
From: Chris Jones
Sent: Tuesday, 3uly 20, 1999 12:47 PH
To: Bill Gates
Sul:~e~-’t; FW: Ld~oughts on (and questions on) the platform...

i thought this might be interesting for you given our conversations today, some stuff we are
thinking about for neptune, no code, just thinking, but we are going to get there.

- chds

---Odgina~ Hessage----
From: Chris
Se~t; Friday, .~uly 0g, 1999 9:3:1 AH
To: .1on Thomason
Subject:: ttlo~ht~ on (and ~luest:ions 0~) the

to set context, i~ve been lhinking about how we move forward wl neptune, one thing that i am
wondering about is our new client side platform.

first iii talk about customers, then features of the platform that i think we need, then some views
on what we could do to build th~n. this is all bralndump and i’m sure that you and others have
thought about most of this. i am wdting primarily to give you my perspective and views.

customers (or w~ client s|de
one question we have to answer is what is the opportunity/competitive advantage to wrttfr~ client
sidle co~e? our message must star with this - we have to be able to articulate the advantages of
w~iting client side code. these should be things that are either 200% better on c~lents or only
possible on clients, n~y list is (frighteningly) short, would be interested in seeing yours:
a) offline (or local) data. because intemet connections are intermittent, having offline or
replicated data is essential at least for the next 3-5 years, and probably longer, i would put all
existing win32 apps into this buck~ - 1hey al want to work with replicated intemet data.
b) editing of anything, picture editing, document editing, music editing - these take up a ~ot of
cpu t:me and have the beneffi that they require both local data and local processing, with the
continuing emergence of digital media i think there will be an increased market for these types
applications.
c) high performance graphics and intera~vity, games is certainly the biggest example of this,
mulli-media or consumer titles also fall into this category, again, increasing markelp~ace,
especially if we are successful with x-box or another windows-based gams console,
d) r~ch, high fidelity display, outside of the categories above, this is the weakest of all. i think we
car~ only sell this as an advantage if we remove some of the problems with client side code (see
below), maybe you could convince web-based solutions or applications to do this, but it would be
frosting and not core. that is not to s~y frosting is bad, but it is not sufficient to get them to bet.
e) speech, n~p, or other forms of input, i thinkwe are ahead of ourtime here but this w~ll be big
someday,

why pick the microsoR platform?
once we’ve convinced people that they should w~ite client side code, the next question is why will
people choose our platform? this is the second part of the message-- once you have articulated
the opportunity we have to talk about why windows is the way to go. here is my list of things that
we should de~hrer and provide, again we should get to one linst and agree:
a) zero-fnc~ion deployment, a must, this is the number one blocker, has to be a no-bra~net for
users to get the application, thLs must work for both "page-based" applications and also
traditional, win32 apps (like games).

t
Plaintiff’s Exhibit~

6607

MS-CC-MDL 000000377291
HIGHLY CONFIDENTIAL

b) digitial r~ghts managementJpmtection, i think this is going 1o be huge, for copyright of software,
but also for pictures, music, etc. this witl enable a new type of content application that we haven’t
saan before, also witl enable piracy protection (tracking of who’s using my sottware) and upsell.
c) automatic replicatior~/caching of data. this again must be easy for traditional apps (like
winwon:l) to use as well as new generation apps (like money).
d) service built in. i think service includes settings roaming (word follows me around), automatic
update/hot fix (for the latest changes), connect to help/pss (on the web), up.sell new versions or
addoin’s (again on the web). alt new apps should come with www.theapp.com site that supports,
mama, and provides s~rvice.
e) easy to use/hetp built in. we can help |sv’s here, and this will be impor[ant, i am not sure what
our platform message is he~e, but this means web-based navigation, text and commands built in,
a new user model for presenting information.
0 great tools, we have to have a tools story, this is key. whether we build the roofs or visual
studio does or a 3rd party does, they must be available and sire ship.
g) "cool." we should not under-value this, our platform must be cool to folks, like 3d was with
wingS.

so what’s this new app mod~d look like anyhow?
next step, what does this thing look like? here’s a picture to get started...

part !: app basics
i’ll start with things that i think every app has, then talk specifically about "page-based" vs.
’~ndow based" solutions, fimt, l assert that every new app has (a) a web site, and (b) a cookie.
the fallback is that the app ’~/eb s~te" is rea|iy just a cd~’om that is read only, but it should still
have a "cookie" that is uses to identify the user on the machine ancl store information about them.
why? four features:

1) depolymentJpurchase, the web site is used first and foremost for deployment, update, and
"refresh" of the application, i think all new apps are sold and distributed on the intemet by default,
where the o:1 and retail are distant seconds, so to run winwo~d i navigate to
httD:/iWww.winword.com, enter my credit ~a~d, and off i go. the nice thing about the cookie is that
the winword folks can use it to lrack how many r~achines arid usem are running their sof0ware,
and do some basic piracy enforcement, so each winword user gets a unique cookie when they
purchase, winword validates the cookie when connected to the internet, and either shuts down or
informs the user tfthe cookie has "expired* or ff m~’e than one person is using it. requires:

MS-CC-MDL 000000377292
HIGHLY CONFIDENTIAL

- zero deployment for apps. fusion team, has to span existing win32 apps as well as web-based
solutions, includes ud’s for naming everything, auto-cache/install of apps.
- ip protection, story on howto m~tigate piracy, maybe using cookies.
- one click shopping, would be nice to have the credit card stuff bundled up so there was one
click shopping for lhese items.
- cookie api? some way for all types of apps to request and use a cookie, independent of the
browser.

