
Prom: Eric-Rudder " ~ ~’~~’-:
"

|Sent: Friday, July 16, 1999 9:25 AM
|To: Bill Gates
|Subject: latest

please nuke all the other copies you have of this document.

i feel a little better abt the shape of the doc. i know i can get it under lo pages, and still hit many
of the elements, w.o. diving into detail, i feel a little better abt mgmt this AM. i plan to work on
schema today.

any feedback at all would be swell.

, -eric

The Next Wave.doc

I
Plaintiff’s Exhibit~

8182
 IS-PC 1367240

Come------~ V~ Microso-------~. ~-I[G[4LY ~)~I~J])I~ITIAL

The Next Wave

We have many good new technologies being developed in our product pipelin’e. However, we seem to be
lacking a strategy where we make the whole greater than the sum of its parts..At a time when our core
franchises are under such strong attack from competitors, this situation is especially painful.

We do not have the luxury of time to change our existing product plans over ~e next year or so, but
looking beyond that, we must set some goals for how our next generation of products will renew their
leadership positions.

1 Feedback Cycles

Historically, we’ve had incredible success when we’ve built a Virtuous Loop consisting of a great version
of Windows, great tools to deliver applications, great applications, and Inteme.t services which enhance
those applications. This never-ending cycle of feedback is something we nee& to continue to draw upon as
a company, even as our divisions enjoy ever increasing autonomy.

1.1 Traditional Cycles

Our traditional cycle of opportunity goes something as follows:

ISV’s consume the Windows API. IHV’s consume the Windows DDI. OEM’s consume the Windows OS
itself. The OEMs do not want to invest in proprietary OS projects because their commodity business model
forces them to stay lean, mean, and focused on very quick design tumarotmds .~nd supply chain
management. ISV’s want an OS because they don’t want to waste time and effort on tracking rapid
innovations in other vendors’ software, or in hardware. IHV’s want an OS because they like the leverage
that comes from a standardized socket where they can quickly and compatibly plug in their inventions.
Windows provides a common ground for all three of these industries - it makes the combined market more
efficient. ~

Our competitors are exploiting similar cycles of their own:

Sun - sells network-centric server hardware, and the Java platform, ~vhich links service-producers to
application programmers in a network-centric way. Service providers like the ~afe, standardized, and
cross-platform socket that EIB, Jini, and JavaBeans provide. Application pro~ammers like the availability
of many services in a clean, modem, component-based API, and the consistenc~, of the extensibility model
with the underlying platform. Corporate customers who need code-based server solutions don’t want to
recreate this extensible platform, and so they adopt Java. Note the similarity t~ the Microsoft model - and
note the similarity to the URT strategy. This means that our best bet is to compete head-on, rather than to
coopt.

Oracle - sells database software, joins corporate producer of data/biz logic to in,tegrators, commoditizes the
hardware/os. The more that you put in the database, the better the integration s.tory becomes. Oracle has
co-opted Java - they use it and market it. Oracle will also co-opt the NT wave. ’Neither Java nor NT
threaten Oracle’s underlying circle, and so by co-opting them, they use their competitors’ strengths to
increase their own strength.

IBM - sells reliable hardware/software. Corporations that must depend upon cqmputers buy IBM’s
products and services.

MS-PCA 1367241

Cisco - sells the equipment that makes the intemet run. Businesses are embracing internet delivery of their
services. Hardware vendors are making "appliance like" devices that use network attachments and standard
protocols to deliver their function, whether these be server clusters, cellphones, settop boxes, or PC
peripherals. ISPs and carriers want to offer the best set of intemet services to their customers, so they buy
Cisco. Network operators and carriers are consolidaling, creating huge pools of customers. Cisco will
coopt any and all operating systems - they are just network leaf nodes.

We can learn from the cycles that are being created by other our competitors ~at exploit network effects
other than our traditional one. These are important to understand not only for their impact, but also for the
opportunities that they present.

1.2 The Cycle of the Web

We have a very valuable corporate asset in the form of our understanding of what makes an application and
how to build good apps. But we are still trying to push this knowledge into the OS, rather than trying to
push it into the web. MS should be, focused on building "hosted" apps, on understanding "webified" apps,
and on building or investing in infrastructure for networks (including app servlces).

The web model includes many of the same players, but there are some new on.es as well, such as ISP’s. The
OS has increasingly become marginalized, making weaker alternatives, such a~ Linux, more appealing than
they should be. ISV’s now consume "Web API’s." IHV’s "plug in" using network protocols, and the
OEMs are facing commodity pricing like never before. IHV’s used to make bbards that conformed to PC
bus specs; but now they make network appliances. ISV’s used to build Windows apps; now they create
sites and front ends that exploit open protocols. ISP’s are beginning to take on the role of distributor,
which underlines the OEMs’ tenuous position. While the OS is still important ~’or OEMs, the value of this
element is diminished, due to both price pressure and to the fact that open prot9cols make the
implementation of the entire machine replaceable. We have in some sense, fafl, ed to make ISP’s a key part
of our cycle, in part because we compete with them, but mainly because these .~ompanies are much more
interested in common glue for communications than in glue for applications, and because of this, they tie
themselves to companies like Cisco.

