&

PLAINTIFF’S
EXHIBIT

2205

Comes v. Microsoft

CBT

Rosie Perera

ABSTRACT

This document descrides everything there is to know about CBT in Word For
Windowsl. It is mostly applicable to other applications as well.

Contents

LT QG CLIOR v sene e e85 88 T 2-1

Application Support for CBT 23
Initialization and Files 23
Termination and Cleanup 2ol
Window Hooks 2-6
Subclassing 2-6
Window Messages 2-6
Scmantic Events 27
SDM . .28
Otker Coding Considerations . rersiost s imasssssasesrane s ee 29

Appendix - Semantic Events - UL Lt

introduction

Word For Windows uses Microsoft's standard Windows Computer-Based Training (CBT)
system. Word For Windows's CBT consists of a tutorial. CBT can also include 2 feature guide, as in
Excel, but Word For Windows doesn’t bave one, 1o this docurment T will use the terms "CBT and
“tutorial” interchangeably.

The Windows CBT system is an application which ruas symbiotically with the application
being taught. This means that the CBT communicates with the instructed application, both driving, of
ghosting, the application by supplanting uscr-initiated events with CBT-supplicd ones, and receiving
cvents from the application indicating what user-initiated events bave occurred. Communicalion
between the instructed application and the CBT is achieved through the use of window messages,
Windows hooks, and by subclassing the application’s window procedures.

CBT bears a stroog rescmblance o a finite state automaton in that it is a collection of discrete
states, including a unique starting state, and 2 well-defined set of transitions which are pairings of
cvents and resultant states. The states in the CBT are referred to as steps and include definitions of

11n composing this document 1 borrowed heavily from a memo by CB Leyerle, "Windows Application
Support for CBT".

X 505887
CONFIDENTIAL

CBT Introduction

whal coostitutes both the visual appearance and the true internal state of both the CBT and all

applications preseat in tbe CBT session?,

There are three types of events, user-initiated events, CBT-internal ecveots, and semantic
events. User-initiated eveols include keyboard ioput (both key-up and key-down), mouse button down-
clicks and up-clicks, and mouse cursor movement, CBT-internal eveats include timers and
confliguration branching, and the application doesat need ta worry abaut these. The most ioteresting
events, from the application’s point of view, are semantic events, which will be described in detail below.

Tutorial lessons can include botb nop-interactive steps and interactive steps. In non-
interactive steps, the lesson just explains how to do a particular task and the user sits back and watches
while the CBT puts up instructional windows (IWs) and drives (ghosts) the application. Ia interactive
steps, the user is instructed to do a particular action and the CBT branches to the next step only when
the user does the correct action. It usually displays some sort of help message if the user does the
wrong thing. These transitions from a step Lo the nex step or to 2 help message are collectively called
Response Anabysis (RA). The CBT help messages are called Response Analysis Windows (RA Ws).

The definition of wkat is the “correct action” for a user to do at a given step is made by the
CBT cuthor who creates the lesson. The author decides what he or she is trying to teach and what the
user should do at this step and then records thesc events into the CBT lesson using the authoring ool
DOT. This procedure is called eventing. Later, whea the CBT is runniog, the events the user generates
are compared against the pre-recorded ones and the CBT decides whether the user did the correct
thing. The events may oot need to coincide exactly, but in most cases they do. It is up to the author (0
cvent alternate methods into the lesson if the CBT should allow the user to do an action in one of two
ways (for instance, choosing a command from a menu can be dope with the arrow keys, or with the

initial letter of the command).

Ghosting is simply a sequence of eveats which the application is to handle, and is usually sent
at the beginning of every step in every Jesson and appears as a normal sequence of incoming window
messages to the application. Gbosting is used to demonstralc features (the app looks like it's in
*autoplay’ mode), as in most of the Word For Windows CBT lessoa averviews. Ghosting is also used -
10 modify the appearance and internal state of the instructed application without keyboard or mouse
input, for example to close documents that were in use by a lesson when a new lesson is started, or Lo
rura off the ribbon in preparation for teaching how to tura it on. The application nced not Lo do
anythiog special to bandle ghosting when the CBT is runging. Ghosted events arc sent via the
Windows joursalling playback ook, so they appeas as a sequence of regular window message 10 the
application.