2) app heallWupdates, secondly, the web site is used for incremental (on demand) updates, and
reporting gpf’s, each app will want to run a "health service," where they register" their site for gpf
reports, and then neptune pests the infonnation to their site so they can track, monitor, and
dynamically update their app. they also host acl(]itional help updates and troubleshooters for
common calls, requires:
- gpf reporting, way to register your app and the gpf’s you are interested in.

3) settings roaming, third, the web site is used to roam settings, note that in the picture above i
assume that there is a place where my cookies are stored and synchronized, so from any
machine i can tog in and repiicate my cookies, then pass the cookies offto the "app site," which
then provides me with my settings (and caches/installs my app as necessary), requires:
- cookie roaming, api’s for this plus service to support, probably want to have this with msn and
other services (aol, yahoo, etc).
- settings api’s, way for apps to replicate their settings locally, related to corn+ stuff i’m sure.

4) new purchase/add.on’s/upgrades, lastly, but maybe most ~mpedantiy, the app vendor now
has an ongoing relationship with the customerand can use lhat to promote updates, upgrades,
and add-on packages, no new requirements, except maybe:
- notification service, way to promote/provide messages to users.

so pad 1 enables all types of applications, but mostly existing client side applications, to add a
service to their application, reduce support costs, generate new business, and reduce piracy.

part 2: data replication and sharing
the second part of our new app model has to include data replication. 1here are two types of
"data replicated" apps.
a) traditional publishing, think about moving from my documents to mydocuments.com, pictures,
music, video/movies, letters.
b) data-centric applications, have a dalabase plus rich views on the data set. mail, money,
schedule -- all of these fall into the same category.

we should have a terrific message for both of these isv’s, personally, i think the first is more
important than the second, mainly because we will have more success, here are some thzngs we
have to do:

I) rnydocuments.com, every neptune pc should come configured with mydocuments.com, the
folder or place in the shell by default that an app can save information to and il will be published
to the web. we shoutd automatically replicate this information out to the web and abstract away
the bandwidth.

2) file => open web site. opening over http should be standard, http ud’s should exist
everywhere in the shell/apps and be the pdmary way apps interact with information, richer file
open with search across common sites/documents i’ve been to,

3) publish/manage collections, i thinkthis is enhancements in 1he store/file system so that apps
can "save" collections of objects (from complete web pages to collections of pictures~mages) and
then the user deals with them as one ’thing."

MS-CC-MDL 000000377293
HIGHLY CONFIDENTIAL

4) lightweight database, this in my mind is a pri 2 or pri 3. we should enumerate the apps hem
but i think we are over estimating the number of people w~o will build appiic~ons tike this. this ~s
one of the masons i wonder why we picked mail as the stretch neptune app - how many isv’s are
going to build a mail client?

part 3: integration across applications
third pad -- integration across applications, think about this as the extension of registering as the
default mailer/scheduler/etc for the shell today, isv’s want to be able to (a) promote their
application for the things it can provide, and (b) leveraoe other installed apptications for the things
they can provide, i think about this as "service providers" for common types of information, we
may have to wnte "device drivers" for the common applications to make this work well. services
include:

1) buddy list/chat, any application should be able 1o "call" our service to start a chat or
collaborative game or collaborative viewing on a particular topic, e.g. doom should be able to say
"find player’’ and it shotdd launch whatever 1he buddy list service is, find the right player, and
return that player handle to the game. video chat, voice chat, and texl chat should be a part of
this. we should write "drivers" for icq, aol, and other services to support this, and we should
enhance them.

2) mail. simple mapi, exists already, nuffsaid, again in additzon tothe api key isto write code
ourselves for the common mail providers (like aol, yahoo, etc) so that we provide enough
coverage for isv’s to want to use our work.

3) calendarlscheduletaddress book. same idea as mail. i’m sure them are more of lhese.

4) new service provider we didnt think about, we should build this generically enough that it can
be extended by 3rd padies, think about this like the file extensions database but for services.

as part of this, we have to ship "default" applications ourselves (these should be the canonical
shell apps) so we test/dogfood our experience.

part 4: ui integration and coolness
this is last on my list, but it is critical frosting that we have to have. this is what wraps it all
together, i lump the things we am doing in trident into this space, text flow navigation, elc. i put
common controls here as watt. them is value here (e.g. new user model, easier to use, simple
navigation) but the motivation will really be that isv’s went to look like us. we should have a story
where it is easy for an existing win32 or web isv to get this new look.

closing thougttt=
whew. so a long winded brainc~ump, here are some additional things to consider...

points of light, this is what makes a neptune app cool. from above, here’s my list:
a) suppods zero friction/zero cost deployment and incremental update/t-~
b) r~ns a service to supporl/upsell/deploy the application. (think application "cookie")
c) suppods mydocuments.com, and open/save from web locations, uses neptune files>open to
findfsave files.
d) integrates with neptune services (instant message, r~ait, calendar) where appropriate, or
provides a neptune service.
e) follows neplune ui style guide, new page-based navigation.

microsordmsn business opportunities
we should think about running a store with msn where users get a subscription to a set of apps.
the msn team works with 3rd padies to launch the neptune service, where for $10tmonth you get
access to 5 or 10 applications, we pay back the isv’s, get more msn membership, and provide a
new biz oppodunity, another carrot.

MS-CC-MDL 000000377294
HIGHLY CONFIDENTIAL

thoughts?
i am not sure we need to change anything because ~ don’t know what the app architecture is. i
am going to dig in and try to figure it out. interested in your thoughts on this -- specifically:
a) do you agree with customer list and customer problems? why or why not?
b) how do you think we will differentiate the microsoft platform?
c) what are the features we should be building and are we staffed to do them?
d) what do we need to do to get in the feedback loop with isVs?

thx - chds

MS-CC-MDL 000000377295
HIGHLY CONFIDENTIAL