1.3 Reinvigorating the MS Cycle

[This section must tie in with the "Why" slide. I’m not sure if this gives you ~e Linux/Java thing like you
want.]

The competitive situation we are currently facing is a tough one. We are in danger of losing our desktop
fiznchise, unless we take vital steps to renew it. We must exploit the integration of our assets, and make
the whole greater than the sum of its parts. Yet I fear we are not on the course heeded to make us
successful here.

Much of our new platform thinking is actually being done by the Tools group, .especially with COM+. Yet
our applications group doesn’t fred much of the COM+ work relevant to their short term, and our groups in
CCG aren’t basing their future plans on the work being done by this group either. In addition, none of this
work reaches out in a new way to ISP’s, to include them in a new cycle of prosperity.

There are several key imperatives we must deliver on, in order to refresh and renew the Windows franchise.
While there is an incredible amount of good work that is going on, I want to take the opportunity to
prioritize our efforts, and focus on five key areas.

These areas are: The User Experience, Establishing the Windows Schema, Manageability, Delivering a
Clear and Compelling Message to Developers, and Building Internet Scale Services.

[Maybe we can make the initiatives tie to the Cycle elements:
OS - User Experience
ISV - Developer Message and Schema
ISP - Intemet Service
IHV - Manageability?]

Pick.ing a small number of areas to focus on will help us prioritize, and should:help amplify our most
important messages, both internally, and externally.

2 The User Experience
We must irmovate in the user interface, as well as continue to,attack some of the complexity that we (and
indeed, the entire industry) have created¯

2.1 User lnterface
Windows has long presented a rich user interface that has been embraced and adopted by both end users
and application developers. With the rise in popularity of web-based paradigms, developers are now
building applications that do not tmiquely leverage our UI infrastructure. HTML delivery of UI is seen to
be a universal panacea, because it theoretically allows for greater system independence in all ways -
operating system, graphics capability, browser version, device form factor, etc. The fact that this is an
illusion does not make our task any simpler. We must compel ISV’s, both "traditional" and "modem," to
embrace our UI innovations. Our challenge is no less than the need to re-estab!ish thought leadership in
user interface design.

We are currently investing in new UI design in a few different areas. We can deliver many aspects of these
innovations in Millennium and reEme them in Neptune, so long as our ’high concepts’ are successful.
Among the user interface initiatives in the company today are:

¯ Neptune - Activity Centers, etc.
¯ ePad- New metaphor of links
¯ Agent- Engaging the user in a dialogue

Our goals for the next generation of UI must take the best from all of these efforts, and deliver an
incredibly compelling overall experience for both the novice and the experienced user. Some specific goals
are outlined below.

2.1.1 User Interface Goals

2.1.1.1 Significantly simpler .
This doesn’t just mean losing a few controls. The web UI is popular and successful because it is not based
on any high concepts¯ If there’s a link, it’s underlined, and clicking on it takes ~,ou to where the link points.
Every user understands that. There is no fight click or double click metaphor o,h the web. That doesn’t
mean that these concepts are wrong, just perhaps over-used or chosen as keys tb fimdamental actions (like
double clicking an application on the desktop to open it). The value added by these more difficult concepts
is clear- most customers appear to like context menus, and are happy to right click to get them. Customers
do not appear to like a lot of windows, though.

Like the web, it means being able to pause halfway through a task and resume it later, or abort it altogether.
It means always being able to go back and change things, so that no user actaon is committed until the very
fmal stage.

2.1.1.2 Adaptable
The user interface must be able to take full advantage of whatever device it is rendered on- a big screen
with cool graphics capabilities must be able to be utilized to the full, yet the same code must run perfectly
adequately on PDAs, cellphones, laptops, etc.

]S-PCA 1367243
HIO’Bt,Y CON1;]D]~q’I’IAL

2.1.1.3 Contextt ~I
The UI must prese~ t itself contextually, so that a one-task function presents only the UI relevant to it (such
as a book reader), ~ ith other UI facilities hidden but always available, whereas customers higher up the
functionality scale ~ aight want to have easier access to more complex UI functions.

The mouse and key)oard aren’t the only input devices. PDA’s have caused pens once again to become
popular, so our UI ~ aust incorporate facilities that take advantage of a pen if it is present

We must make the ! ocal versus Web experience seamless, so that viewing and editing Office documents
feels the same - is t ae same - as viewing and editing web pages. Therefore, we must also adopt many of
the UI principles fo md on the web, some of which may have significant impact, such as the mixture of
content and control navigation elements on a page. Clearly, the reverse is tree - Windows can leverage the
web, so that web p~ ges can be used to add to the user experience in Windows, which means that integration
must be much tight, ;r than we have today.

