PLAINTIFF’S
g EXHIBIT

187

Comes v. Microsoft

Memo: What is a Document?

To: Bill Gates

Ce: list

From: Greg Whitten

Date: October 26, 1993) y

How should the question be answered?

I decided that there were two useful ways to answer the question.
1. Define an ideal (or model) solution, i.c., the objécts and relationships.

2. Qutline what we could do to our existing products to move us towards a more ideal solution by showing
how the changes start to satisfy the requirements from 1 above.

Most of what I have written in my various memos already addresses the first way above by covering requirements
and areas of design that need to be done.

What 1 want to do now is to explain a little about the user model surrounding documents and how I think that we
could evolve our existing products. [think that the second part of this response will be more concrete and more
valuable to understand over the nearer term, hopefully, clarifying some of the development cost vs. user beaefit
questions. My priorities for specific items will probably not be the same as yours; however, I will try to order the
items so that the changes which are dependent on others will appear later (topologically sorted).

I can always address the ideal later, as needed; but, hopefully, we should be creating the ideal by following the
proposed tasks.

The quick answer :
w1

1 also have a third useful very abstract answer that characterizes the scope of the problem to be solved - a document

is a container of organized information.

VA

Key Perspectives

There are three key perspectives to this question that should be kept and addressed in the analysis of this problem -
What is a document?

1. The key implementors of Microsoft documents - integrated office and desktop applications. What and
how much can they do? Compatibility? Competitive features? Performance?

2. The key software clients of Microsoft documents - Ren, Cairo, and work group applications. Documents
are interesting. What can I do with them? How can [find information in them or about them? What is the
externally visible structure that [can write tools to?

3. The end-users who use, customize, and build solutions using Microsoft documents. MS-PCA 1431784
There are other important aspects, as well. CONF T DEN T[A {
4, The information that documents contain, organize, and manage. This is important to information

creators. We should try to make our information types richer and more flexible.

Microsoft Confidential What is a Document? Page 1

X 6045929
CONFIDENTIAL

This memo is incomplete and | am not going to finish it I!

{ am not going to continue and try enumerate everything. I want to keep my part of the message simple and direct.
Instead, I think that the collective WE should try (o construct or contribute to a framework of tasks that when
completed will let us build the software that we want our customers to have to solve their problems. Our
interdependencies need to be collecuvely understood and exposed.

If I have not answered enough of the question for you, please ask more specific questions and I will try to give
relevant feedback on the problem. I may have an answer, an approach for tackling the problem that will lead to a
correct solution, a set of requirements that a good soiution to the problem should satisfy, or an I don't know,
haven't thought about it. e

1 probably will not design or implement any part of these products. 1 am only suggesting a consistent way that I
would use to solve the problem of how and what to design and implement.

Lastly, I am always looking for alternatives, I may not be right. I only care about delivering the best we can
practically do in ways which do not seriously hamper our future product progress. I also believe in first things first
or getting the kernel requirements satisfied first. Aligning a group requires a collective vision, road map, and
pragmatism including compromise.

High Level Product Improvement Goals and Com ive Environment

I think that it is important to have a few product goals when proposing new work to be done. Here is the list that I
am using for my task analysis and breakdown.

List of integrated office product goals.

Improved ease of use

Better integration

Better programmability

Working with other Microsoft software better
Reduction of product and development redundagcy and complexity
New document directions %
Improved features -,
Improving Integrated Office's objects -
Examples for new functionality using the improved objects

The competitive environment is such that office suite sales are going to dominate for a period until best of breed
components become significant differentiaters again. The shift back can really only occur as stable architectures
are developed for components. Componentized reusable software is the solution that matches many of the above
goals. Our efficiency as a development organization may depend on this as the only way to control the complexity
of huge projects. If we do this work, it will make it much easier for us to keep our customers because of their
increased dependence on our architectures. Changing products will no longer always be a matter of data format
conversion.

MS-PCA 1431785
CONFIDENTIAL

Microsoft Confidential What is a Document? Page 2

MX 6045
CONF IDENT?RI?

Creating Integrated Office Documents from Office Documents

This section contains tasks that take us from today's documents to tomorrow's documents which satisfy the product
goals. The task recommendations need to be considéred carefully because they need 1o satisfy the goals and the
requirements for the three key perspectives. Thus, spme tasks will address the internal implementation of an
Integrated Office document and other tasks will address the external interfaces for the document abstraction that
the client software tools require.

Creating a Problem-Solving Mindset using OLE 2.0

The problem needs to be solved using OLE 2.0 compournd documents as the base. Microsoft has just made a large
investment surrounding OLE 2.0 and Integrated Office provides a good opportunity to build on that investment.

There is a basic level of understanding of OLE 2.0 in the product groups. We will need to go beyond that in
answering the question - "What is a document?”

The first step is to ask ourselves is "How could we have done a better job supporting OLE 2.0 in the products (in
this case - Office)?" I am not going to answer that here. The second step is to believe that the problems can be
solved using OLE 2.0 where possible and using extensions to OLE 2.0 for new requirements. The most widely
used extensions will become the kemnel of the new OLE 3.0 design work. If we have problems with OLE 2.0 or
3.0, then we try to work together to fix them successfully.

This mindset needs to be growing in development, program management, testing, and user education. (Marketing
is probably already selling it in the current products!!)

Understanding OLE 2.0 and Compound Documents

1 think that my abstract definition of 2 document as a conu}i:ner of organized information can help one understand
the most important concept of OLE 2.0 compound documenys and how we can move beyond it by decomposing the
problem a step or two further.

