, and customer premises equipment
such as twelve-key telephone sets 300, personal computers
310, terminals, and pager networks 400. Although not spe-
cifically shown in FIG. 1, Internet connections and wireless
transmission may be used in a network contemplated in the
present disclosure.

As will be apparent 1o those of ordinary skill in the art,
many different communication protocols may be employed
in communicating between the various parts of the network,

such as TCP/IP, X.25, ISDN, Ethernet, asynchronous line <

protocols and analog and/or digital voice transmission.
Communication for transactional services are implemented
in a secure, flexible remote procedure call (RPC). Also, as
appropriate, authentication and encryption protocols are
employed, for example, hypertext transfer protocol (HTTP)
or secure socket laver (SSL) protocol.

Various divisions of communications capability between
customer equipment and network equipment are encom-
passed by the network of FIG. 1. The network is assumed to
provide processing capability for customer equipment which
lacks sufficient processing capability to provide the func-
tions described below. The specific type of software pro-
gramming used to provide these functions is not critical.

In one case, the customer equipment comprises only a
twelve-button telephone set. A user dials a connection host
which is part of the network, such as the nearest connection
host or a toll-free number providing access to a connection

n

30

35

40

60

65

4

host. Using one or more of voice input and touch-tone input,
the user establishes network access authority, such as by
entering an identification code and password. The connec-
tion host verifies access authority with the user’s home host,
then makes appropriate network resources available to the
user by, for example, presenting menus of choices to the
user.

In another case, the customer equipment comprises a
private host such as a personal computer and a modem. The
user instructs the private host to establish a connection to a
connection host. In this case, the connection host functions
in a more limited manner than in the previously described
situation where the customer premises equipment is a tele-
phone set.

In yet another case, the customer equipment comprises a
receive only pager network. A connection host somewhere
in the network executes software behalf of the pager net-
work.

Handles

An entity may be a person, organization, corporation,
department within a corporation, use (interest) group, or a
set of entities. Alternatively, the entity may be a functional
role, such as president of an organization.

An electronic presence is established for every entity
which requires a public identity. The electronic presence is
also referred to herein as a network presence or “cyberpres-
ence”. The electronic presence is identified by a handle. The
network presence for an entity serves as a locus of publicly
available information about the entity, as a point of connec-
tion to the entity, and as a centralized set of resources
available to the entity. Physically, a network presence com-
prises an account on a home host computer, such as the
home host computer shown in FIG. 1, the actual network
resource usage associated with the account, the capability of
using additional network resources and identification of the
account in network directories. Typically, an account resides
on a home host, but some accounts may reside on multiple
hosts due to their resource usage.

An entity may have multiple network presences each of
which is associated with a distinct handle. For example, an
entity which is a person may have one network presence for
activities related to their job, another network presence for
activities related to their primary hobby, and yet another
network presence for activities related to their other personal
uses.

As used herein and in the claims, “handle” refers to a
unique identifier registered with a universal directory net-
work service for use by the entity. A handle represents an
abstract entity, and does not correspond to a physical end-
point although it may be associated with one or more
physical endpoints for various purposes, as described below.
The handle functions as the network name of the entity, and
also functions as the network address of the entity, but is not
a physical end point address. An entity may have one or
more handles each of which is associated with a network
presence. Primarily for billing purposes, each handle is
associated with a sponsor that is not necessarily the entity
using the handle.

Handles permit decoupling of physical endpoints and
delivery systems from the network presence for an entity.
That is, a handle is not merely an address, it is a represen-
tation of an entity because it is associated with resource
usage and availability for the entity.

Since a handle is unique at any point in time, it can be
used as a universal address. Another important feature of a

5,832,221

5

handle is its persistence, that is, its association with one
using entity despite changes in the attributes associated with
the entity, such as telephone number, address, employment
affiliation or sponsor. If the entity is a group, then members
or other attributes of the group may change over time, but
the group (entity) still retains the handle. Similarly, if the
entity is a person performing certain functions, e.g., the
president of XYZ Company, then the person associated with
the handle may change, but the handle persists; in this case,
the handle is a referential expression describing a functional
role.

Examples of handles are: “bigbear”, “Jane _ Farnsworth”,
“ATT”, “usenet.rec.gardening”, “empiricists”, “president
XYZ" and so on. A handle is not a telephone number. A
telephone number is a physical point which is associated
with a varving number of users, whereas a handle is not a
physical point, and is associated with only the entity repre-
sented by the handle. A handle may include alphabetic
information which serves a mnemonic purpose.

Advantages of personally chosen handles, relative to 2

handles assigned by a network authority, include
memorability, that is, personally chosen handles have mne-
monic value for message senders, individuality, ability 1o be
descriptive or representative ol a network persona or

altributes of an entity, and ability to mask the identity of an =

enlity.

Handles may eventually be reassigned, when the possi-
bility of confusion between entities is deemed to be suffi-
ciently low. For example, when an entity expires, such as a
person dies or a corporation is dissolved, and a predeter-
mined time has passed since expiration, the handle of the
expired entity may become available for use by another
entity.

Examples of entity attributes which may be associated
with an individual’s handle include password(s), name,
address, preferred format for message reception, primary
telephone number, forwarding telephone number, fax
number, family members, employer, profession, hobbies and
S0 Oon.

Examples of entity attributes which may be associated
with an organization’s handle include password(s), name,
address, preferred format for message reception, telephone
number, fax number, number of members, industry, products
or services, annual sales, affiliated companies and so on.

As the name of a network presence for an entity, a handle
is a logical place for an entity to obtain and/or offer network
services. Generally, the network resources available to an
entity include a personalized access point, information stor-
age capacity, information access structures such as an
“address book”, a personalized set of message spaces, and
convenient ways to access frequently used on-line services.

An “address book™, as used herein and in the claims, is a
personalized directory of frequently accessed message des-
tinations for the entity, that is, a set of handles which identify
entities. In other words, the objects in an address book are
handles. An address book allows the entity to refer to other
entities in a more convenient manner, such as by name,
photograph, or nickname; thus, the address book hides the
actual handles from the entity.

Since the attributes associated with a handle may change
over time, it is preferred to locally store only the handles for
an address book with respective temporal information such
as date/time stamps. At each use of a handle, the address
book automatically queries the directory service as 1o
whether any attributes have changed since the timestamp of
the handle. The address book locally stores any local infor-

15

30

35

40

45

50

55

60

65

6

mation associated with the handle, such as the entity’s
nickname or relationship definition for the handle. The
initial contents of the address book may be determined with
reference to the sponsor of the entity.

A query can define a “special” address book of an entity’s
base (universal) address book, that is, the query restricts the
set of handles in the special address book.

The entity can view a subset of the address book by
specifying attributes of the objects in the desired subset. For
example, a view of an address book may provide, for each
entity, its name, face (or other) picture and telephone num-
ber.

An entity obtains services through its handle generally by
subscribing to the service; such services are referred to
herein and in the claims as “vendor services”. Service
providers, which may be third party vendors, the provider of
the communication network or the provider of the network
presence system, then add the service capabilities to the
handle in an appropriate manner, such as by authorization to
act on instructions from the handle, by adding choices to
menu-driven interfaces accessible to the handle, or by add-
ing functional capabilities to software agents associated with
the handle. Examples of software agents are a message
handling agent and a message storage agent, described
below. Examples of vendor services are a message compo-
sition service, a calendar scheduling service and a software
agent service. FIG. 1 shows a service host for third-party
services in which the vendor offers a service directly from its
own handle and other handles must explicitly communicate
with the vendor’s handle for the service.

An entity offers services through its handle by responding
to requests directed to the handle. For example, the entity
may add functional capabilities to one of the agents asso-
ciated with its handle to provide a service to other handles.
In some embodiments, for provision of certain services, the
entily may make special billing arrangements with the
network.

When the entity is accessible 1o al least one messaging
service, the attributes of an entity include a physical end-
point to which messages are to be delivered. For example,
when the entity is a pager network, the physical endpoint is
the pager equipment. When the entity is an individual, the
physical endpoint can be non-network equipment, such as a
fax machine, or network storage.

When the entity is accessible 1o at least one messaging
service, the attributes of an entity include a preferred media
format for receiving messages. For example, when the entity
is accessible by more than one message media format, such
as fax, voice mail, textual electronic mail and multimedia
electronic mail, the entity indicates the media format in
which it prefers to receive messages in its “preferred recep-
tion media” attribute.

There are several differences between personal telephone
numbers, such as the proposed AT&T 500/700 personal
number services, and the handles of the present invention.
The personal number services provide a customer with only
a telephone number, that is, a completely numeric identifier
which lacks mnemonic value, whereas the present handles
may comprise alphanumeric information having mnemonic
value. The personal number services must be associated with
at least one destination telephone number for a customer,
whereas the present handles need not be associated with a
specific telephone number, instead, an entity may opt to have
the network store its messages, and then the entity retrieves
its messages from the network, for example, by a dial-in
telephone call.

5,832,221

7

Directory Services

The universal network directory service stores attributes
associated with handles and responds to queries relating to
the stored information to provide a very flexible searching
ability. The directory service may be a vendor service.