Semantic events are generated by the application from user-initiated eveats in the process of
interpreting their meaniog. These events encode more information about the impact of a user-initiated
event than could be derived from the eveat alope without knowing the internal state of the application.
The CBT needs semantic events only in those places where normal window messages and window
books do pot provide enough information. For example, sclecting some text is an cvent which is
comprised entirely of mouse and/or keyboard input, but which the CBT can't understand from that raw
message data because it docsn't know where Word For Windows's text is displayed on the screen in
mouse coordinates. So Word For Windows generates a semantic event for the CBT (by sending ita
window message with cpFirst and cpLim packed into the [Param) telling it that text was selected with 2
particular range of cp's. Note that the CBT doesa't know that the numbers we send it are cp's, or even
what cp's are, but all it needs is a unique way of identifying that event 10 make sure the user's action is
identical to what the autbor cvented for that step.

2Can be more than just the instructed application, as in the Help Lesson in Opus CBT.

X 505888
2.2 CONFIDENTIAL

ik

CBT Application Support for CBT

I the case of user-initiated eveats, if the CBT decides that the user has oot doge the correct
aclion, it will pot allow the application to cver se¢ the window messages associated with that user event.
This is accomplished by the use of Windows hooks. This way the visual and internal state of the
application will not change 0g an interactive step unless and until the user does the right thing. With
szmantic events, however, itis a cooperative effort between the application and the CBT that prevents
the action from taking place if the user wries to do something that he was not supposed 10 do. The
application basically bas to ask permission of the CBT to allow a particular action to take place. 1l the
CBT says yes, the application continues 2long as if CBT wasn't running. If the CBT says oo, the
application must abort the action. This will be described further below.

AppHcannSuppoﬁforCBT

Initialization and Files

Because CBT is eatirely deterministic, it needs 1o procced from a koown state of the
application. The authors decide what state they want to begin from and all of their eventing and
ghosting is based oo this assumption. Things that define that *starting state” for Word For Windows
include having po documents open, having the ribbon and ruler off and the status line on, ete. Sce
FloitDefaultPrefs and FlnitStateForCBT for how these are all set up. It is extremely important that
the application start in the same state (hat the author had it in when authoring a lessoa. Otberwise the
lesson woo't work. This means that if new items arc added in future versions which are part of Word
For Windows's global state (especially new fields in vpref), they should be set properly for CBT and
tbat information should be communicated to tbe CBT team.

Afier the CBT is terminated, the state should be restored to cxactly what it was before the
Tutorial was run. Thus we save away the current state before setting up the CBT starting state. The
saving and restoring of global state in Word For Windows is a pretty quick-and-disty one. If there's
time ip a future version, we should make it more complete. There arc lots of items that are not
restored, such as whether a window was in outline mode, whetber there was a split pane, header/footer
panes, 0peD mACTO windows, etc

The CBT coasists of the exccutable file (winword.cbt), the CBT dynamic library (winword.lib),
1he lesson file (winword.les), and the various templates and documents that the CBT has Word For
Windows open during the course of the lessons. These Gles all reside in a special CBT subdireciory
(winword.cbt?). You may sce the filenames wincht.exe, winchtlib, and wincbtles when working with
the UserEd team. Thesc are the geperic names of the above files, respectively. They are reoamed for
specific projects. Actually, wincbt.lib {(winword.cbt) is the only one which is pot project specific. A
special wincblexe is built that is Word For Windows-aware. And of course our wincbt.les
(winword.les) is entirely ‘Word For Windows-specific.

During the time that the CBT is running, the DOS currcot directory must be the CBT
subdirectary, in order for all the documents and templates to be found. So onc of the first things Word
For Windows does when the user chooses Help Tutorial is to switch into the winword.cbt directory.
The old current directory is saved so it can be restored later. Word For Windows finds the
winword.cbt subdirectory by looking first in the util-path directory (if a util-path cxists) and then in the
program directory (the one where winword.exe is).

The last thing Word For Windows does before booting CBT is shrink the swap arca size. This
will enable the CBT to bave enough memory to boot. After CBT is successfully booted, we grow the

3Yes, the directory bas the same pame as one of the files in it. 1 tried to fight this but lost.