An OLE 2.0 container contains OLE 2.0 server views. {f the container is a document and the view is a view of
information, then an OLE 2.0 document is a contaifier of views of information. The OLE 2.0 container
implementations provide the organization features for the information.

OLE 2.0 provides a user model and user interface standards for containers and objects. The container aspects of
the mode! come from the familiar selection model including drill-down activation, direct manipulation including
drag-drop, and commands for complex tasks including persistence and object instance creation. The object
orientation is expressed by the commands which operate on the object including context menus, property sheets,
and direct manipulation of parts of the view. The container aspect of an object is also supported with parts of a
view. The user mode! includes the following two expectations - 1) if I have a view, then 1 can get to the object and
2) if I have a object, then I can create a view. Lastly, OLE 2.0 offers a degree of transparency with respect to the
question of embedding or linking (sharing).

One of the decomposition steps that I am proposing will let us separate the view of information object more
explicitly into two objects - view and information. The benefits will be apparent in several of the following tasks.

Lastly, the container and view of information split preseat in OLE 2.0 can let us consider what a product would

Jook like if the "best of breed” components were selected. MS-PCA 1431786
CONFIDENTIAL
Microsoft Confidential « What is a Document? Page 3
MX 6045931

CONFIDENTIAL

User Model for Information, Documents, Workbooks, and Workspaces

[think that it is important to have a user model that can clearly encompass and distinguish these types of user level
objects. We should be very careful when we start to create product features which needlessly blur the distinction,
L.e., just because it is possible to do anything in software that does not mean we should do it. Certainly, by having
a clear, consistent, and parsimonious user model for our software we wiil be unproving the learuability and
usability. Integrated Office is the ideal opportunity to make the leap forward.

For the purpose of this discussion I am equating information with the OLE 2.0 compound document server views
which should include the selectable parts of documents. The problem that remains is how to characterize and
differentiate documents, workbooks, and workspaces. Thé discussion will stay at a fairly abstract level until I start
discussing actual implementations. '

The remainder of this part of the discussion is necessarily abstract because we are considering three types of user
level objects which fit the same abstraction - containers of organized information.

Documents

Documents only have value if the contained information is accessible. There are three primary forms of access to
the information - programming, viewing, and printing. It is NOT necessary for all documents to support all three
forms of access. However, the information objects should because they could be in any type of document . Our
generic document implementations need to support all three. A document instance contains all the state necessary
to control its programming, viewing, and printing. I will discuss a way to structure the implementation work for
this later.

Today's documents have very limited ways of organizing the contained information. For example, Word is almost
completely oriented towards sequential layout of information with designated paragraph styles providing the
hierarchical outline structure. Word's organization structurts are not suitable for DTP style documents. However,
the component functionality of Word is close to what is reguired. It is this breakdown of function into reusable
components and well-structured relationships that will give'us a lot of product flexibility in the future. I think that
an easy way to see the possibility is to consider two Wizards - one for WP documents and one for DTP documents.
These Wizards to do not actually build the document, instead they configure the structure of the implementation by
selecting different document organization and layout components. If you can start to do this, the flexibility of the
component set can be leveraged very quickly into new progucts or functionality that can provide value for users.

I believe that it is important to be able to organize information in many different structures. WP and DTP are the
obvious choices with on-line documents and SGML (or similarly structured documents) being the next
opportunities. Conversion between organization types and potentiaily different pelicies for display and print
should also be considered.

[wrote a section about componentized documents in my APPA Mission and Notes memo. BobAtk also wrote a
paper about documents that is relevant to the discussion.

Workbooks

Our designs for workbooks simply treat them as a linearly organized container (including storage) of
heterogeneous documents and information objects. Workbooks are also documents in their own right which would
imply that they should have their state for organizing, viewing, and printing. Since workbooks can also contain
whole documents, it is easy 1o see how this kind of design can create a lot of dissonance in organizing, viewing,
and printing due to the fact that the workbook state and the sub-documents state could be completely unrelated.
Non-document information objects might get some of their viewing and printing state from the workbook.

CONFIDENTIAL MS-PCA 1431787

Microsoft Confidentiat What is a Document? 60 A5932 Page 4

CONFIDENTIAL

Consider the following scenario that illustrates some of the problems to which I am referring. 1 am wriung s
document that contains a few charts and tables that ! have already created. I decide 10 use a workbook. [create the
new WP document in the workbook and add the charts and tables into the workbook. The workbook is useful
while | am modifying the objects and flipping between them. Occasionally, I think it would be nice to see two of
the tables at once to compare some information. this is no longer possible since 1 moved the tables into the
workbook. Next, I decide that I want to incarporate the tabies and charts iato my WP document. The way that [
do thus is to use OLE 2.0 to create links to the objects. If I decide to embed the wables and charts in the document,
then 1 should probably delete them from the workbook; however, then 1 lose my ability to access them with the
convenient tabs. After doing a lot of work I decide that I want 10 print my work out. What should | print out - the
workbook or the sub-document? Suppose while 1 was creating the document that 1 created some workbook printing
state because 1 wanted to print out everything in the workbook especially those non-document information tables
and chartis. Where am I provided with the choice in the user interface? Suppose the workbook actuaily contained a
few more documents including one that was set up to be faxed and some other tables and charts. What would have
happened if [embedded everything and just was left with a8 workbook that contained a single document with the
two sets of printing states? Suppose that the workbook was designed to show c¢ither its table of contents or one of
the contained documents or information objects. Can the user interface really provide the intelligence to make the
right choice when I push the print toolbar button? What is the algorithm that has to be used 10 select among all the
choices that might seem reasonable given all the different pieces of state?