‘When a directory user such as a message sender desires to
know a handle for an entity, the sender provides sufficient
descriptive information to uniquely identify the entity. In
some cases, the sender interacts repeatedly with the direc-
tory service to uniquely identify the entity. For example, in
response to the sender’s provision of a person’s name, city
and state of residence, employer and profession, the direc-
tory service returns the requested handle.

In other situations, a directory user knows a handle and
provides a query to the directory service to obtain one or
more atiributes associated with the handle. For example, a
directory user may wish lo know a daytime telephone
number associated with a handle.

Handle attributes have privacy level information specified
by the entity represented by the handle. In its simplest form,
privacy level information simply indicates whether the
attribute is publicly available or not publicly available, i.c,
private. Therefore, entities may maintain essentially

“unlisted” handles with no attribute information publicly 2

available.

The directory service generally maintains indices of the
attributes in a variety of hierarchical structures, and responds
1o structure sensitive queries.

Each of a directory query and a response thereto gener-
ated by the universal network directory service may contain
multimedia depending on the kinds of interfaces and appli-
cations used. As used herein and in the claims, information
in a multimedia format means information in at least two of
an internal computer format such as binary format, text
format such as ASCII, voice format and video format.

Entities and/or their respective sponsors have the ability
to self-administer certain of the entity’s attributes in accor-
dance with preferences, such as password(s), preferred for-
mat for message reception, forwarding telephone number
and privacy status ol their attributes, using an automated
administration procedure including a software program
executed on at least one of the hosts of FIG. 1.

Handle attributes have authenticity information associ-
ated therewith. In its simplest form, authenticity information
simply indicates who provided the attribute information.
More complicated authenticity information indicates, for
example, when the attribute information was provided. The
authenticity information provides a basis for forming a
trustworthiness opinion of the associated attribute informa-
tion.

When the user of the directory service is a handle,
additional flexibility is contemplated. Specifically, the infor-
mation returned from the directory service may be automati-
cally transferred to another service, such as a message
composition service offered by a third-party vendor. For
example, when a handle queries the directory service for all
handles having specified attributes, such as:

(type of entity=individual),

(family members=at least one child), and (address=NY or

NI)
the resulting set of handles may be used as a set of addresses
for a message broadcast by a message preparation service
used by the handle.

In certain embodiments, an additional privacy designation
of “secret” is available for information associated with a

n

20

30

35

40

un
o

60

65

8

handle. This is useful for broadcasts prepared by a message
preparation service lo entities matching specified criteria,
where the matching entities wish to remain unknown, for
example, persons lesting positive for a particular disease. In
these cases, the entities may be interested in receiving
information related to their atiributes, but want their pos-
session of such attributes to be masked from mass marketers
and/or probes attempting to guess the information. If secret
information is used to resolve a handle, then information
identifying the receiving entity is withheld in any delivery
receipts provided by the network to the sender or querying
party.

Another example of additional flexibility when the user of
the directory service is a handle is an updating service for an
address book. The updating service may simply add the
results of cach directory query to the address book.
Alternatively, the results of the directory query may auto-
matically be transferred to the updating service, and then the
updating service asks the entily associated with the handle
using the directory whether and/or how to retain the results.
As yel another alternative, a software agent associated with
the handle may treat the results of the directory query as an
information object to be processed in accordance with
general policies specified by the entity for information
objects, i.e., policies [or information which is not limited to
directory information.

Message Composition and Delivery Services

A message composition service permits a message to be
composed and associated with a destination query. That is,
a message is sent to a destination query, rather than a
specified endpoint. The destination query is of the form
described earlier for the directory service.

A message delivery service provides delivery of the
message to the objects satisfying the destination query
associated with the message, with the objects typically being
handles.

Messages are assumed to include content information and
cnvelope information, such as sender, destination query
determining the recipient(s), network transit history, arrival
time, subject and priority. Senders arce identified by their
handles. Recipients are identified by the destination query,
unless their identity is masked (see discussion below).
Content information may comprise multimedia and interac-
tive programs; noles from family, friends and business
associates; electronic correspondence from businesses,
government, associations and so on; electronic posteards;
clectronic letters; clectronic newsletters and magazines;
electronic advertising; electronic solicitations and so on.

When the sender knows the preferred media format for
the recipient of the message, the sender can instruct the
message delivery service to put the message, composed in
one format, into the preferred format when technically
feasible. For example, the message may be composed as
text, and converted to voice using speech synthesis. As will
be appreciated, the preferred media format for a message
recipient can usually be determined from a query to the
network directory service. Certain message preparation ser-
vices are capable of automatically querying the directory
service and using the query results for format conversion.

The message sender can require that it remain
anonymous, for example, by composing a message with the
sender explicitly identified as “anonymous” or by omitting
sender information.

A message recipient can require that it remain anony-
mous. For example, if an entity has set all of its attribute

5,832,221

9

information to non-public, it may receive broadcast mes-
sages 1o enlities having its attributes, but the message
delivery service will not provide an identifying delivery
receipt to the message sender. However, the message sender
may be informed that a delivery occurred, and possibly the
number of messages that were delivered.

Message non-repudiability is provided when the sender
requests that the message delivery service guarantee that the
sender of the message is correctly identified. Non-
repudiability is particularly useful for messages having
financial consequences.

Message Handling Agents

When the recipient of a message is a handle, additional
flexibility is contemplated. Specifically, the handle may
subscribe to the services of a message handling agent (a type
of software agent) which performs functions on behalf of the
entity represented by the handle in accordance with
altributes associated with the handle.

As used herein and in the claims, “software agent” refers
to a software program usually executed by one of the host
computers shown in FIG. 1. The software agent is a type of
vendor service 1o which an entity may subscribe through its
handle. The software agent has various capabilities, depend-
ing on its specific implementation, and is characterized by
independent operation or agency operation. The software
agent is event-driven. The software agent responds o events
and carries out behavior in accordance with the event and
environment, such as time of day. A software agent is
capable of creating, transferring and deleting objects, invok-
ing other vendor services, notifying, monitoring and keeping
statistics.

Independent operation indicates that the software agent
performs its functions generally independently of how and
when its subscribing entity interacts with its network pres-
ence.

Agency operation indicates that the software agent oper-
ates on behalf of its subscribing entity, typically inheriting
access authority and so on of the subscribing entity, in
accordance with entity specified preferences usually
recorded as attributes lor the entity.

Examples of services provided by a message handling
agent include notification of a new message, automatic
forwarding of messages to endpoints (e.g., a copy to other
handles or a message slore), summarizing messages, sorting
messages according to entity criteria (ex: priority, size,
sender and/or subject), deleting messages according Lo entity
criteria, storing messages according to entity criteria, con-
verting the media format of a message, and preparing simple
replies to certain formatted messages. That is, message
handling agents exhibit context dependent behavior based
on the sending and receiving equipment, the message’s
characteristics and the recipient’s preferences.

In one case, a handle may have a “preferred message
media format=text” associated therewith. The entity may
then communicate a request such as “speak the contents of
the most recent message to me” to its message handling
agent. In this case, the message handling agent converts the
media format of the message from text to voice, and
forwards the voice message to a destination indicated by the
entity, such as a telephone.

The message handling agent facilitates message enabled
behavior. For example, the message handling agent may
check the content of a message for a certain type of
information, such as schedule related information, and auto-
matically transfer such information to another service asso-
ciated with the handle, such as a calendar program.

15

20

30

35

40

45

50

55

60

65

10
Message Storage Services

Prior art message storage services typically have a physi-
cal association between a mailbox, that is, a physical data
file, and a message. A message storage service according to
the present disclosure is not so limited. A mailbox is
considered to be a set of messages which satisfy a query. By
varying the attributes specified in the query, an entity can
achieve various levels ol mailbox granularity, from consid-
ering all the messages for which the entity has read permis-
sion (which may include messages received by other
entilies) to considering only a subset of the messages
received by one entity such as itself. Additionally, a mailbox
may have different message dispositions, such as who is
notified of the mailbox query results.

A mailbox is defined by a query over a set of messages.
An address book is defined by a query over a set of
cyberpresences.

Typical prior art systems treat notifying a recipient of the
arrival of a message as a procedural, event-driven process.
For example, “do (x) when (y)” where “y” is the event of a
message arrival.

The present disclosure contemplates a persistent query,
that is, a query for which an entily maintains a continuing
interest. The persistent query is a declarative representation
depending on at least one property ol an object, and is not
event-driven. The querv originator can asserl the query at
regular intervals (polling). For example, “if a message has
status NEW or UNREAD then it is of interest”.

The persistent query defining a set of objects is always
consistent with the data against which it is asserted. The
persistent query communicates data changes to objects inter-
ested in such changes. The persistent query can be
implemented, for example, by having the target of the query
nolify the originator of the query when the response of the
target changes.