X 505889

23 CONFIDENTIAL

CBT Applicatioz Support for CBT

swap area size back (o maximum. This is an asea that could be tweaked somewhat if it turns out that
CBT runs out of memory oo often during lessons (CBT is very data intensive). We could icave the
swap area size down*, or grow il back only part way. 1 believe this was discussed a little before we
shipped but we decided it was 100 late to monkey with it 1 doa't know of any serious problems with it.

Word For Windows launches the CBT by first loading the dyzamic library, and then boating
the CBT exscutable. If either of these files (or the winword.cbt directory) is pot found, Word For
Windows cannot rua the tutorial. The CBT does some checks to see if there is enough memory for it
and to see if all the files it needs (winword.les and all the specific document and 1emplate files required
by the lessons) arc present, and will terminate itself if not. Once we have booted the CBT executable,
we wait for it to send us a WM_CBTINIT message, indicating that it has successfully booted. If instead
we get @ WM_SYSTEMERROR, something went wrong. We use the global tri-state flag vrf.{Chtlnil
to communicatc between AppWndProcRare and FRunChbt so that we know when CBT is up and
running.

Once CBT is booted, the application needs to send CBT a WM_CBTINIT message with its
instance bandle {so it knows who booted it) and then WM_CBTNEWWND messages with the handies
of all its currently opes windows. Certain child windows can be omitted from this enumeration if they
never handle mouse or keyboard input in their window procedures (e.g. in Word For Windows, the
split bar is a window which does not take input). The reason for sending the window bandles is so that
(ke CBT can subclass the windows (tbis is described below).

With all ok this done, the application is now ioc CBT mode, and CBT is in control. The
application can determint whether CBT is active or not by the value of bwndCBT (vbwndCBT iz Word
For Windows), provided this is initialized to NULL at application boot time, and set/cleared as
appropriate according to receipt of WM_CBTINIT and WM_CBTTERM messages.

Termination and Cleanup

Termination of the CBT can be done at the instigation of either the CBT or the application.
The CBT will seck to terminate either when the user requests it, or whea a fatal condition (such as oul-
of-memory) is detected. The application will seek to terminate the CBT when it detects an error
condition such as OOM. After the CBT terminates, the application can proceed as normal. 1f an error
condition is not detcrministic given the user-initiated cvents and semantic events, the CBT won't be
expecting the error message and will not allow the user 1o OK the message box Sometimes this
requires terminating the CBT, otherwise 2 semantic event (sent before the message box goes up) could
solve the problem. The oaly pop-deterministic condition which causes Word For Windows to have to
\erminate CBT for a reason other than OOM is if we try to open a document which is of an old file
format. If one of the documents or templates necessary for a lesson cannot be opened, obviously the
jesson cannot continue. I did review all of the Word For Windows error message 1o sce which of them
were deterministic and which weren't, and it is sometimes a very difficult thing to determine this.
There may be some weird cases I've missed.

When the CBT wishes to terminate, it will broadcast a WM_CBTTERM message to all
windows. The application should have one window procedure (for a window that won't get destroyed
during the CBT, generally the main window), which processes this message. Word For Windows
bandles this in AppWndProcRare. 1t is important ta remember that the termination can occur at any
time, and in particular may occur with a menu dropped down or a dialog box or message box displayed,
or while the application is ip any temporary mode. Thus, the application needs to do 2 general cleanup
which does at lcast three things: end any active menu state (via the undocumented Windows call

4 From a comment in CB's memo, it scems that this is how Excel does it, though we copied our code
from them so we must have botb done it tbe same way at that point.

X 505890
CONFIDENTIAL

2-4

Wy

CBT Application Support for CBT

EndMenud), close any open dialog of the application, and close all open documents, workspaces, etc.
without prompting or saving. Word For Windows has some special concerns bere, namely drop-down

list boxes from icon bars, which are closed using TermCurIBDlg.

If the application desires to terminate CBT, it seuds a WM_CBTTERM message to the CBT
window. The wParam must be the instance handle of the application. For ar crror condilion, the low
word of the Param of this message must be zero; the high word may contain a specific error code if
desired. If the application is quitting normally, Le. without any crror condition being detected, and is in
CBT mode, the low word of the [Param sbould be non-zeroS. The CBT will broadcast a
WM_CBTTERM upon receipt of the message [rom the application, and the termination sequence
continues per the description above.