2.1.1.4 Customi~able
The UI has to be fa:’ more customizable than it is in Windo~vs today. Tools must be provided to allow user
interface to be crea~ :d and edited as easily as content, and in some cases indistinguishable from content (so
that forms, web pag ~s and generic UI elements are all treated the same way). Additionally, customers will
want.to customize 1_ I in other ways, such as adding their own annotations to it

2.1.1.5 Include ! ’ich new innovations
This includes autorr atically adaptive UI that determines device characteristics, including form factor, and
renders itself accor(ingly. If the UI designer can author once and know that his user interface will work
across a range of de vices, we have a win. So, this likely means that UI is itself declarative, allowing itself
to be transformed tc the appropriate set of UI elements and features when it ’lands’ on a device. The UI
needs to include me zhanisms to integrate text, audio and video, so that one could for example have an
audio tool tip as eas ily as one has a textual one. Each of these features must be easily accessible to
application develop ~rs. Perhaps the UI itself incorporates real time collaboration features, so that the
content of a control on a page could perhaps be bound to a URL.

2.1.1.6 Combine the Best of Windows with the best of the tgeb

We must be the owners and progenitors of a new UI style, "WinWeb", analogous to the Windows (and
Macintosh) styles, s~ that a developer has definitive guidelines about how to construct the UI of a

application. The guidelines should include rich samples that show developers how to incorporatecompliant
these features into qew applications, and must provide adequate scope for extension. It is vital that such a
style guide be an evlblved form of the web UI style, and must add to it rather than changing away from it

2.1.2 Roadrn ap
It is not plausible th tt all of this can happen in the Millennium release of Windows. It may be that we can
take some evolution u2� steps there, perhaps a few revolutionary ones, and then really drive forward in
Neptune. Take one ~,f the most promising areas for UI innovation: Activity Centers. We should define the
basic concept in Mi] [eunium, create a few to drive home the principle, and ensure that ISVs (OEMs?) can
add their own. We n ray even be able to drive an industry akin to WinAMP skins in this area if a) we make
activity centers com’gelling enough, b) we make it easy for ISVs to create and publish them, and c) we
leave scope for then~ to do this.

So part of this will I: e to define the set of activity centers that we want for Millennium (which ought to be a
subset of those we v’ant for Neptune), decide which ones we can usefully farm out, and then promulgate
the concept as wide] y as possible so that interest is created. But we also need to tie activity centers to
Windows, so that th ;y can’t just be arbitrarily created and used on any system regardless of whether it’s
ours or not. This is t ard, unless we create a UI framework that is easy, extensible and partially supportable
elsewhere (so that, f 3r example, a much-diminished activity center experience xvould be possible on IFA, 5

FIS-PCA 1367244

and Nav 4, 5 systems). Activity centers should also be extensible, so that existing ones can be customized
and enhanced. ~

We also need to pr?vide some of the other UI innovations in lvlillennium; it doesn’t seem to great a
technical step to halve Agent presume the role of the Run option on the Start menu, for example, or to make
sure that many of Re pen and stylus based UI innovations from PDAs make their way into mainstream
Windows. l

Now is also the tinge to make some foray into the adaptive UI arena. Much of ~vhat I have said before tends
towards a 15I definition mechanism that is declarative and therefore fairly easily transformable. We already
have some of the r~echanisms in place to do this, even in IE5. With the XML and XSL technologies
therein, we can crehte definitions of UI in XML which can be rendered differently depending upon the XSL
transformation whi ~h is applied to them. So, if we were to define (and/or adopt) an X!vlL-based 15I
definition language (c.f. RCML in NT and Netscape’s XUL), we can both create and enable the creation of
device-adaptive UII at least to some extent. This would be a pragmatic move in Millennium, and it allows
for fat greater adw hces - such as excellent tools support - in the Neptune timeframe. It also allows us to
define a schema fo: UI which we can publish, both as a style guide and as a defming mechanism.

In the longer term, ~e need to determine how successful the smaller UI enhancements in Millennium
turned out to be, an] leverage those that are clearly working. Others should be discarded quickly, as we did
with channels and t ~e active desktop between IE4 and IE5.

IfNeptnne can beg! n to turn the UI into a collaborative mix, that will be interesting. This is the idea where
a controYform/pag~ is linked- two-way - to live content. Then, as we work on the content as a group, so
we all see the chanl ;es. We’d want to have some very clever technology (e.g. DAV enhancements) behind
this so that one use~ "s changes aren’t immediately destructive to another user’s, but we fundamentally
know how to do th~ t.