A persistent query is useful when an entity has a need to
know something. A software agent is useful for responding
to events in a predetermined manner,

Notifying a recipient of the arrival of a message is a
declarative process, that is, an entity is considered as sub-
mitting a persistent query, and when the present result of the
persistent query invalidates or logically mismatches the
previous result of the persistent query, the entity which
submitted the query is notified. For example, if the entity has
submitted a persistent query for “all stored unread messages
addressed to my handle”, and a new message has been stored
since the last query was asserted, then the result of the
previous query (no unread messages) is invalidated, so the
a notification message (one unread message) is generated.

Message processing abilities are dependent upon the
handle of the entity. For example, as a default, the handle for
an entity has full read, write and modify ability for messages
addressed to the handle. For particular types of messages
addressed to an entity’s handle, the entity may specify read,
write and/or modify ability for other handles.

A mailbox according to the present disclosure can be
considered a one time object when it is the result of a one
time query, or can be considered a persistent object when it
is the result of a persistent query. A mailbox which is the
result of a persistent query is effectively continously
updated. It will be appreciated that an entity can create
multiple persistent mailboxes by communicating multiple
persistent queries to the message storage service. Such an
abstraction is stored as a convenience o an entity.

For example, when the entity is a paging system, the set
of persistent queries might be “new messages [or each of the
users associated with the paging system entity”.

5,832,221

11

The message storage service generates a message 1D for
each message and provides indexing services for message
retrieval so that queries can be satisfied faster. For example,
the message slorage service may compule message proper-
ties such as usage slatistics, creation time, message type,
message size, current storage medium and so on. Practically
and where possible, the message storage service simply
extracts certain information from the message envelope as
message properties (e.g., sender). If the message object is
modified, such as by annotation, or deleted, the message
storage service detects this or is notified by the modifier and
updates the storage related properties.

The message storage service determines the storage
policy for a message according to a general policy (not
message specific) specified by a message recipient, includ-
ing the current storage medium (one of the message
properties), and the message persisience, that is, when the
message should be moved to archival storage. Finally, the
message slorage service actually stores the message.

In some embodiments, the message storage service
responds to requests for message 1Ds for messages whose
storage is not directly controlled by the service. Such
messages, also referred to as “proxy objects”, have message
IDs and computed properties, and can be queried and

retrieved through an interface with the direct controller of

the storage of the proxy object. The software which directly
controls storage of a proxy object is responsible for notify-
ing the message storage service of message creation, modi-
fication and deletion events.

An example of usage of a proxy object is a message
shared by several entities. The properties of the proxy object
may differ by entity, such as whether the message has been
read, or annotations appended thereto. The proxy object may
be automatically assigned different priorities for different
entities.

Message Storage Agents

When the user of the message store is a handle, additional
flexibility is contemplated. Specifically, the handle may
subscribe to the services ol a message storage agent (a type
of software agent) which performs functions on behalf of the
entity represented by the handle in accordance with
attributes associated with the handle.

Examples of services provided by a message storage
agent include notifying an entity of a new message, deleting
messages according lo message specific entity criteria,
archiving messages according lo message specific entity
criteria, and converting the media [ormat of a message. The
summary may include category, thread (relationship to other
messages such as topic), content type, content and so on.
Activities particularly suited to a message storage agent
include archiving messages, aging messages, compressing
message and placing messages in different virtual folders.

A message storage agent can asserl a persistent query

against a message store on behalf of an entity. This function

is particularly useful when the entity is a paging system
which otherwise expects to be in “receive only™ type opera-
tion.

For example, a message storage agent might monitor a
directory and provide notification of changes in the
employer for a particular entity.

As another example, il a vendor service is providing a
physical location, such as from a global positioning service,
then the message storage agent could notify an entity of the
location of another entity, such as a child of the first entity.

FIG. 2 shows the logical relationship of the above-
described services. The network directory service 700, mes-

15

20

30

35

40

45

50

60

65

12

sage composition service 710, message delivery service 720,
message storage service 730, message handling agent 750
and message storage agent 760 cach comprise software
programs for execution by at least one of the host computers
200, 210, 220 shown in FIG. 1. The message storage media
740 shown in FIG. 2 comprises storage media, such as RAM
or disk, associated with at least one of the host computers
shown in FIG. 1.
A sending entity 500 communicates with the message
composition service 710 to compose a message. Message
composition may include interaction with the directory
service 700. The sending entity 500 then instructs the
message composition service 710 to transfer the composed
message 1o the message delivery service 720, which delivers
the message to its specified destination and provides various
forms of reports on delivered messages to the sending entity
500.
Messages may be delivered in real time to a receiving
entity 600, or may be delivered to the message storage
service 730 logically associated with the message storage
media 740. The message handling agent 750 generally
operates on messages received from the message delivery
service 720. The message storage agent 760 generally oper-
ates on messages placed on the message storage media 740
by the message storage service 730. The message handling
agent 750 and message storage agent 760 operate on behalf
of the receiving entity 600.
Although an illustrative embodiment of the present
invention, and various modifications thereof, have been
described in detail herein with reference to the accompany-
ing drawings, il is to be understood that the invention is not
limited to this precise embodiment and the described
modifications, and that various changes and further modi-
fications may be effected therein by one skilled in the art
without departing from the scope or spirit of the invention as
defined in the appended claims.
What is claimed is:
1. A message storage system for use with a communica-
tion network and means for providing a network presence
for an entity having attributes, said message storage system
comprising:
storage means for storing a message from a sender to said
network presence, said message having properties,

means for accepting a query over a set of messages for
which the entity has read permission, the query includ-
ing a specified property, and

wherein said storage means is also for generating a

mailbox including said message when one of said
properties of said message satisfies the query.

2. The system of claim 1, wherein said query is a one-time
query.

3. The system of claim 1, wherein said query is a
persistent query.

4. A message storage system for use with a communica-
tion network and means for providing a network presence
for an entity having attributes, said attributes including a
processing preference for messages stored for said network
presence, said message storage system comprising:

storage means for storing a message from a sender to said

network presence, and

a software agent for processing the stored message in

accordance with said processing preference, and for
asserting a query against said storage means,

and wherein said storage means is also for generating a

mailbox including the message, when the message
satisfies the query.

5,832,221

13

5. The system of claim 4, wherein said processing pref-
erence is a preferred media format, and said software agent
is operative to convert a media format of said stored message
to the preferred media format.

6. The system of claim 4, wherein said processing pref-
erence specifies one of a notifying action, a deleting action
and an archiving action, and said software agent is operative
to perform the action specified by said processing preference
on said stored message.

7. A message storage system for use with a communica-
tion network and means for providing a network presence
for an entity having attributes, said message storage system
comprising;

storage means for storing a message from a sender to said

network presence, and

means for automatically generating a summary of said

message and for automatically updating the summary
in response to modification of the message,

and wherein said storage means is also for generaling a
mailbox including the message, when the message
satisfies a query asserted against said storage means.

8. The system of claim 7, further comprising means for

automatically appending the generated summary to said
message.

9. A method for storing a message received from a

communication network, comprising the steps of:

storing, in a message storage system, said message being
from a sender to a network presence established for an
entity, said entity having attributes, said message hav-
ing properties, and

accepting a query over a sel of messages [or which the
entity has read permission, the query including a speci-
fied property,

30

14

wherein the message storage system generates a mailbox
including said message when one of said properties of
said message satisfies the query.

10. A method for storing a message received from a

communication network, comprising the steps of:

storing, in a message storage syslem, the message from a
sender 1o a network presence established for an entity,
said entity having attributes including a processing
prelerence for messages stored for said network
presence,

processing the stored message in accordance with said
processing preference, and

asserting a query against said message storage system,

wherein said message storage system generates a mailbox
including the message, when the message satisfies the
query.

11. A method for storing a message received from a

communication network, comprising the steps of:

storing, in a message slorage system, the message from a
sender to a network presence established for an entity,
said entity having attributes,

automatically generating a summary of said message, and

automatically updating the summary in response to modi-
fication of the message,

wherein said message storage system generates a mailbox

including the message, when the message satisfies a
query asserled against said message storage system.

* ¥ % % %

US005892916A

United States Patent [(11] Patent Number: 5,892,916
Gehlhaar et al. [45] Date of Patent: Apr. 6, 1999
[54] NETWORK MANAGEMENT SYSTEM AND 5,651,006 7/1997 Fujino et al. ...cvvinnne. 395/200.53
METHOD USING A PARTIAL RESPONSE 5,832,226 11/1998 Suzuki el al .ccooccrvvnrerrrnennn. 395/200.53
TABLE
[76] Inventors: Jeff B. Gehlhaar, 11934 Dapple Way, Primary Examiner—Robert B. Harrell
San Diego, Calif, 92128; James W. Attorney, Agent, or Firm—Russell B. Miller; Bruce W.
Dolter, 11755 Timberlake Dr., San Greenhaus; Christopher O. Edwards

Diego, Calif. 92131-2329; Siddharth
R. Ram, 7920 Avienda Navidad, #147,
San Diego, Calif. 92122; Rahul Anand,
927 Wilbur Ave., #3, San Diego, Calif.

