APPENDIX 10

United States Patent [

0 00 00
US005335347A

(111 Patent Number: 5,335,347
[45] Date of Patent: Aug, 2, 1994

Foss et al.
[54) METHOD AND APPARATUS FOR SCOPED
INTERPROCESS MESSAGE SWITCHING
[75] Inventors: Carolyn L. Foss, Palo Alto; Dwight F,
Hare, Menlo Park; Richard F,
McAllister, Palo Alto; Tin A.
Nguyen, Danville; Amy Pearl,
Mountain View; Sami Shalo, Palo
Alto, all of Calif.
[73] Assignee: Sun Microsystems, Inc., Mountain
View, Calif.
[21] Appl. No.: 644,942
[22] Filed: Jan, 23, 1991
[51] Int. CL5 GOGF 9/44
[52] US. QL iiicivisiisiconnees 395/650; 364/280;
364/284.3; 364/284.4; 364/DIG. 1
[58] Field of Searchcocovverrerensnrrernrnnnns 395/650
[56] References Cited
U.S. PATENT DOCUMENTS
4,412,285 10/1983 Neches et al.ccovrrererennne 364/200
4,466,060 8/1984 Riddle 364/200

4,630,196 12/1986 Bednar, Jr. et al.
5,060,150 10/1991 Simor

o 364/200

364/200

Attorney, Agent, or Firm—Blakely Sokoloff Taylor &
Zafman

[57] ABSTRACT

A method and apparatus for scoped interprocess mes-
sage switching between a sender process and a plurality
of receiver processes is disclosed. Messages supported
may be scoped to message scopes of a message scope
type of “Session” or one of a plurality of non-session
message scope types including a message scope type of
“File”. Messages may also be scoped to message scopes
of an intersection or union of message scope types.
Intersection and union of message scope types comprise
“File in Session™ and “File or Session”. Scoped mes-
sages supported further comprise request and notice
messages. Receiver processes supported comprise han-
dler processes and observer processes. Request mes-
sages may be observed as well as handled, and notice
messages may be handled as well as observed. Handler
and observer processes may be non-executing as well as
executing. Local receiver processes are selected for
session scoped messages. Remote as well as local re-
ceiver processes are selected for non-session scoped
messages. Sender processes do not need to specify the
identity of the receiver processes. The sender process
and the receiver processes may be executed within the

5,179,708 1/1993 Gyllstrom et al. . 395/725 same or different sessions, on the same com
: puter or on
5,212,792 5/1993 Gerety et al.cccovverrerverrinen 395/650 different computers in a network.
Primary Examiner—Gareth D. Shaw
Assistant Examiner—J. H. Backenstose 20 Claims, 8 Drawing Sheets
COMPUTER 10
m— .:_\ ____________ _\{ ~ 30 —————— JOINING MEANS
Lol _'] |
I — 14 8 | Q 2
I SELECTING UPDATING " ulbt®
: MEANS MEANS | 5 T 68
| l [TYPE
| 16 12| g DEFINITIONS
I QUEUING REGISTERING I =
I MEANS MEANS | i
I [T %
| L | I AL
: 3 -2 21 | B 2 -
SIGNALING DELIVERING 1L ' W
: MEANS MEANS | E %
1 s A e SOOI |
| I/ 60
62 — 64 L — 65 —66 — 67
REGISTRATIONS
REQUESTS | NOTICES T RESULTS 7| REPLIES ’I
1 L 1
| 4] S 5
42 ¢ 54
58
OIS ISR =

5,335,347

Sheet 1 of 8

Aug. 2, 1994

U.S. Patent

_ SH3AH3SE0
S

_ SH3AHISEO
4]

T — —— —— —

ONIHOLIMS 39VSS3IN
SS300HdH3INI d3d00S

=L

5,335,347

Sheet 2 of 8

Aug. 2, 1994

U.S. Patent

S

CORC

Comee

¥s 2
05— ov—"
1
_ $3d3y _ SLINS3H A S30ILON $1S3N03H
- SNOILVHLSIOH
00
|— IIIIIIIIIIIIIIIIIIII
s | |]
3] SNYVaW SNVIN _
$3n3ano S | oveaA0 ONITVNOIS “
_
2 |) I _ |
_ SNY3W SNV3W _
E— ONIH3LSIOIY ONIN3ND _
SNOILINI43Q S |2 91— _ _
oo | | |
89 3 _ SNvaW | SNV [
€ 241 n | | ..] ovuvaan | omwozEs | |
ve | o _IS vl |
SNV3W BNINIOT e e e :
o/ \- H3LNdW0D

w= AN N

5,335,347

Sheet 3 of 8

Aug. 2, 1994

U.S. Patent

(@31aNVH :31vLS
98< Q9HO3AON 'GOHINNIT NOILVHILO
30ILON ‘SSV10)

sb\\ IAY3ISEO

AVHdWV 314—€6
v8 _ 374 :3d00S ~— 16
SINIINOD LNd ‘NOILYHILO

. 1\\ 183n03Y :SSV10)

'(NOISS3S :3d02S ~— 68
28 M031V3IHO ‘NOILYHIJO
\ 1S3N03Y :SSV10)

o \\ JIONVH

06{ ()10313S OIS

Ni 9IVOUVLS 3dALd !IV

ve{ vi38 34 'IU4 :3d0OS NIOP /
96 { VHdTV 314 '3 :3d00S LD N z9

SNOILVHLSIOIH

W da SR

- €9

Sheet 4 of 8 5,335,347

Aug. 2, 1994

U.S. Patent

S3LNAIYMLLY HIHLO
0eL ——4 NOSV3H 3uNTIv4
82 —4- QWvISIa HO 1HYLS '3N3ND = NOLLISOdSIa
%2 —4 Q1 3dAL WYHOO0Hd HITANVH
el ——1- QI H31ONVH
e —4 Q1 3dAL WYHOOHd HIAN3S
0L —} al H3aN3s
81—t NOILYH3JO H1IM Q31VIO0SSY SINIWNOHY
91 —} 12380 NV 3AVS ‘10380 NV 31V¥3HO '9'3 NOILOY = NOILYHIdO
v —— 037Iv4 HO G31HVLS 'a3N3ND ‘G31aGNVH ‘GN3S 'a31VaHD = 31VIS
e —t 301LON HO 1S3ND3Y =SSV10
0 —4 Q1 3714 '9'3 = A1 3d0IS NOISSIS-NON
801 —4}- QI NOISS3S H3IAN3S
90 —F} (dWVLS3WIL ‘01 NOISS3S) SAHOO3H HOLVSIA = 1SIT HOLVASIa
¥0b ——34 AINO H3IAH3SEO ‘AINO HITANVH ‘SHIAHISEO B HITANVH HLOE = INIIdIDOIH

a0l —4-

NOISS3S HO 3114 ‘NOISS3S Ni 3114 ‘3714 'NOISS3S '9'3 = 3d00S

SFII.I.Il.ll

H3LNNOD SH3ANIS ANV QI HIAN3S = Al '

JOVSSIN

"I SER.E

Sheet 5 of 8 5,335,347

Aug. 2, 1994

U.S. Patent

HIMOT = XNVH
SHITANVH
ONIHOLVA

H3H10

]

HOLMS (g

aanior
© WOH4

H3HOIH =)NVd
HITANVH
ONIHOLYIN

HOLIMS (Vv
a3anior
o1

1997 |

SHIAHISEO
ONIHOLVI HOLIMS
aanior
s) oL
€29
L/
Q313 HO a3v4 HO
$31vadn mww%u% =31VIS ‘031ONVH = 3LVLS
3H =SSV10 1S3ND3Y =SSV1D
||\I-./
! 219
$11NS3H SIDVSSIN 39VSSIN
Ald3d Ald3d
oy
IN3S =31VIS 03LV3HO =31VIS
| 1S3nD3H =SSY1D 183N03d =SSv10 H3ION3S
7
2fg JOVSSIN JOVSSIN _ .49
I |
IN3S =31VIS IN3S =31VIS Q37v4 =31vVIS
1S3ND3H =SSV1D 1S3N03H =SSV 1S3nD3H =SSV10
) 7
JOVSSIN gy 9 SIOVSSIN 3OVSSIN 129
Ald3H
SH3IAH3SEO HNILNOH 1S3ND3H A3d0IS

L-bS

ONIHOLYW

Vi AL

Sheet 6 of 8 5,335,347

Aug. 2, 1994

U.S. Patent

H3IMOT = YNV
SHITANVH
ONIHOLYIN

H3HI1O

SH3AH3SEO0
ONIHOLYIN HOLIMS
ONIAIZO3H

(8) oL

¢S

5]
Q37v4 HO \
'‘G37ONVH = 3LV1S
183N03H =8SSY10 el

S31vadn

€99

N

S3OVSSIN
Ald3d

S1NsS3y S1NS3d

IN3S HO
'031V340 = 31VIS
1S3ND34 =SSv10 [* A H v

FOVSSIN N\ .49

IN3IS=31VIS

H3HOIH = ¥NvH
1S3N0D3H =SSV10

H3TANVH
ONIHOLYN

/
<9 3OVSSIN

- 031ONVH HO
IN3S = 31V1S _ .
1S3N034 = SSY10 1s3no3d - ssvio [——C)
949~ S39VSSIN JVSSIN N\ gz9
J¥E

SH3AH3SE0
ONIHOLVW

(0.LNOD) ONILNOY 1S3ND3H 034008

Y TN

1-6G

Sheet 7 of 8 5,335,347

Aug. 2, 1994

U.S. Patent

SHIAHISHO
ONIHOLYN

IN3S = 31VIS
JOILON =SSV10

>

S3OVSSIN

$3Lvadn

Z s1INS3Y

HIHOIH = YNV
ONITANVH
ONIHOLVN

IN3S =31VIS
3OILON =SSV10

IS

H3IMOT = lNvH
SHITANVH
ONIHOLVN

H3HLO

¢-es

-~/

JOVSSIN 7.gg

ayvasia=131vis

3OLLON =SSV10
o
@3LY340 = 31V1S
3OILON =SSV10
01 3OVSSIN _|.gq
1
INISHO
'031V3HO = 3LVIS
1S3ND3H = SSV10
p-c9” 39VSSIN
HOLIMS
Qanior
oL
ONILNOY 3OILON 03d0JS

Vi ST N

Sheet 8 of 8 5,335,347

Aug. 2, 1994

U.S. Patent

SHIAHISHO
ONIHOLYN

IN3S =31VIS
JOILON = SSV10

}-65 : _w.mm\l S39VSSIN
HIHOIH = YNvY IN3S =31VIS
ONITANYH JOILON =SSY10
ONIHOLVI
He JovSSIN 1.5

H3IMOT = YNvH
SHI3ANVH
ONIHOLYW

H3H10

QayvsIa = 31v1s
301L0N =SSV10

HOLIMS
asnior

L

HOLIMS
ONIAIZO3Y
oL

$31vadn

S1InS3d

IN3S HO

‘G3LV3HO = 3VIS
300N =551 [——(¥)

JOVSSIN

% 9-69

(@.ANOD) ONILNOY 3J1LON Q3d09S

W AN E

5,335,347

1

METHOD AND APPARATUS FOR SCOPED
INTERPROCESS MESSAGE SWITCHING

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
systems. In particular, the present invention is a method
and apparatus for scoped interprocess message switch-
ing between a sender process and a plurality of receiver
processes.

2. Art Background

Conventional interprocess communication facilities
deliver messages in as many as three modes: broadcast
to all processes, multicast to a group of processes, or
point-to-point to a particular process. Except for broad-
cast delivery, the other two modes require the sender
process to supply the identities of the receiver pro-
cesses. Absent from conventional facilities is the ability
for a sender process to address a scoped message to a set
of receiver processes, specifying the name of the set but
not the identities of the processes in the set.

A process is a copy or an instance of a program, an
executable file, in process of execution. A scoped mes-
sage is a message having a message scope which defines
the set of receiver processes eligible for receiving the
scoped message.

In cooperative multiprocess applications, processes
executing within the same user session or in different
user sessions, sometimes share common files. When one
process changes one of the shared files, the other pro-
cesses sharing the file being changed, whether they are
executing within the same user session or in different
user sessions, should be informed of the change. For
example, a number of displaying processes may be dis-
playing a shared common file for different user sessions,
these displaying processes will have to update their
displays, if the shared file is changed by one of the
processes. To notify all these displaying processes, mes-
sages will have to be delivered within a session and
across sessions.

Conventional facilities require that the message be
broadcast or the identities of these receiver processes be
provided. The former is wasteful; the latter is difficult
to implement as it requires each process to communi-
cate its changing interest in the sharable files to all other
processes, and to track the changing interests of all
other processes. In cooperative multiprocess applica-
tions, the set of processes within a scope changes as
processes are created or destroyed, and as processes
work with one file, then another.

As will be described, the present invention over-
comes the disadvantages of the prior art, and provides a
method and apparatus for scoped interprocess message

5

25

30

35

40

45

switching between a sender process and a plurality of 55

receiver processes.
SUMMARY OF THE INVENTION

It is therefore an object of the present invention to
improve interprocess message switching between a
sender process and a plurality of receiver processes, in
particular, to provide switching of scoped messages.

It is another object of the present invention that mes-
sages may be scoped to a set of receiver processes,
within a session or across sessions.

These objects are realized by the method and appara-
tus for scoped interprocess message switching between
a sender process and a plurality of receiver processes of

60

65

2

the present invention. The preferred embodiment of the
method comprises the steps of registering the receiver
processes with one of a plurality of interprocess mes-
sage switches, joining message scopes by the switches
on'behalf of the registered receiver processes, selecting
the registered receiver processes by the joined switches
to receive scoped messages received from the sender
process, queuing copies of the received scoped mes-
sages by the selecting switches, for the selected receiver
processes, executing or non-executing, signaling the
selected receiver processes by the queuing switches
regarding the availability of the queued scoped mes-
sages, and delivering the queued scoped messages by
the signaling switches, when requested by the signaled
Teceiver processes, to the requesting receiver processes.
The apparatus comprises various means for accomplish-
ing the steps of registering, joining, selecting, queuing,
signaling and delivering.

For disposing the received scoped messages, the pre-
ferred embodiment of the method further comprises the
steps of registering the sender process with the receiv-
ing switch, discarding scoped notice messages with no
selected receiver processes by the receiving switch, and
replying to scoped request messages by the receiving
switch. Likewise, the apparatus further comprises vari-
ous means for accomplishing the steps of registering,
discarding and replying.

For replying to scoped request messages with no
selected handler processes, the preferred embodiment
of the method further comprises the steps of updating
the scoped request messages by the receiving switch
with the selection/handling results, selecting the regis-
tered observer processes by the joined switches to re-
ceive the reply messages, queuing copies of the reply
messages by the receiving switch for the sender process,
and by the selecting switches for the selected observer
processes, executing and non-executing, signaling the
sender process and the executing selected observer
processes by the queuing switches regarding the avail-
ability of the queued reply messages, and delivering the
queued reply messages by the signaling switches, when
requested by the signaled processes, to the requesting
processes. Similarly, the apparatus further comprises
various means for accomplishing the steps of updating,
selecting, queuing, signaling and delivering.