I picked the above scenario to highlight some questions that we need to answer about workbooks. They seem quite
reasonable and usabie until entire pans of a2 workbook are operated on or the document in a document dilemma is
hit How other products deal with this probliem should be explored. However, we have to be careful in our analysis
since some products which use workbooks heavily oniy have ONE workbook and all document manipulation is
done through that simplifying the actions and user model to one where the parts are really all documents and the
whole workbook is never operated on. In our system we will have many workbooks.

In the user model workbooks have also been distinguished by the use of a set of linear tabs to switch views to
different pieces of the workbook. How is the order of the tabs determined? There are many uscful possibilities -
sequential, alphabetical, hierarchical, favorite, most relevant, MRU, the ten places in the sub-documents that I
want to look, etc. The best answer might depend on a user mode. How would a user pick one of the many
possibilities causing different pieces of code to be executedo provide the different lists?

Consider the following scenario for the tab UI. [annotate a document that is saved in a document library. I create
a list for my annotations in the document, turn the mdt important ones into a tab set, and send this tab set to
someone 1o use to look at document and conveniently ﬁnﬂ all of my most important annotations. In the past all I
could do was to mail a reference to a document, now I waht to mail the action -view a document with a given tab
set. [have created a scenario for the use of tabs which applies to documents instead of workbooks and has little to
do with the document's structure.

This above type of scenario can be generalized to other information structuring viewers, devices, and algorithms.
[n the case of tab views the questions for us as implementors would become the following. Do documents have tab
views? What structures do I need to see as lists and where do I place that list view in my UL. How do I choose the
list to be viewed as tabs? This implies the need for a favorite list of potential lists that are initially available for a
generic document. Lastly, how do end-users create their own lists?

My conclusions about workbooks that contain documents could be summarized as follows - workbooks are not
good documents by the same measures that we would use for our standard Integrated Office documents, workbooks
arc more understandable with semantics we would associate with folders, and tabs are good viewing organizers for
documents and other containers especially if they can be customized and a single view at a time is acceptable.

1 think that workbooks are a useful container in the user model. At this time I have a rough design in my head that
I think answers the guestions that 1 have raised about workbooks and keeps them properly differentiated from the
standard Integrated Office documents. It can be close to what has been designed to date with some more well

Microsoft Confidential What is a Document? Page §

MX 6045933
CONFIDENTIAL

E MS-PCA 1431788
CONFIDENTIAL

deﬁﬁed semantics. 1 will outline this and discuss it with the Integrated Office team. They are responsible for the
final design.

Folders, Desktop, Workspaces, and Tasks ‘?

1 was originally going to address only workspaces in thls discussion. I added a few more user level objects so that a
hypothetical relationship between them could get discussed.

In Win 3.1 only the data part of a folder exists as a fiie sysiem directory. The viewers for dircctories only exist i1n
the File Manager and in dialogs like File New/Save As/etc. Files stored in 2 file directory do not really have any
independent behavior, insiead the file manager impleménts all of the "object” activation policy using associations
or determining that the file is an executable from its filename extension. (In Program Manager the activation
behavior is determined by the state of the item in a group. Packager implements similar semantics as a truer OLE
object) A simple abstraction for a folder would be just to consider it as a collector for objects. High level
operations would exist to move, copy, delete, and activate the objects contained in a folder. The deskiop as 2 data
entity should also be folder-like with a different viewing metaphor or user model. Our next Ul designs adequately
recognize these requirements.

Workspaces and tasks are new concepts in the Windows user model. I am proposing a hypothetical set of
requirements that a user or system builder could depend on which also establishes these as entities in the user
model.!

A workspace is also a container or collector of objects; however, I want to distinguish it from the desktop and
folders. The single top level requirement that I want 10 add is that a workspace can have well-defined behavior
associated with it The standard desktop is can also be a workspace, but the user is allowed to make ad-hoc
changes 10 its behavior as he (or we as implementors) sces fit. Tasks are also able to be well-defined entities that
can "live in" or work with well-defined workspaces. By allowing some part of the users environment 1o have a
more rigorous definition we can enable businesses to implement mission critical applications on the desktop
without fear of the potentially ad-hoc nature of the users deskiop workspace and application customization, By
keeping this top level robustness requirement in mind when we actually design the various components it will
make some of the decisions less controversial. This robiistness requirement should also help us when designing
new custornization features for our other office objects since they will have (0 coexist with workspaces and tasks
built out of the same components. .
The primary ways that robustness can be enforced in our. environments is to treat encapsulation more seriously,
keep user, desktop, and workspace customization in independent instances, provide for a better separation of
contexts so that the appropriate customization instances can be selected, and 10 consider some degrees of flexibility
that will still permit a user to work with tools (editors and viewers) more 10 his liking on the underlying data.
Cleaning up our object customization and add-in models is a major part of this work. Further scenario and
requiremnent development is necessary to make this into a completely compelling argument; however, I think that
with very simple scenarios it is casy to see how our current products break down. I think that it is time for
rethinking and not just repair on this subject.