[57] ABSTRACT

A system and method for network management, including a
message handling process, having a network manager and at

22109 least one network element is described. The network man-

agement messaging system sends and receives multiple

[21] Appl. No.: 997,160 concurrent messages between the network element layer and
[22] Filed: Dec. 23. 1997 the network management layer. Support of concurrent mes-
a ' ? saging greatly speeds and simplifies network management.
[51] IotaiCLS i GO6F 9/40 Aclient request is received at a first managed object, at least
[52] U.S. CL 395/200.53 part of the client request is fulfilled by a second managed
[58] Field of Search 364/DIG. 1 MS File, object. A major row is created in response to receiving the

364/DIG. 25 MS File; 395/200.3, 200.32, client request, and a minor row associated with a managed
200.53 object request sent to the second managed object. The minor
row has an index that associates the minor row with the
[56] References Cited major row, and correlates a response to the managed object
i request with the client request.
U.S. PATENT DOCUMENTS

5,561,769 10/1996 Kumar et al.ccoccennernen. 395/200.32 4 Claims, 8 Drawing Sheets
702
704
= 100
716 N N\ 106

~ N 202

712

5,892,916

Sheet 1 of 8

Apr. 6, 1999

U.S. Patent

¥ "DIH
HdAL
Vivd HOVSSHA dl "TVNYH.LNI *
F 7 i, 00¥
vov 90¢ [40)4
€ ‘DId
81¢ 91¢
—
HdAL dI
VLIVAANV dI| VLVAANV dl| VLVAANV dI| VIVdJdNV dl HOVSSHIN | NOILOVSNVIL dl Lodrdo
ugoe 7 980¢ 7 q80¢t J BR0E / 90¢ J $0€ J [4U}3 J
["DIH
| ugor J801 9801 P801 9801 q801 E801 _
: 2 I 2 N N b i W
| LNHWNATH LNIWNITH LNHWHTH LNHWHTH LNAIWHTH LNHNATH LNIWATI |
TIOMLEIN AIOMIEN AAOMIEN AIOMIIN AIOMLAN TAOMIIN AAOMLEAN
| _
| _

1 ATOVNVIA
NIOMIAN

U.S. Patent Apr. 6, 1999 Sheet 2 of 8 5,892,916

NETWORK MANAGER
202
-
SUBSYSTEM SERVER 204
MANAGED
OBJECT
BODY
208
ATTRIBUTE
212
FlG: 2
P 108
NETWORK ELEMENT 502
MANAGED
OBJECT
BODY
506

ATTRIBUTE

FIG. 5

5,892,916

Sheet 3 of 8

Apr. 6, 1999

U.S. Patent

9 DI
809 20t Z0€ $0€
vl [. il
v.Lvd al aio dix
—P LSANOTY YONIW/MOU JONIN
up09 <
809 01 20€ v0€
[[L il
VAR« al aio arx
LSFN0OTY ONIA/MOY YONIN
ay09
809 0¥ Z0€ Y0€
i i i i
vivd ar dio arx
LSANOTY YONINW/MOY ONIA
ep09
909 70§ YOg
4 al £
LSI'T Y4.LaNVIVd dio aix
1SHNOTY AOLVIW/MOY OIVIA
709~

009

U.S. Patent Apr. 6, 1999 Sheet 4 of 8 5,892,916

/702
CLI

704
‘}.\Q 100
716 N \ 106

FIG. 7

U.S. Patent Apr. 6, 1999 Sheet 5 of 8 5,892,916

801
/_
| CLI SENDS MESSAGE TO NETWORK MANAGER]

802
v =
NETWORK MANAGER RECEIVES MESSAGE

804
v &
NETWORK MANAGER PASSES MESSAGE TO SUBSYSTEM SERVER

806
v E
SUBSYSTEM SERVER DETERMINES OBJECT ID OF RECEIVED MESSAGE

808

IS MANAGED
OBJECT ON SUBSYSTEM
SERVER?

NO

810

RETRIEVE MANAGED
OBJECT FROM
PERSISTENT STORE

YES

812

MANAGED OBJECT PARSES MESSAGE INTO MESSAGE ELEMENTS AND
CREATES PRT MAJOR ROW

814

v a

MANAGED OBJECT PASSES MESSAGE ELEMENTS TO PROPER
CHARACTERISTICS

816
v r
CHARACTERISTIC PROCESS REQUEST MESSAGE ELEMENT

818

CHARACTERISTIC
FULFILLS REQUEST
?

YES
y 820

RESPOND TO REQUEST MESSAGE
WITH MESSAGE RESPONSE

] 4
DELETE MAJOR ROW IN PRT

FIG. 8A

U.S. Patent Apr. 6, 1999 Sheet 6 of 8 5,892,916

820
-
RESPOND TO MESSAGE ELEMENT BY FORWARDING REQUEST FOR
MESSAGE TO BODY
¥ 822
BODY GENERATES MESSAGE DIRECTED TO MANAGED OBJECT AT
NETWORK ELEMENT
¥ - 824
MANAGED OBJECT ADDS MINOR ROW TO PRT
¥ - 826
MANAGED OBJECT SENDS MESSAGE TO MANAGED OBJECT AT
NETWORK ELEMENT
v 828
MANAGED OBJECT RECEIVES RESPONSE FROM NETWORK ELEMENT
MANAGED OBJECT
+ 830
MANAGED OBJECT DELETES MINOR ROW FROM PRT

FIG. 8B

U.S. Patent Apr. 6, 1999 Sheet 7 of 8 5,892,916

902
/.
I CHARACTERISTIC RECEIVES MESSAGE ELEMENT REQUEST |

904

ATTRIBUTE

YES AVAILABLE AT

ATTRIBUTE
OBJECT?

907
o
SEND MESSAGE REQUEST MESSAGE ELEMENT TO BODY |
v 908
CREATE MINOR ROW POINTED TO BY MAJOR ROW |
* 910
GENERATE AND SEND REQUEST MESSAGE TO NETWORK ELEMENT
MANAGED OBJECT
+ 912
| RECEIVE RESPONSE FROM NETWORK ELEMENT MANAGED OBJECT |
- 913
| DELETE MINOR ROW CORRESPONDING TO RESPONSE MESSAGE |
/- 914

PARSE RESPONSE MESSAGE INTO MESSAGE ELEMENTS AND SEND
TO ASSOCIATED CHARACTERISTIC

* 916
P
UPDATE DATA OBJECT IN CHARACTERISTIC WITH MESSAGE
ELEMENT DATA
* ~ 906

T FULFILL REQUEST BY RESPONDING WITH MESSAGE ELEMENT
CONTAINING DATA REQUESTED TO BODY

918
-
PLACE DATA IN PARAMETERS LIST IN OUTGOING MAJOR ROW

922 920
WAITFOR | v OUTGOING
ADDITIONAL
St PARAMETERS
! AGE LIST COMPLETE
ELEMENTS i
YES 924
| RESPOND TO MAJOR REQUEST WITH RESPONSE MESSAGE |
7 926
r DELETE MAJOR ROW |

FIG. 9

U.S. Patent Apr. 6, 1999 Sheet 8 of 8 5,892,916

1004
COMMUNICATIONS
BUS :\/
PROCESSOR
1006
MAIN
MEMORY
1008
e
- 1010
HARD DISK
DRIVE
. X /_ 1012 r 1014
\| REMOVABLE [REMOVABLE
(,_,/ STORAGE DRIVE [—— STS{%GE
~ 1020 1022
REMOVABLE
INTERFACE ~ K——% STORAGE
UNIT
1024
£ /1026
A
<:> COMMUNICATION
INTERFACE (l\/\/\/—
|

FIG. 10

5,892,916

1

NETWORK MANAGEMENT SYSTEM AND
METHOD USING A PARTIAL RESPONSE
TABLE

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates generally to network man-
agement systems, and more specifically is directed toward
management of network resources using distributed intelli-
gence and state management.

II. Related Art

Telecommunication service providers provide a wide
range of services 1o their customers. These services range
from the transport of a standard 64 kbit/s voice channel (i.e.,
DSOchannel) or subrate thereof to the transport of higher
rate digital data services (e.g., video). Both voice channels
and digital data services are transported over the network via
a hierarchy of digital signal transport levels. For example, in
a conventional digital signal hierarchy 24 DSO0 channels are
mapped into a DS1 channel. In turn, 28 DS1 channels are
mapped into a DS3 channel. The number of customers
served and the complexity of services offered by telecom-
munication service providers is always increasing.

The wide range of services, signals and channels require
a complex network of telecommunications equipment. Man-
agement of the complex telecommunications network is
necessary in order to maintain optimum levels of service to
the customer as well as efficiency in the maintenance and
usage of the equipment itself. As networks grow increas-
ingly complex, both in the size of the network and the range
of services provided by the network, network management
becomes increasingly important. Telecommunications ser-
vice providers provide for management of the network by
implementing network management systems designed to
manage, provide for growth and ensure optimum perfor-
mance of the network.