For replying to scoped request messages with se-
lected handler processes, the preferred embodiment of
the method further comprises the steps of queuing an
additional copy of each of the scoped request messages
by the receiving switch, pending results from the local
handler processes or the handler selecting joined
switches, and dequeuing the result pending scoped re-
quest messages by the receiving switch, upon receipt of
the results, prior to the steps of updating, selecting,
signaling, and delivering described above. Similarly, the
apparatus further comprises various means for accom-
plishing the steps of queuing and dequeuing.

Registration of the receiver processes comprises reg-
istering message patterns, signaling ways and program
type identifiers. Registration of the sender process com-
prises registering signaling ways. Receiver and sender
processes may register dynamically at their initializa-
tions or some later points during their execution.

Joining message scopes by switches on behalf of the
receiver processes comprises joining a plurality of mes-
sage scopes of various message scope types. Message
scope types comprise “Session”, “File”, “File in Ses-

5,335,347

3
sion” and “File or Session”. Message scopes comprise
a particular session, a particular file, and intersection
between a particular session and one or more particular
files, and a union of a particular session and one or more
particular files.

Scoped messages comprise a plurality of message
attributes describing the messages. Message attributes
comprise a message identifier, a message scope type, a
message sender session identifier, a message non-session
scope identifier, and a message recipient. Message attri-
butes further comprise a message class and a message
state. Message classes comprise “Request” and “No-
tice”. Message states comprise “Created”, “Sent”,
“Handled”, “‘Queued”, “Started” and “Failed”.

Selection comprises selecting at most one handler
process and any number of observer processes for each
scoped message. Both handler processes and observer
processes are selected regardless of message class. Both
executing as well as non-executing processes (i.e. pro-
grams) are selected. Only local receiver processes are
selected for session scoped messages. Remote as well as
local receiver processes are selected for non-session
scoped messages. Processes are selected by matching
message attributes. Matchings are performed against the
registered message patterns and the message patterns
within message signatures contained in program type
definitions. :

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram illustrating the apparatus of
the present invention for scoped interprocess message
switching between a sender process and a plurality of
receiver processes, comprising a joining means and a
plurality of interprocess message switches.

FIG. 2 is a block diagram illustrating one of the
joined interprocess message switches comprising a reg-
istering means, a selecting means, a queuing means, a
signaling means, a delivering means and an updating
means.

FIGS. 3a and 3b illustrate exemplary registrations for
message patterns, signaling ways and program type
identifiers, and exemplary message attributes for de-
scribing messages, used by the apparatus of the present
invention.

FIGS. 4g and 4b illustrate the routing of a scoped
request message in the preferred embodiment of the
present invention

FIGS. Sa and 5b illustrate the routing of a scoped
notif.:e message in the preferred embodiment of the pres-
ent invention

NOTATIONS AND NOMENCLATURE

The detailed description which follows is presented
largely in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer mem-
ory. These algorithmic descriptions and representations
are the means used by those skilled in the data process-
ing arts to most effectively convey the substance of
their work to others skilled in the art.

An algorithm is here, and generally, conceived to be
a self-consistent sequence of steps leading to a desired
result. These steps are those that require physical ma-
nipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical
or magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It
proves convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,

5

10

15

25

30

35

40

45

50

55

60

65

4
elements, symbols, objects, characters, terms, numbers,
or the like. It should be borne in mind, however, that all
these and similar terms are to be associated with the
appropriate physical quantities and are merely conve-
nient labels applied to these quantities.

Further, the manipulations performed are often re-
ferred to in terms, such as adding or comparing, which
are commonly associated with mental operations per-
formed by a human operator. No such capability of a
human operator is necessary, or desirable in most cases,
in any of the operations described herein which form
part of the present invention; the operations are ma-
chine operations. Useful machines for performing the
operations of the present invention include general pur-
pose digital computers or other similar devices. In all
cases, it should be borne in mind that the distinction
between the method operations in operating a computer
and the method of computation itself. The present in-
vention relates to method steps for operating a com-
puter in processing electrical or other (e.g. mechanical,
chemical) physical signals to generate other desired
physical signals.

The present invention also relates to apparatus for
performing these operations. This apparatus may be
specially constructed for the required purposes or it
may comprise a general purpose computer as selec-
tively activated or re-configured by a computer pro-
gram stored in the computer. The algorithms presented
herein are not entirely related to any particular com-
puter or other apparatus. In particular, various general
purpose machines may be used with programs written
in accordance with the teaching herein, or it may prove
more convenient to construct more specialized appara-
tus to perform the required method steps. The required
structure for a variety of these machines will appear
from the description given below.

Glossary

A process is an instance of execution of a program.

A session is a collection of processes executing on
behalf of a user.

A local process is a process within a user’s session.

A remote process is a process outside a user’s session,
in another user’s session.

A switch is a message routing process.

A local switch is a switch within a user’s session.

A remote switch is a switch outside a user’s session, in
another user’s session.

A message scope specifies the reach, or the range, or
the confine of the message, e.g. “Session”, “File in Ses-
sion”, or “File or session”.

A scoped message is a message with its scope speci-
fied.

Joining a switch to a non-session message scope is
enrolling the switch as one of remote switch for mes-
sages of the particular non-session message scope.

A session scoped message is a scoped message whose
reach, range, or confine is limited to a session.

A non-session scoped message is a scoped message
whose reach, range, or confine is not limited to a ses-
sion.

Detailed Description of the Invention

A method and apparatus for scoped interprocess
message switching having particular application for
switching scoped messages between a sender process
and a plurality of receiver processes being executed in
the same or different sessions, on the same or different

5,335,347

5

computers in a network, is disclosed. In the following
description for purposes of explanation, specific num-
bers, materials and configurations are set forth in order
to provide a thorough understanding of the present
invention. However, it will be apparent to one skilled in
the art that the present invention may be practiced
without the specific details. In other instances, well
known systems are shown in diagrammatical or block
diagram form in order not to obscure the present inven-
tion unnecessarily.

1. Overview

Referring now to FIG. 1, a block diagram illustrating
the preferred embodiment of the apparatus for scoped
interprocess message switching of the present invention
80 is shown. The apparatus 80 serves a plurality of
sender processes 42, 43 sending scoped messages (not
shown) to, and getting reply messages (not shown) from
a plurality of receiver processes 52-55.

The apparatus 80 comprises a joining means 70, and a
plurality of identical interprocess message switches 10,
11 (two shown) coupled to the joining means 70. Each
switch 10 directly serves a local user session comprising
the switch 10, a plurality of local sender processes 42
and a plurality of local receiver processes 52, 54. Each
switch 10 indirectly serves remote user sessions through
remote joined switches 11 within the remote user ses-
sions. Similarly, a remote user session comprises the
remote joined switch 11, a plurality of remote sender
processes 43 and a plurality of remote receiver pro-
cesses 53, 55. Processes are local to the switches within
their sessions (one switch per session) and remote to the
other switches within other sessions.

2, Joining Means

Continuing referring to FIG. 1, the joining means 70
is used by the interprocess message switches 10, 11 to
join one or more non-session message scopes on behalf
of locally registered receiver processes. Each of the
switches 10, 11 joins a non-session message scope when
one of its locally registered receiver processes 52-55
registers a message pattern with the particular non-ses-
sion message scope. Each of the switches, 10, 11 quits a
non-session message scope when all of its locally regis-
tered receiver processes 52-55 have unregistered mes-
sage patterns with the particular non-session message
scope. Message scopes and registering of receiver pro-
cesses will be discussed in further details later.

The joining means 70 comprises at least one joined
list 74, and at least one shared messages queues 76. Each
of the joined lists 76 comprises a plurality of joined
records. Each joined record comprises a session identi-
fier and a timestamp. The session identifier identifies the
joining switch 10, 11, and the timestamp identifies the
time the switch 10, 11 most recently joins the particular
message scope. The joining switches 10, 11 join a mes-
sage scope by creating a joined record in the joined hst
76 for the particular message scope.

Preferably, a plurality of joined lists 74 organized on
a per message scope type basis is used. Additionally,
each of the joined lists 74 further comprises joined sub-
lists organized on a per message scope basis. Similarly,
a plurality of shared program pending message queues
76 organized on a per message scope type basis is used.
Each of the shared program pending message queues 76
further comprise sub-queues organized on a per mes-
sage scope basis.

3. Interprocess Message Switch

Referring now to FIG. 2, a block diagram illustrating
one of the identical interprocess message switches 10 is

10

15

20

25

35

40

45

50

55

60

65

6

shown. The switch 10 is shown in the context of its user
session comprising the switch 10, a plurality of local
sender processes 42 and a plurality of local receiver
processes 52, 54. The local processes 42, 52, 54 are
executing on a plurality of computers 30, 40, 50 con-
nected to a network 60.. These computers 30, 40, 50 and
other computers (not shown) connected to the network
60 further comprise other remote user sessions. Each of
these remote user sessions comprises a remote switch
(not shown), a plurality of remote sender/receiver pro-
cesses (not shown).

The local sender processes 42 send scoped messages
64, 65 to and get reply messages 67 from, the local
receiver processes 52, 54 and the remote receiver pro-
cesses. The scoped messages 64, 65 comprise scoped
request messages 64, and scoped notice messages 65.
Local receiver processes comprise local handler pro-
cesses 52 and local observer processes 54. Similarly,
remote receiver processes comprise remote handler
processes and remote observer processes.

The switch 10 comprises a registering means 12 com-
prising an interface (not shown) for receiving registra-
tions 62 as inputs from the local processes 42, 52, 54, a
selecting means 14 coupled to the updating means 18
and comprising an interface (not shown) for receiving
scoped messages 64, 65 as inputs from the local sender
processes 42, a queuing means 16 coupled to the select-
ing means 14, an updating means 18 coupled to the
selecting means 14 and comprising an interface (not
shown) for receiving results 66 as inputs from the local
receiver processes 52, 54 and the remote switches, a
signaling means 20 coupled to the registering means 12
and the queuing means 16 for outputing signals to the
processes 42, 52, 54, and a delivering means 21 compris-
ing an interface (not shown) for receiving acknowl-
edgements from the local processes 42, 52, 54 as inputs
and outputing scoped messages 64, 65 to the local re-
ceiver processes 52, 54 and reply messages 67 to the
local sender processes 42.

a. Registering Means

Continuing referring to FIG. 2, the registering means
12 is for registering local receiver processes 52, 54 with
the switch 10. Receiver processes are registered with
one switch, their local switch. Registration of local
receiver processes 52, 54 comprises registering at least
one signaling way and at least one message pattern for
each of the local receiver processes 52, 54. Addition-
ally, registration of local receiver processes may further
comprise registering a program type identifier for each
of the local receiver processes 52, 54.

The signaling ways describe to the switch 10, how
the registering local receiver processes 52, 54 is to be
signaled regarding the availability of a scoped message
64, 65. The message patterns describe to the switch 10,
the scoped messages 64, 65 which the registering local
receiver process 52, 54 is to receive. The program type
identifier describes to the switch 10 the program type of
the program being executed by the registering local
receiver process 52, 54.

The registering local processes 52, 54 may register
dynamically during their initialization or at some later
point during their execution. The registering local pro-
cesses 52, 54 may add registrations 62 or delete prior
registrations 62. The adding and deleting may be adding
and deleting of subsets of registrations 62.

For further information on the registering means,
registrations comprising message patterns, signaling
ways, and program type identifiers, see the Specifica-

5,335,347

7
tion in co-pending U.S. patent application, Ser. No.
07/627,735, filed on Dec. 14, 1990, assigned to the as-
signee of the present Application, Sun Microsystems
Inc., entitled A method and Apparatus for Interprocess
Message Switching, which is hereby fully incorporated
by reference.

Referring now to FIG. 3g, a local receiver process
registers its interest in handling or observing messages
pertaining to a particular message scope by registering
message patterns 82, 84 comprising message scope type
attributes 89, 91 equaling the message scope type of the
particular message scope. Additionally, for non-session
message scope types 91, the message patterns 84 may
further comprise message non-session scope identifiers
equaling the particular message scope. As described in
the incorporated Specification, upon receipt of these
registrations, the registering means extracts the message
patterns and stores them in tables for subsequent use by
the selecting means.

Preferably, message patterns with message scope
types scoped to intersections or unions of session mes-
sage scope type with one or more non-session message
scope types may also be registered. It will be under-
stood that the intersection of session message scope type
with one or more non-session message scope types is a
session message scope type, whereas, the union of ses-
sion message scope type with one more non-session
message scope types is a non-session message scope
type. Message scope types and message scopes will be
discussed in further details in conjunction with message
attributes. '

Additionally, a registered local receiver process may
also widen or narrow its interest in handling or observ-
ing messages pertaining to individual non-session mes-
sage scopes, by adding to 94 or deleting from 96 the
content of the non-session message scope identifier attri-
butes 93 in the registered message patterns. As de-
scribed in the incorporated Specification, upon receipt
of these registrations, the registering means adds to or
deletes from the content of the non-session message
scope identifier attributes in the stored message patterns
scoped to the particular non-session message scope
types. Additionally, the registering means also adds to
or deletes from the content of the non-session, message
scope identifier attributes in the stored message patterns
scoped to the intersections or unions with the particular
non-session message scope types.

An exemplary registration containing a plurality of
message patterns scoped to different message scopes is
shown in the first exemplary registration 62 in FIG. 3a.
The first exemplary registration 62 comprises two han-
dle message patterns 82, 84 scoped to different message
scope types, and an observe message pattern 86 not
scoped to any particular message scope type.

The first exemplary handle message pattern 82 con-
tains a plurality of message attributes 83 describing to
the switch that the registering local receiver process is
to receive messages 64 with a message class attribute of
“Request”, a message operation attribute of “Create
Obj”, representing the action of creating an object, and
a message scope type attribute of “Session”.

The second exemplary handle message pattern 84
contains a plurality of message attributes 85 describing
to the switch that, the registering local receiver process
is to receive messages 64 with a message class attribute
of “Request”, a message operation attribute of “Put__
Contents”, representing the action of writing out to an
object, a message scope type attribute of “File”, and a

20

25

30

35

40

45

50

55

60

message non-session scope identifier attribute of “Al-
pha”, representing the identifier of a particular file.

The exemplary observe message pattern 86 contains a
plurality of message attributes 87 describing to the
switch, that the registering local process is to receive
messages 65 with a message class of “Notice”, a mes-
sage operation attribute of “LinkChgd, NodeChgd”,
representing the occurrence of the events of a link
change or a node change, and a message state attribute
of “Handled”, regardless of the message scope type
(none specified).