Io an error situation, the application must send the WM_CBTTERM message before
displaying a message box. Failure to do this cax lead to a deadlock condition, and pecessitate a reboot.
Also, we discovered that sending CBT more than one WM_CBTTERM message can be harmful, so if
there can be nested error conditions or if cleanvp from one error condition can cause another oze, il is
important for the application to note tbat it's already scnt a WM_CBTTERM to that CBT doesn't have
problems. Word For Windows uses vmerr fSentCBTMemErr to keep track of this.

Curreatly CBT does not put up any message when il is lcrminating due to user request or
application request. It is up to the application Lo put up an €rror message (if it wants one) if the CBT
is being terminated due to out-of-memory or other error condition. There was some talk between
Raman (suryanr) and mysell about having CBT baving some smarts about the error code in the high
word of tbe 1Param, but currcatly that code is pever checked. 1n some cases, it may be useful to use
semantic events for certain error conditions so that authors can decide how to handie the problems.
For instance, in the Using Help lesson, if Word For Windows cannot find the Help application to run -
it, we send CBT a semantic cvent message about this, and then the lesson takes a different branch
which tells about what Help wou!d be like if the user could rua it.

One thing which needs to be changed for Wiaword 1.1 and PM Word, which will save 2
tremendous amouat of space in the lesson file, is the way lessons do their own cleanup. When the
tutorial terminates, the application does ccrtain cleanup items, as mentioned above. Currently, if a
user clects to restart a lesson or go to a different Jesson cither at the end of one lesson or in the middle
of one, the lesson is responsible for remembering what bas changed since the start state and resetling
all those things. It uses internal variables to do all this. The authors have to set them properly and
figure out the cleanup. Unfortunately this is a big waste of space because a lot of it is duplicated in
many lessons. Also, it is silly to have the lessons do all this cleanup work when Word For Windows
already knows bow to doit. So what has been proposed is to have a lesson ghost "Help Tutorial” when
it waants 1o clean up, and have Word For Windows know that if CmdHelpTutoria! is called when CBT is
already active, it means we should do the cleasup. In order for this to be accomplished, the code which
sets up the initial CBT state will bave 10 be isolated into its own routine. Saving the state away should
only be done once, and FlaitStateForCBT should be made 5o it can be called multiple times in a single
CBT session. This should not-be too difficult to do.

After CBT is terminated, the application should free the CBT library, using the windows call
FreeLibrary. We bad some fun with this one in Word For Windows. This Iibrary shouldn't be freed
uatil it is very certain that CBTLIB is no longer on the stack, otherwise certain death will occur. Word

SThis call has been removed in Win 3.0 and we must now use the WM_CANCELMODE message,
which is documented.

61 Opus, we never termisate CBT cxcept for an error condition. 1 can’t imagine a tutorial ever
teaching the user to quit the application and allowing it to actually quit, so I'm not sure why this case is

X 505891
CONFIDENTIAL

2-5

w

CBT Application Support for CBT

For Windows pow postpones this and the rest of the post CBT clcanup (StopCBT) until after
viDeactByOtberApp is false.

window Hooks

CBT uses several Windows hooks, including the keyboard hook (WH_KEYBOARD), the
journalling hooks (WH_JOURNALRECORD and WH_JOURNALPLAYBACK), the system
message filter book (WH_SYSMSGFILTER), and the CBT hook (WH_CBT). The journalling hooks
are used to record and ghost, respectively, the keystroke/mouse-cvent sequences needed to keep the
application in the right state for the CBT instruction. The others are used to intercept user-initiated
cvents so that they can be compared to the authored RA list (cvents which the author decided would
satisfy the instructions and thus cause the CBT to branch to the next step). The application can use
these hooks as well, and, except for the journalling hooks, almost without restriction. 1f the application
inteods to use the jowrnalling hooks, other arrangements will need to be made, and in any case,
applications development and CBT development should mutually ensure that their respective use of
hooks is orthogonal.

Subclassing

Whean the application creates a new window, it must, when CBT is active, tell the CBT about
(he window bandle so that the window can be subclassed. This is accomplished by sending 2
WM_CBTNEWWND to {he CBT window, with wParam as the bwnd of the new window and IParam .
25 OL. This is pormally done upon receipt of the WM_CREATE message in the new window's window

procedure. .