Perhaps the biggest Ichallenge for us, which needs to be resolved by Neptune, is exactly how legacy apps
(that is, those we a~ e using today!) fit into tiffs framework.

[Don’t quite know ’hat to do with the AC text below.]

One of the most pr~ nising areas is Activity Centers.

We need to think at out answers to the following:,

Can 1SV’s create n~ w Activi(y Centers? We won t be able to do them all for Millennium or even for
Neptune. Perhaps x ze want to parmer with folks to write a couple of Activity Centers. Maybe HRD writes
a couple forus or tt ere becomes a thriving market for Windows Activity Centers that customers buy.
There is a broad lisl of key task centers for consumers. They include games, photos, music, video,
communications, st opping, personal finance, and home productivity. If we decide to extend this metaphor
to business, then th~ :re are probably others as well. We must define the core services and business models
that enable others t~i create them.

Which centers are ~ ! the heart of the Windows Experience? As we think about our Activity Center
invesmaents, we ne~ d to think of them on a continuum. Some we will deliver in Millennium and we will
deliver more in Ne ame. We need to be able to prioritize which ones we deliver on.

How does "legacy" contentfit in with the new paradigm? We need to decide if we are just introducing
another new concep or if indeed, all applications are now invoked from activity centers.

What makes a new t{pplication a great addition to an activity center? A clear, compelling message to
ISV’s is critical. /

t IS-PCA 1367245
HIOI-IL’Y co~

2.2 Attacki Complexity
In addition to defm ng some new areas of excitement, like Activity Centers, there are some other areas

where we need to c retinue to enhance,~e user experience. I will mention just a few. Our PC Health
initiative means ck ruing up the "error experience, both preventing errors, and truly helping to fix
problems when the occur. We need to continue to leverage Windows Update. We need to once and for
all eliminate the pr~ ~lem of"DLL Hell" - this means delivering COM+ Deployment, a.k.a. Fusion, in
timely manner.

2.3 A Big E
Talk about speech_i] tw/vision here?

3 Establi,, hing the Windows Schema

The idea of schema is straightforward: it allows us to make intelligent use of data, so that greater
integration is possil ~le, data can be put to more uses more easily and more data becomes accessible (through
late binding). Once we know that data exists, we want to use it. If we know nothing about that data, we’re
pretty much hamsta rag. If, on the other hand, that data has an identifiable schema, then we can make
intelligent use of it. For many of the kinds of data we would store on the typical Windows machine, we’d
also have the appro)riate set of schema definitions stored as a part of Windows. There will be standard
schema for a numb~ r of common things; where these things are truly generic, we should define the
standard. But each ,, tandard must also be extensible, and we must make many of those extensions. We
ensure our ability tc add value by ensuring that we are masters of the schema. We can move away from
complex object mo~ lels, complex APIs and proprietary formats, replacing them all by schema, but we only
get value in doing s, if we effectively own the schema. Of course, we’ll publish those schema, and perhaps
some will be totall~ standard, totally available for general use. On the other hand, many schema will be
private to us, legall~¢ owned by us, and indubitably controlled by us. That way, there is a series of natural
leverage points for bur products: if you have Windows, you’ll want to get Office; if you have Office, you’ll
want to use our services; if you use our services, you’ll want to run a CE-based PDA, etc.

/
We have a strong tr!dition of owning the ~lafform by owning the ISVs, because they write to our API. Now

that API advantage ~s being eroded, and it s actually highly unlikely that another foray into the API world
(c.f. WFC) will wi~ns any more customers. On the other hand, if we show customers, developers and
system integrators ~e brave new world of developing, deploying and using Windows systems where
applications make ~se of the standard set of schema we provide in Windows, we effectively move the API
battle to a different ~ront- the schema is the API. Don’t be fooled - we still have competitors, as both IBM
and Oracle understand this point. But it is not clear yet that everyone does, and of course it flies in the face
of Sun’s Java strate ~y - hence Sun’s constant and consistent scrambling to tie XML and Java inexorably.

In the long term, th~ n, we must ensure that we have defined schema for all objects and events of generic
use - our systems (t xis ranges from schema for cards in a PC through schema for UI generation and schema
for management ew nts, to schema for system calls), our applications (so that Word’s object model, for
example, is supplan :ed by its schema - one can always get to the OM from the schema, if necessary), and
our services (we’ll Lefiue a name, an address, a holmail user, a credit card, etc.)

Once we have sche~ aa defined for everything interesting, and applications that make use of these schema,
we can make data n,ore usable, more accessible. For example, Microsoft software can pull data out of web
pages from Microscft services - and make semantic sense of it. This is a hard thing to do in the world of
HTML without prier knowledge of the page. Pages change, so systems relying on certain layouts are
fragile. Further, con sider how useful Office can be when it can make sense of what you type - it could
present a list of acti, ms one can do on an address, for example.