Two exemplary registrations containing addition to
and deletion from message patterns scoped to a particu-
lar message scope type are also shown in the fourth and
fifth exemplary registration 62 in FIG. 3a. The fourth
exemplary registration 62 comprises an addition 94,
describing to the switch that, the file identifier of
“Beta” is to be added to all message non-session scope
identifier attributes in registered message patterns
scoped to the message scope types “File”, “File in Ses-
sion” and “File or Session”. “File in Session”is the
intersection of the message scope type “File” and the
message scope type “Session”, and “File or Session” is
the union of these message scope types. The fifth exem-
plary registration 62 comprises a deletion 96, describing
to the switch that the file identifier of “Alpha” is to be
deleted from all message non-session scope identifier
attributes in registered message patterns scoped to the
message scope types “File”, “File in Session” and “File
or Session”.

Additionally, when a local receiver process registers
a program type identifier 92, the registering means also
checks the shared program pending messages queues in
the joining means previously described, to determine if
there are messages pending for a process executing a
program of the particular program type being regis-
tered. In the registration illustrated, the switch will
check for messages pending for a process executing the
program *“‘Starcalc”.

b. Selecting Means

Referring to FIG. 2 again, the selecting means 14 of
a receiving switch 10 is for selecting local receiver
processes 52, 54 and remote receiver processes (through
the joined switches) to receive scoped messages 64, 65
received from the local sender processes 42. Selection
of receiver processes comprises selecting at most one
local handler process 52, and any number of local ob-
server processes 54 for each session scoped message 64,
65. Selection of receiver processes further comprises
selecting at most one local 52 or remote handler pro-
cess, and any number of local 54 and remote observer
processes for each non-session scoped message 64, 65.
Handler processes are selected for scoped notice mes-
sages 65 as well as for scoped request messages 64.
Likewise, observer processes are selected for scoped
request messages 64 as well as for scoped notice mes-
sages 65. Non-executing receiver processes (i.e. pro-
grams) are selected as well as executing receiver pro-
cesses.

For further information on the selecting means, and
the selection of local handler and observer processes,
executing and non-executing, also see the incorporated
Specification in co-pending U.S. patent application, Ser.
No. 07/627,735, filed on Dec. 14, 1990, assigned to the
assignee of the present Application, Sun Microsystems
Inc., entitled A Method and Apparatus for Interprocess
Message Switching,.

5,335,347

9

For session scoped messages 64, 65, no additional
action beyond what are described in the incorporated
Specification is taken by the selecting means 14 of the
receiving switch 10. As a result, only local receiver
processes 52, 54 are selected.

For non-session scoped messages 64, 65, the selecting
means 14 of the receiving switch 10 further selects
joined switches and sends copies of the non-session
scoped messages 64, 65 to the selected joined switches
for selection of remote observer processes and remote
handler processes. The selecting means 14 of the receiv-
ing switch 10 selects the joined switches for selection of
remote observer processes regardless whether local
receiver processes 52, 54 are selected. The selecting
means 14 of the receiving switch 10 selects the joined
switches for selection of remote handler processes, only
if local handler processes 52 are not selected.

For selection of remote observer processes, the se-
lecting means 14 of the receiving switch 10 selects, for
each of the non-session scoped messages 64, 65, all
Jjoined switches that have not been sent a copy of the
non-session scoped message 64, 65. The selecting means
14 of the receiving switch 10 further comprises a check-
ing means (not shown) coupled to the third matching
means (see incorporated Specification) for determining
whether a joined switch has been sent a copy of a non-
session scoped message 64, 65 by comparing the content
of a message dispatched list attribute of a non-session
scoped message 64, 65 against the joined records in the
joined lists for the particular non-session message scope.
If one or more joined switches are selected for a non-
session scoped message 64, 65, the checking means of
the selecting means 14 of the receiving switch 10 up-
dates a message recipient attribute in the non-session
scoped messages 64, 65 to “Observers Only”, and the
message dispatched list attribute with the session identi-
fiers of the selected joined switches, and sends a copy of
the updated non-session scoped message 64, 65 to each
of the selected joined switches. The message recipient
attribute and the message dispatched list attribute of a
scoped message 64, 65 will be discussed in further de-
tails in conjunction with other message attributes later.

For selection of remote handler processes, the select-
ing means 14 of the receiving switch 10 selects, for each
of the non-session scoped messages 64, 65 with no local
handler processes, one of the joined switches that have
not been sent a copy of the non-session scoped message
64, 65. The selecting means 14 of the receiving switch
10 determines whether a joined switch has been sent a
copy of a non-session scoped message 64, 65 in the same
manner as described above. The checking means of the
selecting means 14 of the receiving switch 10 selects one
of these joined switches arbitrarily. If a joined switch is
selected for a non-session scoped message 64, 65, the
selecting means 14 of the receiving switch 10 updates
the message recipient attribute in the non-session
scoped messages 64, 65 to “Handler Only”, message
handler program type attributes with matching handler
program types from message signature matchings and
the message dispatched list attribute with the selected
joined switch’s session identifier, and sends a copy of
the updated non-session scoped message 64, 65 to the
selected joined switch.

The selecting means 14 of the receiving switch 10
repeats this process until a remote handler process is
selected or all the joined switches have been selected.
The selecting means 14 of the receiving switch 10 being
coupled to the updating means 18 receives the scoped

0

—

5

20

25

30

35

40

45

50

55

60

65

10

messages 64, 65 as input again, when no remote handler
processes are selected by the selected joined switches.
The selecting means 14 of the receiving switch 10 may
determine whether the scoped messages 64, 65 are re-
ceived from the sender processes 42 or the updating
means 18 in a variety of manners, including but not
limited to the message state attributes. The message
state attribute and the updating means 18 will be dis-
cussed in further details later in conjunction with mes-
sage attributes and reply messages respectively.

The non-session scoped messages 64, 65 may be sent
from the receiving switch 10 to the selected joined
switches using any system message sending services.
Preferably, the same system message sending services
used by the registering means 12, as described in the
incorporated Specification, is used.

Selection of remote receiver processes by the select-
ing means of a joined switch comprises the same steps of
matching, choosing, and starting for selection of local
receiver processes 52, performed by the selecting means
14 of the receiving switch 10. The selecting means of a
joined switch do not select joined switches. Further-
more, if the program type definitions 68 are stored in
files 24 shared among the joined switches, the selecting
means of a joined switch may skip the step of message
signatures matching. The selecting means of a joined
switch may determine whether the scoped messages 64,
65 are received from the receiving switch 10 or its local
sender processes in a variety of manners, including but
not limited to the message state attribute and the mes-
sage recipient attribute.

The routing of session and non-session scoped request
and notices messages 64, 65 to local and remote handler
and observer processes will be discussed in further de-
tails later.

c. Queuing Means

Referring to FIG. 2 again, the queuing means 16 of
the receiving switch 10 is for queuing copies of the
scoped messages 64, 65 with selected local receiver
processes 52, 54. The queuing means 16 of the receiving
switch 10 being coupled to the selecting means 14 re-
ceives the scoped messages 64, 65 and local selection
results from the selecting means 14 as input. The queu-
ing means 16 of the receiving switch 10 queues copies of
the scoped messages 64, 65 with executing selected
local receiver processes 52, 54 for subsequent retrieval
by these local processes. The queuing means 16 of the
receiving switch 10 also queues copies of the scoped
messages 64, 65 with non-executing selected receiver
processes (i.e. programs), if the message disposition
attributes are “queue”.

The queuing means 16 of the receiving switch 10
queues copies of the program pending session scoped
messages 64, 65 into one of a plurality of private pro-
gram pending messages queues 26. The queuing means
16 of the receiving switch 10 queues copies of the pro-
gram pending non-session scoped messages 64, 65 into
one of the shared program pending messages queues in
the joining means (see FIG. 1), for the particular non-
session message scopes.

Similarly, the queuing means of a joined switch is for
queuing copies of the scoped messages 64, 65 with se-
lected remote receiver processes (local to the joined
switch). The queuing means of a joined switch receives
the scoped messages 64, 65 as input and queues copies of
them in the same manner as the queuing means 16 of the
receiving switch 10.

5,335,347

11

For further information on the queuing means and the
private program pending messages queues, also see the
incorporated Specification in co-pending U.S. patent
application Ser. No. 07/627,735, filed on Dec. 14, 1990,
assigned to the assignee of present Application, Sun
Microsystems Inc., entitled A Method and Apparatus
for Interprocess Message Switching.

d. Signaling and Delivering Means

Continuing referring to FIG. 2, the signaling means
20 of the receiving switch 10 is for signaling the selected
local receiver processes 52, 54 regarding the availability
of a scoped message 64, 65. The signaling means 20 of
the receiving switch 10 being coupled to the queuing
means 16 of the receiving switch 10, receives the se-
lected executing local receiver process identifiers from
the queuing means 16 of the receiving switch 10, as
input. The signaling means 20 of the receiving switch 10
being also coupled to the registering means 12 of the
receiving switch 10 receives receiver processes identi-
fiers of registering local receiver processes with pro-
gram types that are matching against pending pro-
grams, from the registering means 12 of the receiving
switch 10, as input. The signaling means 20 of the re-
ceiving switch 10 signals these executing local receiver
processes 52, 54 regarding the availability of the queued
scoped messages 64, 65. It will be understood that local
receiver processes 52, 54 being started by the receiving
switch 10 do not have to be signaled. The starting local
receiver processes 52, 54 are “signaled” as part of the
start up process.

Similarly, the signaling means of a joined switch is for
signaling the selected remote receiver processes (local
to the joined switch). The signaling means of a joined
switch receives the remote receiver processes identi-
fiers (local to the joined switch) and signals them in the
same manner as the signaling means 20 of the receiving
switch 10.

The delivering means 21 of the receiving switch 10 is
for dequeuing the queued scoped messages 64, 65 and
delivering the scoped messages 64, 65 to the selected
local receiver processes 52, 54. The delivering means 21
of the receiving switch 21 comprises an interface (not
shown) for receiving acknowledgements from the local
receiver processes 52, 54 as inputs, indicating that the
local receiver processes 52, 54 are ready to receive the
queued scoped messages 64, 65. Upon receipt of the
acknowledgements, the delivering means 21 of the re-
ceiving switch 10 dequeues the queued scoped messages
64, 65 and delivers the scoped messages 64, 65 to the
acknowledging local receiver processes 52, 54.

Similarly, the delivering means of a joined switch is
for dequeuing and delivering the queued scoped mes-
sages 64, 65 to selected remote receiver processes. The
delivering means of a joined switch receives acknowl-
edgement from the signaled remote receiver processes
(local to the joined switch), dequeues and delivers the
scoped messages 64, 65 in the same manner as the deliv-
ering means 21 of the receiving switch 10.

For further information on the signaling means, and
the delivering means, also see the incorporated Specifi-
cation in co-pending U.S. patent application, Ser. No.
07/627,735, filed on Sep. 14, 1990, assigned to the as-
signee of present Application, Sun Microsystems Inc.,
entitled A Method and Apparatus for Interprocess Mes-
sage Switching.

4. Message Attributes

Referring now to FIG. 3b, a block diagram illustrat-
ing exemplary message attributes used by the apparatus

10

20

25

30

35

40

45

55

65

12

of the present invention for describing the scoped mes-
sages 64, 65 is shown. Each scoped message 64, 65 com-
prises at least one message attribute 100-130. The mes-
sage attributes 100-130 comprise a message identifier
100, a message scope type attribute 102, a message re-
cipient attribute 104, a message dispatch list attribute
106, a message sender session identifier attribute 108, a
message non-session scope identifier attribute 110. Pref-
erably, the message attributes 112-130 further comprise
a message class attribute 112, a message state attribute
114, a message operation attribute 116, a message opera-
tion argument attribute 118, message sender identifier
120, a message sender program type identifier 122, a
message handler identifier 124, a message handler pro-
gram type identifier 126, a message disposition attribute
128, and a message failure reason attribute 130.

The message identifier 100 uniquely identifies the
scoped message 64, 65. The unique message identifier
100 may be constructed in a variety of manners. Prefer-
ably, the unique message identifier 100 comprises a
sender computer identifier, a sender process identifier
and a sender process specific message identifier, such as
a message counter, for example, Sextant.712.0001.

The message scope type attribute 102 describes the
message scope type of the scoped message 64, 65. Mes-
sage scope types may be “Session” or one of a plurality
of non-session message scope types. Non-session mes-
sage scope types comprise a message scope type of
“File”. The message scope type of “Session” is the
defaulted message scope type, if no message scope type
is specified. A “Session” message scope type describes
to the switch that only local receiver processes regis-
tered with the receiving switch are to be selected. A
non-session message scope type describes to the receiv-
ing switch that remote receiver processes are to be
selected as well as local receiver processes.

Preferably, message scope types may further com-
prise intersections and unions of message scope types
comprising an intersection message scope type of “File
in Session”, and a union message scope type of “File or
Session”. As discussed earlier, the intersection of a non-
session message scope with the “Session” message
scope is a session message scope, therefore, only local
receiver processes are selected for the message scope
type of “File in Session™; whereas, the union of a non-
session message scope with the “Session” message
scope is a non-session message scope, therefore remote
as well as local receiver processes are selected for the
message scope type of “File or Session”.

The message recipient attribute 104 describes to the
selecting switch, what type of receiver processes are to
be selected. The message recipient attribute 104 com-
prises one of a plurality of recipient specifications, Re-
cipient specifications comprise “Both Handler and Ob-
servers”, “Handler Only” and “Observers Only”. The
recipient specification of “Both Handler and Observ-
ers” is the defaulted recipient specification, if none spec-
ified.

The message dispatched list attribute 106 describes to
the selecting switch, which joined switch has been sent
the scoped message 64, 65 and the time at which the
scoped message 64, 65 was sent. The message dis-
patched list attribute 104 comprises a plurality of dis-
patched records comprising a session identifier and a
timestamp. The session identifier identifies the joined
switch that has been sent the scoped message 64, 65.
The timestamp marks the time the scoped message 64,
65 was sent.

5,335,347

13

The message sender session identifier attribute 108
describes to the selecting switch, which session (i.e.
which joined switch) the sender process is affiliated
with. The session identifier may be implemented in a
wide variety of manners, as long as it uniquely identifies
the joined switch.

The message non-session scope identifier 110 de-
scribes to the selecting switch, the particular non-ses-
sion message scope that the scoped message 64, 65 is
scoped to, e.g. a file identifier. Likewise, the message
non-session scope identifier may be implemented in a
wide variety of manners, as long as it uniquely identifies
the non-session message scope.

For further information on other message attributes
112-130, also see the incorporated Specification in co-
pending U.S. patent application Ser. No. 07/627,735,
filed on Dec. 14, 1990, assigned to the assignee of the
present Application, Sun Microsystems Inc., entitled A
Method and Apparatus for Interprocess Message
Switching.

5. Replies

Referring back to FIG. 2, the interprocess message
switch 10 also provides specific supports for providing
reply messages 67 to the scoped request messages 64.
Reply messages 67 are generated by the receiving
switch 10 for the local sender processes 42 for scoped
request messages 64. No reply messages 67 are gener-
ated by the receiving switch 10 for the local sender
processes 42 for scoped notice messages 65. Addition-
ally, the supports for providing reply messages 67 are
also used by the receiving switch 10 and the joined
switches to facilitate selection for remote handler pro-
cesses for scoped notice messages 65 as well as scoped
request messages 64.