Subclassing is a technique whereby the CBT interpolates its own window procedure between
Windows dispatch and the applications window procedure. This produces 2 chain of window
procedures with the CBT subclassing window at the bead of the chain. The CBT interposes its own
window procedure upon receipt of the WM_CBTNEWWND message, and removes it when it sces a
WM_DESTROY for \bat window as a result of its subclassing. Subclassing allows the CBT the
opportunity to examine the various messages destined for the window, and intercept those that would,
for CBT purposes, incorrectly modify the application state. Most messages are, afler examination,
immediately sent to the application via CallWindowProc.

Window Messages

The application needs to define some special CBT window messages, which are reserved in
windows.h, but not specified therein. These are WM_CBTINIT (0x3f0), WM_CBTTERM (0x3{1),
WM_CBTNEWWND (0x312), and WM_CBTSEMEVY (0x33). The first three were explained above,
and the fourth will be explained below. An additional message which may be nceded by some
applications was defined-to solve a problem in Whimper and Word For Windows CBT's, This is
WM_CBTWNDID (0x3fd). 1t is used to give the CBT a unique id for a window to allow it to
distinguish berween multiple windows of the same class when it (the CBT) docsn't know what order
they were crcated in. For instance, i Word For Windows, the problem arosc with icon bars”. The
window handle cannot be used, because it will be different each time Word For Windows is rus.

specified. But that's what CB's memo says. I looked in the CBT code, and discovered that unless the
low word of [Param is zero, CBT doesn't actually terminate.

7Y ou may ask the obvious question, “Why pot send the id # in the (otherwise upused) IParam of the
WM_CBTNEWWND message? Well, I asked that too, and was 1old that it bas to be this way because

X 505892
2.6 CONFIDENTIAL

sy

CBT Application Support for CBT

Semantic Events

Semantic events were introduced briefly above. As promised, 1 will go into more detail bere.
Theare are two kinds of semanlic eveants, advisory and pre-cmptive (abortable). Advisory semantic
events are when the application just notifies the CBT of some event which bas already occurred. These
:aclude things like sclecting text in Word For Windows, where the lesson allows the user a certain
amount of exploration and doesa't prevent actions. The Jesson will branch o the next step ocly when
the event it is looking for has occurred (the user correctly selects a particular word, for instance).

Abortable scmantic cvents arc when the application detects that the user is trying to do
something but must prevent it if the CBT says it iso’l the right thing to do at this stage. To provide
CBT with this power, the application breaks the handling of this type of action into the two phases of
recognition and doing. The recoguition is the determination that 2 mouse click at a particular
coordinate position means the user is trying to choose Bold from the ribbon, for instance, The doing
involves carrying out the Bold command. The CBT needs to know that the application intends to casry
out the Bold command before it actually is done. Thus, Word For Windows sends the CBT a semantic
event between these two phases, to indicate its intent. If the CBT responds (by returning {False from
the WM_CBTSEMEV message handling) that it does not want the user to do this action at this time,
Word For Windows must abort out of the action. We have to be careful pot to leave things in a half-
done state, We must clean up the scresn or whatever, particularly in cases where the user was trying to
drag something where they weren't supposed to.

In most cases, the distinction between recognition and doing is not conscious, but there were
limes wheo retrofitling CBT books ioto Word For Windows where we discovered that code had been
written in such a fashion as to make it difficult 1o install an abortable event, so the CBT authors had to
live with an advisory one and work around it (the abortable ones arc more desirable for them
instructionally, but they can be more work for the application). Here is the skeleton code for a
semanlic event:
it (vhwndCBT && 1SandMessage (vhwnd CBT, WM_CBTSEMEV, wType, 1Data)}

{ -
/* CBT vatoes anampted user action. Abontit. =/
goto LClsanup;

}

eiss

}' CBT not active or event OK. Do normal handling */
}

The semantic event type is sent in the wParam. Thesc are ID pumbers defined by the
application and communicated to the CBT developers (because the CBT executable aceds (o have
tbem built in). The lParam may contain additional data for the semantic cveat if necessary. All of the
Word For Windows semantic events are listed at the cnd of this document (or chapter, if you're reading
the whole Word For Windows Fundamentals document).