Work group applications are the biggest beneficiaries of this type of robustness. This is perhaps something that the
Lotus Notes environment can not provide. A challenge for us 1o figure out is how 10 scli this as an important
feature of our software set. What are the dynamics that would make cach class of buyer say that they need this type
of behavior? Work group, perhaps, almost lives and dies by this; however, they can not make the deskiop

! 1 have purposely left workspaces and tasks as vague or abstract objects. We have ongoing design work that maps
to these conceptual objects that I have not reviewed. My major concern in this part of the discussion is related t0
robustness. We need a user model that can support mission critical applications on our desktops. We need our
applications to be more than front-ends for remote databases or data engincs. They need 10 be components in
distributed peer-10-peer systems that can run on desktop machines.

Microsoft Confidential What is a Document? Page 6

6045934
co"?l&IDENTIAL

MS-PCA 1431789
CONFIDENTIAL

application teams sec this as an important requirement. This was also a frequent message in many of my memos
about application architectural issues.

User Model Summary

What ever Integrated Office suppiies for workbook-lik‘l function, it needs to be consistent with its environments -
Win 3.1, Chicago, Ren, and Cairo. Given that the folder views and smarn folders under design from these
environments are starting to impinge on this part of the user model, there is some serious analysis left to be done
including rationalizing 4 teams development plans so that we are nol creating so many workbook-like
implementations that are so inconsistent with each other that we can not create a user model. The instability of the
various shell designs today has to add to the confusion especially when 1) the actual requirements of any new user
model have not been well specified by any of the teams, 2) the tcams do not have a joint strategy including
compatible requirements for delivering a user model, and 3) the end 10 end design process is so weak. The
creativity in expressing the Ul should come after the analysis of the user model. I think some progress has been
made in this area by some of the recent changes by moving towards a single team, but that does not mean that the
team is analytical and rigorous in its problem solving and controlling its creativity.

Mapping the Answer to Components

I have put together enough of a high level picture that it is possible to map what we have to a sct of components
that satisfy what I think some of the most important system-wide requirements are for our software in the future.
Rather than doing that here, I will try to show in the following sections how we can decompose and evolve our
existing Office products into some of the key components.

Key User Models for iInformation and Direct Manipulation

One aspect of the above discussion was to identify a few classes of user level objects to which end users could relate
and to which we could map our current producis. The missing aspect was defining a consistent set of high level
operations for those objects. There are a set of basic operatibns that the user model should include that are generic
for most objects - create new, copy, delete, add 10 contain®e (ala drag-drop semantics), and save. We should also
anticipate some of the new generic operations that we want to promote with our next Integrated Office releases like
compare, merge, and version. This email is not going to ‘answer questions about these new operations.

I don't think that we need to go beyond what Windows :ﬁd OLE 2.0 allows for an object oriented user model and
interface, we just need 10 get more consistent in the use of OLE 2.0. Le., drag-drop, drill-down, context menus,
and container-containee Ul negotiation should be supporied more meaningfully and consistently by our containers.
I don't need to provide an analysis of the current state here. Someone should just produce the matrix of direct
manipulations and resulting actions for the various contexts in the products including the Integrated Office that we
will be producing in the future. Consistency and/or problems should be obvious. It is possible that some additions
or negotiations would allow more seamless iniegration. These should be considered as pant of OLE 3.0 or
Integrated Office standard extensions to OLE 2.0. Which direction to take may depend upon how generally
applied they can be.

I think that drawing as a user model and its associated direct manipulation user interface is the next thing beyond
our OLE 2.0 UT work to concentrate on. The model also needs (o address multiplc layers in additional to Z-ordered
objects on a layer. The compelling reason for this is the number of times that we should be using the drawing
model to expose the construction and manipulation of objects that the user is going 10 view on the screen. The
some of the places in Integrated Office that we shouid anticipate using drawing as a model are 1) drawings, 2)
page layout, 3) annotation, 4) form construction, 5) charts, 6) construction of composite information elements with
constrained layout, and 7) an advanced printing model (see my notes about digital paper for more details).

Microsoft Confidential What is a Document? Page 7

MX 6
conrmgﬁrng

MS-PCA 1431790
CONFIDENTIAL

The UI for drawing can reuse much of what we have already defined for Windows and OLE 2.0. There is one
more piece of the user model for which we need to define a set of consistent operations - hierarchical navigatuon
and selection. This can be applied to following objects that are hierarchical - drawings with grouping. outlines,
page layout, equations, charts, composites, etc. Mouse and keyboard interfaces need to be defined and used
consistently. Since hicrarchical navigation and selection can be applied to more types of objects, it may be
reasonable to look at defining more friendly or accessible keystrokes of mouse operations.

[guess by now it is pretty obvious that I don't care that much about the user interface of our products other than the
fact that the Ul elemeots are leamnable and generaily applied -where it makes sense. | like the "Keep It Simple”
model before making it complex and special cased. Extra usability can be added by more in-your-face buttons,
toolbars, and tabs for operations and tasks; however, the contexts in which they operate correctly has to be
understood in the design process. A lot of our Ul breaks down when confronted with compound document,
heterogeneous object, or multi-level problems. Our usability analysis has to broaden its scope.

Selecting the Key and Best of Breed Components and Features

The last criteria that I want to cover addresses the compatibility and continuity of the software that we ship.
Integrated Office will be a new product, but it has to briag its oid customers and their information along.

‘We need to bave a mind set when designing Integrated Office that we are striving for best of breed components.
Our selection process for what to keep and to invest in and what to leave behind as legacy. This will mean looking
across the products that we have 1o find the best starting point for moving forward. In some cases the best starting
point (passibly largest code base) will not have all the necessary features. Our product plans must address how o
bring the best features into the componeats.