Additional specific supports for the reply messages 67
are provided by the updating means 18 and the queuing
means 16. The registering means 12, the selecting means
14, the signaling means 20, and the delivering means 21
are also used, but no additional supports beyond what
has been described are required in these means.

a, Updating Means

The updating means 18 of a receiving switch 10 is for
generating reply messages 67 to scoped request mes-
sages 64 for the local sender processes 42. The updating
means 18 of a receiving switch 10 is also for causing the
selecting means 14 of a receiving switch 10 to select
another joined switch.

The updating means 18 of the receiving switch 10
being coupled to the selecting means 14 of the receiving
switch 10 receives results of local handler processes
selection from the selecting means 14 of the receiving
switch 10, as input. The updating means 18 of the re-
ceiving switch 10 further comprises an interface (not
shown) for receiving results 66 of remote handler pro-
cesses selection from joined switches as input. The up-
dating means 18 of the receiving switch 10 further re-
ceives through the same interface, handling results 66
from local handler processes 52 and remote handler
selecting switches. Handling results 66 comprise up-
dates of “Handled” or “Failed” to message state attri-
butes and updates to message failure reason attributes.
Message state attributes and message failure reason
attributes will be discussed in further details later in
conjunction with message attributes.

Upon receipt of local selection results from the select-
ing means 14 of the receiving switch 10, indicating
failure to select local handler processes 52 and joined
switches (if applicable), the updating means 18 of the

5

10

20

25

30

35

45

50

55

60

65

14

receiving switch 10 generates reply messages 67 to
scoped request messages 64 and discards scoped notice
messages 65. The updating means 18 of the receiving
switch 10 generates the reply messages 67 by updating
the scoped request messages 64. Updates comprise up-
dating message state attributes to “Failed”, and message
failure reason attributes. Upon receipt of local selection
results from the selecting means 14, indicating success
in selecting local handler processes 52 or joined
switches (if applicable), the updating means 18 of the
receiving switch 10 takes no action.

Upon receipt of the remote selection results (always
equal “Failed”) from a joined switch, the updating
means 18 of the receiving switch 10 dequeues the results
pending scoped messages 64, 65 from the results pend-
ing messages queues 26, and outputs the dequeued
scoped messages 64, 65 to the selecting means 14 of the
receiving switch 10. As discussed earlier, the selecting
means 14 of the receiving switch 10 being coupled to
the updating means 18 of the receiving switch 10 re-
ceives the dequeued scoped message 64, 65 as input for
selection of the “next” joined switch. Remote selection
results will be discussed in further details later in con-
junction with the updating means of a joined switch.
Queuing of the scoped messages 64, 65 into results
pending messages queues will be discussed in further
details later in conjunction with the specific supports
provided for the reply messages 67 by the queuing
means 16 of the receiving switch 10.

Upon receipt of handling results 66 for scoped re-
quest messages 64 from local handler processes or re-
mote handler selecting switches, the updating means 18
of the receiving switch 10 generates the reply messages
67. The updating means 18 of the receiving switch 10
dequeues the results pending scoped request messages
from results pending messages queues 26 and generates
the reply messages 67 by updating the scoped request
messages 64 according to the handling results 66 re-
ceived.

The updating means of a joined switch is used for
providing remote selection and handling results 66 for
scoped request and notice messages 64, 65 to the receiv-
ing switch 10. The updating means of a joined switch
being coupled to the selecting means of the joined
switch receives results of remote handler processes
selection (local to the joined switch) from the selecting
means of the joined switch, as input. The updating
means of a joined switch further comprise an interface
(not shown) for receiving remote handling results from
remote handler processes (local to the joined switch).

Upon receipt of selection results from the selecting
means of a joined switch, indicating failure to select
local handler processes (remote to the receiving switch
10), the updating means of the joined switch sends the
selection results 66 for the scoped messages 64, 65 to the
receiving switch 10, Upon receipt of selection results
from the selecting means of a joined switch, indicating
success in selecting local handler processes (remote to
the receiving switch 10), the updating means of the
Joined switch generates handling results to the scoped
notice messages 65 and sends the handling results 66 to
the receiving switch 10; no action is taken for scoped
request messages 64.

Upon receipt of local handling results from local
handler processes of a joined switch (remote to the
receiving switch 10), the updating means of the joined
switch dequeues the results pending scoped request
messages 64 from results pending messages queues,

5,335,347

15
generates the remote handling results 66 based on the
local handling results received and sends the remote
handling results 66 to the receiving switch 10.

Similar to the selecting means, the updating means
may determine whether the switch is a receiving switch
10 or a joined switch in a variety of manners, including
but not limited to the message state and recipient attri-
butes.

b. Other Means

Continuing referring to FIG. 2, to support replying to
the scoped request messages 64, the registering means
12 is also for registering the local sender process 42 with
the receiving switch 10. Similar to the local receiver
processes 52, 54, a local sender process is registered
with one switch. Registration of local sender processes
42 comprises registering at least one signaling way for
each of the local sender processes 42.

Additionally, the queuing means 16 of the receiving
switch 10 queues additional copies of the scoped mes-
sages 64, 65 sent to the joined switches for selection of
remote handler processes, pending receipt of results 66
from the joined switches. The queuning means 16 of a
handler selecting receiving switch 10 also queues addi-
tional copies of the scoped request messages 64 with
selected local handler processes 52, pending receipt of
results 66 from the local handler processes 52. Similarly,
the queuning means of a handler selecting joined switch
queues additional copies of the scoped request messages
64 with selected local handler processes (remote to the
receiving switch 10) in the same manner as the receiv-
ing switch 10.

The selecting means 14 of the receiving switch 10 is
also for selecting any number of local observer pro-
cesses 54 and joined switches (if applicable) to receive
copies of the reply messages 67 generated by the receiv-
ing switch 10 for the local sender processes 42. Simi-
larly, the selecting means of a joined switch is for select-
ing remote observer processes (local to the joined
switch) to receive copies of the reply messages 67. Se-
lection of local and remote observer processes for reply
messages 67 comprises the same steps for selecting local
and remote observer processes for the original scoped
messages 64, 65. As discussed earlier, reply messages 67
are generated by updating the scoped request messages
64, therefore, reply messages 67 are scoped to the same
message scope types and message scopes, as the original
scoped request messages 64. Thus, reply messages 67 to
non-session scoped request messages 64 are also for-
warded to other joined switches for selection of remote
receiver processes.

The queuing means 16 of the receiving switch 10 is
also for queuing copies of the reply messages 67 for the
original local sender processes 42 and selected local
observer processes 54. Similarly, the queuing means of
a joined switch is also for queuing copies of the reply
messages 67 for selected remote observer processes
(local to the joined switch). The signaling means 20 of
the receiving switch 10 is also for signaling the original
local sender processes 42, and the selected executing
local observer processes 54 regarding the availability of
the queued reply messages 67. Likewise, the signaling
means of a joined switch is for signaling the selected
executing remote observer processes (local to the joined
switch). The delivering means 21 of the receiving
switch 10 is also for dequeuing and delivering the
queued reply messages 67 upon request of the signaled
local processes 42, 54, to the requesting local processes
42, 54. Similarly, the delivering means of a joined

20

25

35

40

45

55

60

65

16
switch is also for dequeuing and delivering the queued
reply messages 67 upon request of the signaled remote
processes (local to the joined switch), to the requesting
remote processes (local to the joined switch).

For further information on replying to request mes-
sages, also see the incorporated Specifications in co-
pending U.S. patent application, Ser. No. 07/627,735,
filed on Dec. 14, 1990, assigned to the assignee of the
present Application, Sun Microsystems Inc., entitled A
Method and Apparatus for Interprocess Message
Switching.

6. Scoped Request Message Routing

Referring now to FIGS. 44 and 4b, two block dia-
grams summarizing the routing and disposition of a
scoped request message are shown. The scoped request
messages 64-1 to 64-6, the results 66-1 to 66-3, and the
reply messages 67-1 to 67-5, relate to the scoped request
messages 64, the results 66 and the reply messages 67 of
FIG. 2. Likewise, the handler processes 52-1, 52-2, 53-1,
53-2 and the observer processes 54-1, 54-2, 55-1, 55-2
relate to the handler processes 52, 53 and the observer
processes 54, 55 of FIG. 1.

a. Receiving Switch

Referring first to FIG. 4a, initially, the scoped re-
quest message with a message state attribute of “Cre-
ated” 64-1 is sent to the receiving switch 10 as input.
Copies of the scoped request message with the message
state attribute changed to “Sent” 64-4 are eventually
routed to all selected local observer processes 54-1. If
the scoped request message is' scoped to a non-session
message scope, copies of the scoped request message
64-3 with the message state attribute changed to “Sent”,
and message recipient attribute changed to “Observers
Only” are also sent to the all joined switches that have
not been sent the non-session scoped request message,
for continued selection and routing to remote observer
processes.

If local handler processes 52-1, 52-2 are found, one
copy of the scoped request message with the message
state attribute changed to “Sent” 64-2 is eventually
routed to the local handler process with the highest
ranking 52-1. No copy of the scoped request message
64-2 is routed to the other eligible local handler pro-
cesses with lower rankings 52-2.

If no local handler process is selected by the receiv-
ing switch 10 and the scoped request message is scoped
to a message scope of “Session”, the receiving switch
updates the message state attribute to “Failed” and
generates a reply message 67-1. The reply message with
a message state attribute of “Failed” 67-1 is eventually
routed back to the originating local sender process 42.

If no local handler process is selected by the receiv-
ing switch 10, the scoped request message is scoped to
a non-session message scope, and there are other joined
switches, the scoped request message 64-3 with the
message state attribute changed to “Sent”, and the mes-
sage recipient attribute updated to “Handler Only”, is
sent to one of the joined switches that has not been sent
the non-session scoped request message 64-3, for contin-
ued selection and routing to a remote handler process.
As described earlier, the joined switch being sent the
non-session scoped request message 64-3 is selected
arbitrarily from all the joined switches that have not
received the non-session scoped request message 64-3.
The process is repeated until a remote handler process is
found or all these joined switches have been selected.
The receiving switch 10 is provided with the remote

5,335,347

17
selection results 66-1 when remote handler processes
are not found, by the selected joined switches.

Similarly, if no remote handler process is selected by
any of the joined switches for the non-session scoped
request message 64-3, the receiving switch 10 updates
the message state attribute to “Failed” and generates a
reply message 67-1. The reply message with a message
state attribute of “Failed” 67-1 is eventually routed back
to the originating local sender process 42.

If the scoped request message is handled locally, the
handling result 66-1 is sent from the local handler pro-
cess 52-1 to the receiving switch 10 as input. If the
scoped request message is handled remotely, the han-
dling result 66-1 is sent from the handler selecting
Joined switch to the receiving switch 10 as input. In
either case, the receiving switch 10 updates the message
state attribute to “Handled” or “Failed” and generates a
reply message 67-2.

Copies of the .reply message with a message state
attribute “Handled” or “Failed” 67-2, 67-3, are eventu-
ally routed to all selected local observer processes 54-2,
as well as the originating sender process 42. If the reply
message 67-2 is a reply message to a non-session scoped
request message and there are joined switches that have

10

not received a copy of the reply message 67-2, a copy of 25

the reply message 67-2 with the message recipient attri-
bute changed to “Observers Only” is also sent to all the
joined switches that have not received a copy of the
reply message 67-2, for continued selection of remote
observer processes.

b. Joined Switch

Referring now to FIG. 4b, upon receipt of a non-ses-
sion scoped request message 64-4 with a message recipi-
ent attribute of “Observers Only” from the receiving
switch, copies of the non-session scoped request mes-
sage 64-6 are eventually routed to selected local ob-
server processes (remote to the receiving switch) 55-1.

If a non-session scoped request message 64-4 with a
message recipient attribute of “Handler Only” is re-
ceived from the receiving switch, one copy of the
scoped request message with the message state attribute
changed to “Sent” 64-5 is eventually routed to the local
handler process (remote to the receiving switch) with
the highest ranking 53-1, if local handler processes 53-1,
52-2 (remote to the receiving switch) are found. Simi-
larly, no copy of the scoped request message 64-5 is
routed to the other eligible local handler processes (re-
mote to the receiving switch) with lower rankings 53-2.
Additionally, results of the selection 66-3 are sent by the
joined switch 11 to the receiving switch, when the
Jjoined switch 11 fails to select a local handler process
(remote to the receiving switch).

If the scoped request message is handled locally (re-
mote to the receiving switch), the result 66-2 is sent
from the local handler process 53-1 (remote to the re-
ceiving switch) to the joined switch 11 as input. The
Jjoined switch 11 forwards the received results 66-3 to
the receiving switch.

Similarly, upon receipt of a non-session scoped reply
message 67-5 with a message recipient attribute of “Ob-
servers Only” from the receiving switch, copies of the
non-session scoped reply message 67-4 are eventually
routed to selected local observer processes (remote to
the receiving switch) 55-2.

7. Scoped Notice Message Routing

Referring now to FIGS. 5a & 5b, two block diagrams
summarizing the routing and disposition of a scoped
notice message is shown. Like FIGS. 4a & 4b, the

30

35

40

45

50

55

60

65

18
scoped notice messages 65-1 to 65-7, and the results 66-1
to 66-2, relate to the scoped notice messages 65, and the
results 66 in FIG. 2. Similarly, the handler processes
52-1, 52-2, 53-1, 53-2 and the observer processes 54-1,
55-1 relate to the handler processes 52; 53 and the ob-
server processes 54, 55 in FIG. 1.

a. Receiving Switch

Referring first to FIG. 5a, initially similar to a scoped
request message, a scoped notice message with a mes-
sage state attribute of “Created” 65-1 is sent to the re-
ceiving switch 10 as input. Similarly, copies of the
scoped notice message with the message state attribute
changed to “Sent” 65-3 are eventually routed to all
selected local observer processes 54-1. If the scoped
notice message is scoped to a non-session message
scope, and there are joined switches, a copy of the
scoped notice message 65-4 with the message state attri-
bute changed to “Sent” and the message recipient attri-
bute changed to “Observers Only”, is sent to all the
joined switches that have not been sent the non-session
scoped notice message, for continued selection of re-
mote observer processes.

. Likewise, only one copy of the scoped notice mes-
sage with the message state attribute changed to “Sent”
65-2 is also eventually routed to one selected local han-
dler process 52-1. No one copy of the scoped notice
message 65-2 is routed to the other eligible local handler
processes with lower rankings 52-2.

Unlike a scoped request message, if the scoped notice
message is scoped to a message scope of “Session” and
handler process 52-1, 52-2 are not selected, the scoped
notice message 65-5 is discarded. If the scoped notice
message is scoped to a non-session message scope and
handler processes 52-1, 52-2 are not selected, the scoped
notice message 65-5 is also discarded if there is no joined
switch.

