
From: Brendan Busch
Sent: Monday, January 27, 1997 9:55 AM
To: Steven Sinofsky; Andrew Kwatinetz; Michael Mathieu
Subject: FW: Thoughts from the Word 9 offsite -- applying it to all of Office 9

Some PPT debate raging in response to the Word 9 offsite summary:
-brendan

--Offgir~al Message---
From; Brendan Busch
Sent: Monday, January 27, 1997 9:42 AM
To: John Tafoya; Robert Parker;, Hannes Ruescher
C¢: Imran Qureshi; Rail Harterteck; Manish Vii; Rot. Ho
Subject: RE: Thoughts from lhe Word 9 oflblte - applying It to all of O~ce 9

Viewing: As JohnT says, long term strategy for viewing should be to rely on the browser. Short term (PP9) the browser
shou d be a great place for someone to review a PPT presentation, but not a great place for a presenter to give a
presentatfon. We need to continue to support our great, market-leading presentation tools (including pres conferencing) in

I the PP9 timeframe. After that, hopefully the browsers + extensions will be good enough for us to get out of the viewing
and presenting business and focus solely on creattordediting.

File Formats: In PP9, our HTML support should focus on accomplish the viewing task mentioned above: someone
I should be able to review a presentation (and it should remain beautiful and compelling) w!thin an HTM.L browser. Certain
presentation features will not be possible with NS/IE3, so we shouldn’t beat ourselves to death trying to support these in
HTML. We should keep in mind what the HTML version of the document will be used for in each release, and focus our
energies on supporting those activities in HTML In PP9, some functionality of PowerPoint will only exist in the .exe + our
binary format.

Printino- I don’t think we can expect browsers to print PPT data with the number of options and high quality that we can
do direr’@ (even in tE4 or 5). W~support very intricate B/W options per-shape. We support multiple printed layouts,
headersffooters, etc. We do/ots of tdcks to get good PCL and PostScript output. Printing from the browser should print
what you see in the browser well (a problem for the NSflE folks); we should push for hooks, so if you have PowerPolnt, the
browser can launch it and use PowerPolnt to do the more high-end printing.

Editing: We must exce/here! As mentioned above, In the next release we get out of the viewing business. The release
after, we may get out of the presenting business. Eventually, maybe we even get out of the printing business. Long term,
the ease of creating a document--the level of automation, intelligent formating, help with content and organization, etc-is
the only reason that people will buy Microsoft PowerPoint (Office). We must start now building a huge lead in this area.
Currently we are not way ahead of our competitors in the ease of editing-we are incrementally better in some aspects of
editing, viewing, printing. Some would argue we are actually behind in this area.

--brendan

--Original Message--
From: John Tafoy,~
Sent: Monday. January 27, 1997 8;57 AM
To: Robert Parker;, Hannes Ruescher
Cc:]mran Qureshj; Ralf Harteneck; Brendan Busch; Manish Vij; Roz Ho
Subject: RE: Thoughts from It1@ Word 9 offslte - applying it to all of Office 9

Since I just sent mail about it and I haven’t read all your comments, rll comment on one item: Viewing.

So are you saying that we shouldn’t strive for pushing the browser to be the viewer of Office docs? If so, I disagree.
HTML should a, bsofutely be abl~,t,o, render Office data w/full fidelity, and Office+Trident+lE should absolutely be able
to support our viewing features. I m not convinced it (100% fidelity of both data and viewing features) can happen in
the Office9 time frame, but we need to be moving in that direction. There are indeed’tons of issues and.i;urrent .
shortcomings - both technical and due to standards - but there is also a strong desire for end users ano corporations
to move towards a view-everywhere sofution.

We should absolutely strive towards the browser as our viewing component. Imagine the cool stuff we could provide if
we spend the time working on viewers and slide show instead on code that dramatically enhances the viewing
experience for tE users. Navigator would still show the data just dandy but IE users will have more viewing features
(but look the same since it’s HTML). Corporations and ISVs could add browser addins to do all kinds of cool stuff. An
OfficeflE addin pack with gobs of extra builds and animations is an obvious one.

John
~Plaintiff’s Exhibit1.... Original Message

5875 / HS-PCA 1290528

k.Comes V. Microsoft J

From: Robert Parker
Sent: S~turday, Januarj 25, 1997 7:26 PM
To: Hannes Ruescher
C~¢; Rail Harteneck; Brendan Busch; iVlanish Vii; Roz He; 3ohn Tafoya
Subject; FW: Thoughts from the Word 9 offsite -- applying it to all of O~i~ 9

Though it is not a surprise, I fundamentally disagree with what Word is trying to put into HTML (and so would the
W3C). The browser that they are suggesting would support viewing every feature of every appiication (which is
ludicrous).
An quick analysis of their thinking:

1) HTML is a logical description, hence we can’t easily build more complex pieces out of tess complex parts.
Thi~ line of thinking would lead you to believe that you have to have keys in the browser for everything.
Already for V4 browsers - Ihammer (for IE4), MacroMedia (for NetScape) are trying to create leveragable
technologies (like filters, direct draw etc.) in order to add small physical building blocks. Much of the
industry is focusing on how to plug their technology into the browser to gNe people building blocks
because its clear that the browser can’t be a universal viewerlnavigator.

