Microsoft:

T0: Darryl Rubin, Bruno Alabiso, Neil Konzen, Martin Dunsmuir,
Mark Zbikowski, Mark Cliggett, Anthony Short, - Paul Maritz,
Nathan Myhrvold, Tony Williams, Chris Larson, Brian Berkowitz,
Tom Lennon, Phil Barrett, Yaron Shamir, John Ludwig,
Gordon Letwin, Charles Simonyi, Greg Whitten

FROM: Bill Gates
DATE: September 6, 1989
RE: Data Storage

One of the fundamental issues in computer design is how data is stored. This
drives the access technique and determines how the user is to get at the
information he is interested in. I try to raise in this. memo a number of
questions about our company strategy for data storage.,

Today's DOS file system is the top level container for PC information, It is a
hierarchical name space with the volume names being at the top level. Names
are 8.3 and a limited number of attributes are stored with the file. We have
added EA (extended attributes) to all OS/2 file systems, incloding FAT and we
have added long names to the HPFS (high performance file system). We will
add EAs but not Jong names to DOS. We solved the issue of EA diskette being
used on old versions of DOS by putting the EA data into a funny file (or
pretending 10). If you copy or create a new file under old versions of DOS the
attributes are lost. [EAs are set or cleared through DOS calls - no control can be
imposed. i

e

Attributes for [EXE files are often stored in a published format called resources.
These can be random accessed and they are available in Windows and OS/2.
They are not available for data files (that is, if resources were added to 2 data
file the applications that use the file would break). The icon of an executable
is one cxample of something defined in a resource.

Applications often store attributes in their own private format - for example,
WORD has a document summary dialog (both PC and Windows). This

infonnation is stored in a format that we publish to the outside world but that
is not used by any other product. Likewise people like WordPerfect store
attributes in their files in special forms - most of these forms are publicly
known but there are a lot of them. I don't think Magellan or other OS viewers
presently know how to display this information. Magellan knows how to find
plain text and display information for popular formats. CONFIDENTIAL

EAs are not indexed today so the only way to sclect a set of files by EA is to
cpumerate all candidate files. EAs are stored somewhat inefficiently. I don't
know if updating an EA changes the file date - I don't think so. Standard EAs
have been defined by the OS/2 group for author, type and other things. At
present people are inventing new EAs for attributes the operating system is
interested in fairly often. The shell interface to even look at or define new EA

Plaintiff's Exhibit X1 462851

9510

Comes V. Microsoft

Data Storage

Bill Gates
September 6, 1989
Page 2

values for a single file is weak but available in 1.2. There is no facility in the
1.2 shell to display a lot of EAs at once or to look something up by EA. Even
though the search would have to enumerate all files these capabilities have to
be added. Likewise we need to get our applications to store the document
summary information in the EAs. There is a question about the attributes we
summarize that no standard exists for - we could go too far in using EAs if, for
example, we put statistics ‘about the file in EAs.

Links. This name refers here to a file referring to another file. As far as the
file system knows only a single unique link exists for each file and that is in
its directory. However, applications often store file names in files. This raises
some interesting problems - what to do about volume pames? How to know if
the file is moved, renamed or deleted? More commonly, if the file is updated,
how does the guy who is linked know this and immediately uwpdate himself and
pass that along to people referring to him? How to get a path name that works
across the entire network? If the file is sent somewhere, how to knmow to take
the file along with it? A fundamental question in links is deciding if a file can
know everyone who is linked to it. In many cases this is feasible and nice. In
" many cases it is mot feasible. Onc "solution" is to give files IDs (unique IDs)
that can be used to find a file or at least verify it is the same file. We nced to
solve this problem very soon. Without links in the file system everyone is
kludging their own structure at the application level. A user needs to have a
universal way of secing links. A number of proposals have been made bnt 1
don't know where they stand. Links are not planned for any optrating system
release I am aware of. I would like to get together with Bruno, Darryl and
other interested parties and figure out how we. get concrete about this plan.
Even stendardizing an EA that would list the files linked to a file would allow
the user to see the links easily and some programs like the shell to update
them. I believe we need a shomt term pragmatic solution to this problem and a
long term solution. I think we will want to list this information in an EA
eventually anyway, so asking people to do it now should put them on a path to
the future.