Similar to a scoped request message, if the scoped
notice message is scoped to a non-session message
scope, no local handler process 52-1, 52-2 is selected and
there is at least one joined switch, a copy of the non-ses-
sion scoped notice message 65-4 with the message state
attribute updated to “Sent”, and the message recipient
attribute changed to “Handler Only”, is sent to one of
the joined switches for continued selection of remote
handler processes. As described earlier, the joined
switch being sent the non-session scoped notice message
65-4 is selected arbitrarily from all the joined switches
that have not received the non-session scoped notice
message 65-4. The process is repeated until a remote
handler process is found or all these joined switches
have been selected. The receiving switch 10 is provided
with the selection results 66-1 when remote handler
process is not found, by the selected joined switches.

Also unlike a scoped request message, the selected
local handler process 52-1 and the selected joined
switch, does not provide handling results to a scoped
notice message after the second notice message is han-
dled.

b. Joined Switch

Referring now to FIG. 5b, upon receipt of a non-ses-
sion scoped notice message 65-6 with a message recipi-
ent attribute of “Observers Only” from the receiving
switch, copies of the non-session scoped notice message
65-8 are eventually routed to any selected local observ-
ers 55-1 (remote to the receiving switch).

If a non-session scoped notice message 65-6 with a
message recipient attribute of “Handler Only” is re-
ceived, one copy of the scoped notice message with the

5,335,347

19

message state attribute changed to “Sent” 65-7 is also
eventually routed to one selected local handler process
53-1 (remote to the receiving switch). Again, no copy of
the scoped notice message 65-7 is routed to the other
eligible local handler processes (remote to the receiving
switch) with lower rankings 53-2. Additionally, results
of the selection 66-2 is sent by the joined switch 11 to
the receiving switch when a handler process is not
found. Further, handling results 66-2 are generated and
sent by the joined switch 11 to the receiving switch
when a handler process is found.

After handling the non-session scoped notice mes-
sage, the selected local handler process 53-1 (remote to
the receiving switch) does not provide handling results
to the joined switch 11.

8. Variations

While the apparatus for scoped interprocess message
switching of the present invention has been described in
terms of a preferred embodiment, it will be understood
that the present invention is not limited to the session
and non-session message scope types discussed herein.
The present invention is also not limited to processes
executing in different sessions, on different computers,
communicating across a network. Those skilled in the
art will recognize that the invention can be practiced
with modification and alteration within the spirit and
scope of the appended claims to serve a wide variety of
scoped interprocess communication situations for pro-
cesses being executed by the same computer and for
processes being executed by different computers in a
network. :

What is claimed is:

1. In a network of computer systems comprising a
sender process, a plurality of receiver processes, and a
plurality of message switches, a method for scoped
interprocess message switching between said sender
process and said receiver processes, said method com-
prising the steps of:

registering each of said receiver processes with at

most one of said message switches on said network
of computer systems, each of said registrations
comprising registering at least one message pattern
for the receiver process being registered, each of
said message patterns described scoped messages
the receiver process being registered is to receive,
said description including the scoped messages’
message scope types, said message scope types
including a session and at least one non-session
identifier message scope type, said description fur-
ther including the sender process’s session identi-
fier if the scoped messages’ message scope types are
the session message scope type, and non-session
message scopes if the scoped messages’ message
scope types are the at least one non-session message
scope type;

joining said switches to appropriate ones of said non-

session message scopes on said network of com-
puter systems by said switches enrolling them-
selves as remote switches for receiving messages
scoped with the particular non-session message
scopes in response and in accordance to said regis-
trations of said receiver processes

receiving scoped messages from said sender process

by said switches;

selecting said registered receiver processes by said

switches in response to said received scoped mes-
sages, each of said scoped messages having mes-
sage attributes identifying the scoped message’s

20

25

30

35

40

45

50

55

65

20

message scope type, the sender process’s session
identifier if the scoped message’s message scope
type is the session message scope type, and a non-
session message scope if the scoped message’s mes-
sage scope type is the non-session message scope
type, said selections being performed by said
switches in accordance to said registered informa-
tion and wvsing said joining relationships between
said switches and said non-session message scopes
if said scoped messages’ message scope types are
the at least one non-session message scope type;

queuing copies of said received scoped messages with
selected receiver processes by said selecting
switches in response to its selection of receiver
processes;

signaling said selected receiver processes by said
quening switches regarding the availability of said
queued scoped messages in response to its queuing
of scoped messages; and

delivering said queued scoped messages by said sig-
naling switches, upon request of said signaled re-
ceiver processes, to said requesting receiver pro-
cesses,

2. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 1, wherein said
step of joining said switches to appropriate ones of said
non-session message scopes comprises adding joined
records to at least one shared joined list by said
switches, said joined records being added when mes-
sage patterns having message scope type attributes de-
scribing the at least one non-session message scope type
are being registered with said switches and said
switches not having joined to the non-session message
scopes, each of said joined records comprising an identi-
fier identifying the joining switch including the switch’s
session identifier, and a timestamp identifying when the
joined record was added.

3. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 2, wherein said at
least one shared joined list comprises a plurality of lists
shared among said switches, and organized on a per
non-session message scope type basis,

4. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 3, wherein said at
least one non-session message scope type comprises a
non-session message scope type of “File”.

S. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 4, wherein said
shared joined list of said non-session message scope type
“File” comprises a plurality of sub-lists shared among
said switching joined to non-session message scopes of
said non-session message scope type “File”, and orga-
nized on a per file basis.

6. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 1, wherein each
of said scoped messages received from said sender pro-
cess comprises,

a message identifier for the scoped message compris-
ing the sender process’ computer identifier, the
sender process’ process identifier and the sender
process’ message specific identifier;

a message scope type attribute comprising one of a
plurality of session/non-session message scope

5,335,347

21

types, said session/non-session message scope types
comprising a session message scope type of “Ses-
sion”, a non-session message scope type of =File”,
a non-session message scope type of “File in Ses-
sion” and a non-session message scope type of “File
or Session”;

sender identifier attribute comprising the sender
process’ session identifier;

message recipient attribute comprising one of a
plurality of recipient specifications, said recipient
specifications comprising a recipient specification
of “Handler Only”, a recipient specification of
“Observers Only”, and a recipient specification of
“Both Handler and Observers”;

a message dispatched list attribute comprising a plu-
rality of dispatched records, each of said dis-
patched records comprising a session identifier
identifying one of said switches having have the
scoped message dispatched to it, and a timestamp
marking when the scoped message was dispatched;
and

a non-session message scope attribute comprising one
of a plurality of non-session message scope identi-
fiers identifying the non-session message scope of
the scoped message.

7. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 1, wherein,

the received scoped message is scoped to a non-ses-
sion message scope and the receiving switch suc-
cessfully selected a local registered receiver pro-
cess to handle the received scoped message;

said step of selecting said registered receiver pro-
cesses by said switches comprises the steps of;

identifying the switches joined to the non-session
message scope of the received scoped message by
the receiving switch, using said joining relation-
ships between said switches and said non-session
message sCopes,

updating a message recipient attribute of the scoped
message to “Observers Only” and a message dis-
patched list attribute of the scoped message with
sessions identifiers of the switches having joined to
the non-session message scope of the scoped mes-
sage by said receiving switches, and

sending the updated scoped message to the identified
switches by the receiving switch for continued
selection of remote observer processes.

8. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 1, wherein,

the received scoped message is scoped to a non-ses-
sion message scope and the receiving switch is
unsuccessful in selecting a local registered receiver
process to handle the received scoped message;

said step of selecting said registered receiver pro-
cesses by said switches further comprises the steps
of}

arbitrarily selecting one of the switches joined to the
non-session message scope of the scoped message
and not having been sent the scoped message by
the receiving switch,

updating a message recipient attribute of the scoped
message to “Handler Only” and a message dis-
patched list attribute of the scoped message with
the selected switch’s session identifier by the re-
ceiving switch, and

5

10

15

20

25

30

45

50

55

65

22

- sending the updated scoped message to the selected
switch by the receiving switch for continued selec-
tion of a receiver process registered with the se-
lected switch to handle the scoped message.

9. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 8, wherein said
step of selecting said registered receiver processes by
said switches further comprises the step of repeating
said steps of selecting, updating and sending by the
receiving switch, until a receiver process registered
with a switch joined to the non-session message scope
of the scoped message is found to handle the scoped
message, or all switches joined to the non-session mes-
sage scope of the scoped message have been selected.

10. The method for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 9, wherein said
step of selecting said registered receiver processes by
said switches further comprises the step of providing
the receiving switch with the selection results of the
selected switch, by the selected switch, when the se-
lected switch fails to select a receiver process registered
with the selected switch to handle the scoped message.

11. In a network of computer systems comprising a
sender process, and a plurality of receiver processes, an
apparatus for scoped interprocess message switching
between said sender process and said receiver pro-
cesses, said apparatus comprising:

a plurality of substantially identical message switches
for receiving scoped messages from said sender
process and delivering the received scoped mes-
sages to said receiver processes,
each of said scoped messages having a first message

attribute identifying the scoped message’s mes-

sage scope type, said message scope types includ-
ing a session and at least one non-session message
scope type, each of said scoped messages further
having a second message attribute identifying
the sender process’s session identifier if the
scoped message’s message scope type is the ses-
sion message scope type, and a third message
attribute identifying a non-session message scope
if the scoped message’s message scope type is the
non-session message scope type,
each of said message switches having
registration means for registering a subset of said
receiver processes, each of said receiver pro-
cesses being registered with at most one of said
message switches, each of said registrations
comprising registering at least one message
pattern for the receiver process being regis-
tered, each of said message patterns describing
scoped messages the receiver process being
registered is to receive, said descriptions in-
cluding the scoped messages’ message scope
types, said descriptions further including the
sender process’ session identifier if the scoped
messages’ message scope types are the session
message scope type, and non-session message
scopes if the scoped messages’ scope types are
the at least one non-session message scope
type;)

selection means coupled with said registration

means for selecting receiver processes regis-
tered with the switch to receive said scoped
messages sent by said sender process in re-
sponse to receiving said scoped messages;

5,335,347

23

queueing means coupled with said selection
means for queuing copies of said scoped mes-
sages with selected receiver processes in re-
sponse to said selection of receiver process,

signaling means coupled to said queueing means §
for signaling said selected receiver processes,
regarding the availability of said queued
scoped messages in response to said queuning of
scoped messages, and

delivery means coupled to said queueing means 10
for delivering said queued scoped messages,
upon request of said signaled receiver pro-
cesses, to said requesting receiver processes;
and

Jjoining means coupled to said registration and selec- 15

tion means of said switches for joining said
switches to appropriate ones of a plurality of non-
session message scopes, said switches joining them-
selves to the appropriates ones of said non-session
message scopes by enrolling themselves as remote 20
switches for receiving messages scoped with the
particular non-session message scope in response
and in accordance to said registrations of said re-
ceiver processes, said selections of receiver pro-
cesses being performed by said switches in accor- 25
dance to said registrations and using said joining
relationships between said switches and said non-
session message scopes if said scoped messages’
message scope types are the at least one non-session
message scope type. 30

12. The apparatus for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 11, wherein said
joining means comprises at least one shared joined Iist,
each of said at least one shared joined list having a 35
plurality of joined records, said joined records being
added when message patterns describing the at least one
non-session message scope type are being registered
with said switches, and said switches not having joined
to the non-session message scopes, each of said joined 40
records comprising an identifier identifying the joining
switch including the switch’s session identifier, and a
timestamp identifying when the joined record was
added.

13. The apparatus for scoped interprocess message 45
switching between a sender process and a plurality of
receiver processes as set forth in claim 12, wherein said
at least one shared joined list comprises a plurality of
lists shared among said switches, and organized on a per
non-session message scope type basis. 50

14. The apparatus for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 13, wherein said
at least one non-session message scope type comprises a
non-session message scope type of “File”. 55

15. The apparatus for scoped message switching be-
tween a sender process and a plurality of receiver pro-
cesses as set forth in claim 14, wherein said shared
Jjoined list of said non-session message scope type “File”

24

a message identifier for the scoped message compris-
ing the sender process’ computer identifier, the
sender process’ process identifier and the sender
process’ message specific identifier;

a message scope type attribute comprising one of a
plurality of session/non-session message scope
types, said session/non-session message scope types
comprising a session message scope type of “Ses-
sion”, a non-session message scope type of “File”,
a non-session message scope type of “File in Ses-
sion” and a non-session message scope type of "File
or Session”;

a sender identifier attribute comprising the sender
process’ session identifier;

a message recipient attribute comprising one of a
plurality of recipient specifications, said recipient
specifications comprising a recipient specification
of “Handler Only”, a recipient specification of
“Observer Only” and a recipient specification of
“Both Handler and Observes™,;

a message dispatched list attribute comprising a plu-
rality of dispatched records, each of said dis-
patched records comprising a session identifier
identifying one of said switches having have the
scoped message dispatched to it, and a timestamp
marking when the scoped message was dispatched;

a non-session message scope attribute comprising one
of a plurality of non-session message scope identi-
fiers identifying the non-session message scopes of
the scoped message.

17. The apparatus for scoped interprocess message

switching between a sender process and a plurality of
receiver processes as set forth in claim 11, wherein,

each of said selection means of said switches com-
prises checking means for selecting any number of
said switches having joined to the non-session mes-
sage scope of a scoped message and have not been
sent the scoped message, to receive the scoped
message for remote selection of receiver processes
to observe the scoped message,

each of said checking means of said selection means
of said switches performs said selection by check-
ing joined records in at least one shared joined list
of said joining means; each of said checking means
of said selection means of said switches further
updates message attributes of the scoped message
and sends the updated scoped message to the se-
lected switches, said updates comprising updating a
message recipient attribute to “Observers Only”
and a message dispatched list attribute with session
identifiers of the selected switches;

each of said checking means of said selection means
of said switches performs said selection of switches
when the scoped message is scoped to the at least
one non-session message scope type and, its selec-
tion means is successful in selecting a receiver pro-
cess registered with its switch to handle the scoped
message.

18. The apparatus for scoped interprocess message

comprises a plurality of sub-lists shared among said 60 switching between a sender process and a plurality of

switches joined to non-session message scopes of said
non-session message scope type “File”, and organized
on a per file basis.

16. The apparatus for scoped interprocess message
switching between a sender process and a plurality of 65
receiver processes as set forth in claim 11, wherein each
of said scoped messages received from said sender pro-
cess comprises,

'receiver processes as set forth in claim 11, wherein,

each of said selection means of said switches compris-
ing checking means for selecting one of said
switches having joined to the non-session message
scope of a scoped message and have not been sent
the scoped message, to receive the scoped message
for remote selection of a receiver process to handle
the scoped message;

3,335,347

25

each of said checking means of said selection means
of said switches performs said selection by check-
ing joined records in at least one shared joined list
of said joining means;

each of said checking means of said selection means
of said switches further updates message attributes
of the scoped message and sends the updated
scoped message to the selected switch, said updates
comprising updating a message recipient attribute
to “Handlers Only”, a message handler’s program
type attribute with a handler program type and a
message dispatched list attribute with the selected
switch’s session identifier;

each said checking means of said selection means of
said switches performs said selection of a switch
when the scoped message is scoped to the at least
one non-session message scope type, and its selec-
tion means is unsuccessful in selecting a receiver

15

20

25

30

35

45

55

65

26

process registered with its switch to handle the
scoped message.