Network management systems include at least two layers.
The first layer is the network management layer. The net-
work management layer includes a network manager that
monitors and controls the configuration of the network. The
network manager is usually a server and software that
maintains a logical representation of the state and condition
of the network. The network manager provides an interface
to the network for users and applications wishing to manage
the network.

The second layer of the network is the network element
layer. The network element layer includes all of network
clements. Examples of network elements are the mobile
switching center (MSC), call detail adjunct (CDA), home
location registry (HLR), channel service unit (CSU), cus-
tomized dial plan (CDP), CDMA interconnect subsystem
(CIS), etc. The network elements provide the functionality
and services of the entire network, independent of the
network manager.

The network management system implements a set of
procedures, software, equipment and operations designed to
keep the network operating near maximum cfficiency. The
goals of network management include configuration
management, fault location and repair management, security
management, and performance management.

Configuration management deals with installing,
initializing, loading, modifying and tracking configuration
parameters, network elements and their associated software.
The network manager accomplishes configuration manage-
ment by downloading configuration parameters and soft-

n

10

30

35

40

60

65

2

ware o the network elements. The network manager also
tracks the configuration of the network by retrieving data
indicating the configuration of the network elements and
their associated software.

Fault location and repair management predicts and diag-
noses problems with the network and provides a methodol-
ogy for replacing or rerouting the network around the
affected network elements. The network manager accom-
plishes fault location and repair management by retrieving
fault information from the network elements in the network
clement layer. For example, the network manager may
retrieve the number of severely errored seconds (SES) or the
frame error rate (FER) from a network element in order to
locate faults and diagnose problems with the network. If,
upon retrieval of fault information from the network element
layer, the network manager determines that particular net-
work elements are experiencing degraded performance or
are inoperative, the network manager may reroute the net-
work around the affected elements. The network manager
accomplishes the rerouting function by downloading addi-
tional configuration information to the network elements in
order to reconfigure the network.

Security management allows the network manager 1o
restrict access to various resources in the network, thereby
giving customers different levels of access to different
network resources. The network manager accomplishes
securily management by retrieving the current security
information from the network elements and analyzing the
retrieved information. If the access to resources in the
network is to be changed, the network manager accom-
plishes the change by downloading additional or changed
security information to the network elements, thereby
changing the levels of access the users have to the network
[ESOUTCEs.

Performance management provides statistical information
about the network’s operation allowing the network man-
ager to manage the resources of the network to ensure
optimum performance. The network manager monitors the
usage and traffic levels of the network element to ensure that
the traffic on the network is properly distributed. Proper
distribution of traffic among the network elements helps to
ensure that the network does not experience performance
degradation because a few network elements are carrying
most of the communications load, while other network
elements are carrying too little. The network manager
accomplishes performance management by retrieving infor-
mation pertaining to the traffic loading of the particular
network elements. If the network manager determines that
the performance of the network would be improved by
redistributing the network traffic from one set of network
clements to another, the network manager downloads addi-
tional configuration information to the network elements,
thereby reconfiguring them.

Network management, therefore, is accomplished by
communication between the network manager and the net-
work elements. A telecommunications network may contain
tens of thousands of network elements. A network manager,
therefore, may be interacting with thousands of elements at
a time. It is not practical for the network manager to spend
time establishing synchronous connections with each of the
network elements that it wishes to communicate with, if it
musl establish thousands of such connections to manage the
network.

A more practical solution to the problem of communica-
tion between the network manager and the network elements
is asynchronous communication. In asynchronous

5,892,916

3

communication, messages containing requests, commands
and data are transmitted between the network manager and
network elements over the network. In such a system,
messages transmitted from a network element before others
may arrive at the network manager after the later transmitted
message. Context information about the network manage-
ment system, therefore, may not be assumed or inferred
since a received message may not reflect the current state of
the system.

Asynchronous communications pose additional manage-
ment problems. Often, when the network manager sends a
message 1o a network element, it must wait for a response.
The management functions of the network manager often
require information to be retrieved from multiple sub-
systems. If the network includes thousands of network
elements, this serial process of messaging and response
becomes oo slow for practical network management. Cur-
rent asynchronous packet network management systems are
unable to handle concurrent outstanding messages sent to
the subsystems.

Furthermore, messages between the network elements
and network manager perform differing functions. Some
messages communicate information, or data, between the
network manager and the network elements, or between the
network elements themselves. Other messages cause actions
to be performed. Current messaging systems f[or network
management implement different systems to accommodate
the different types of network management messages.

Additionally, a network may contain multiple hierarchical
layers. In order for a network manager to communicate with
the multiple layers, current messaging systems require the
implementation of multiple messaging protocols. Multiple
messaging protocols allow the network manager to commu-
nicate with network elements existing at multiple levels
within the network management system hierarchy. Multiple
network management protocols make the communication
between the network manager and the network elements, as
well as between the network elements themselves, complex
and error prone.

What is needed, therefore, is a network management
messaging system which is capable of sending and receiving
multiple concurrent messages 1o the network element laver
from the network management layer. Such a system would
greatly increase the speed with which the network can be
managed. The network management messaging system
should provide a universal message handling method that
handles both information and action messages. Such a
system should also provide for interacting with network

clements at differing levels within the network management s

hierarchy, and between the network elements themselves.

SUMMARY OF THE INVENTION

The present invention comprises a comprehensive net-
work management messaging system that can efficiently
accomplish network management though asynchronous
messaging between the network entities. The network man-
agement messaging system is capable of sending and receiv-
ing multiple concurrent messages to the network element
layer from the network management layer. Support of con-
current messages greatly speeds and simplifies network
management. The network management messaging system
of the present invention provides a universal message han-
dling method that handles both information and action
messages. The network management messaging system of
the present invention also provides for hierarchical interac-
tion with network clements at differing levels within the

n

30

35

40

60

65

4

network management hierarchy, and between the network
elements themselves.

In the present invention, a plurality of network entities are
defined for a plurality of managed network resources which
include physical (e.g., network element hardware) and logi-
cal (e.g., circuil termination points) resources. A network
entity is any network manager, network element, user or
system that originates network management messages in the
network management system.

The present invention comprises a system and method for
network management, including a message handling
process, having a network manager and at least one network
clement. The system and method includes receiving a client
request at a first managed object, at least part of the client
request being fulfilled by a second managed object. The
system and method creales a major row in response o
receiving the client request, and a minor row associated with
a managed object request sent to the second managed object.
The minor row has an index that associates the minor row
with the major row, and correlates a response to the managed
object request with the client request.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present
invention will become more apparent from the detailed
description set forth below when taken in conjunction with
the drawings in which like reference numbers indicate
identical or functionally similar elements. Additionally, the
left-most most digit of a reference number identifies the
drawing in which the reference number first appears.

FIG. 1 is a block diagram of one embodiment of a network
management system in accordance with the present inven-
tion;

FIG. 2 is a block diagram illustrating one embodiment of
the network manager in accordance with the present inven-
tion;

FIG. 3 is a diagram illustrating the format of a message
according to the present invention;

FIG. 4 is a diagram illustrating the format of a message
element according to the present invention;

FIG. 5 is a block diagram illustrating one embodiment of
a network element in accordance with the present invention;

FIG. 6 is a diagram illustrating an entry in a partial
response table;

FIG. 7 is a diagram illustrating one embodiment of a
network management system in accordance with the present
invention;

FIG. 8 is a flowchart illustrating the process of receiving
a CLI request message at the network manager and gener-
ating a CLI response message;

FIG. 9 is a flowchart illustrating the process of adding and
deleting major and minor rows to a partial response table;
and

FIG. 10 is a block diagram illustrating one embodiment of
a computer for implementing the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

In the description that follows, the first portion describes
the messaging system. The second portion describes the
partial response table. Both of these features comprise
elements of this invention.

Messaging System

FIG. 1 illustrates a network management system 100

which is an example of the environment for one embodiment

5,892,916

5

of the the present invention. Network management system
100 preferably complies with the International Telecommu-
nications Union (ITU) telecommunications management
network (TMN) standard. The TMN standard defines a
layered framework for a service provider to implement its
own network management processes.

Network management system 100 includes two layers 102
and 104. Layer 102 is the network management layer 102.
Network management layer 102 comprises network man-
ager 106. Network manager 106 is shown as a single entity.
In implementation, network manager 106 can comprise
equipment or software present al one or more sites. For
example, multiple service centers (not shown) can exist in
different parts of the country (e.g., east coast and west coast).
Network manager 106 can also be split among services
and/or network elements. For example, in one embodiment,
a first portion of the network manager is dedicated to
satellite-based communications, and a second portion of the
network manager is dedicated to cell-based communica-
tions. Generally, the network manager 106 is accessed by
client applications, such as users and systems, lo engage
network management functions. Client applications access
network manager 106 by transmitting messages to the
manager 106 and receiving messages from the manager.

Layer 104 is designated as the network element layer 104, 2

Network element layer 104 is a physical layer that includes
various network elements (e.g., mobile switching center, call
detail adjunct, home location registry, channel service unit,
customized dial plan, COMA inner connect subsystem, etc.)
used in the transport and routing of network traffic. Each
network element 1084-1087 in network element layer 104
receives and transmits configuration, fault location, security
and performance information associated with management
of the network. In particular, network elements 108a-108n
are connected to network manager 106 in network manage-
ment layer 102, The present invention is applicable to, and
contemplates, handling of any management information
passed between client applications and the network manager
106, or network manager 106 and network clements
108a—-108n.