Most semantic cvents are the result of mouse actioos, because keyboard messages tend to
contain all the necessary information for the CBT to tell what the user is doing. One exception is
sclection via the cursor keys. There could be an infinite pumber of ways of moving the cursor to ooc
point ig the document. The CBT docsa't care what actual keystrokes the user took to get there, but
just that they get to the right place. This warrants a scmantic event.

WM_CBTWNDID was inve.nléd as an after-thought and it was barder for Whimper to go back and

wmove all their WM_CBTNEWWND calls (apparently they dida't know the id # yet at the time of the
WM_CBTNEWWND call) than to add a second message later on. So we do it their way.

X 505893

21 CONFIDENTIAL

CBT Application Support for CBT

For mouse semantic events it is nccessary to decide whether to send the semantic event on the
down-click or the up-click. It depends oo the nature of the action and the needs of the CBT authers.
For example, in Word For Windows clicking on an icon in an icon bar generates a semantic event with
the ID of the jcon clicked. We don't actually carry out the action until the mouse button is relzased
(though we do highlight the button sa the uscr knows they clicked on it). In this case it is better to send
{he semantic event on the up-click. It won't preveat the highlighting from occurring if the user clicks in
the wrong place, but the lesson should not branch uatil the user actually does the thing that will cause
the action. Another example is dragging things in outline mode. Again, here, we don't take action until
the up-click, though we do animate the dragging. We send the semantic event on the up-click. Here
we have to be careful when we abort the command that we don't skip the code that cleans up the screen
(turas off the animated drag outlines and the bullet highlight).

Genperally I would recommend designing commands that take action on mouse clicks such thal
they 1ake their action on the up-click. This is in keeping with standard practice in Windows apps and
makes it easier (o do the CBT books. But unfortunately we have a counter-cxample where the user
clicks the arrow to drop down a combo box from an icon bar. In this case, we drop the st box down
on the down-click, so we nced to scad the semantic cvent oo the down-click. Actually, this particular
example is one of SDM's semantic cvents, which will be discussed below.

The specification of semantic events requires the close cooperation of the application
developers, CBT developmeat, and the CBT authors. The authors decide what semantic evenls they
peed 1o instruct certain aspects of the application, and the application developers decide how to convey
the necessary information in three words and put in the code to do so. Then the CBT developers put in
support for the semantic eveats as specified, and the authors do the eventing for them. I advocate Lhat
this specification should be done as early as possible so that the code can be designed to allow aborting :
casily, but it is usually oot difficult to put semantic eveats in later op if another need arises.

" The application developers should be aware of what kinds of things might need semantic
cevents. In Word For Windows, we caded up having to add a lot of semantic cveats later on for things
that the CBT group didn't thiok of. In particular, one thing we realized was that even though a
particular mouse action is not going to be taught in any lesson, you may well nced a semantic event for
it, to prevent people from doing that action when they're supposed to be doing something else. The
prime example was dragging the style pame arca bar. This will be necessary any lime a mouse
command is generally available when something else is being taught. If it is pot available anyway, no
scmantic event is needed.

SDM

When SDM bas control (i.c. when a dialog box is up), Word For Windows doesn't know what
events arc happening, but the CBT still needs to know so that it can teach users how to use dialog
boxes. Therefore, SDM has CBT hooks in it too. In ordes to make SDM aware that CBT is present,
we use the SDM call CBTState, passing fTrue. Similarly, when CBT goes away, we call it again with
{False.

SDM sends the CBT semantic eveats for clicking on items in dialogs, typing in edit controls,
sclecting in list boxes, etc. As mentiooed above, CBT is responsible for the semantic event of clicking
to drop down an icon bar list box There needs to be light communication between the SDM
developers, CBT developers, Word For Windows developers, and authors, in order for all of this to
work smoothly. ‘

X 505894
8 CONFIDENTIAL

W

CBT Application Support (or CBT

Other Coding Considerations

Applications with CBT support should not process messages returned as 2 result of calling
PeekMessage with PM_NOREMOVE. Applications may use PM_NOREMOVE 1o see whal
{whether) messages are available, but should oot process them until they have been removed from the

quete.