HP NewWave. NewWave is an innovative piece of system software. There
aren't many around so we should learn from it. One of its key innovations was
its OMF that tracked relationships between objects. The only relationship it
understood was containment so it had an in-memory tree structure showing
whe contained who. Actually since a file could be contained in multiple places
it was a directed graph. It "solved" the issue of notifying everyone when a
contained object changed. It did this by sending messages - in fact, NewWave
would often scnd messages when it wasn't necessary. They dealt with issues
like changing size, deleting, etc. Objects did not have unique names and there
was no user interface for examining object relationships. They didn't solve
the networking problem. Their biggest problem was their lack of integration
with the file system. NewWave objects were all contained in strangely named
files. Other NewWave areas of innovation included: (a) A better shell. We do
as well in this area in Windows 3.0. (b) Defining 2 separation between user
interface and action. This is a2 very important idea. Like all of the ideas in
NewWave it is not original. The beauty of this is that it provides macro record,
play and user interface redefinition for free. I, surprised Microsoft has

am
CONFIDENTIAL

X146252

SN

Data Storage

Bill Gates
Scptember 6, 1989
Page 3

moved so slowly to do this. I view it as part of Greg and Tony's mission mid-
term to help us do this. (c) Another key NewWave feature was the messages
they used for containment - display, print, make new instance, resize, etc.
They don't require metafiles - they call the owner for display and print. It is a
high-priority short term item for Greg and Tony to define messages like this
for Microsoft. The benefits for third party add-ons to spreadshects, documents,
presentations and forms is significant. We should include issues like user
interface (does it show up on the insert menu? Does double click invoke a new
window and the ‘edit' operation?). (d) NewWave also attempted to deal with
defining a central control language but 1 mever saw any progress on the
tough obvious issues of datatypes or user intention (Sec Halbert's PARC paper
which I got from TonyW for an excellent discussion of this).

The file system will be used by our networking products to store not only
classic . type file information but also information about emtities such- as users,
~ printers, gateways and any other network objects. The benefit of this is that
the file system distribution and security capabilities are then leveraged for
this information as well. I applaud this because of the umification, however I
think it will show that our data storagc sirategy has significant holes in areas
like storage cfficiency, linking, logging and indexing.

SQL Databases. SQL databases are becoming a strong standard for moving data
between machines. In fact, machines that will never have consistent file
systems will be communicating SQL data quite frecly. A key clement of IBM's
SAA strategy is to unify SQL across all of their platforms and eventually
provide distributed query (read and update). Microsoft is building an API
standard at the workstation t0 try and hide as many SQL differences as we can
(Kyle Geiger and Bob Muglia in Adrian King's group are in charge of this
effort and are secking to enlist Lotus and Oracle as key partpers). SQL tables
are cxcellent for storing information that is uniform for all items (records)
and that is low level (string, date, number). Instead of dealing with types of a
higher order instead you use a number or string field as an identifier and do
EQUIIOINs against the table that stores the information about the identified
type. For example, when an employee is in a specific department number, you
get the name and other information about the department by joiming with the
department table rather than following a pointer to the pointer - there is no
'department’ type. In other words, SQL records do not store anything but
numbers, strings and dates. Higher order interpretations - for example,
knowing that the number is a dcpartment number - are only known to the
application code or data dictionary. The benefit of this is that finding and
updating all pointers is never an issue. Joining would seem to be a very slow
way to get information but SQL databases have been optimized to use B-tree
ISAM and caching to achieve very reasonable performance. I am surprised
that no SQL database cheats and uses a pointer stored from previous EQUIJOINS
as a hint (this would not affect its behavior at all) but as far as I know nobody
does so. Older databases called hierarchical or networked used pointers as do z
new type of database called object oriented (the word unique identifier is often
preferred 10 pointer because pointer implies a low Jevel machine address).
The issue of using a pointer or a siring to identify atiributes (same as column
or field) that are high level objects described elsewhere should mot be a major