Although the present invention is described as having
only two layers, alternative embodiments of network man-
agement system 100 have a plurality of layers. For example,
in accordance with one embodiment of the present
invention, the network management system has a plurality
of network management layers (more than two) hierarchi-
cally arranged. In another alternative embodiment, network
management systems are arranged hierarchically. In in one
embodiment having multiple network management system
layers, network manager 106 interacts with network ele-
ments 108¢-108n through a plurality of communications
protocols. In one such embodiment, each layer in the net-
work management system interacts with the network man-
ager 106 using a different protocol. Alternatively, network
manager 106 interacts with network elements 108a—108n
through an intervening network management layer (i.e.,
network manager 106 would interact with a first network
entity, which in turn would interact with a second network
entity in a different layer). In general, a network entity is any
network manager, network element, user or system that
originates network management messages in the network
management system 100, However, the first and second
network entity referred to here are preferably software
applications that are responsible for controlling the interac-
tion between the layers of the system.

In the preferred embodiment, network management sys-
tem 100 is a message based system. Client applications, such

15

20

30

35

40

45

50

55

60

65

6

as users, applications or systems, interact with network
manager 106 by transmitting messages to the manager 106.
The messages usually contain requests or commands and are
usually packetized. Likewise, network manager 106 com-
municates with network clements 1084-108#s by transmit-
ting and receiving similar messages. Such a messaging
system is said 1o be asynchronous and transaction based.
Transaction based systems rely upon messages and
responses thereto in order to manage the network. This is
contrasted with connection based systems in which dedi-
cated connections are established between external entities
and network manager 106 or between network manager 106
and network elements 1084—108x. In asynchronous message
based systems, such as network management system 100,
messages are transmitted without acknowledgment from the
network system or network entity to which the message is
transmitted.

FIG. 2 further illustrates network manager 106. The
preferred embodiment of network manager 106 is a server
and software that maintains a logical representation of the
state and condition of network management system 100.
Network manager 106 monitors and controls the configu-
ration of the network by interacting with network elements
108a-108# in network element layer 104, Client applica-
tions and other systems interact with and manage network
elements 108a—108#n in network element layer 104 through
network manager 106.

Network manager 106 includes subsystem server 202.
Subsystem server 202 is a software process or application
that executes on network manager 106. Subsystem server
202 provides the interface for network manager 106 to all of
the network entities, that are not part of the network manager
106. Network manager 106 receives messages from client
applications attempling to interact with or control the net-
work and passes them to subsystem server 202. In operation,
subsystem server 202 is an application, running on a
computer, which acts as a clearinghouse for all of the
messaging that goes on within the network management
system 100. Subsystem server 202 examines a message
received from network manager 106 and determines lo
which managed object 204 the message is to be routed. One
managed object 204 is shown in FIG. 2 for the sake of
simplicity and ease of understanding. However, in the pre-
ferred embodiment of the present invention, many such
managed objects 204 exist.

Each managed object 204 is a logical representation of a
particular network element 1084—108n in the network man-
agement layer 102. Subsystem server 202 provides an envi-
ronment for the execution of managed objects 204.
Accordingly, each network element 1084—108n in network
clement layer 104 preferably has an associated representa-
tive managed object 204 on subsystem server 202. The
managed objects 204 on network manager 106, therefore,
are preferably a logical representation of all the network
clements 1084—108n in network management layer 102.
Managed objects 204 provide a logical interface at network
manager 106 to the network element layer 104. The interface
provides a means for the network manager 106 to commu-
nicate with, retrieve data from, and cause actions to be
performed in the network element layer 104. In addition to
managed objects 204 representing network elements
108a—108#, additional managed objects 204 may reside on
subsystem server 202 to represent management functions
available to users, applications and other systems interacting
with network manager 106.

Managed object 204 comprises body 206 and character-
istics 208. Characteristic 208 includes attributes 210, actions

5,892,916

7

212 or both. Body 206 controls the behavior of the managed
object 204. Messages sent or received by managed object
204 within the network management system 100 are pro-
cessed and generated by body 206. Body 206 receives,
parses and distributes to characteristics 208 any messages
received from network management system 100. Likewise,
any message Lo be sent by managed object 204 are generated
by body 206. Characteristics 208 represent the data
(attributes 210) available for retrieval and storage by the
network manager 106 and the functionality (actions 212)
that is available at managed object 204 and corresponding
network element 1084-108n. Network manager 106 sets and
retrieves attributes 210 by sending and receiving messages
from network clement 108a. For example, managed object
204 will have data members corresponding to its associated
network element 108q, including the data transmission error
rate, number of errored seconds and number of severely
errored seconds of the network element 108a. Actions 212
represent functionality available to network manager 106 at
managed object 204 or corresponding network elements
1084-108n. Network manager 106 sends command mes-
sages 1o network element 1084-108n, causing network
clement 108a—108n to perform an action, and network
element 108a—108n responds with a response message con-
firming the execution of the action. Together, attributes 210
and actions 212 represent the characteristics 208 of managed
object 204.

Managed objects 204 are not constantly running on the
subsystem server. Managed objects 204 only execute, or
exist, on subsystem server 202 when a message for a
particular managed object 204 has been received at sub-
system server 202, and while the managed object 204 is
processing the message. When managed objects 204 are not
active, they are stored on persistent store off the subsystem
server 202. Examples of persistent store are magnetic or
optical media, read only memory (ROM), or other perma-
nent type storage. Storage of the managed objects 204 on
persistent store during periods of non-use promotes efficient
use of network manager resources. If the message received
by subsystem server 202 is destined for a managed object
204 which is not in existence on the subsystem server 202,
subsystem server 202 retrieves the desired managed object
204 from persistent store and passes the message to the
desired object 204. If the original message received from the
external system by network manager 106 is directed to more
than one managed object 204, subsystem server 202 parses
the original message into pieces that are interpreted and
acted upon by individual managed objects 204.

FIG. 3 illustrates one example of the format of a message
300 10 a managed object 204, from another network entity,
such as a user, application or system external to network
management system 100. In accordance with one
embodiment, the message 300 is routed through network
manager 106. The format of message 300 is illustrated for

the purposes of example. One of the advantages of the 53

present invention is the protocol insensitivity of the mes-
saging system and partial response table architecture.
Accordingly, alternative embodiments of the present inven-
tion use message formats which differ from those described
herein.

Message 300 includes header 316 and payload 318.
Header 316 includes object identification (OID) 302, trans-
action identification (XID) 304, and message type 306. OID
302 identifies the particular managed object 204 for which
message 300 is intended. For example, a message 300
intended for, or related to, network element 108a would
have an OID 302 identifying the managed object 204

10

15

30

35

4

45

50

60

65

8

corresponding to a given network element 108a. If managed
object 204 were to generale a message [or transmission (o
network element 108a, the one-to-one correspondence
between managed objects 204 and the network elements
1084-108n would allow the address of network element
108a to be algorithmically computed directly from OID 302.
XID 304 identifies the particular transaction with which
message 300 is associated. For example, a message from a
user external to network management system 100 to network
manager 106 would have a unique XID 304. The response
message from network manager 106 to the user would use
the same unique XID 304, or an XID 304 which was
algorithmically determinable from the original XID 304.
The XID 304 provides for the identification and manage-
ment of transaction, and (ransaction response, messages
transmitted between entities in network management system
100. Unique XIDs 304 guarantee that concurrent messages
do not result in corruption of the information passed
between the network entities during network management.
Message type 306 indicates the nature of the operation
requested or specified by message 300. For example, mes-
sage type 306 may indicate that message 300 is a “gel-
attribute™ message. A get-attribute message is a request to
retrieve data members stored by attributes 210 and respond
with the value of attributes 210. Alternatively, message lype
306 may specily that message 300 is a “set-attribute™
message. A selaltribule message is a request to set (or reset)
the data values of attribute 210. Other examples of message
types of the preferred embodiment include a response to a
get-attribute message, a response 1o a set-attributemessage,
an “action” message, a response 1o an action message, a
“create-object” message and a “destroy-object” message for
creating and destroying managed objects, etc. An action
message requests that an action be performed at managed
object 204. Since managed object 204 is a logical represen-
tation of network element 108a—108n, an action request
message usually specifies actions to be performed at a
network element 108a—108n corresponding to the managed
object 204. In such cases, managed object 204 will send an
additional action message to its corresponding network
clement 1084—108n. For example, in accordance with one
embodiment of the present invention, a “lock-action” mes-
sage is provided to network management system 100 to bar
a particular resource from providing a service. In response,
the network element specified in the lock-action message is
essentially “locked out”. An “unlock-action” message
results in a locked network element or resource becoming
“unlocked.” Responses to action messages are usually action
status messages that indicate that the action request was
completed or was not completed. Managed objects 204 are
created and destroyed on network manager 106 in order to
maintain one-to-one correspondence between network ele-
ments 1084-108n and managed objects 204. For example, if
network element 108a is added to network element layer
104, a corresponding managed object 204 must be created
with a create-object message on network manager 106.
Managed objects 204 on network manger 106 are also
created and destroyed to implement and remove additional
functionality at the network management layer 102. The
create-object message is preferably sent from a client exter-
nal to network manager 106. Alternatively, the initialization
process of the network element 1084 includes sending a
create-object message to network manager 106. If network
clement 1084 is removed from network element layer 104,
the corresponding managed object 204 in network manage-
ment 106 is removed with a destroy-object message.
Message 300 further includes payload 318 comprising
identifier (ID) and data 3084-308n. Payload 318 identifics

5,892,916

9

the particular characteristics 208 by which message 300 is to
be implemented. ID and data 3084-308n are used by body
206 to generate message element 400 as described below.
For example, when managed object 204 receives a sel-
attribute message, data value(s) in attributes 210 will
change.