2) Writing HTML natively does not seem as important as reading it and round tripping it. The issue is that
there is not one clear editor which does everything well so people demand that they can edit with multiple
editors. Really this issue is just the clipboard/interop issue.

3) Browsers already only provide a part of the user’s experience in HTML - Ptugins, ole controls, Dec
Objects, Java, VBScript are the designed mechanisms for building/enhancing the experience. Object
model support, Filters, Layers etc. are technologies which allow even more extension of the browser. The
browser teams know that they cannot be everything for everyone. Browsers have recognized that uniform
physical descriptions that have been attempted in the past have failed. (Display PostScript, etc.) The
reason for this is the additional tayer involved (App->Common->Output). O/S such as windows has
developed multiple direct APts to handle Ibis. Browsers came to the same conclusion -
GraphicsfRender]ng for them is either JPEG, G1F (standard BMPs), or they delegate to a control, java
app, java bean which will do the job directly. Its conceivable for them to manage high level objects, but for
them to render everything would be inconceivably stow. It should be noted that no intemet app that I have
seen uses HTML as its file format. They are trying to provide a user experience which is compelling. (It
is to their detriment that they do not use HTML more effectively [e.g. support indexing etc.], but its
important that HTML be recognized for the tool that it is.).

4) HTMl_/Intemet is not our only scenario - Its important but traditional uses for our product still exist and
must be supported.

5) Their theories on printing are amusing. ~ believe that its important to be able to have something like a
draft mode printing ability, but full-bore document typeset printing belongs in our apps. There are a
number of reasons for this: First of all it is worth a lot to the customer (who should pay for it). Pdnting is
really hard (to support all configurations, and complex graphics [just ask Tuan, JohnBo, JGibss etc.)).
Print in Write v.s. Word, its pretty clear which document you would send to your boss (on paper).
However if you want to review something its okay to print a dec from Write that was created in Word. t
think its the same issue n pr riling on the Web, we need draft quality output to be supported (from HTML).
Technically it will be a challenge just to get this. It should be noted that real printing is a huge chunk of
code that browsers won’t want to have. One thing i can say with absolute certainty - the browsers which
ship Q1-Q2 (NS, IE) this year will not pdnt reasonably.

To summarize, I think that I agree with all their suppositions and none of their conclusions.
0. Its difficult to influence or expect support for new HTML keys.
1. HTML support and roundtrip are important. (Must support all HTML features where possible, and roundtrip
those we don’t to be good editors.)
2. Must work well in the browser to make a compelling web page. We know that viewers don’t do this for the
obvious reasons.
3. Need to support some kind of printing in the browser.
4. Need to be able to script documents for web.

Where we disagree
0. We must focus on key areas where we need support and make sure that we at least get it in IE. Every
investment in this area is worth it.
1. This does not imply that the apps use HTML as their native format any more than our in-memory usage of

metafiles as a pictoral representation means that this would be our disk-based representation. We wilt need
’ solid pedormance on read/write but we should be no worse than FrontPage in this area.

2. We need display solutions that work on the Web - lhammer-ish 50K solutions are good, 1.5 Meg viewer bad.
~ Ihammer-leverage HTML good, HTML graphics bad.

- I
3. Its unrealistic to assume that browsers will support reasonable printing anytime soon. However some things

which we canlshould push for: A better hook so that we could launch the app for printing if you have it. Warn
users that don’t that they are only getting a draft and much better quality can be achieved with the app itself.

4. I think that we should try and come up with the best possible Web OM (which works in NS and 1E4), then
make this work in Office. It is important to realize that this is much more than simply separating out
aditinglviewing. Some editing can be done on the web, other stuff can’t, some objects are supported (like
groups) etc. etc. Basically to succeed we make a great Web OM and then pull some tricks to make this work
in our mono=lithic apps.

MS-PCA 1290529

5. O~r target platform may have already shipped, it is quite likely that NetScape 3, IE 3 are very important
targets. They don’t have these kind of capabilities and we need solutions for these platforms. In-so-far as
possible we must leverage these solutions for IE4 and the future. We don’t want to be writing out content for
every browser configuration since this would explode our rite size, performance, and indexing.