When devices have =chema attached to them- printers, light bulbs, refrigerators - they become services
that can be interrog= ted and driven through their schema.

MS-PCA 1367246
HIGHLY COBIRDB’NTLkL

In order to make schema truly useful, definition alone is not enough. Schema need to be customizable and
annotatable by cusfpmers, ~ey need to be queryable, and of course they need to be easy to find as new
items appear on a c,hstomer s computer. In addition, we need to provide comprehensive systems for
creating and editing schema and transforming between them. The transformation step allows us to take data
in one schema and .~onvert it to another automatically, so it works most effectively if we can use the

schema to drive th~ transformation, rather than relying on schema authors to provide their own
transformation inforafion"

Therefore the actio as we must take include creation and publication (on a tmiversally accessible web
server) of the most ~ritical sets of schema, ensuring that we have - and keep - IPR where necessary, making
sure that Windows, Office and the browser are all totally schema-aware, creation of tools to create and
manipulate schema make sure that our programming languages interact with schema (e.g. by creating an
appropriate object ~ aodel, late bound when necessary, on consumption of a schema), put in the public
domain non-lPRd ~bsets of those schema we want to proliferate generically, and leverage the hell out of
them in our UI and fianctional innovations over the next few product cycles. Each cycle must evolve l~om
those prior to it, so hat Office 10 and Millennium do the basics and show the way; Neptune and subsequent
releases of Office, t~ack Office and SQL Server consolidate our lead. The first release of PKM needs to
include ways of searching on an item’s schema, making the whole search experience that much more
fulfilling.

Schema must give s standard ways of describing objects and events. We must have services on top of
these things (leggin g, query) to make them useful.

a) What ger edc tool do I use to browse management information? How does this relate to MMC?
b) Show me how I program against our management schema - do our languages see the URL descriptions
automaticall ~,?
c) What lea~ [ership is there to suggest what it would mean for Outlook to support our scheme approach?
d) Where ar .~ schemas stored? How are they browsed? How does this related to repository?

Although its lice to have standards for synching data I want to have a Ivlicrosoft schema for calendar/personal/contacts that
is NOT part ~ ,f any standard. I want us to let people customize the schema and NOT have that part of any standard for
replication. I want all of our devices to sham the rich standand schema and the ABILITY to customize schema. We need to
get schema a ~d schema customization into our PDA and Outlook strategies as part of cleaning up the
addressbook/wab/pab/dimetory mess we have right now.

I want these ~ ~ be key key proof points for why someone who uses OFFICE should use our PDA and SERVICES.

This is takin a lot of steps but it is key to succeeding. We only want the commodity standard to go a LIMITED distance.

One of the ’eat values that "local processing" power and our software can provide is dealing with information
the user in ’esented and helping the user make connections.

For exampl being able to take a name that shows up in a document I create and give me all the actions that
might relate :o that name.

We need to l lave a practical schema to belongs to us (other browsers or OSes or productivity software can’t
copy it withe Jt a license - we need legal to make sure it is protected).

Web sites c~ n use it and will be encourage to use it.

This fits in p] etty well with the idea of self describing objects and activity centers.

To be specif c whenever a BOOK, SOMETHING YOU CAN BUY, GROUP NAME, COMPANY NAME,
LOCATION, PERSON NAME, ADDRESS, TIME, APPOINTMENT or other common object shows up we should
have descdl: rive information that we help provide and ask to have provided.

There is a ~3 nthesis here between the idea of SEARCH, SCHEMA, FACTOIDS, XMI.. and ACTIVITY
CENTERS.

To make thk~ happen a number of elements have to come together:

a) Someone has to define these simple schemas and get them protected and figure out how to get broad
support.

MS-PCA 1367247
HIGHLY CONFIDENTIAL

For exampl, all our email clients ned to be part of this. Getting them to a common schema on these things is a
basic
thing we ne ~d to do anyway.] include PDAs in this.
b) Window~ itself (in the browser code) needs to support these including some "AutoformatJfactoid" code.
C) Office ha s to allow for "objects" to be expressed in the XML hidden text and have Autoformat/Factoid code
help recogr ize objects
d) We need to decide our role in creating the services that these things connect to. This is a HUGE
underexploi ted asset that will bring up all the classic questions of how hard coded is it (answer:. TOTALLY - no
OEM chan e - connected to an MS URL and then redirected to the partner in that country/area)

Use of NL and ;chema in Office, PKM, and MSN
First, we are wo~ king on the use of both NL (logical form ala Truffle) and schema to help ~mprove search results In
the PKM server ~nd the Office client in the O10 timeframe. As an initial use of schema, we hope to use knowledge
of the exchange~,outlook schema and perhaps the schema of at most one or two other products to answer NL quedes
that span structu~-ed and Full Text data. For example, "Show me email from BilIG concerning MSN search" would
return this emall tchain.

