
III li r1~ lnll |II

From: Ted Peters
Sent: Wednesday, February 07, 2001 5:08 PM
To: Bill Gates
Co: Eric Rudder
Subject: Presentation Format Proposal

Your concern with xmf is that it would be difficult to drive it to critical mass against pdf. I’d like to propose a solution to
this problem.

I’ve spent the last several weeks looking in depth at file formats in the presentation space: flash, pdf, html, xmf. asf, oeb
and tit. My conclusion is this: we can define a unified Microsoft format for presentation, that covers not only
documents but animation, forms, ebooks and media. Rather than take on pdf or flash individually, we can leverage our
efforts (ip, tools, evangelism, browser) across media types, justifying the time and capilal to drive thai format to cdtical
mass

In looking at the various formats, a very clear pattern emerges. The formats are for the most part (minus htmf) binary,
proprietary, and optimized for delivery and consumption (vs. editing). First, there is a header with file information and
metainfo. Second, lhere are indexes for performance (time based, page based, etc.). And th=rd, there are streams of
information related to their specific media type, often structured for streaming and often compressed:

¯ flash - streams of animation data organized by frame (in time)
¯ pdf - streams of 2d glyphs, strokes and fills, organized by page
¯ xmf - streams of gdi/gdi+ calls
¯ asf - generally streams of compressed audio or video
¯ lit - streams of formatted text

Some of these formats aiready host multiple streams of different media types. Flash does this (for animation data,
audio, script), pdf (for font data, color tables) and clearly, our ASF was expressly designed as a "container" format for
mulhple arbitrary types. But due to product group silos, ASF has generally been used only for video and audio data.
This approach is where we can unify:

We should define and own a proprietary container format for all presentation data...
...AND the stream format for all the major types of media

The container is very much like ASF:

¯ The header would prowde metainfo, document identity, version history, and DRM/secudty information.
¯ Optional stream-specific indexes could prowde fast access (time, page, etc.). These same stream-specific index
anchors can be used for attaching annotations or for providing mail-able references to documents (sending a colleague a
specific reference to a particular location ~n some arbitrary presentation document).
¯ Streams would provide appropriate formatting and compression for each media type. We would define formats (think
codecs) for the important known media types: flowable rich text, 2d data, 3d models, audio, video, image data,
animation instruction data, and low-level frozen graphics output. Code (managed code assemblies, for instance) could
also be included.
¯ Mulliple streams could be provided for alternative views (different form factors, different quality levels, different client
capabilities, internationalization, etc.).

We would provide a universal reader (the browse0 that consumes this format, built into our client(s) (for viewing only, not
editing). Office might provide an enhanced viewer for collaboration, annotation, group review, etc. Office would also
readlwdte this format for editing. On the server we would provide a back-end for streaming the format (media server-
making appropriate decisions on which streams to send given bandwidth) as well as serving up DRM-protected files (a la
ebooks’ Digital Asset Server).

There are a number of advantages to this approach:

¯ A universal file format gets all our weight behind one format - this juslifies the big push for adoption. Even though the

~Plaintiff’s Exhi~

6929
MS-CC-RN 000001073434Comes V. Microsoft
HIGHLY CONFIDENTIAL



streams really define the "meat" of the content, this container format will be perceived as a single format
¯ We build a single file solulion for metainfo, drm, documer~t identity -- these are built into the universal container
¯ We build a sfngle solution for streaming and serving up appropriate slreams (from multiply defined ones) based on
client context
¯ Even though there is still stream-specific work to do, we are much more likely to solve the annolation problem (single
place for metainfo, "framework" for anchoring)
¯ We can create different stream formats over time - we can fast-track the existing XMF work on a frozen, print-dr~ver-
generated stream w~thout saying thai "frozen" is our universal solution. We could ~mmedmtely support html streams for
reflowable/re-editable office docs wilhout slrongly promoting html as our universal file format.
¯ II pushes us towards an single display engine that integrates these media types

In many ways, the trident team has been trying to do this unification by pouring all media types inlo the html (or even
xhtml or xml) lree (both file format AND runtime). This approach has been a huge mistake"

¯ performance for consumption ~s either not great or prohibitively terrible for certain types (trying to shoe-horn XMF into
an tag format killed performance, vmt for large 2d sets, sIze of html+time vs. flash, xml totatly irrelevent for audio/video
dala, storage size of inking data, etc.)
¯ incrementing from a standards based format leaves us open to rhetorical attack as we innovate
¯ there’s no great way to do packaging (how do you store image data in the xml file, for inslance), drm, security,
encryption
¯ there’s no easy way to do compression (which is media specific)
¯ htmltxmt is not optimized for streamed delivery

With chrisjo’s recent org changes (merging duser/trident under mwallent), there’s an opportunity for a fresh approach.
Defining this new format for their new engine 1o consume might be a galvanizing task. It’s something lhat could be done
right away (before starting on constructing lhe new engine) that could be evangelized to reslore other teams’ confidence
that the windows presentation platform team was stepping up to solve the prol~lems of content delivery (for ebooks,
tablet, dmd, office, flash emulalion, etc.)
-T

MS-CC-RN 000001073435
HIGHLY CONFIDENTIAL


