
1. iMemor).’ Mapped Files. In Windows NT, a memory., mapped file is only, accessible to
processes that have called CreateFileMapping and MapViewOfFile for that particular file. In
addition the file’s memory region can be based at different virtual addresses in different processes.
In Chicago, once a program creates a memory mapped file, that memory region is accessible to all
programs. Thus, a Chicago memory mapped file is always at the same virtual address in all
processes.

WordPerfect’s coaching system needs the ability to save information captured from a "Windows
Hook", to a memory block that is later accessed from a WordPerfect process. It is our
understanding that the "Windows Hook" may be executed on whatever process is currently
executing at the time the "Hook" is initiated. In Windows 95, it will be much easier to implement
this functionality, because the address of a memory mapped file will be available to every process
in the system. Consequently, the "hook" procedure can save the information to the memory
mapped file address. In Windows NT 3.5, the "hook" procedure may be required to perform a
CreateFileMapping and MapViewO~ile on each execution of the "hook" procedure. This would
probably greatly degrade performance. Our Coaching system may not only not degrade gracefully,
but would also degrade machine performance significantly.

2. Memory Management in DLLS. There is a difference in the way the SHARED data in DLLs
is handled between Windows 95 and Windows NT 3.5. Initializing a SHARED variable with a
pointer to another SHARED variable will work in Windows 95, but not in Windows NT 3.5.

It appears that it is easier to share memory between processes in Windows 95 than Daytona.

3. Registry. The registry file format is different between Chicago and NT. This means that it is
not possible to do a RegSaveKey/LoadKey/RestoreKey from a Chicago machine to a Daytona
machine, or vice/versa. Windows 95 provides some System Administration capability through
system policies. We have not seen any information regarding system policies on NT.

Although we have not made a final decision on this, we were considering using this as a means of
implementing system administration of registry settings. Whatever use we make of system policies
would appear to be a problem for NT.

4. Unicode and ANSI OLE. Depending on the level you integrate into OLE 2.0 it has to be
Unicode or ANSI. Between the two environments it becomes more difficult for code to operate
the same way when we have to worry about ANSI or Unicode when interfacing to the OLE
system. Under NT we have to supply Unicode strings for many APIs and for Windows 95 it has
to be ANSI.

Thread safe OLE: We are planning on using "COM" extensively, and are concerned that this will
be a problem since our applications may call us from muhiple threads.

NWA 000219

5. Other Small Differences. There will be numerous subtle differences that we will discover that
have to be programmed around For example we have already had seen a difference in our code
that adds menu items We modified the code to work on NT, and when we moved to Chicago we
found that the code didn’t work. This stems from the internal Unicode under NT ~o the ANSI API
set under Windows 95. We were able to come up with an easy fix that worked on bolh platforms
but there was effort involved. We found setting a global hook worked on NT, but brought
Chicago to its "knees. There will be differences in memory management, in addition to memory
mapped files, that will require special attention.

6. Relying on Windows 95 functionality to enhance product functionality. In Windows 95
there exists potential to rely on the OS for certain functionality. For example, the Task Bar under
Windows 95 influences the design of an SDI application because it provides for easy switching of
tasks and switching between documents. If we were to rely on that capability and not put code in
to switch between documents easily (even under SDI), our users would then not have the same
experience with the product under Windows NT. Therefore, we may need to enhance the product
simply because it runs under Windows NT to give it the same functional level as the product
running under Windows 95. There could be many such instances with this type of impact in
developing for both Windows 95 and Windows NT.

7. Maintain two development and testing environments. There will be additional effort
required in maintaining two environments, testing, programming around subtle differences, etc.;
costs such as having to purchase two different operating systems, buying hardware capable of
developing for NT (not only for developers but for testing as well), and licensing of development
tools.

8. Issues that are potential problems. Common controls are supposed to behave the same under
both but we have not validated the current DLLs for consistency in behavior. Windows 95 help
system running on Windows NT, same problem - consistency in behavior and functionality.
Basically it requires a lot of validation to feel comfortable that Microsoft has handled all the issues
of common sub-systems between the two platforms since they are not based on the same OS
model.

9. Development Environment. You must use the Windows 95 SDK to get certain headers
pertaining to the Common control set and Plug and Play messages, etc. VC++ 2.0 release does
not have the changes in to support Windows 95 (headers). Under Windows 95 you must load the
SDK and VC++ to get the environment setup for proper Windows 95 development. Patches are
made available to keep VC++ 2.0 working under Windows 95.

While each of these issues can most likely be worked around it poses additional burden on the
development process and requires more resources in order to get our code common between both
platforms. We have even noticed that while we are developing we have behavior differences in the
APIs themselves. We report these to Microsoft as we find them.

NWA 000220

January 31, 1 c~95

Microsoft Network (formerly Mar~el)
General Notes

MS Network co-owned by TCI, 20%
Current partners; (partial list) Lotus, Symantec, Broderbund, Claris, Dell, Gateway, Packard Bell
(no Compaq or 1BM, yet)

Flexible business model
Low cost of entry to partner with MS

ISVs own their area
Revenue split (currently) Novell Microsoft

Cover charges 70% 30%
File Downloads 70% 30%
Subscriptions 70% 30%
Advertising 80% 20%
Physical Goods (MS takes and processes orders, collects $ through
Network) 90% 10%

Open platform (for development of forum)

Build a market
Aggressive marketing (part of Win 95)
Aggressive pricing (target $4.95 a month, 3 hrs. free, $2.95 or less an hour)
Broad penetration goals (no duh, this is MS; goal at least 400k users first year)(will have
700 access points in U.S.; 90+% should have local call)
Worldwide distribution (will be available in 35 countries, day one)

Win 95 Interface
Standard APIs
MS will provide tools and SDK for forum development

Blackbird (code name for dev. tool)
SGML based
Dynamic assembly of content (cool feature)

Billing and support infrastructure built in
Heavy OLE integration

Cool "shortcut" feature would allow us to put a Novell area button directly in our
software. Essentially a pointer. "Online Enable" your application.

MS Exchange is e-mail client
Graphics use progressive rendering

Internet
TCPiIP connection; not available in release, later, will be a flat rate
Partnering with UUNET for Internet access
Will offer web browser, FTP, USENET

NWA 000221

Target audience
- PC Industry
- SOHO
- Families wi0~ Kids
- Enthusiasts

NWA OOO222