/
The starting poin! for this schema will be a subset of the conceptual schema for Person Places and Time that was
worked on with ~e schema team in DAPD (Keith Short). In particular, we will use those parts that deal with the
actual schemas ~,n place today for objects in the systems of interest. We don’t at this point propose to own the
standardization dffort for a conceptual schema across MSFT.

/
Relatedly, In thisltimeframe we won’t have much of an authoring model for people to add new data sources mapped
into existing con<ieptual schema. This will be done via XML that will likely be hard for "mere mortals" to deal with.

/
We will support the use of factoid analysis and normalization to improve query results. So, :’1/7/99" can match
"dudng January".!

I
Another extreme!y important Office 10 feature Is the use of Factoid analysis to allow our applications to highlight the

’ associated text a~nd users to dght click off to appropriate functions based on the type of the facteid. This will be a
very cool feature|Additionally, we are looking into whether or not the factoids can be exposed to custom app
builders through the Office object model

/
We are a little lat~ In the PKM and Office 10 planning process with the proposal of these features. Nonetheless, we
expect to have t,l’~e above plan firmly in place and hopefully accepted for the O10 timeframe by the BPG product
teams this mont~. After that, we intend to engage more fully with MSN to see if any of these techniques can help
there as well. Oflparticular interest will be how to use our NL technology to integrate with and/or replace
RealNames.

4 Manage,ability
Manageability is in, :redibly important to our success. Customers must have no doubt that they can deploy
our systems and iui their operations effectively and predictably.

In many ways, man ~geability is the ultimate acid test for whether our developer initiatives and schema
infrastructure come together. While we must continue to instrument both our clients and servers, so that
they can be manage i, increasingly, the information they collect will adhere to the Windows Schema. Key
events of interest w [1 fire off Windows Events, and get recorded in a log, again using our schema
infrastructure. We hould be able to query this log using our unified data architecture, and create reports
using our newest fo ms technology.

4.1 Enterpr,’se
This group must not only take the lead in making sure our architecture forms a coherent framework, but has
some key initiatives of its own. This group owns making sure our key products get the instrumentation
they need, by hnildi lg on the WMI initiative. Our event and logging work must work in a distributed
environment, rangin g to enterprise scale. Finally, this team must own combining the best elements of
technology and prm iding our customers with the control they need, in order to implement management
policies as they see

HS-PCA 1367248
HIGHLY

4.2 Consumer
I use the term manageability to also include the manageability o~’devices - specifically, this group needs to
make sure that our UPr& efforts are successful. In the new world, devices may not be dedicated to a single
user. To make matters worse, with the emergence of easy to move, ultra-reliable, appliance-like
peripherals, peripheral devices no longer have a static one-to-one relationship with the computers that are
using them. These two factors combine to mean that driver models and support for dynamic reconfiguration
are even more critical than they have been in the past; and often, the requirements for reconfigurability are
often directly opposed to the requirements for stability, responsiveness, and predictability. Our challenge is
to make sure that Jini devices are not more appealing to consumers than members of the Windows family.

5 Clear Developer Message
We must develop a clear, compelling, and consistent API story for building Windows applications. These
applications must leverage the best that Windows has to offer, which increasingly will meant integration
with the Web.

The Windows API, ff such a thing can be said to exist, is large, somewhat disjoint and, at times, can be
remarkably challenging to use. We have simplified much of it in the past with class libraries .and/or
runtimes, such as Visual Basic and MFC. Our new library, WFC, is a promising high-level abstraction of
most of the standard Windows features, has a degree of web integration itself, and takes advantage of
newer technologies to attract developers. It also relies on the COM+ runtime, so that we now have a class
library and runtime execution environment that is essentially equivalent to our competitors and is closely
tied to Windows.

That in essence is also its problem: it bets the platform on a new set of classes and a new execution
environment, neither of which has yet to be shown to be compelling to our partners. As usual, many
thousands of developers will tag along with us, but many will prefer to stick with either our older API set or
to new competitors, such as Java. We have suffered some major credibility hits with ISVs in the relatively
recent past by changing APIs under them (c.f. AFC, data access as a whole, MFC vs. ATL) and providing
no realistic means of migrating from one to the other. Notably, Visual Basic has resisted this trend to some
extent by sticking with Ruby, despite the fact that its adoption of another forms model is inevitable (and in
fact Visual Basic 7 does this by adopting WFC; b.ut it retains Ruby for compatibility).

So when we do tmleash WFC on the world, we have to be absolutely consistent in declaring its strategic
importance- that means that we have to make sure that it is supported extremely well by all our languages,
that in fact it is theprimary API for all of our languages, and that it offers a consistent mechanism for
getting tasks done. The last point refers to the multitude of ways in which our current APIs and class
libraries allow a developer to perform a given task (data access, communication between objects, user
interface/forms, etc.).