The WM_QUEUESYNC message mus! get through to CBT, because it uses that to manage
its journalling playback book. We have a place where we oced to do a PeekMessage with
PM_REMOVE in a tight loop. PM_REMOVE is normally OK, but if a WM_QUEUESYNC comes
along, it must be passed on to CBT or youll be in an infinite loop. We do not need
WM_QUEUESYNC cases in our window procedures because CBT gets this message via its
subclassing.

If a key is defined to abort operations in progress (such as printing, repaginating, ctc.) it
should be disabicd when the CBT is active. Word For Windows does this in FCheckAbortKey.

X 505895
CONFIDENTIAL

2-9

CBT Appendix - Semantic Events

Appendix - Semantic Events

Here is a list of all the semantic events in Word For Windows 1.0 and their parameters. This
ist will surely become outdated in future vessions of the CBT. These are not documented witk their
parameters anywhere else, except by reading the code. Under “Type” ! have encoded two letters; the
first tells whether the eveat is advisory (A) or pre-emptive/abortable (P), and the second tells (where
applicable) whether the event is sent on the down-click (D) or the up-click (U).

Scmantic Event D Type HIWORD(IParam) LOWORD(1Param) Description

smvSclection® 00200 AU cplim cpFirst /* new 1exn sclection */
smvHdrSetection® 0x0201 AU cplim cpFirst /* new header sciection */
smvFtrSelection 0x0202 AU cplim cpFirst /* new footer seiection */
smvFNSelection 0x(203 AU cplim cpFirst /* new fooinote selection */
smvAnnSclection 00204 AU cplim cpFirst /* new annotation selection */
smvAnnFNMark 0x0210 P 0-footnote P /* bl click on Annot or FN mark ¢/
‘ - annotation

meBl‘ldrFu'IO 00220 PU bution group button within group /* header/footer iconbar butions */
smvIBOutline 00221 PU button group button within group /* outline iconbar buttons */
smvIBMcrEdit 0222 PU button group button within group /* Macro edit iconbar butions */
smvIBRibbon 00223 PU button group button within group /* ribbon iconbar buttons */
smvlBRuler 00224 PU button grovp button within group /* ruler buttons */

stv[BPrvw 00225 PU button grovp buiton within grovp /* print preview iconbar butions */
smvTabCreatel! 0x0230 PU x pos (in x2's) /] /" create new tab on ruler */
smvTabMove 00231 PU old x pos Bew X pOs /* move an existing 1ab */
smvTabDelete m0232 PU 0 1 pos /' drag 1ab off of ruter */
smvindentBoth 0x0233 PU old x pos Dew x pos /* drag both left indents together °/
smvindentleftl o034 PU old x pos DEwW X pOs /* drag fisst line left indent °/
smvlndentLeft 00235 PU old x pos new x pos /* draglelt indem */
smvindentRight 00236 FPU old x pos now x pos /* drag right indent */
smvRulerTLeft 0x0238 PU ald x pos new x pos /° drag left table coi mrk on ruler °/
smvRulerTableCol 0x023% PU ©)d x pos Bew X pos /* drag table eol T maik */
smvMarginlelt 00232 PU old x pos new x pas /" drag lcft page margin */
smvMarginRight ~ 0:023b PU old x pos new X pos /* drag right page margin */

BWe pack two cp's into one [Param because that's all the room we have. This means the CBT authors
have to limit their documents to 64K Not a very tough restriction.

9The authors wanted a separate semantic eveat for selection in different panes since the cp spaces in
other panes overlap and they need to be able to distinguish the event. All sclection cvents are sent
both with mouse selection and with keyboard selection.

10The "button group” is an index, starting at 0, of the group of buttons (as they are visually laid out on
the iconbar). The button within group is tbe index of the button witkin tbe group. See code for
specific id aumbers.

1IAY the ruler semantic events (0x0230-0x023b) are seat oo the up-click, so we need to clean up
properly and remove the tab mark or put ruler marker back where it was if (he scmantic event is

aborted.