19. The apparatus for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 18, wherein,

the checking means of the selection means of the

receiving switch of the scoped message repeats said
selection of a switch until a receiver process is
selected by a selected switch to handle the scoped
message of all switches joined to the non-session
message scope of the scoped message have been
selected.

20. The apparatus for scoped interprocess message
switching between a sender process and a plurality of
receiver processes as set forth in claim 19, wherein,
each of said selected switch provides the receiving
switch of the scoped message with its selection results
when the selected switch fails to select a receiver pro-
cess registered with the selected switch to handle the
scoped message.

* & ¥ * =

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,335,347
DATED : Aug. 2, 1994
INVENTOR(S) : Foss, et al.

It is certified that error appears in the above-identified patent and that said Letters
Patent is hereby corrected as shown below:

[75] Inventors:

delete "Carolyn L. Foss, Palo Alto; Dwight F. Hare, Menlo Park;

Richard F. McAllister, Palo Alto; Tin A. Nguyen, Danville;

Amy Pearl, Mountain View; Sami Shalo, Palo Alto, all of Cafif.” and
insert --Carolyn L. Foss, Palo Alto; Dwight F. Hare, Menlo Park;

Richard F. McAllister, Palo Alto; Tin A. Nguyen, Danville;

Amy Pearl, Mountain View; Sami Shaio, Palo Alto, all of Calif.--

Signed and Sealed this
Twenty-eight Day of February, 1995

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

United States Patent 9

Coleman et al.

000 00 OO

(111 Patent Number:
[45] Date of Patent:

5,517,662
May 14, 1996

[54] MULTIPROCESSOR SYSTEM WITH
DISTRIBUTED MEMORY

[75] Inventors: John J. Coleman, Poughkeepsie;
Ronald G. Coleman, Hyde Park; Owen
K. Monroe, Port Ewen; Robert F.
Stucke, Saugerties; Elizabeth A.
Vanderbeck; Stephen E. Bello, both of
Kingston; John R. Hattersley,
Saugerties, all of N.Y.; Kien A. Hua,
Oviedo, Fla.; David R. Pruett,
Saugerties; Gerald F. Rollo,
Poughkeepsie, both of N.Y.

[73] Assignee: International Business Machines

Corporation, Armonk, N.Y.

[21] Appl. No.:
[22] Filed:

335,926
Nov. 8, 1994

Related U.S. Application Data

[63] Continuation of Ser. No. 794,749, Nov. 19, 1991, aban-

doned.
[51] Imt. CL® GO6F 13/14
[52] U.S. ClL. ... 395/800; 395/200.01; 395/200.02;

395/200.03; 395/200.2; 395/859; 395/312
[58] Field of Search .. . 395/800, 200.01,
395/200. 02 200. 03 200.2, 859, 312

[56] References Cited
U.S. PATENT DOCUMENTS
4,228,496 10/1980 Katzman et al.cccocvecnene. 395/308
4,378,588 3/1983 Katzman et al. .. . 395/877
4,400,778 8/1983 Vivian et al. .. . 395/550
4,491,916 1/1985 Vallhonratlcceevveevvesrrnrnens 395/287

4,562,533 12/1985 Hodel et al. ... 395/200.14
4,769,771 9/1988 Lippmann el al, 395/200.03
4,811,210 3/1989 McAulayccomccmcsinniennes 395/312

'-959,,\ 22ey

4,851,988 7/1989 Trottier et al. 395/200.01
4,908,823 3/1990 Haagens et al. . . 370/85.1
4940200 8/1990 Pickellccccimuessssisissisirasinis 395/285
4,991,079 2/1991 Dann 395/200.08
4,991,133 2/1991 Davis et al, . veearee 3957375
4,994,985 2/1991 Cree et al. 364/514 C
5,008,882 4/1991 Peterson et al. ...ccceecvvesncnsnes 370/94 .3
5,020,020 5/1991 Pomfret et al. 395/200.13
5,040,141 8/1991 Yazima et al. ... v 3647400
5,226,125 7/1993 Balmer et al. 395/312
5,392,429 2/1995 Agrawal et al. . .. 395/650

OTHER PUBLICATIONS

Brown et al., application Ser. No. 429,267 entitled “Switch
and its Protocol for Making Dynamic Connections”, filed
Oct. 30, 1989.

Bono et al., application Ser. No. 358,774 entitled “Computer
Systemn High Speed Link Method and Means”, filed May 30,
1989.

Detschel et al., application Ser. No. 558,003 entitled *“Per-
sonal Computer Bus and Video Adapter for High Perfor-
mance Parallel Interface”, filed Jul. 25, 1990.

Primary Examiner—Alyssa H. Bowler

Assistant Examiner—D. Tran

Attorney, Agent, or Firm—Floyd A. Gonzalez; James E.
Murray

[57] ABSTRACT

A parallel computer system is disclosed comprising a plu-
rality of high level processors joined together using a
cross-point or cross-bar switch. The system includes an
adapter between each processor and the switch. Protocol
processing to drive the switch, transfer pages and schedule
transmissions between the processors is performed by the
adapter. The protocol use the notion of typed or tagged
buffer management that allows a client to bind the semantics
of a message being sent or received. These semantics specify
behaviors in the protocol when message packets depart or
when they arrive.

10 Claims, 5 Drawing Sheets

) Beg ??3 192
rs/6000) [8s/6000 /2253 Rrs/6000) as 5000} 222
5 16[L) (es]alL losielL] [SSTGlL]
[oo] [oo] {m nn
T [

107 | (&0
ADAPTER| | ADAPTER

T
| amp TER| |40 TER

215~ \ Misg

X

21
60“‘[ADAPTER

B~ purrer

.

| ADAPTER

2157 212

CROSS POINT 23
SWITCH

L

(o] (o
HSC o A2
" g n
STORAGE —] _USER
HOST 1 TERMIIAL

U.S. Patent May 14, 1996 Sheet 1 of 5 5,517,662
19 22 19 22
B9~ % t19sg N 3 /82
Rs/6000) [RS/6000}-22=g [RS/6000) [RS/6000} 222
oS [a6]L] [osTalL os[eclL] [oSTG]L
[D[DT lD[Dl . e e |DID| IDID]

LAD| lAD] |AD] LAD]
ADAPTER| | ADAPTER ADAPTER| | ADAPTER
CROSS POINT
SWITCH
2160~ ADAPTER ADAPTER 21

, 10
195~ _RS/6000 RS/6000 | —19,
SUPERVISOR| |SUPERVISOR
i |
7~ TRaNSLATE | | TRANSLATE 171
y
™~ BurFer BUFFER | 1°1
14 HSC 12
N T o
STORAGE USER
HOST TERMINAL

FIG.1

U.S. Patent May 14, 1996 Sheet 2 of 5 5,517,662

APPLICATION PROGRAM INTERFACE

DEVICE DRIVER
ADAPTER DRIVER
LINK PROTOCOL DRIVER
PHYSICAL SWITCH

FIG.2

CLIENT

API MESSAGE PACKETS

DEVICE DRIVER

WP WORK PACKETS

ADAPTER DRIVER

- - -

XMIT/RECV BUFFER DIRECTORY
PACKETS
LINK DRIVER
FIBERS NEW SERIAL FRAMES
FIG.3
LSP
HEADER DATA
ANTEGRAM| DATAGRAM | BUFFER |
(20) (35) (64K)

FIG.4

U.S. Patent

May 14, 1996

|

Sheet 3 of 5

5,517,662

FROM NODE 19

WORK
PACKET
sl
70
! L A 1 J
‘ ! Y
[)
FROM
] UNSOLICITED
BUFFER NODE 19
| PAGES *J
MEMORY ~| PROCESSOR ”__FNTEigACE
— [T 11 NODE 19
|
‘ MIC QUEUES
= UNKEI$¥PCOL
PROT%CDL
DRIVER(MCM)
4 FIG.5
TO LINK
DEVICE
DRIVER
I T I T T T I .
OUT | ACK| IN |OUT | ACK} IN - «|OUT | ACK] IN [OUT|ACK; IN
! L 1] |) i i
\
N-2 N—1
OUTBOUND ~ / ACKNOWLEDGE INBOUND
T T T
FIG.6 LSP HEADER ! FLAG | SEQ. NO.|MASK |LSP HEADER |FLAG
| | 1

5,517,662

Sheet 4 of 5

May 14, 1996

U.S. Patent

AVNP ON3S

JARIE
SYVA
AD3Y/LINX MLS
Nl 1VQd SNVL
SUYA "
ADTH/LIAX MLS HOvo ON3S
1N0 1vQa SNvAl
) +
dn 0861 13S H
: dn 0861 13S ()
N
SUYA é
SHVA
AD3FY/LINX 139 |e gaLno
MHOM 139 A HOM AJ3Y/1INX LNd

5,517,662

Sheet 5 of 5

May 14, 1996

U.S. Patent

g AINO d31dvaV

g 318VHOL3S

aN3S

d3Tiod 3AI303d

HONOYHL 3AI303Y

Q3AVT130 3A1303d

IN3LSISY4d

IN3LSIS43d—NON

ATTRIBUTE —= 6

SSY 10—+

10

A

12

i

5,517,662

1

MULTIPROCESSOR SYSTEM WITH
DISTRIBUTED MEMORY

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of application Ser. No.
07/794,749, filed Nov. 19, 1991, now abandoned.

This invention relales to a multiprocessor system and
more particularly to an apparatus and method that permits
one processor to address and access the storage that exists on
another processor.

BACKGROUND OF THE INVENTION

A well-known technique for increasing the work through-
put of a processing system is to divide up the work into a
plurality of processes and coupling the separate processes to
separate processors each handling a part of the process.
Parallel processing using either few processors or thousands
of processors requires some form of communication
between the processors. There are many types of systems
such as shared storage where the processors share common
storage or distributed systems where the processors each
have part of the global storage. There are various types of
coupling from tightly coupled to loosely coupled. The
coupling can be a LAN, a cross-point or cross bar switch, a
nearest neighbor, hierarchical, hypercube, etc. In all of these
systems latent inefficiencies and overhead in communication
slow down performance of the system. It is desirable and an
object of this invention to reduce this overhead and provide
a method and apparatus of highly efficient message passing
requiring radically different communication patterns, char-
acteristics and resources. While there exists sysiems to
parallel a few high level processors or massively parallel
low level processors (such as in Hellis U.S. Pat. No. 4,598,
400) there is need for paralleling high level processor with
improved and flexible communications between these high
level processors. Further, some means must be provided for
generating and scheduling work requests. A system using a
large number of high level processors such as IBM’s RISC
System/6000™ is desirable for handling large, complex
problems such as for intensive engineering and scientific
applications. (RISC System/6000 is a trademark of the IBM
Corporation).

SUMMARY OF THE INVENTION

In accordance with one embodiment of the present inven-
tion a parallel computer system has a plurality of indepen-
dent computers each with their own memory connected to
each other by a network. An adapter is coupled between the
network and each independent computer such that there is a
pair of adapters between each pair of computers. The
adapters include a processor and memory. An application
defines a name space in memory and a tag that specifies how
the space will be used (semantics) in order to establish a
communication path between processors. Data is sent from
one adapter memory to another, using the information
defined in the class established by the application.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is an overall block diagram of the system accord-
ing to one embodiment of the present invention.

FIG. 2 illustrates architecture layers.

FIG. 3 illustrates message flow.

10

15

25

30

35

40

45

50

55

60

65

2

FIG. 4 shows format of message packet.
FIG. 5 illustrates the adapter.
FIG. 6 illustrates operation of WPI.

FIG. 7 is a flow diagram of link protocol driver process-
ing.
FIG. 8 is a Table of Class—attribute matrix.

DESCRIPTION OF THE EMBODIMENT OF THE
PRESENT INVENTION

Referring to FIG. 1 there is illustrated a parallel process-
ing system design for numerically intensive engineering and
scientific applications in accordance with one embodiment
in the present invention. The system 10 comprises 60 RISC
System/6000 (hereinafter referred to as RS/6000 micropro-
cessor nodes 19,-19,,, each with its own RS/6000 proces-
sor, memory and disk storage 22 linked to each other by a
cross-point switch 23 such as an IBM 9032 Enterprise
Systems Connection Director (ESCD) optical switch. A
more detailed description of the switch and the protocols is
found in Brown et al., incorporated herein by reference,
application Ser. No. 07/429,267 filed Oct. 30, 1989 entitled
“Switch and Its Protocols for Making Dynamic Connec-
tions”. The inputs and outputs of this switch are serial fiber
optic. Link frame messages are decoded to control the
appropriate switches. This switch 23 is linked to a host
processor 11 such as a 3090 system via high speed channel
13 (HSC) which connection is described in U.S. patent
application Ser. No. 07/358,774 of Bono et al. entitled
“Computer System High Speed Link Method and Means.”
This high speed connection may also be performed by a
HIPPI switch. Information is passed by operating the host
processor with paging instructions of unique page addresses
designated for an extended channel as described in the above
cited co-pending patent application incorporated herein by
reference. A user interface 12 inputs programs and instruc-
tions to the host and receives its output from the system.
Also connected to the host is a mass storage 14 for storing
data and programs to be loaded into processor node storage
22 for execution. The host is coupled to one of the RS/6000
processor nodes 194, via a buffer 15 and HSC 13 and a
translation adapter card 17 which converts AIX/370 archi-
tecture to microchannel as described in U.S. patent appli-
cation Ser. No. 07/558,003 of Detschell, filed Jul. 25, 1990
entitled “Personal Computer Bus and Video Adapter for
High Performance Paralle! Interface”. This application is
incorporated herein by reference. The RS/6000 processor
node 19, is a supervisor that divides up the work or tasks
among the other processors and feeds answers back to the
host. An adapter 21,-21, is coupled between each proces-
sor node 19,-19,, and the cross-point switch 23. This
adapter allows the processor nodes 191 to 1960 to operate
interdependently since il permits any processor Lo commu-
nicate with any other processor under software control. A
redundant host access and supervisor link made up of
elements 15,, 17,, 19, and 21, is also provided. One path
may be used to transmit from the host while the other
couples return signals to the host. Individual RS/6000 pro-
cessors at nodes 19,-19,, work on different parts of a
complex computation or tasks, and by exchanging interme-
diate results with other processors at the other nodes, arrive
4t the complete solution. The programming interface to the
system can be for example enhanced clustered FORTRAN
running in an AIX operating system environment on each
microprocessor node 19,-19,,. Migration of existing appli-
cations is enhanced by the use of easily understood pro-

5,517,662

3

gramming constructs and a standard operating environment.