I think that we should also have a two release mind set when designing the component set. This can help cement
the team vision for understanding the impact of future decisions on the upcoming product release. It also gives the
teams more competitive flexibility during the development process. Usually individual tasks take more or less time
than scheduled. This can make it easier 10 add or delete functionality as the time permits. This is very close to our
project decision making today except that now delayed fupctionality needs to be anticipated in the design work
instead of dismissed. Lastly, the functionality of the set of components needs to be coherent. This means that it is
necessary to understand the interrelationship of functionality with the various components. Certain development
tasks will require equivalent support in other componests. Unlike feature teams in today's products, it is not as
easy to drop or add a feature with component software. This has to be clearly understood in the abstract and in the
concrete as it applies to each part of the product. T

This is the end of the abstract part of the discussion. The above mostly represents concepts that need 10 be
incorporated in one's “belief” system that form the abstract top level requirements of any solution. 1 have found
that these requirements are almost never written down when a design is being done and that misunderstandings at
this level lead 10 a noticeable percentage of design disputes.

Divide and uer Approach to Integrated Office Components

The discussion in this section is about how to divide up our existing products so that they can be reengineered into
Inegrated Office components. There are many ways the entire problem can be solved including ground-up
development. My recommendation is 10 take a more incremental approach lo the problem that still can lead t0 a
finer granularity component solution. We can take advaniage of two things that we understand about OLE 2.0.
First, we can always virtualize objects of any granularity out of our monolithic implementations. Second, full
componentization is not required given the first. Le., we can choose to componentize to the degree that WE, as
implementors, need to deliver the required functionality. Lasily, we want 1o be moving towards single
implementations or shared components where it makes sense. All of the above leads to a divide and conquer
approach to components. We may even find that when we understand how to divide something up that we now

Microsoft Confidential What is a Document? Page 8
MX 6045936
CONFIDENTIAL
- < ’ MS-PCA 1431791 -

CONFIDENTIAL

know how to build the same functionality from ground-up components. [don't think that we should have to rely on
that level of understanding for our next few product releases.

I have discussed the following type of approach with:ChrisGr and others over the past year. | think that as the
approach is more understood it will be easier to undelstand the requirements of an organization to produce a more
componentized Integrated Office product. This would include the types of design and implementation problems
that the various groups will face, who is iavoived in the solution process, and how to soive the problems and
resolve differences. I have written email and memos about this. I can supply copies as required or requested.

Where is the obvious place to start dividing? The answer is at the OLE 2.0 compound document interface and user
model level. This lets us ook at our products as compound documen! containers and compound document
information servers.

Our major information types - text, tables, charts, drawings, databases are all sufficiendy different that there should
be little argument about them be able 10 share the same implementation(s). For now we will assume that they are
separate because if we ran out of development time that may reflect the lower priority of componentizing this pan
of the problern.

That leaves the other side of the problem to consider - the container and organizer of information. If we asked the
question what is our best of breed implementation (i.c., the best that we have today) for this set of function, the
answer would have to be contained in the monolithic Word 6.0 impiementation. It has the best document layout
and printing model and is an adequate starting point for much of the other functionality including storage,
viewing, and outlining.

Lastly, the divide and conquer process can be recursive producing ever finer components. I have organized the
tasks into phases that 1 think when compieted produce a good level of consistency. The phased approach aiso
creates a more concrete set of component software engineering goals at cach step. I think that this will prove to be
valuable for the design and development teams by a]lowmg them to grow into an understanding of component
software development issues.

Splitting Word

The document implementation in Word 6.0 is going %o provide the comerstone for the component work by
providing the primary document type that is used by Iniégrated Office. Morc concisely, I mean the following - 1)
when information is viewed as part of a document, the Word components will be the viewer, 2) when information
is printed, the Word components will be used to print the information as part of a Word based document. le.,
when an Excel spreadsheet is printed, it is rendered as part of 2 temporary Word document that manages the layout
of the Excel information. Exactly how is this going to be done? Some design work is required, but it is possible.
If we solve the problem for Excel, then we have solved the problem for every other information type. If this is not
clear enough for the purposes of this discussion, piease let me know and 1 can expand on this. If people agree with
this approach, then wlk to me for sure. I can outline how the lemporary documents and templates should be
created and how the object 10 be rendered should be treated as a link in that temporary document.

Phase 1 - Container

OLE 2.0 assessment - Perform an assessment of Word 6.0 as an OLE 2.0 compound document container. Define
where OLE 2.0 can be improved (o provide betier iniegration across a varsicty of data types (lry to generalize, but
concrete scenarios with Excel are valuable). Some of this design work can form the basis of OLE 3.0. Define
where Word 6.0 should have done a better job with its OLE 2.0 support. Outline the design and development work
to resolve this and determine conflicts or intersection with work below.

Viewing, printing, and editing - We need to slart assuming that Integrated Office documents will be used
differently from today's documents. The order of usage in these three areas will completely switch around. Our

Microsoft Confidential What is a Document? Page 9
MX 6045937
CONFIDENTIAL

MS-PCA 1431792
CONFIDENTIAL

usability choices in the product should start to reflect this. If Integrated Office documents are going to be used for
mail messages and forms, then we have an immediale case for this. The changes that | think we need o design
affect how the user sees a document when it is first viewed. Word 6.0 puts up too much of the editing environment
interface when a document is opened. This is overkill for reading an email message and it is stow. In-place
editability does not need to be disabled, but the user should take an action 10 bring up the more complete
environment (it could a "menu” command or a user préference from a configuration subject 10 the robustness and
encapsulation issues that I think we should address). The editing environment could be brought up for certain
document creation and editing scenarios (i.e., user same as author, in-progress or checked-out from a document
library, etc.). This should be considered in the coniext of the overall user model that I alluded to 1a the first half of
the document. Changes here need to anticipate the later phases - see Phase 2 - Container: Viewing.