Our Principals
Support LowCost Viewing Everywhere (through the browser)
Leverage Editing Environment to really raise the bar web page output
Leverage HTML
Maximize Sharing - Information only in one place wherever possible

Eaxmples of raising the bar are date/time metachars are easy to addfedit in PowerPoint. If your webpage has the
right date/your name etc. these are cool features that raise the bar on other editors. Other examples are intelli-
download. Our escher graphics control notices that the graphic is being downloaded slowly and switches to a no-
fdils draft mode which needs far less info (or better yet does background progressive rendering), The no-frill
rendering is already supported by our apps and is another feature which we can dump on the web at low cost to
raise the bar. Progressh/e rendering is something we’ve talked about but never implemented as a result it does
not fit into this catagory.

Examples of leveraging HTML are:
Have output which is easily indexed. Make all text available to indexors. Avoid duplicate content where

possible. Don’t try and do things in HTML that its not meant for.

I don’t want to dilute the message by going on-and-on about technical issues so I have let1 the ovedy technical
stuff out of this emai] message. If you want more information please come and talk to me.

---Original Message---
From: Rail Harteneck
Sent: Saturday, January 25, 1997 5:53 PM
To: PowerPoint 9.0 Planning
Subject: FW: Thoughts from the Word 9 offsite - applying it to all of Office 9

These are interesting remarks, validating the planning we have been doing for Powerpoint 9.

Rail -.

---Origina~ Message-
From: Michael Mathieu
Sent: Saturday, January 25, 1997 4:51 PM
To: Rail Harteneck; Brendan Busch; Peter Pathe; Andrew Kwatinetz; Antoine Leblond; Steven Sinofsky; Jon

DeVaan; Duane Campbell; Chris Peters; Craig Unger; Richard McAniff; Daniel Bien; Eric M]chelman;
Brian MacDonald (Xenix); Bill Bliss (Exchange); Nathan Myhrveld; Bill Gates; Jon Reingold; Dean
Hachamovitch; Brad Silverberg; Manish Vii; John Ludwig; Mark Walker (Word); Paul Maritz

Subject: Thoughts from the Word 9 offsite - applying it to all of Office 9

On Thursday I spent all day at the Word 9 pm offsite. [think we made some pretty big breakthroughp there (at
least in the ways that i’ve been thinking about Word and FrontPage.) I think we came up with some important
things that also impact the way .the other apps might think about their plans for Office 9.

I’m not sure where everyone is in their thinking dght now, so I’ll just put the basic flow of thinking down below, and
just tel me know if you don’t buy into various pieces or need more explanation, etc. We went through something
like the following discussion:

1 - HTML is important to .our apps business (we talked about this just to make sure everyone was really bought in.
We are.)
2 - To be a player, you have to write HTML natively (this is playing vs. dabbling that we do today)
3 - There’s only one HTML, and it’s defined by the. browser (i.e. no inventing your own tags)
4 - Since it’s HTML, it’s the browser’s responsibility to view the documents (A key insight from AndrewK)
5_- Since people print what they view, it’s the borwser’s responsibility to print the documentsHow do you get all of our existing features into the browser then? No consensus here, but maybe you don’t get
them all into the browser÷ Possible altematives: a) revert to Office97 formats if you hit a feature you can’t render;
b) don’t support all the features (this would probably require use to make a new product, for marketing reasons,
even if it were from the same code base (this would be more like "WebOffice" than the "New lnternet Application",
I think); c) add the features to the browser (three options there - get Trident team to do it; Office devs party on the
Trident codebase to add features; figure out an architecture that lets us install low level extensions to the browser
to give us what we need (no one knows how to do this today on either side of the equation.))

4+5 imply important things like:
¯ Apps need a way to preserve editing information within valid HTML (FP WebBot trick w/comments)
¯ File Open/d-click from shell of Office apps works just like any other HTML page -- it comes up in the browser

MS-PCA 1290550
FIIGI-ILY CONFIDI~rIAL

¯ If you want to edit the doc then open in the browser, and then hit Edit button (viewing outnumbers editing)
¯ Might have smarts to e~it right away if we see that you’re the author of the doc
¯ Need a new meta tag to indicate the "preferred editor" even though it’s just an HTM file (e.g. don’t want PPT

files being editing in FrontPage, b/c we won’t understand all of your WebBot junk, and won’t have the ideal UI
for editing it. But technically it woufd be possible.)
All printing smarts from today’s apps should.m~grate to the browser, e.g. footnotes woutd be displayed in one
way on screen, but browser should be smart enough to print them at the bottom of the page. Same goes for
all the PPT color printing controls and smarts about how to divide things up into speaker notes, slides per
page, etc. Users should get all of this in the browser. We’d need to figure out a new architecture for doing this
- and yes, it probably wouldn’t be as good in the beginning as it is in the standalone apps, but we’ll fix that
with a few turns of the crank.