The other imperative for us here is to ensure that, ffwe publicly commit to this API strategy, it too becomes
our internal commitment. That is, platform innovations must always be exposed through this class library
first, so that our ISV base’can take instant advantage. In order to continue to meet ISV and customer
demands against code bloat, we also need to ensure that functionality is appropriately packaged.

5.1 Storage

With the impending completion of Platinum and its inclusion in Neptune and later releases of the operating
system, we will finally have a rich, native storage API. This means that applications will be able to take
advantage of an efficient store that can store and serve up structured data. Cleary its query capabilities will
be far richer than those of a traditional filing system. A system-wide store also increases the customer’s
ability to retrieve information in a meaningful way, and its transactional nature allows data to be more
easily shared between co-workers.

MS-PCA 1367249

In order for this store to be successful, it is imperative that all of our applications make full use of it (e.g.
Word stores its files here, not in the file system; the browser stores cookies and other user information here)
and that it is used for fundamental system functions like Search, schema storage and perhaps even a new
registry. We must also evangelize it to ISV’s so that their applications make .use of it, increasing the value
to the user. Consequently, it needs to be easy to store, retrieve, query and update information in the store,
whether that information is the data itself or metadata.

What about SQL Server? Many, many enteqgrise-class applications will want to use the relational aspects
offered by SQL Server. We may still look forward to a long term solution where these two stores are
indeed one and the same, and that this unified store replaces all other application and system stores
(including the file system), yet in the meantime, we must help customers deal with the reality that both of
these stores will be prevalent. We must make it easy to transfer data between stores, and we must do all
that we can to make developers feel comfortable with either store. Common programming models (OLE
DB on Exchange, and SQL query on Platinum) can help us rationalize our ISV messages.

Some combination of store technology must make it easier to work with Websites.

5.2 Forms
It is clear that much of an application, whether it is ’legacy’ or web-like, is centered on forms. If we want
customers to use our applications, then we need to have a coherent forms strategy in which anybody can
create a form with basically any tool, and have it usable across a range of applications. Whereas Access
and Visual Basic users gravitate towards forms as the basis for their applications, most Outlook users aren’t
even aware that it has a forms capability. In this respect, our competition is ahead- Lotus makes it easy for
any Notes user to create a form, as a natural thing to do, and have it used by others in their applications.

So we first need to settle on a forms technology. If we accept that the rendering technology of the future is
essentially a browser, then it appears that HTML forms are the logical choice. But HTML forms are limited
in their capability, don’t have (obvious) schema and aren’t easy to render across different devices.
Therefore, we should adopt a declarative approach in which the semantics of the form are described, but the
way in which it eventually appears is determined by other factors (for example, we could have customers
include instructions in the form for conversion to an HTML rendition; these instructions would take note of
device capabilities). However, generic forms which a customer ’just writes’ need to be capable of this
transformation to some degree themselves.

We need to define an XML-based mechanism for defining forms, including their schema (templates). This ,
will include strong typing, validation where it is possible declaratively (and poss~bly with escapes to
procedural languages where it is not) and of course will give a language an ability to shape an object model
around the form where required. We can decide if fomas have the same object model in all languages, or if
there is the possibility (maybe transitional?) of presenting the form’s object model in terms of the
environment in which it is created and/or used. That is, we can leverage the huge base of existing VB and
Access customers, MFC and Trident OM customers, and even GDI/User customers to some degree. It is
important that the object model is a choice of the environment, not of the form, so that forms can be used in
multiple environments without change. To do this, we’ll need to ensure that our forms designer tools - all
of them- create and used form schema, and that those same tools can synthesize an object model.

Almost all forms are used to display and amend data, so forms and their elements must have an easy
mechanism to bind to data - again, declaratively in the form declaration, tying into the appropriate
environmental data binding mechanisms when the form is used. The form should not need to care where its
data comes from OLE-DB, XML, etc. This means that the form itself does not define any extra semantics
arotmd the binding, such as undoability, updatability, etc.

Given that we have a declarative model for forms, the conversion of form to rendered surface would
typically occur at the client. However, the spectrum of clients is so broad that we must also enable an
entirely location agnostic architecture that allows the rendering and binding to be performed on the server

MS-PCA 1367250
HIGHLY CON’F]DENTIAL

where required; it must also allow UI to be rich beyond a browser’s capabilities, so that Microsoft clients
get extra presentation functionality not available elsewhere.

[Still more work needed in areas below]

Have the ability of "Windows Terminal Server" - that is dch rendering can be done on the server and shipped
down to a client - this feature cannot be based on some commoditized open standard. Our rich rendering
cannot be given out to a standards effort. We h’ave to have a presentation asset.

Become the forms approach we use in the Neptune shell.