Page view and paper model - Word 6.0 has most of the implementation done for a2 multilayered page model.
Centainly, layered redrawing works properly, is fast, and handles objects of different types including rich text. The
current model scems to have three layers with z-ordered drawing- master page, document, and overlay annotation
and graphics. By adding additional bottom layers we could handle what I referred 10 as digital paper and the
printing model improvements in my "APPA Mission and Notes™ memo. By having this split we could potentally
simplify features like printing mailing labels by treating each label as a logical page and being able to identify
which labels on a physical page were still available for printing. The lowest level could be incorporated as a
system feature or kept as a unique feature of our integrated office and application software. The same drawing
model should be used to manipulate objects and text frames on each of the layers. Ideally, we should be able to use
this as a component for multilayered drawings that might fit into frames in the paper model with the same user
interaction model and drawing tools. We may need to add an understandable interface for enumerating and
switching layers and showing frames used for positioning and sizing objects. Features like headers and footers in
Word 2.0 would now simply construct text frames on the appropriate layer. Editing would be done in page view in
the appropriate frame selected by the user. We should also consider allowing certain sizing operations to be
specified with constraints so that automatic resizing could be done for changes in logical page size, etc. This is not
the oniy place that constraints are useful. Some of the above could be delayed to a later phase, but we should
anticipate these features in any implementation work that we do in the first phase. '

DTP layout features - Word 6.0 has made a temific start at this by providing much of the implementation that just
needs to be reengineered into a set of components for Integrated Office. We should make an assessment of product
deficiencies relative to other products because the above componentization should make it easier to add layout
features. .

Annotation - Word 6.0 is fairly powerful today. Somc'ftypes of annotations should be exploit the drawing layer
model including anchoring in a lower layer (usually the document layer). Unexpected layout overlapping could be
logged as discussed below. I have not reviewed Word 6.0-ciosely so I don't know the exact function of the product.
DarrylR wrote 2 memo on annotations that had a number of scenarios and suggestions. This should be reviewed
again.

Customization and add-in model - The basic idea is that customizations for one document (or class) do not affect
another document, i.e., customization and add-in state is separately maintained. I don't want 1o go into additional
detail here since I have covered some of it in earlier parts of this document and extensively in my other memos. It
is time to get serious about the probiems and not just patching over it as we have done in the past. Without this
robustness work it is almost impossible 10 depend on using our componcnt set in solutions. Most of the
implementation work is very easy 10 do if done in a disciplined way. The feature team model can be used to clean
up and do the componentization required (or this lask.

Document as a form - The WP document with its stream layout model should be ablc 1o used as a form in the
same manner as 2 VB form with its drawing layout or an Excel spreadsheet with its tabuiar layout. The Integrated
Office document would need to support the external form interface that is used by the other “forms”. The
document object needs to be customizable using VB container-containec programming model. I can provide
further design directions and requirements for this. The VB team is working on the detailed integration interfaces.

Microsoft Confidential What is a Document? Page 10
MX 604593
CONF IDENTIAf MS-PCA 1431793

CONFIDENTIAL

Container object model - The object model for the container that we design needs to reflect the above
components. It should also provide view and data separation, generalized selection that supports multiple and
hierarchical objects. It should be designed so that we have some future flexibility for new layout and organizing
implementations. .’

Coontainer as OLE 2.0 server - We nced to define the set of container level views that we want to support 2s an
OLE 2.0 server. The list should include scalable page views and parts of 2 document view. Depending on how
much separation of the text code from the container that we achieve we could add the following - text range as
displayed and text range as text

Error logging - The Integrated Office document has t maintain its consistency in the face of potential errors.
When an algorithmically unresoivable situation arises that forces clipping or truncating information, some user
notification should be possible. Ideally, this would be created as a possibly non-printing section of a documnent.
Errors and wamnings that are primarily layout in nature would be displayed here and linked back to the pertinent
parts of the document. A very powerful way o implement this logging would be to use the annotation facilities in
the document. Many of the errors have several easy corrective alternative actions once the user indicates his
preference. A form of change annotation could be used for this.

Templates and document layout wizards - The user model should be able to handle the concept of templates
which are document generators. Templates could be customized instances that are cloned or procedures (Wizards)
which generate the document. There are a number of alternatives for doing this. We should concentrate on two or
three that give us the flexibility to do what any of the others would do. We can aiso have view and data separation
in the design of our Wizards which lets the generators to be called with parameters instead of relying on user
interaction with the Wizard input forms. With the above functionality it should very easy to create Wizards written
in VBA that drive the product including the DTP sryle documents created by Publisher.

Publisher and other products - It will be expensive for multiple products to make the same investments in
document infrastructure. Instead, we can start to consider seusing the components and perhaps having subsets of
functionality that are understandable and still use our much of the user model level training that we should be

propogating across our product family. i

View and data separation user model - The user model needs to augmented to support future notions of view and
data separation so that we will have the right usability and expected behavior when dealing with sharing at the user
level. Today, our solutions are weak do to the fact that OLE 2.0 did not address the problem and pushed the issue
onto link objects which maintained a shared view cachc -'This should be done early and released as part of OLE
3.0 or 4.0 design work.