= Viewing and Printing are just two more examples of things which get "horizontalized" (to quote Andy Grove),
when the file format for apps get horizontalized (Manish’s insight)

¯ [Just came up with this one while I was writing this --] Of course this all has a big impact on our
programmability story. The object model for all of our runtime capabifities should be aggregated onto the
browser object model The portion of the object model that affects the editing envimnrnent is really entirely
separate and distinct. That’s not to say that editing isn’t part of the browser object model. It’s the editing
environment that keeps it’s own OM outside of the browser. So, the runtime object mode] is yet another thing
that gets horizontalized by the browser with the common HTML format. Of course, the individual apps could
provide runtime OM’s which have redundant functionality to the built in Trident OM, but that makes sense b/c
it’s much easier to code with task-specific OM’s, rather than just very tow level control.

What does all of this mean for PowerPolnt?
¯ Save natively as HTML (don"{ know if this is already in your plans)
¯ File Open goes to the browser. Edit goes to PowerPoint
¯ ~ransitions are built into Trident. You’d be less feature rich with Ne{scape, but we ship IE with our products.
¯ Need to figure out how to get required viewing and printing functionality into the browser. Short term hack

way might be via Java apple{s, but you’re more likely to want to put this into our browser - that really
improves our platform story, b/c now it becomes a great platform for people to target with presentation
graphics packages.

What does all of this mean for Excel?
¯ Save natively as HTML
¯ File Open goes to browser. Edit goes to Excel
¯ Excel’s special printing knowledge needs to work somehow in the browser. Will browsers ever handle the 2-

D scrolling region as well as Excel? That might be a particular investment area we want to look at for the
future. Or the 2-D-heSS might just be particular to the online editing environment that Excel provides, rather
than the viewing, which takes place in screen/page-size chunks.
Need to decide level of functionality that goes into browser vs. addons, e.g. sorting, pivoting(?), filling in
forms, etc. Today you can get Java applets that do a lot of what you want for basic list management. Data
entry is the huge terrible part.

What does all of this mean for Access?
¯ DBC, Reports, and Forms saved as native HTML
¯ Table creation, query building, and programming are still native to Access (as is the MDB format for tables,

indices, etc.)
¯ File Open goes to browser, as does everything outside of Design mode
¯ Need to build in some intelligence into the browser for how to handle large data sets, and how to do all of the

data access remotely; also alt of the banded report printing -- probably very different for printing reports than
how they’d ideally show up in the browser (e.g, report header in a frame at the top. Same for page header
(what does that mean for a bottomless report in a browser?) and all the footer stuff.)

What does all of this mean for Outlook?
¯ HTML as native format. My understanding is that they’re already going fullbore on this.
¯ File Open goes through Browser -- that’s not just for email and news, but views and view elements as well.
¯ Move to a web Ul for viewing. Seamless integration for editing tools. This is in contrast to today’s mode]

where Outlook is almost like a wrapper of its _own (besides the browser) and has it’s own non-standard views.
This is longer term, but basica]ly all of the great views features in Outlook should move into the browser,
rather than the browser becoming just another view in Outlook. Despite that it’s what Netscape is doing, it’s
not the right thing to have this inside-out model. The browser is the one thing that should control views, and
provide the runtime functionality for interacting with them (e.g. forms.)

¯ More file printing intelligence moves to the browser.

What does oil of this mean for FrontPage? N$-PCA 1290531
HIGHLY CONFIDI~FI~L~d~

¯ We’re already HTML native format
¯ File Open through the browser is a modei that we’ve been using for one area of FP3 improvements. You end

up browsing around and then hitting the Edit button. We’re making changes here in FP3 so that you can edit
the page directly without having to first open the web in the FP Explorer. That makes things way faster.

¯ Printing - well our only printing is through MFC. It’s got tons of bugs, but we don’t really get complaints. IE
already does a better job than FP at printing pages. It just makes sense to put it in IE.

¯ We do need to think about hosting our Explorer views in the browser somehow. This is similar to the Outlook
case where the views really belong inside the browser, rather than outside.

In a sense, this whole email can be summarized as "What changes when you don’t have your own file format?"
That’s a consequence of HTML. AndrewK’s insight that the browser should do all viewing is realiy crucial, and 1
don’t think it’s something that we~ve ever thought about before (witness our Word, Excel, and PPT Viewers.) t
makes so much sense. And th nk ng through the implications of that for our apps will make us all work better in a
world where don’t have our own rite format. This also lets us think a lot more about how the browser could
become a platform for "real" applications, with a whole range of sophisticated needs that wouldn’t necessariiy be
built into the browser. This Is just a starting point.

Thanks,
-Mike

MS-PC 12 0552
HI(~]-K,%’ CONI~DENTIAL