ID and data 3084308 identify the particular character-
istics 208 to which the message 300 is directed. For
example, suppose message 300 is received by network
manager 106. OID 302 identifies the particular managed
object 204 to which message 300 is to be routed. Message
300 is routed by subsystem server 202 to managed object
204. Managed object 204 receives message 300. Body 206
of managed object 204 examines ID and data information
30843087 of pavload 318. Body 206 parses message 300
into smaller “message elements” to be passed to character-
istics 208. Message type 306 of header 316 and ID and data
3084-308n of payload 318 are passed to characteristic 208
corresponding to ID and data 308a—308n of payload 318.

FIG. 4 illustrates the format of one example of a message 2

clement transferred between body 206 of managed object
204 and characteristics 208 of that object 204. As noted
above, body 206 receives message 300 from the subsystem
server 202 and parses it into at least one message element
400. Message clement 400 includes an internal identifier
(ID) 402, message type 306 and data 404. Internal 1D 402 is
determined from ID information in ID and data fields
308a-308n of payload 318. Internal ID 402 identifies the
particular data member in characteristics 208 which is to be
affected by the message. For example, internal ID 402 may
identify an associated data value within attribute 210. The
data value within attribute 210 may represent a feature, or a
function in the network element 108a—108# associated with
managed object 204,

Message type 306 within message element 400 is copied
from message type 306 within message 300. Message type
306 identifies the type of message. For example, message
type 306 may identify message 300as a get-attribute mes-
sage. Accordingly, when message type 306 is copied to
message element 400, message element 400 is identified as
a get-attribute message element. In such an example, body
206 would route message element 400 to attribute 210. The
data field of the message element 400 would contain no data,
since the data is to be retrieved from the target attribute 210.
Internal ID 402 identifies the particular data member within
attribute 210 from which data is being requested. Attribute
210 responds 1o the get-atrribute message element 400 by
generating a response message element 400, including the
values of the data members identified by internal ID 402 in
attribute 210. The response message element 400 is sent to
body 206 of managed object 204. The response message
clement 400 includes a message type 306 indicating that the
message clement is a get-atiribute response message ele-
ment. Internal ID 402 of the response message element 400

is unchanged, thereby identifying the response message 53

element 400 as a response to the original get-attribute
message clement 400 when the message element 400 is
received at the body 206. In an alternative embodiment,
internal ID 402 of the response message element is algo-
rithmically determined within attribute 210 based on the
get-attribute message element Internal 1D 402 received by
the attribute 210 from the body 206.

FIGS. 3. and 4 illustrate embodiments of message 300 and
message element 400 in accordance with the present inven-
tion. It should be noted, however, that one of the features of
the present invention is the flexibility with which messaging
systems, or protocols, can be accommodated. If, for

1

30

35

4

45

50

60

65

10

example, the network management system 100 includes a
plurality of hierarchical levels, the protocol of the messages
and message elements can be changed to accommodate the
nature of the network entities that will be receiving the
messages.

Characteristics 208 on managed object 204 determine the
nature of the messages to be sent from managed object 204
to network elements 1084—108n. For example, if managed
object 204 receives a get-altribule request message, the
message is parsed into message elements 400 and passed to
the appropriate attribute 210 in managed object 204. If
attribute 210 is associated with particular data values stored
by network element 108a, managed object 204 preferably
sends a get-attribute request message to network element
1084 in order to retrieve the data associated with the
get-attribute request message received by managed object
204.

Network element 108a receives the get-attribute request
message [tom network manager 106 and responds by send-
ing a get-attribute response message containing the data
requested to network manager 106. The get-attribute
response message is passed to managed object 204, where
the get-attribute response message is parsed into message
clements 400 as described above. Attribute 210 is updated
with the data 404 in message element 400 from network
element 108a. After attribute 210 is updated with data 404
from message element 400, attribute 210 sends a response
message element 400 to body 206. Body 206 translates the
response message element 400 into a response message 300
containing the data to be sent to the requesting client
application.

FIG. 5 further illustrates one embodiment of the network
element 108a. Network element 1082 comprises managed
object 502 which in turn comprises body 504 and charac-
teristics 506. Characteristic 506 includes attributes 508,
actions 510 or both. Body 504 controls the behavior of the
managed object 502. Messages sent by managed object 502
to network manager 106 are processed and generated by
body 206 within the network manager 106, as described
above. In a manner similar to that described above with
regard 1o managed object 204, any message sent by managed
object 502 is generated by body 504. Characteristics 506
represent the data and functionality that is available at
network element 108a—1087.

Managed object 502 interacts with the hardware of net-
work element 108a. For example, message 300 is received
from network manager 106 at network element 108a. OID
302 identifies the particular network element 1084 and
managed object 502 to which message 300 is directed.
Managed object 502 parses received message 300 into
message elements 400, at body 504. In one case, character-
istics 506 respond to received message element 400 passed
to them by body 504 by executing an action at the network
clement (e.g., switching a digital cross-connect, changing
the configuration of the network element, ete.) or setting
data attributes 508 with the data 404 in message 400.
Alternatively, message 300 received at network element
108a may request information owned by network element
108a. In such instances, managed object 502 will formulate
a response message 300 and transmit it over the network to
network manager 106.

Partial Response Table

In the preferred embodiment, network management sys-
tem 100 is a message based system. Clients, such as users,
applications or systems, interact with network manager 106
by sending asynchronous messages. Network manager 106
in network management layer 102 communicates with net-

5,892,916

11

work elements 108a—108n in network element layer 104 by
transmitting and receiving similar messages. Such a mes-
saging system is said to be transaction based. Transaction
based systems rely upon the messages and responses thereto
in order to accomplish the management of the network. In
asynchronous message based systems, such as network
management system 100, messages are transmitted without
acknowledgment from the network management system or
the entity to which the message is transmitted.

Modern telecommunications networks have tens of thou-
sands of network elements. Asynchronous messaging sys-
tems ensure eflicient use of network management resources.
However, tracking the thousands of pending and outstanding
messages between network manager 106 and network ele-
ments 108a—108n or between network manager 106 and the
client poses a difficult management problem.

A partial response lable in accordance with the present
invention provides a mechanism for managing messages
transmitted by network entities of network management
system 100. For the purposes of explanation, the partial
response table is described as a table with a series of related
rows, or tuples. In actuality, the partial response table may
be implemented on any addressable storage device, through
the method described herein. In the preferred embodiment,
a partial response table is implemented by each managed

object 204, 502. Alternative embodiments of the partial 2

response table may be implemented in the hardware of the
network manager 106, network elements 108a—108n, sub-
system server 202, or on an independent general computer
system.

FIG. 6 illustrates the preferred embodiment of partial
response table 600. Each managed object 204, 502 prefer-
ably has a partial response table 600. In the preferred
embodiment, when managed object 204, 502 receives a
message 300, managed object 204, 502 creates a major row
602 in the partial response table 600 associated with the
message 300, The major row 602 remains in the partial
response table 600 until managed object 204, 502 responds
1o the message 300. If managed object 204, 502 must send
secondary messages to retrieve the information or imple-
ment the command of message 300, minor rows 604a—n are
added to the partial response table 600 associated with each
secondary message sent to an additional network entity, such
as a network clement 108. When responses are received
from the secondary messages, the associated minor rows
604 are deleted from the partial response table 600. The
partial response table 600 and the process of addition and
deletion of major and minor rows 602, 604 in response 1o
transmission and reception of messages is described in more
detail hereinbelow.

Partial response table 600 comprises at least one major
row 602. Each major row 602 corresponds to a message
received by managed object 204 or 502. Each major row in
partial response table 600 is uniquely identified by XID 304
and O1ID 302. Each major row 602 of partial response table
600 includes a parameter list 606.

One major row 602 is created for each message from the
client received by managed object 204, 502.. Each minor
row 604a-604n is associated with a particular major row
602. Each minor row 604a—604n is uniquely identified by
XID 304, OID 302 and 1D 402. Each minor row 604a—604n
also includes associated data 608. XID 304 and OID 302 of
minor row 604a—604n allows managed object 204 to deter-
mine to which major row 602 each minor row 604a—604#
belongs. Parameter list 606 is a set of data fields, each of
which corresponds to a data member that will be transmitted
in response to the message that corresponds to the minor row

604a-604n.