The software components of this system are the Enhanced
Clustered FORTRAN facilities, a job manager, a file access
mechanism, a performance monitor which monitors utiliza-
tion of the system and provides reports to the user interface,
a file access mechanism which assists in servicing calls, and
a debugger. The system uses AIX/370 on the host platform
11 and AIX 3.1 operating system on the microprocessors
19,-19¢,. The Enhanced Clustered FORTRAN language
provides additions to FORTRAN for creating and executing
parallel processes, for interprocess communication, and for
process coordination, The job manager, which runs on the
host 11, provides AIX services for compiling, executing,
debugging, clearing, and cancelling jobs. The file server, or
file access mechanism, allows applications to access host
files and return computed results to the users directory. The
performance monitor facilitates program debugging and
optimization by providing graphical analysis of hardware
and software functions.

An adapter 21 is coupled between the micro channel and
the cross-point switch which in the example is again AIX/
370 channel. Similarly between each microprocessor 19 and
the switch 23 is the new serial channel adapter 21. Each of
the RS/6000 nodes 19 has one memory section for local
memory L and a second section of memory G for global
access.

The architecture of the system 10 is layered and follows
the hardware in systems structures of the new serial channel
adapter, the RS/6000 and the AIX operating system. See
FIG. 2. Also see FIG. 3 which illustrates the message flow
across interfaces. The new serial adapter 21 has its own
processor which is, for example, an i960 processor of
INTEL. The logical link control architecture is one layer
divided into five sublayers: the top layer provides a system
level application program interface (API) for transport and
network protocols. This is located in each of the processors
at nodes 19,-19,. This layer provides functions for “bind-
ing” and “unbinding” a client or application, sending and
receiving messages as well as other functions that are
required by the application. The second layer is the device
driver. This is also located in the RS/6000 processor
19,-194,. In the embodiment shown there is an adapter
driver sublayer 21 for each processor 19. In other embodi-
ments there may be separate multiple adapters for each
processor 19,-19,,. All adapters 21 attach to the local
processors (RS6000 in this example) managed by one device
driver DD. This device driver in each processor 19,-19,,
runs in an AIX architecture program kernel in both process
and interrupt context. It manages the hardware interface and
data structure between the API and the NSCA 21. This
includes attaching to the bus, flushing the cache in the
RS/6000, servicing interrupts, chaining/dechaining and
managing kernel-resident queues. It translates message
packets into work packets to be handled by the API and
adapter drives respectively and vice versa. The client pro-
duces and consumes message packets (as peer communica-
tions) and the adapter driver 21 produces and consumes
work packets. A work packet is a generalized request for
service exchanged between the device driver and the adapter
driver. In general, one send message or one receive message
will generate one work packet and vice versa. Message
packets are of three types depending on the amount of data
they carry. These packet types are antegram messages,
datagram messages, and buffer messages. (Referring to FIG.
4, there is shown the format of a message with a header, a
datagram and a buffer). An antegram packet is a message
packet which contains no data. The antegram packet con-

20

25

30

45

50

55

60

65

4

tains only the protocol header which is a short block of
instructions and control information. Datagram messages
and buffer messages contain the protocol header as well as
data. Datagram messages carry a maximum of thirty-five
bytes of data, while buffer messages carry up to one page of
data. As currently implemented, the protocol allows page
length to be up to 64K bytes. Datagram messages and buffer
messages are queued and must be handled by the device
driver in the order in which they are received. Antegram
packets, however, can be handled ahead of all other pending
messages, in such priority as requested in the protocol
header. The work packets comprise three types: pure, ordi-
nary and Complex or two-phase. Pure work packets consist
of a call to interrupt service routine (ISR). Ordinary work
packets include a protocol header and 4 bytes of flag
information. Ordinary work packets, like pure work packets,
contain a call to an ISR but also contain a control block of
instructions and control information to be processed by the
receiving element. This may be a device driver in 19 or
adapter driver 21, whichever the case may be. Ordinary
work packets are, for example, 28 bytes, and correspond to
antegram and datagram message packets, which are gener-
ated and processed by the APL. Complex or two-phase work
packets consist of ordinary work packets and a transfer of
data over the microchannel interface between devices. With
two-phase work packets, data transfer occurs in a separate,
later phase from one in which control information is
exchanged, hence the name “two phase”. The adapter driver
sublayer in adapter 21 runs entirely outboard of the proces-
sor as a program in the adapter itself. It schedules buffer
packets for departure and arrival on the fiber through the
work packet interface (WPI). It interprets the semantics of
buffer attributes and arranges all transfers to and from the
host system virtual storage. Referring to FIG. 5, the adapter
includes a work packet interface 70 which is a system of
queues. Each structure in the WPI is, in turn, divided into
three substructures: one for work packets bound for the
adapter driver (outbound), one for work packets bound for
the device driver (inbound), and one for passing acknowl-
edgement proscriptions from the device driver to the adapter
driver. The WPI structures reside in a storage resource
shared by both the device driver and the adapter driver. See
FIG. 6. Work packets are serviced in the following manner.
The adapter driver polls the WPI outbound structures and
schedules the services requested for any work packets found.
In contrast, the device driver receives the first part of its
work packets by ISR (Interrupt Service Routine) and the rest
during the same interrupt cycle. Typically, a call will be
made to the device driver’s ISR, then the work packet is read
out of the WPI structure(s) and processed sequentially.
‘When a device driver sends out a work packet, it can proceed
in a couple of ways. On behalf of the client, the device driver
can behave synchronously and spin-wait until a first-level
acknowledgement (FACK) is returned. Alternatively, the
device driver may behave asynchronously by delivering
several work packets in pipelined fashion over the WPI
without waiting for the FACKs. The device driver can also
request a transmit complete acknowledgement (i.e., a pure
work packet) to indicate when the data has been moved from
the host system or it may request a second-level acknowl-
edgement (SACK) to indicate when the data has been
transmitted to the receiving node. A SACK is an ordinary
work packet dispatched to the source application client as an
antegram message. This invention thus permits both the
synchronous and asynchronous modes of operation. The
fourth sublayer is a link protocol layer in adapter 21. It
implements the link and device protocols of the crosspoint

. switch as illustrated in FIG. 1.

5,517,662

5

Microchannel Interface Controller MIC transfers are
staged through two staging buffer pools, one for sending
message packets outbound to another PE, one for receiving
message packets inbound from another PE. They are called
transmit (xmit) and receive (recv) buffers respectively.

The data associated with a message must (1) be on or
within a pinned page boundary in AIX virtual storage and (2)
not be accessed until the device driver has “freed” the page.
The adapter driver issues a data transfer command to the
MIC at an indeterminate time after a work packet has been
queued. Thus, sending a message, for example, a client
could well return from the API before the adapter driver has
even transferred the data to its xmit buffer pool.

The buffer attributes and the queuing discipline determine
the actual data movement. Once the data has been trans-
ferred, the adapter driver sends a pure work packet to the
device driver to free the page. The adapter driver also
implements the routing semantics of the quadruple address
(PE.channel,peck-unit,buffer-id). On sending and receiving,
it interprets (*,* peck-unit,buffer-id) in the message per the
attributes the client binds in advance. On sending, it maps
(PE,channel,*,*) to a physical port number on the switch.
This port number is then used to direct a connection through
the switch.

Below the adapter driver is the link protocol driver. Its
runs entirely in the link protocol driver engine on the NSCA.
It implements a subset of the link and device protocols of the
crosspoint switch in the manner illustrated in FIG. 7. It
creates/breaks switch connections, packs/unpacks LSP
packets through switch frames, and sends/receives these
packets through the xmit and recv buffers scheme as buffer
directory packets. A buffer directory packet is a generalized
strategy for exchanging information between the adapler
driver and the link protocol driver.

The interface between the 1960 processor and the link
protocol driver is through a shared region in the local data
store (LDS) or local processor store (LPS). This shared
region holds three metadata variables: (1) a nextrecvavail
variable that points to the next available receive buffer, (2)
a nextxmitavail variable that points to the next available
transmit buffer and (3) an up interlock turn variable which
says who (1960 or MCM) is allowed to update the next
xmit/recv variable pointers. The xmit/recv buffers form a
circular list data structure which is in LDS and the metadata
can be in either LDS or LPS. The next variables actually
contain head and tail subfields.

Either the adapter driver is up or the link protocol driver
is up. When the adapter driver is up, it is busy, say, scanning
the WPI. When it quiesces, it writes the link protocol
driver’s value into the interlock and continues. When the
adapter driver does this, it agrees not to update the next
variables—{rom its perspective, the state of those variables
quiesces.

When the link protocol driver is up, this means that it can
update the next variables freely. It also means that it can
accept outbound deliveries (if there are any) or that it can
accept inbound deliveries (if there are any). If the link
protocol driver does not have any work to do, ie., no
outbound or inbound deliveries, it quiesces by writing the
adapter driver’s value into the interlock. Like the adapter
driver earlier, doing so, it agrees not o update the next
variables.

During the quiescent state, the adapter driver will be
doing possibly three things. One is pushing the received data
back to system memory through the MIC from the recv
buffers. Another is pulling send data from system memory

20

25

30

40

50

55

60

65

6

through the MIC to the xmit buffers. Finally, it may scan the
WPI, processing work packets as necessary.

When the adapter driver is up, it gathers the state of the
xmit/recv buffers. It then quiesces and continues processing
the three items mentioned above. Thus, the adapter driver is
in the idle state if (1) no more than one item is ahead in the
send queue and (2) it is up.

In the guiescent state, the link protocol driver may be
doing possibly two things: sending or receiving data. Like
the adapter driver, during the up state, it gathers the xmit/
recv data and then quiesces.

In the quiescent state the link protocol driver can accept
exactly n incoming deliveries until il is up again. The value
n is the number of available recv buffers. The head compo-
nent is advanced by the link protocol driver when it is up.
The tail component is advanced by the adapter driver when
it is up.

A detailed picture of link protocol driver processing is
shown in FIG. 7. FIG. 7 shows control loops of the link
protocol driver. The link protocol driver is either processing
outbound work, waiting for inbound connections or waiting
to be up. An analogus algorithm can be constructed for the
i960.

In this communications management system, an applica-
tion defines a name space of buffers in available memory and
a tag that specifies the class of how the name space will be
used (semantics) in order to establish a communication path
between logical processors. The semantics are bound to the
name space until such time as the application changes the
tags associated with the buffer or releases the buffer. From
an application perspective, data is sent from one logical
buffer to another, using the information defined in the class
established by the application. It is done by hardware
external from the logical processor freeing the processor
from handling communication interrupts. The logical pro-
cessor invokes the functions of the communications man-
ager and in a group of cooperating and communicating
logical processors each processor must have a unique iden-
tifier.

The outboard adapter driver hides low level interface
details from the processor, creates low level headers, gen-
erates low level function calls, breaks page-size blocks of
data from the application into media-specific frames, and
maps class characteristics to the name spaces (buffers). It
will schedule and cache inbound and outbound transmis-
sions with respect to the buffer semantics statically config-
ured by the application. It manages the buffer pool and
implements all queueing.

The communication manager will queue inbound and
outbound data requests in an n-deep FIFO queue. There is
one queue per destination. Data itself is not queued, only the
requests for data. Requests are dequeued in accordance with
receive attributes of name space (buffer). In this way order-
ing is preserved and destination busy conditions are elimi-
nated at the source.

An atribute is a static value which describes a specific
name space characteristic, e.g., a buffer attribute may
specify a “send” or “receive” characteristic. The class is a set
of attributes made available to the application that reflects a
logical way the adapter driver will manage the buffer. See
FIG. 8.

There is a finite number of pre-defined classes (attribute
sets). These classes cannot be altered by the application, but
the application can change the class of any buffer that it
controls. To ensure efficient communications, applications
do not define other combinations of attributes.

5,517,662

7

In this section, we describe the concept of buffers and
buffer management. The system uses several kinds of buff-
ers. Those that are used for internal purposes are transparent
to the client. Examples of these include the auxiliary xmit/
recv buffers, buffers maintained for unsolicited receives, etc.
From a client’s point of view, a buffer is a logical storage
resource used for sending and receiving data. For these
purposes, a buffer is addressed by the logical pair, (peck-
unit,buffer-id).

A client defines (1) the name space of a buffer and (2) the
tag that specifies the buffer semantics. These semantics
remain bound until the client either changes the tags or
unbinds the name. The attributes specify well defined behav-
iors for system when messages are sent or received.

The (peck-unit,buffer-id) pair is a logical storage address.
At some point, this pair must be bound to physical storage.
This design supports both late and early binding. These are
the two major buffer classes.

If the binding is early (and by implication, static) the
buffer’s attribute is persistent. Persistent buffers behave like
shared memory. There is a one-to-one mapping from the
(peck-unit,buffer-id) pair to the physical storage. Local
sends and receives on a buffer with this attribute behave like
local accesses and updates. Remote sends and receives
behave like remote accesses and updates. In this sense, the
data (and the name mapping) persists.

If the binding is late (and by implication dynamic), the
buffer’s attribute is nonpersistent. Nonpersistent buffers
behave like n-deep FIFO links. There is potentially a one-
to-many mapping from the (peck-unit, buffer-id) pair to
physical storage. Sends and receives on a buffer of this
attribute are queued outbound to or inbound from a remote
PE. The data does not persist.

The buffer with a receive-type attribute can receive data
from a remote PE. It cannot be used to send messages. There
are three distinct receive attributes. These attributes specify
when and how to deliver a receive notification. A receive
notification (RVN) is a “signal” sent to the destination client
that a message has been received for it. If the attribute is
receive-through, the RVN is sent for each arriving message.
If ten messages arrive, ten calls to the notification routine are
scheduled. If the attribute is receive-delayed, only one RVN
is sent for a block of messages. The block size is determined
by the number of work packets created by the adapter driver
in a single interrupt cycle. If three messages arrive in one
interrupt, and seven in another, two calls to the RVN routine
are scheduled. These two attributes represent a heuristic
trade-off between throughput and response. High perfor-
mance clients that perform their own buffer management
will select one of these attributes. If the attribute is receive-
polled, no RVN are sent. The client must “poll” for its
messages by calling the API receive function. This attribute
is useful for low performance clients that do not perform
their own buffer management. Here, this system’s internal
buffers are used and memory-to-memory copies move that
data from kernel memory to the client’s memory.

A buffer with a send-type attribute can be used to send
data to a remote PE. It cannot be used to receive messages.
There are three distinct send attributes. These attributes
specify when and how to deliver a transmit notification
(XTN). An XTN is a “signal” sent to a source client when
the message’s data page is accessible again. If the buffer
attribute is send-through, an XTN is sent after each page has
been DMA’d to an xmit buffer on the adapter. At this point,
a client may deallocate the page or use it to send another
message. An XTN does not mean that the message has left

30

35

40

45

50

35

60

65

8

the system, however. Another facility, SACK are used for
that purpose. If the buffer attribute is send-delayed, only one
XTN is sent after for a block of pages that have been
DMA’d. The size of the block depends on the messages that
can be dispatched through adapter driver. Again, these two
attributes represent a heuristic trade-off between response
and throughput. If the buffer attribute is send, an XTN is not
sent at all. This attribute is useful for clients that perform
their own buffer management. Here, for example, client-
level acknowledgements are used to notify when pages are
free.