CONFIDENTIAL

X14e253

Data Storage

Bill Gates
September 6, 1989
Page 4

one. SQL is great for business information because there tended to be only
tens of entity types - like customer, order, employee and hundreds to
thousands of each of these. Some issues like special employee types (do you
make another table with just the special information?) or grouping (say you
sell products in a bundle and you want queries to recognize that the office
product is actually a form of the word processing or that educational SKU units
should be included) get messy but there are ways of dealing with these issues.
I believe a very high percentage (over 80%) of the data on caterprisc level
machines (mainframes) will be stored in an SQL form so SQL capabilitics arc
critical to workstation software and SQL performance is critical to mainframe
quality. SQL tends to be weak when there are lots of types of entities with lots
of rclationships and not many of each of them.

IBM's strategy is to use SQL for distributing network information. They have
"addressbook™ code for every one of their platforms. They will use SQL to
distribute the data. They will use SQL front ends to update and browse the
information. “This is a direct contrast to our strategy (there are two ways to
bridge them which I discuss later). IBM's addressbook -defines the standard
columns for the user emtity, This has alrcady been done (have we looked at
it?). Microsoft's current SQL strategy is not strong. We rely on an outside
vendor. We have very limited local SQL capabilities. OQOur vendor in not SAA
compliant. We are considering getting closer to IBM in this area but that is not
a simple thing to figurc out. We don't have a plan 10 support SQL on our file
objects.

Another storage format is to simply define an ISAM. Apple has done this with
System 7. 1 am surprised it didn't receive more notice. Microsoft has an ISAM
that is a subset of its Omega file format. The size is quite large even without
the multinser locking capability. The migration of ISAM oriented code to SQL
oriented code is not well defined. You could say we have ISAM already with
our directories since we do key look up but we have never exported an ISAM
service based on our directory handling code. I wonder if the HPFS ISAM
solves concurrency issues and should be exposed at some point.

Many applications come up where there are a diverse set of objects (=entities)
that bave to be dealt with. An example is storing engineering information.
There is no top level container like a document that works well for

engineering data - several forms of access are needed. Unfortunately SQL does
not work well for this, One small rcason is that SQL databases often don't
handie variable sized records very well (images, drawing, audio, documents
and many other objects are very variable sized). SQL products are being
updated to do this better - primarily by storing the variable size information
scparately (like the DBASE memo ficld) but they limit the ability to use these
"ficlds™ as queryable values. This still doesn't address the need to have
inheritance in the record objects. The whole issue of variants is a very
difficult one. Take for example a mail databasc. Some messages are a few
simple fields like to, from, text. Some are room reservations and contain a date.
Some are project status and contain a lot of interesting fields (amount slipped
this report). A user with a lot of messages wants to be able to index all of the
messages with a common field - very easily. There are two products that do

CONFIDENTIADR X14£254

Data Storage

Bill Gates
September 6, 1989
Page 5

this quite well. One is the Lotus IRIS Notes project and the other is MIT Object
LENS. 1 recommend everyone read about these since they solve some of the
interesting problems. The Object LENS article is very well written. Notes does
an excelient job of using logging to know how to incrementally update its
indexes based on everything that has happened since the index was last
updated. An index is not restricted to be based on a field value ~ it car be 2
formula of several field values or a simple formula like UPPER (ficld). Also
field values include lists (a great convenience, but you have to be very careful
to map things if you want 10 preserve a relational model, which they don't).
Notes uses this time based log to also do efficient replication. I believe they
replicate at the note level because they feel notes will be reasonably short
(that is they mever send just a piece of a note update like the one ficld value
that changed). Notes punts on allowing attributes to be anything other than
low level types. Object Lens, on the other hand, allows for object valued ficlds
and does some excellent user interface work on top of this. They don't deal
with the the issues of distribution. One of the impressive things about these
systems is that once you have forms and indexable variant types and an
interface t0 deal with them most of the special case stuff is no longer special
case. All the applications structurcs can be viewed and updated through our
interface. For example, the NOTES addressbook is just a set of notes indexed by
user name, The difficulty of dealing with variant objects prevenis database
tools like DBASE from becoming the central metaphor for storing and finding
office information.