Phase 2 - Container

Viewing - Word 6.0 has several viewing modes - page view that shows what a document will look like when
pnnted, a8 normal view that provides a simple linearized layout view of the main information stream in the
document with a couple of views for other information sireams - footnotes, anaotations, etc., - and an outline view
which has its own hard-coded rules for determining outline structure and layout. This is an area where we need
more flexibility to address the requirements for a wider range of document usage all the way up to multi-document
help systems with webs of information links. The document viewer necds to be abie to have more views onto a
document that can reflect the various ways the information is structured 1o and by the creator and to the user
(someone who does not care about the structured views a document creator may want). Particular viewers like the
outline viewer should become more flexible and able to attach themsclves (o any hierarchical view of information
in a document. Changes like this would let the components be able to adapt themselves to new document
structuring technologies like SGML. Things that are parts of our documents today with their hard-coded rules like
able of contents, list of figures, bibliographic references, footnotes, and annotations could themselves become
viewers. Further decomposition of these would let us reuse the current view implementations like we have today.

Microsoft Confidential What is a Document? Page 1!

MX 6
CONFIOENT A,

MS-PCA 1431794

CONFIDENTIAL

dx

We get what we have today, but with a much more flexible architecture that we can use ourselves for implementing
new features and other document customizers can use. [can talk about this further. The solution requires some
multilevel object / state modeling to make this work. Some of the end-user level querying will use this part of the
design. Some of the new design work that has been done with tabs for views should be reevaluated against the new
requirements for the user model (some of my earlier camments on tabs are relevant (o this)..

A

View and data separation - The phase | part of this was to develop an understandable user model. This task is
where we actually change our code so that the document data can be manipulated independently from the view. As
we get more client uses for the information contained in documents, we will need to do this to satisfy the
performance demands of these clients.

Frame and information composites - The basic idea for this is that interesting composite view and information
structures can be created and treated as a unit, i.c., labeled figures and pictures and titled stories for DTP. We
could supply some useful ones with the product. It should also be possibie for a user 10 create onc using the above
component set with the hicrarchical layout and constraints. A wizard could help with the construction of a
composite template. I have written about this in my other documents. This is more powerful than simply having &
wizard which does the construction producing a set of objects that can not be treated as a whole. Simple grouping
would satisfy much of this; however, the treatment of constraints by grouping operation may be a tricky problem.

Phase 1 - Word Information Types

Text - This corresponds to the text processing parts of Word 6.0 including the piece tables. The goal of this task is
create more independence of this part of the code base from the container. Also, since the text stream can handle
other objects, the text stream implementation should be changed to be a container for rich text, rich text objects,

and obijects.

Text as a control - The text object should be able to function as an OLE 2.0 control. This means that it should
respond to ambient properties and be able to generate events when used as a control. The semantics and the event
set appropriate for a rich text control need to get designed. VB's stand-alone rich text control can provide a
starting point. [deally, these should be as similar as possibi€ to the programmer.

]

Text composites - We should consider generalizing fields to support rich text. Some of the current field updating
behavior is troublesome, i.¢., editing the returned text from a field evaluation and then performing an update fields
causes the edits to be deleted silently (which text did the:(user really want). This is should be corrected by adding
read-only fields, possibly as a field property, error logging for the ambiguous cases, and an operation (o retain the
text while deleting the underlying field. Fields should be reimplemented to this new interface. There are many
open design issues with doing this - how does the user choose which field type, ete.

Customizable text composites - We should also provide a VB customizable field class that can supply an arbitrary
implementation for an evaluation method that is passed a document contcxt (what context 10 pass is an intcresting
question - the field class could implement a variety of choices - a minimum might be an object reference Tor its
place in the docurmnent).

Tables - Tables should be treated as objects by the document layout engine. The original implementation of tables
in Word was the antithesis of this. If the Word 6 code base did not correct this, then it is lime (o have tables
behave like objects which would clean up the code. | have writien about the importance of Word's style of tables
before and how some of the hierarchical layout requircments go beyond the flat table views used by spreadshects.
Cells in tables should contain anything that can fit in a frame anywhere else in the product - rich text and objects
including nested tables. Ideally, the table implementation that we provide should be a viewer for data tables that
support a standard table interface (the implementation split into view and data components could be delayed to
Phase 2 - the programming or object model which has the separation should not be dclayed). Editability of the
data from this view may require drilling down 10 an actual editor for the underlying data. SGML models for tables
should be examined to see if we can support SGML rendering into our hicrarchical tabics.

Microsoft Confidential What is a Document? MX 604 Page 12
Conrrneugfzf

MS-PCA 1431795
CONFIDENTIAL

Phase 1 - Standalone Information Types

Standalone text - This should have the same data semantics (interface) as our WP text object which can only exist
as part of a document. Persistence is not required, but a good idea especially if we use this object for the
implementation other components. Primarily used for programmatically constructing lext where the view is
unimportant. This is the data type that should replace the plain 1ext processing done with stnngs in BASIC.
There should be a rich text viewer which can work with this interface.

Standalone tables - The issues are basically the same as the above. They could also be useful for snapshotting
results from queries, filters, or computational transformiations. There is some related DAO 3.0 design work in
progress for standardizing data access; however, their focus is more on abstracting the capabilities of our existing
database engines and not providing this higher level abstraction.