The semantics of adapter-only specify primarily that the
buffer is to be allocated in LDS adapter space.

The semantics of fetchable attribute specify whether the
buffer can be accessed remotely by another adapter driver.
The buffer must be in the fetchable valid state. That is, the
data in a buffer is fetchable only if the data in the buffer is
valid. A client can remotely access another client’s fetchable
buffer using the API request-to-send call.

Some buffer attributes have semantics when combined
and others do not. A buffer must be either persistent or
nonpersistent. It cannot be both. Moreover, a buffer must
have a send-only type, a receive-only type or a send-receive
combination type. A buffer without one of these six attribute
combinations is meaningless. The fetchable attribute implies
the buffer is also persistent. The same is true for the
adapter-only attribute. A buffer, for instance, cannot be
fetchable (or adapter-only) and nonpersistent. Antegrams are
formally storageless message packets. They require no
buffer resources but are processed within this class-attribute
paradigm in any event.

While the invention has been particularly shown and
described with reference to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention.

For instance, a network of crossbar connected or cascaded
crossbar switches providing a means of effective point-to-
point communication among computer, or data server, or
data manager resources executing their communications
through intelligent adapters capable of executing semantics
of the type described would also be considered a distributed
memory computing system of the type disclosed herein.
Such systems in addition to performing numerically inten-
sive engineering and scientific applications as suggested
earlier, could also perform various commercial applications
such as query processing, transaction processing or various
workstation server functions. Further, while an “ESCD”
crossbar switch was suggested as one possible interconnec-
tion fabric, other switches would also be suitable for imple-
mentation of this invention. Also, such systems could be
packaged physically close to each other, such as in the same
rack or enclosure, or be distributed over whatever distance
supported by the selected fabric and still benefit from this
invention.

We claim:

1. A distributed memory digital computing system for
performing a task, comprising:

a) a plurality of processing units where each such pro-

cessing unit includes:

i) local processing means for performing a portion of
the task;

ii) local memory means coupled to said local process-
ing means for storage and retrieval of data and
commands involved in said portion of the task per-
formed by said local processing means, which local

5,517,662

9

memory means is accessible at least in part by other

of said processing units;

iii) external communication path means for permitting
unresiricted continuous access to said each such
processing unit by said other of said processing
units; and

iv) adaptive interface means connecting said each such
processing unit to said external communication path
means for managing requests of data transfers from
said local memory means at said each such process-
ing unit, said requests being initiated by both said
local processing means at said each such processing
unit and by other local processing means al said
other processing units, said adaptive interface means
including:

FIFO gueue means for quening said requests without
storing data requested for transfer with said
request; and

intelligence means for accessing said local memory
means directly withoul intervention of said local
processing means at said same processing unit
upon receipt of a request from said other of said
processing units;

b) point switch means connected to the external commu-
nication path means for all processing units in the
plurality of processing units for passage of instructions
for performance of the portions of the task and passage
of portions of results between said processing units;

c¢) a controlling host computer system including separate

processing means, not part of the plurality of process-
ing units and said crosspoint switch means, for provid-
ing instructions and data to the plurality of processing
units for performing the task by the plurality of pro-
cessing units, said controlling host computer system
including:

i) a host storage means coupled to said separate pro-
cessing means for storage instruction and data for the
performance of the task by the plurality of process-
ing units;

ii) user interface means coupled to said separate pro-
cessing means for inputting instructions and receiv-
ing output from the controlling host computer sys-
tem; and

d) host communication path means which is not part of

said plurality of processing units and said crosspoint
switch means, coupling said host computer means and
at least one of said processing units in the plurality of
processing units together for communication therebe-
tween which said at least one of said processing units
functions as a supervisory means for said plurality of
processing units for receiving said task from the con-
trolling host computer system, dividing said task into
said portions, distributing said portions among others
of the plurality of processing units and providing the
results of said task to the controlling host computer
system.

2. The distributed memory digital computing system of
claim 1 wherein said adaptive interface means includes
means for converting between optical data signals on said
external communication path means and electrical data
signals on channels in the processing units.

3. The distributed memory computer system of claim 1
wherein said controlling host computer system includes a
channel connection means coupling said controlling host
computer sysitem to said host communication path means.

4. The distributed memory digital computing system of
claim 1 wherein therein are two of said plurality of process-

35

40

50

60

65

10

ing units forming said supervisory means, one of said two of
said plurality of processing units for transmitting from said
controlling host computer system and the other of said two
of said plurality of processing units for transmitting to said
controlling host computer system.

5. The distributed memory digital computing system of
claim 4 wherein said local memory means in each said
processing unit includes disk storage.

6. A distributed memory digital computing system for
performing a task, comprising:

a. a plurality of processing units where each such pro-

cessing unit includes:

i) a processor means for performing a portion of the
task; and

i) memory means coupled to said processor means,
said memory means having a local memory portion
for storage and retrieval by said processor means in
the same processing unit of information involved in
performance of the portion of the task performed at
said same processing unit and also having a global
memory portion for the storage of information for
transfer to other of said plurality of processing units;

b. external communication path means including cross-

point switch means for transfer of information between

the processing units in performance of the task; and

c. a plurality of adaptive interface means, a different one

of said adaptive interface means associated with each
one of the plurality of processing units to couple the
processing unit with which said adaptive interface
means is associated to the external communication
means for managing requests of data transfers from
said memory means of said processing unit with which
said adaptive interface means is associated to other
processing units in the plurality of processing units,
said requests being initiated by both said processor
means in said processing unit with which said adaptive
interface means is associated and other of said proces-
sor means in the plurality of processing units, each said
adaptive interface means including:

i) storage means for storage of said requests without
storing the information to be transferred by said
requests; and

ii) intelligence means responsive to said requests stored
in said storage means for directly accessing
requested information in said global memory portion
in said processing unit with which said adaptive
interface means is associated, without intervention of
said processor means at said processing unit with
which said adaptive interface means is associated in
response to said requests from other processing units
of the plurality of processing units.

7. The distributed memory digital computing system of
claim 6 wherein said intelligence means includes micropro-
cessor means and intelligent memory accessing means.

8. The distributed memory digital computing system of
claim 7 wherein said storage means is a FIFO queue means
in which requests for transfer of information from said
memory means are acted upon by said microprocessor
means in the order in which the requests are entered into said
FIFO queue means by said processor means,

9. The distributed memory computer system of claim 8
wherein said adaptive interface means includes means for
converting between optical data signals on said external
communication path means and electrical data signals in
said processing units.

10. The distributed memory digital computer system of
claim 9 wherein said memory means in each of said pro-
cessing units includes disk storage.

* ¥ ¥ *® *®

United States Patent o

Matsuo

US005634005A
(11 Patent Number: 5,634,005
451 Date of Patent: May 27, 1997

[54] SYSTEM FOR AUTOMATICALLY SENDING
MAIL MESSAGE BY STORING RULE
ACCORDING TO THE LANGUAGE
SPECIFICATION OF THE MESSAGE
INCLUDING PROCESSING CONDITION AND
PROCESSING CONTENT

[75]1 Inventor:

[73]

Akira Matsuo. Yokohama. Japan

Assignee: Kabushiki Kaisha Toshiba, Kawasaki,

Japan

[21]
[22]

Appl. No.: 658,015
Filed: Jun. 4, 1996

Related U.S. Application Data
[631

[30]
Nov. 9, 1992

Continuation of Ser. No. 145,527, Nov. 4, 1993, abandoned.
Foreign Application Priority Data
[P] JAPAD .eomerevssemsssssssmsssssssssnnns 4298839

[51] Int. CL® GOGF 13/00
[52] US. CL 395/200.02

[58] Field of Searchcoueeeee... 395/200.01. 200.02.
395/200.16, 200.18. 600; 370/17. 60. 94.1

[56] References Cited

U.S. PATENT DOCUMENTS

171984 TaISON wicssisssisessensarssnersonss 395/200.07
7/1986 Bahr et al. e 370/94.1
11/1987 King, Jr. e 370/85
3/1995 Harriman, JI. ...ervenrmeeinene 3710/94.1

4,424,565
4,601,586
4,704,717
5,398.245

OTHER PUBLICATIONS

“Semistructured Messages are Surprisingly Useful Comput-
er-Supported Coordination”, Malone et al., Computer— Sup-
ported Cooperative Work: A Book of Readings. Morgan
Kaufmann Publishers, Inc., pp. 311-329. 1988.
“Cooperative Work in the Andrew Message System”, Boren-
stein et al., Proceedings of Conference on Computer—Sup-
ported Cooperative Work 88, pp. 306-323, 1988.

Primary Examiner—Thomas C. Lee
Assistant Examiner—Moustafa Mohamed Meky

Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner. L.L.P.

[571 ABSTRACT

An automatic sending-message processing device is applied
to a computer network which is connected to a plurality of
computer systems via communication media and capable of
effecting message switching among the plurality of com-
puter systems by use of an electronic mail system. The
processing device includes a memory for storing a rule in
which a processing condition for processing mail message
data and a content of a process obtained when the processing
condition is satisfied, which are described according to the
language specification of the mail message. The processing
device further includes a control information analyzer for
analyzing control information of the mail message data, an
interpreter for collating the analyzed control information
with the processing condition to interpret a process to be
executed. a processor for executing a process on the mail
message data corresponding to the process interpreted by the
interpreting means, and electronic mail sender for sending a
mail message consisting of the processed mail message data
as electronic mail to other computer system users.

19 Claims, 8 Drawing Sheets

s
27~ RULE
FILE

o =)
e
?s(O

23
&
=3 ELECTRONIC
P RULE ANALYZING ?érlalﬁms |1 _
o CTION
e £ SECTION
2=
3 READER
s INFORMATION | [EROCESRNG
By 26~{aNIZING | IsecTioN |~ 28
wn b
gs | 4 _____
=0 IRt ks ik ___]
i |
Ao0nn ..
]
|
i_ PROGRAM / COMMAND SECTION |
{
i
12 i

U.S. Patent May 27, 1997 Sheet 1 of 8 5,634,005

<>
23 27~ RULE 25
A FILE 30
- 1 ‘
i
o 24 ELECTRONIC
g-\\-.. = [RULE ANALYZING gérhléme 1
|5 SECTION o
1 |82 ! ‘
= HEADER PROCESSING
S INFORMATION [| ExertT NG
ANALYZING
ww ~ |~
4 26~{SECTION SECTION 28
o U
< g
e=| |
-a I[_ "i
\3_/ | O 0 |
21 29 ~ oo |
|
[I
I PROGRAM / COMMAND SECTION |
)
1y N
i2 > 41
1
2 § =
{
e ®

FIG A

U.S. Patent May 27, 1997 Sheet 2 of 8 5,634,005

IF |subject “(trans)’)

THEN { data transforming program}

IF {subject “(comp)"}

THEN { compressing program }

IF {subject “(crypto)"'}

THEN { encipherment program)

IF { condition}
THEN { processing }

IF { condition}
THEN { processing |

FIG 2

U.S. Patent May 27, 1997 Sheet 3 of 8 5,634,005
(smrr)

ACTIVATE INTERFACE >3 1

INPUT SENDING DATA HEADER
INFORMATION & SENDING DATA

ANALYZE RULE AND CHECK HEADER
INFORMATION BY USING RULE . §3
ANALYZING SECTION AND HEADER
INFORMATION ANALYZING SECTION

S4

DOES RULE MATCH
HEADER |NFORMATION
"

YES

ACTIVATE CORRESPONDING PROGRAM
OR COMMAND AND PROCESS DATA S5
BY PROCESSING EXECUTING SECTION

OUTPUT MESSAGE TO ELECTRONIC
MAIL SENDING SECTION AND —~S6
SEND MESSAGE

F1G 3

U.S. Patent May 27, 1997 Sheet 4 of 8 5,634,005

(' RULE ANALYSIS)
I

OPEN RULE FILE =M

CALL HEADER INFORMATION L3
ANALYZING SECTION

!

START ANALYSIS FROM HEAD OF RULE [~A4

S

DOES RULE(IF-THEN
SENTENCE% EXIST

JVES NEXT RULE

CHECK CONDITION
SECTION (CHARACTER) ~A6

!
CHECK HEADER INFORMATION [~A7

A8
IS CHARACTER
INCLUDED ?
YES
CHECK THEN SECTION ~AS

Ai0

DOES RULE (|F-THEN
SENTENCE‘)? EXIST

NO
CALL PROCESSING EXECUTING SECTION [|_ajf

1
CLOSE RULE FILE —~ A{2
|

=
OQUTPUT MESSAGE TO ELECTRONIC L _Al3
MAIL SENDING SECTION

FIG 4 BN

U.S. Patent May 27, 1997 Sheet 5 of 8 5,634,005
HEADER
C ANALYS|S)

OPEN MESSAGE FILE [~~B{

READ HEADER INFORMATION| g5
FROM MESSAGE

|
EXTRACT ADDRESSEE
INFORMATION B3

EXTRACT ADDRESSER |-_ga
INFORMATION

EXTRACT SUBJECT
INFORMATION

EXTRACT SENDING 86
DATE INFORMATION =

SET EACH INFORMATION
TO VARIABLE el

CLOSE MESSAGE FILE (—vBB

]
(RETURN)

FIG S

U.S. Patent May 27, 1997 Sheet 6 of 8

PROCESS ING
EXECUTION

5,634,005

READ MESSAGE FILE

~CH

DIVIDE MESSAGE INTO HEADER
INFORMATION AND SENDING DATA

SEQUENTIALLY READ COMMAND
NAME AND PROGRAM NAME

DESCRIBED IN THEN SECTION

—~—C3

DOES PROCESSING
EXIST ?

ACTIVATE COMMAND AND
PROGRAM TO SENDING DATA

~C5

4

COMBINE HEADER INFORMATION
AND SENDING DATA

)

(RETURN)

FI1G 6

U.S. Patent

May 27, 1997 Sheet 7 of 8

IF{
to("com")

THEN {
y COpy_prg $/backup

IF
{dute-:" 1993.04.20"

}
THEN [
} mail_prg userA<$

[F{ .] [
\ subject{"crypto”)
THEN{

| crypto_prg $

F
\ { subject (“comp")

THEN{
| compress_prg $

FIG 7

!F{ L] .
to("com") AND subject ("comp") AND
\ subject ("crypto*)

THEN {
copy_prg $/backup
compress_prg $
crypto_prg $

}

FI1G 8

5,634,005

U.S. Patent May 27, 1997 Sheet 8 of 8 5,634,005

IF { i n

to{ com)
THEN({
) Copy_prg $/ backup
IF {

date <"1993.04 20"
THEN(

{subjec’r ("crypto”)

THEN{
crypto_prg $
} mail-prg usera<$

{F { ' { n
subject (" comp”)
THEN {

compress_prg $

FIG 9