There are several database activities aimed at dealing with the issues above. i
Ullman's books (Volume 2 just came out) provide the best hardcore foundation.
Dyson's newsletter has talked about the startups working on this problem. Our
favorite is a company called Object Design who will be visiting in the near
future. IBM has two efforts going internally. One is called the Repository. It
is a huge project that has moved around from lab to lab. It is sort of an object
database but since they built it on standard SQL engines I don't think it will
ever be very good. It may ship in the next six months, is targeted to the
mainframe only, and focused on system configuration, software development
and nctwork configuration. We are interested in the last area - at least to
agree on entity definitions (although many of the interesting ones are in
their addressbook already). Today the Repository is in Toronto under Wheeler.
Another more interesting project is called IRF aud is being handled out of .
Germany (Sinfeldan or something like that). There was a group doing a
document management library and another group doing an engineering
document library for CIM and they got together on this project. It is very
interesting because they claim it is object oriented. We should leamn more
about it. I asked if they would store third party application formats in the
library and have standard messages for text enumeration to do content secarch .
The people we were talking to had no idea. The issuc of being forced to totally
know the format of something or knowing how to invoke code to look into
something is critical to making the library stuff work.

Our long term direction is to make every directory an object that handles

today's operations and new operations. We need to standardize a number of
these extended operations - for example, ISAM lookup. We could put in a

CONFIDENTIAL X148255

Data Storage

Bill Gates
September 6, 1989
Page 6

simple emulation for this today - ecnumerate for the set that matches. I think
the key to making all of this work well is logging. I don't understand our
staging plan.

Optimizations within a directory will depend on building new data structures
(indexes of various types) that need to be brought up to date. Rather than us
deciding on a specific structure and deciding whether to update on change or
update when the index is used or some other time I would like to sec us
standardize some hooks to be used for logging. If a directory can see all of the
the operations on it then it can log them. Perhaps we nced to standardize the
log file - although this raises a tough issue of granularity,. Do we just log that
something- about a file has changed or do we log what a specific attribute has
changed? I know our networking group has plans to do some of these things.
One of the grat things about logging is that it allows anyone to update their
standard structures. For example, say an SQL addressbook on a mainframe

- wants 10 shadow changes made in our user directories - copying the whole
thing might be too expensive. Conversely of the SQL addressbook keeps track
of dates for ecach record we can query all of their changes in a recent time
period. Another example is a free text index on a set of files. Knowing that the
content of one of the files changed allows you to know the index is out of date.
One problem with a log is that it can get very long and redundant. At some
point (fairly often) all of the log users have to say, "I saw all of the data up 10 a
certain point :of time" so the log can be pruned. 1 wonder if we need to own
SQL querying code that becomes standard for directory operations at least on
servers somctime not too long from mow. If we supported logging and included
the ability to scan the log to update B-tree index files on attributes it would be a
step in this direction. '

Microsoft is attempting to make the file system do everything - store objects,
manage fast and general queries (including SQL), replicate, be secure, fast
"join", compact storage of table like information, etc. This makes it sound like
an object oriented database, which it will be over time. However, I thing we
need a rational plan for going about this. For example, we don't expect other
systems to duplicate what we are doing and yet we need to connect with them.
I don't even know if our file system is "concurrent™ cnough. At what level
should multi-user updates get locked out - should each attribute be exclusive?
I don't understand how aturibute types like "USER" or "FILENAME"
automatically get a ‘'class based' interface for user selecting and updating.
What utilities are needed? I would like to evolve the DOS/Windows file system
as well and that has to fit into the strategy. Likewise the use of resources has
to be unified.

Concretely our application strategy requires resolving the link issue. Our
network strategy requires solving all lot of these issues. If we stick 10,000

users into our currently structure, our space and speed will be completely
unacceptable compared to the straightforward SQL approach.

CONFIDENTIAL

X14€£256

Data Storage

Bill Gates
September 6, 1989
Page 7

All this memo has done is raise issues. In the next few months a strategy memo
for how we will address these issues over a period of years would be very
valuable. I will work with all of you to see how we discuss these things and
come up with this.

WHG/jlg

CONFIDENTIAL

X146257