Support document editing on the same surface (Netdocs). This is a very demanding requirement. It also means
we need to have a 3 level strategy ideally based on one code base. The 3 evels are: 1. Free browser/Standards
based 2. Windows browser 3. Office browser (the version with the editing capabilities). I don’t want #3 and #2 to
be the same because it makes it too asy to build Office capability.

Allow for migration of GDl/User developers. {realtionship to Hwnd/Window management/RC files} (activeX
controls?) Can the compatibllty stuff be done as a layer independent of the forms package if we do it the right
way?

5.3 Data Access
Data access is one final area that deserves special focus as we re,’me our developer message. The number
of teclmologies that we have developed here (ODBC, DAO, RDO, OLE-DB, ADO, XDO, OSP, RDS,
ADC) has been nothing short of astounding! This degree of activity only highlights how important the
problem is, and how many customer constituencies there are to satisfy.

The rise of the web has increased the demand for a programming model that will scale from local data,
through access to remote data on an Intranet, to access to remote data on the Intemet. We must deal with
both relational and hierarchical data, and data both highly structured (SQL) and semi-structured (XM-L)
data.

There are several key imperatives for us here. The first is to make sure that the data access API we design
for the Millennium dmeframe is long term: not only is it the supported API in Neptune, it’s the supported
API for the foreseeable future. The second is to make sure that the mechanism we choose for data access is
able to make use of random data on the web and in the local Platinum store as well as structured data in
corporate SQL databases. The third is to make sure that the object model presented over the data is molded
by that data’s schema, rather than generic ro~vset or tree-oriented APIs.

6 Building Internet Services
Increasingly, MSN will play an important role in how an end user perceives the "Microsoft Experience."
MSN services must enhance the experience our customers have with all of our products. Software
increasingly will become a connected, as opposed to a standalone, experience.

6.1 Communications
In no other area is the split between our traditional Windows applications and our Interact Service front
ends more apparent than communications. We simply must rationalize our multitude of email clients, and
we must decide what the future of NetMeeting becomes, in relation to Chat, IM, etc.

Ideally, we could have a strategy with a common architecture and code base where we can customize
configurations, and add premium functionality that customers demand. We will still have to offer some
base technology in Windows, and indeed, we may even have to expand the functionality of our free
offering to include basic scheduling integration, providing integration with Jump. This free offering must
be tightly integrated with the shell, so that handling email is a natural experience. It must support our basic

HS-PCA 1367251

strategy for establishing the Windows schema. Increasingly, we will need our client to support PDA’s and
appliances, such as WebTV.

Email is not the only way that our customers will communicate. Our communications strategy needs to
consider phone calls, pagers, and real-time messages, in both person-to-person and group environments.
While a personal inbox and private individual-to-individual communications will always be important,
there are also numerous interesting scenarios that involve group communications and an open social
context. Family activities, for example, such as scheduling, coordination, record keeping, and finances, can
all be usefully performed as a group.

6.2 Megaserver
Roaming access to network-delivered services is a liberating experience: people bring laptops to each
other’s offices and manage calendars, review efiaail, and exchange files face-to-face. People bring palm
computers into living rooms or public stadiums and have services beamed to them. Meetings in conference
rooms or in convention centers will be more productive as well when everyone is online at the same time.
There is no reason that experiences at work, at home, and in public would not all be enhanced, given
socially apt devices.

[What should this section really be?]

6.3 Commerce
I think we also need to highlight the importance of commerce scenarios. This is one of the key areas where
the Digital Nervous System and the Web Lifestyle meet.

7 Summary

These are incredibly exciting times. By taking the innovation and thought leadership that we are
developing separately, and combining them synergistically into a greater whole, we will serve our
customers for many years to come. We will need to think creatively, not just in our technical approaches,
but in the way we manage our businesses. Our culture must continue to evolve from one of dependencies
to one of mutual cooperation and partnerships.

I look forward to working together with all of you to enhance the way that people work, play, learn, and
communicate, both at Microsoft, and in the world at large.

Appendix A

One way to think about our challenges is in the matrix below.

UI Schema Dev Message Manageability Inter-net
Services

DavidCol Owner New UI exploits Windows User experience Builds UI

it initializes, uses is managed; to exploit

and distributes desk-top roams,
key etc.
infrastructure

BrianV Biz windows Management New apps are Owner Provides

supports same new tools, logs, etc. inherently tools to

UI metaphors fit into "manageable." manage

framework
DavidV Tools and classlibs Tools to build, O~vner New apps are Provides

to help support extend, and map inherently tools to

new UI metaphors schema; tools for "manageable." create

apps to exploit
SteveSi Office is the Owner Office supports Office Exploits

showcase model applications and key

application documents are services
managed by this provided
framework (email,

search, etc.)
JonDe MSN provides the Provides services Uses new Key client of Owner

baekend services for search, etc. technologies new features

for new UI
metaphors