15

20

30

35

40

45

50

60

65

12

FIG. 7 illustrates one example of a network management
hierarchy. A brief overview of the operation messaging
system will be described in conjunction with FIG. 7. The
network management system of FIG. 7 will be used in
conjunction with FIGS. 8-9 to describe the operation of the
partial response table and method of the present invention in
more detail below.

A command line interface (CLI) 702 is one example of a
client application for accessing network management sys-
tem 100. In accordance with one embodiment, CLI 702 is a
terminal that controls the network elements in the network
management hierarchy. Alternatively, CLI 702 is a software
application designed to manage the network. However, it
should be understood that CLI 702 may be any software,
hardware, or combination which is capable of originating a
request message 704. CLI 702 sends request messages 704
to network manager 106. Network manager 106 passes CLI
request message 704 to subsystem server 202. Subsystem
server passes CLI request message 704 to managed object
204. Managed object 204 processes CLI request message
704 according to the process of the present invention.
Managed object 204 in turn generates a managed object
request message 710 in response to CLI request message
704. Alternatively, the network manager 106 generates a
message to send 1o the subsystem server 202 based upon the
information contained in the CLI request message 702.
Likewise, in one embodiment, subsystem server 202 gener-
ates a message 1o send to managed object 204 based upon
the information contained in the message received by man-
aged object 204 from subsystem server 202.

Network element 1084 receives a managed object request
message 710 and passes it to managed object 502. Managed
object 502 processes request message 710 according to the
present invention and responds by sending a managed object
response message 714 to managed object 204. Response
message 714 contains the data or action confirmation mes-
sage corresponding 1o request message 710. Request mes-
sage 710 and response message 714 represent a single
“transaction.”

Managed object 204 processes response message 714
according to the present invention and generates a CLI
response message 716, which provides the data or action
confirmation corresponding to CLI request message 704.
Although the environment of the present invention is illus-
trated as a single network manager 106, managed object 204
and corresponding network element 108¢ and managed
object 502, it should be understood that the environment of
the present invention preferably includes thousands of such
network entities and managed objects.

For the purposes of explanation, managed object 204 has
data members represented by a characteristic 706 (attribute
1) and a characteristic 708 (attribute 2). Managed object 502
has a data member represented by the actual value of
attribute 2 stored at characteristic 712. Attribute 2 of char-
acteristic 708 is a logical representation at network manager
106 of actual data member in characteristic 712. In order for
managed object 204 to respond to CLI 702 with the value of
characteristic 708 (i.e., generate a CLI response message
716), the value of attribute 2 of characteristic 712 is pref-
erably retrieved.

FIG. 8 illustrates the process of receiving a CLI request
message 704 at network manager 106 and generating a CLI
response message 716. Step 801 sends CLI request message
704 from CLI 702 to network manager 106. Step 802
receives CLI request message 704 at network manager 106.
Step 804 passes received CLI request message 704 to
subsystem server 202 from network manager 106. Step 806

5,892,916

13

receives CLI request message 704 and determines the OID
302 of the received CLI request message 704 at subsystem
server 202. Step 808 determines whether managed object
204 identified by OID 302 is present on subsystem server
202. Step 810 retrieves managed object 204 identified by
OID 302 from persistent store if it is not present on sub-
system server 202, as determined by step 808. If, on the
other hand, managed object 204 identified by OID 302 exists
on the subsystem server when the message is received, the
process continues at step 812.

If the managed object 204 identified by OID 302 exists on
subsystem server 202, then, in step 812, managed object 204
parses CLI request message 704 into message elements 400
and creates major row 602 in the partial response table 600
associated with CLI request message 704. Major row 602
comprises XID 304, OID 302 and parameter list 606.
Parameter list 606 is a set of data fields each of which
corresponds to a data member that will be transmitted (i.e.,
outgoing parameters) in CLI response message 716 to CLI
702. For example, network manager 106 receives a request

message from CLI 702 to provide the lock status of network 2

clement 108a. The lock status of network eclement 108a is
expressed as a single data member. The parameter list 606 in
the outgoing message from network element 108a,
therefore, would contain a single data member representing
the lock status of network element 108a.

In Step 814, body 206 passes each of the message
clements 400 generated by step 812 to its associated char-
acteristics 706, 708 in the managed object 204. In Step 816,
the associated characteristics 706, 708 process each message
clement 400. In Step 818, the characteristics 706, 708
determine if an adequate response to message element 400
can be provided. In the preferred embodiment, step 818 is
performed by characteristics 706, 708. In the example of
FIG. 7, attribute 1 of characteristic 706 is local to managed
object 204, Characteristic 706, therefore, can respond to the
request of the message element 400 passed to it by body 206.
Attribute 2 of characteristic 708, on the other hand, is a
logical representation of attribute 2, which originates from
managed object 502 in characteristic 712. In the preferred
embodiment, in order for managed object 204 to respond
adequately to the CLI request message 704 for attributes 1
and 2, therefore, managed object 204 must retrieve the data
members of attribute 2 from managed object 502 on network
element 108a.

Examples of attributes local to managed object 204
include: faults that the network manager 106 issues, the
name of the managed object, and other such values that the
network management layer 102 needs in order to provide
information to the user, but which network elements
1084—108# do not need in order to provide data associated
with the network clements 1084—108#n, in response 1o
requests. Often, however, data requested by get-attribute
messages, or action messages, is not available at managed
object 204 on network manager 106. Examples of such data

are the frame error rate, the severely errored seconds, or any 53

other data collected at network elements 1084—108#n. In such
cases, it is necessary for managed object 204 on network
manager 106 to send a request to network element layer 104
in order to retrieve the information necessary to fulfill the
request.

If in step 818, it is determined that characteristics 706, 708
can fulfill CLI request message 704 received by network
manager 106, then in step 832, managed object 204 responds
to CLI request message 704 with CLI response message 716
which includes the data requested. Since the transaction with
CLI 702 has been completed, in step 834, managed object
204 deletes the major row 602 in partial response table 600.

10

15

30

35

40

45

50

60

65

14

If, on the other hand, characteristics 706, 708 determine
that the CLI request message 704 cannot be fulfilled at
managed object 204, the process continues at step 820. In the
particular example of FIG. 7, attribute 1 of characteristic 706
is a network management layer characteristic. The data
members of characteristic 706, therefore, are available on
managed object 204, In Step 822, characteristic 706
responds to message element 400 by forwarding a request
for a message to body 206. In the present example, charac-
teristic 708 has determined that the data members of
attribute 2 are not available and must be retrieved from
network element 108a. Characteristic 708 passes 1o body
206 the values necessary to formulate managed object
request message 710 to retrieve the data members of
attribute 2 from managed object 502 on network element
108a.

In Step 822, body 206 generates managed object request
message 710. In Step 824, managed object 204 adds minor
row 604a to partial response table 600. Minor row 604a
includes XID 304, OID 302 and ID 402 associated with
characteristic 708 of managed object 204, and the data
requested from network element 108a. Minor row 604a
serves as a place holder at the managed object 204 for the
outstanding request to another network entity.

Although the example of FIGS. 7 and 8 show a single
attribute request forwarded to network element 108a, often
a single CLI request message 704 results in multiple minor
rows 604a—604n being added to partial response table 600,
associated with major row 602. Each minor row 604a—604n
is associated with a particular managed object request mes-
sage 710. In such cases, multiple managed object request
messages 710 are sent to multiple network entities in net-
work management system 100. Furthermore, a single minor
row 604a¢ may represent the consolidation of multiple
requests to a single network element 108a. For example,
multiple requests for attributes on a single network element
108a may be consolidated into a single managed object
request message 710 at minor row 6044, resulting in a more
cfficient method of handling management messaging
between network entities.

In Step 826, managed object 204 sends managed object
request message 710 to managed object 502 at network
clement 108a. Managed object 502 processes managed
object request message 710 in the manner described above.
Managed object request message 710 may result in the
generation of additional request messages which, in turn, are
sent to additional network entities. The additional request
messages are generated in response o requests for charac-
teristics not owned by network element 108a. In such cases,
CLI request message 704 can resull in a cascade of request
and response messages throughout network management
system 100. One of the advantages of the present invention
is that a single implementation of the partial response table
system and method manages and tracks the outstanding
messages in network management system 100 at all levels in
the network management hierarchy.

In Step 830, managed object 504 sends, and managed
object 204 receives, managed object response message 714,
In Step 830, minor row 604a associated with managed
object request message 710 is deleted upon the receipt of
managed object response message 714. In Step 832, network
manager 106 generates the CLI response message 716 and
sends it to CLI 702 after managed object 204 processes
managed object response message 714 in order to update the
data members of attribute 2 of characteristic 708. CLI
response message 716 includes the data requested by CLI
request message 704. CLI response message 716 concludes