X 505896
CONFIDENTIAL

2-10

L4

CBT Appendix - Semaatic Events
Semantic Bveat D Type HIWORD(Param) LOWORD(IParam) Description
smvPrvwDrag 0x0240 AU 0 - no shift key index of object: /* Prvw. drag margins, etc ¢/
1 - Shift key 0 - Jeft margin
- top margin
- fight margin
- bottom margia
.= header
- footer
- page break
on up—. APO's
smvPrvwUpdaie 0x0241 AD <unused > <unuscd> /* update print preview display */
smvPrvwOtherPage 0x0242 AD <unused > <unuscd > /* Click on other page */
smvPrvwPageView x0243 A <unused > <unused> /* doubleclick to enter page view */
smvPrvwClick =x0244 AD <unused > <unused > /* click when borders not showing */
smvTableSclection 12010250 AU cpFimt MS 1o LS pibbie: /* select cells in a table */
Row Min
Row Mac
Col Mia
Cal Mac
smvPicFormat 0x0260 AU ires (handie id) 0 - cropping /* crop or scale a picture */
’ - scaling
smvPicSellmport 0x026] AU 0 iNd (index of ficld) /* selest an impornt pic (1ifT) */
sovNonPicSetl® 0x0262 AD <unused > <unused>. /* Sh+click outside of sel'd pic */
smvOutlineSelect 0x0220 AD 0 cpFirst of paragraph /* Qlick outin icon to sclect para */
smvOutlinePromote 0x0271 PU M promoted to cpFirst of paragraph /* Promote/demote paragraph */
smvOutlineMove 0x0272 PU destination cp cpFirst of paragraph /° Move para up or down */ :
smvOultlineExpand 0x0273 P 0 cpFirst of paragraph /* expand/collapse text (dbi cik) */
mrvBcp’nTypin;“ 0x0280 P <unused > <unuscd> /* entering the insen loop */
smvCommand 13 0x0290 P 0 - from menu id (» = help context) /* Command event */
- from keybd
smvTrackStyWnd Ox02A0 PD 0 0 /* Qlick 10 drag style arca */
smvCantBootHelp!®0x02FE P 0 0 /* OOM or can't find help */
smvWmCharl? OxQ2FF P 0 VK (vinual key code) /* WM_CHAR received */

12gipce the row and column Min and Mac must all be squeczed into a Jong, we use four bits for cach,
so the CBT authors need to restrict any tables in their sample documents to 16x16.

134 picture is sciccted and the user tries to extend (using Shift + click) the selection to somewhere
outside the picture. This was added as a preventative semantic event to fix a bug in a lesson.

14The need for this event was duc to a “fcature” in the design of DOT, whereby the autbors can not
preveat typing text while still allowing other keyboard input without authoring an event for each
possible key that would cause Opus to enter the insert loop.
BSent when we receive a WM_COMMAND or when any command is run from a key, The CBT needs
this because Opus uses bem's for menu id's, and these can change from one build to the next. CBT,
like Help, needs a constant id to be sent, so we just use the ibcm's which are used for Help.

16This one is very abortable. If CBT vetoes this semantic event, we terminate CBT.

17This was needed because Opus does PeckMessages in our insert loop, so CBT doesn't get the
WM_CHAR messages. CBT has the keyboard hook installed which picks up most keys, but if the user
does an Alt-Numpad combination CBT depends on the WM_CHAR message, so we need to send
them. This is particularly iroportant for international versions. Internally, CBT trcats this semaatic
event just like a WM_CHAR message.

X 505897
CONFIDENTIAL

2-11

Command Dispatch

Bradford Chnistian

ABSTRACT

Command dispatching in Word For Windows is done from a central, generalized
function that provides command pame overloading and treats built-in commands and
user-created macros exactly the same. This document describes the command
dispatcher used in Word For Windows.

Contents
Iotroduction 3-
The Command Table 3.1
Command Functions 3.2

Introduction

e A familiarity with SDM is assumed.
The Command Table

Commands

Every command has an entry in the command table called an SY. An SY contains common
information about 2 command such as it's name, type (dialog, EL, other, eic.), a pointer to it's function
or macro and flags that indicate when the command may or may not be used.

MkCmd

The MkCmd tool reads the .CMD files and turns them into code space structures that are
copied to the command table during initialization. Also produced are a resource file containing the
noo-modifiable menus and a header file that defines the bem values.

X 505898
31 CONFIDENTIAL