Splitting Excel

The bulk of the functionality in Excel is centered around the spreadsheet as the information object. The container
functionality in Excel is simple when compared to Word. The value of the extra Word container functionality is
apparent when trying to deal with printed compound documents. Replicating this Word functionality in Excel
would be expensive. The alternative would be to be able to use the Integrated Office document for the container
side of the product and to shift the investment to the information object parts of the product.

In the task breakdown below I have switched to order to reflect the primary information object nature of Excel.
This is a mind set change that the Excel design and development icams would have to recognize and adjust to. |
think that the most concrete way to accomplish this is to create a focus on Excel spreadsheets as OLE 2.0 servers
for the Integrated Office documents (sec below).

Phase 1 - Spreadsheet Object

OLE 2.0 assessment - Perform an assessment of Excel 50 as an OLE 2.0 object server. This should be done in
conjunction with the same task for Word 6.0 as a container. Define where Excel 5.0 should have done a better job
with its OLE 2.0 support. Outline the design and develogmem work to resolve this.

Excel object model - The Excel object model should‘f'fbe reevaiuated so that it is consistent and seamlessly
integrated into the Integrated Office document object model. This may mean that the Excel application and
document definitions will need to change. The object model should also reflect the robustness and customization
goals. ’

View and data sepacation - This is an area where significant usability in the ad-hoc analytical modeling modei
has been made at the expensive of this separation. The compound document mode! which supports shared views
will have an impact on Excel object implementation. Ramifications to Excel for this change in the user model
need to be identified. They should also be able to handle new data modeling capabilities that [discuss in Phase 2.

Spreadsheet as a form - The spreadsheet should be able o work as i form in the samc manner as a VB form or 8
document. See the Document as a form discussion above for mare details.

Spreadsheet as a control - The spreadsheet object needs 1o work as an OLE control. This means that it should
respond 10 ambient properties and be able to generate events when used as a control. The semantics and the event
set appropriate for a spreadsheet need to get designed. This should be an extension of a more generic table control
50 that these should be as similar as possible to the programmer. This should get defined in conjunction with the
standalone table object discussed carlier.

Microsoft Confidential What is a Document”? 6045941 Page 13
CONFIDENTIAL

MS-PCA 1431796
CONFIDENTIAL

Phase 2 - Spreadsheet Object

View and data separation - I think that being able 10 have this separation will lead to higher performance of the
data cngine, higher level modeling, and more powerful data access capabilities for "on-line analytical processing”
(OLAP is Codd and Date's name for the area that covers spreadbase and EIS - see PC Week - 9/27/93 p. 113). I
think that these directions have to be seen as a big]San of the future investment in our technological product
improvements. Further details are beyond the scope of this document, but I am willing 10 discuss a few interesting
ideas in this area.

Phase 1 - Container Issues

Workbooks - The big container issue is what to do about Excel's workbook functionality, i.e. how does it get
replaced in the user model by our notion of documents and the generalized workbooks. Like many of the objects in
our new system workbooks will aiso need to be customizable. I think that this can be satisfactorily answered by the
rough design that I had in mind.

Splitting Powerpoint

Powerpoint represents an interesting challenge since so much of the development work is similar to the Word
container, drawing layers, text handling, editable print preview, outlining, master pages, etc. [deally, if the
Integrated Office components could be used to build Powerpoint, then the Powerpoint product development effort
could be more fully concentrated into areas where it has unique needs (or where we would want to package the
function into a separate product).

Requirements definition exercise - One thing that could be done is to try to define how Powerpoint-like

functionality could be created from the Integrated Office components. This can be done by creating objects in .
Integrated Office that are close to the corresponding Powetpoint objects. The missing functionality can be turned

into requiremnents for the Integrated Office objects or shifted into some Powerpoint components. [think that we

might find that much of the container level manipulation: capabilities would be useful in DTP-style document

manipulations like slide sorting. T

{dentification of Powerpoint components - Powerpoint clearly has some interesting functionality that be valuabie
outside of the Powerpoint product. Many of the specia]?pbloring. fade, and timing effects could be used in other
places t0 good advantage. How this should be done wilf require generating interfaces for these components and
making them fit into the architecture of the Integrated Office component set.

Cost-benefit analysis - The actual development work for the above to make Powerpoint into a set of components
may not be worth the complete cost. Instead, in a situation like this I think it is important to control our
investment in the various components using a well-defined multiphasc stratcgy. I can explain in more detail a
possible straw man strategy for the above that might provide a good starting point, if people are interested.

Technical Challenges

The above tasks which I think characterize much of the work required 1o do Integrated Office involve a lot of new
design work. There are some additional issues that need to get worked out in the design work that cross a large
number of the components. With the new extensibility requirements for Integrated Office these have (0 have
consistent solutions.

045942
Microsoft Confidential What is a Document? CONF 10EN o Page 14

MS-PCA 1431797 .
CONFIDENTIAL

E7

Commands, Selections, and Objects

Properly designing the relationship of the selection Which encapsulates the set of objects and their hierarchies of
selecied parent objects to commands which eventually operate on specific objects is critical. The designs for this
need to be seamless given that multiple components may be involved. User customized commands need to use this
same model in their implementation. This is what will give us the potential for implementing significant parts of
our products in VB. A set of multip'e object and nested object selection scerarios should be developed to test the
design. The design should also be consistent with OLE 2.0 user interface and user model behavior which allows
some simplification of the problem to sclected inner object and ihe outer container. 1 don't have a design or set of
requirements for this beyond what I or BobAtk have written since the applications were not ready to work on
programmability architectures; however, I can review any concrete proposals.

Views and Data

I think that this is one of the two most difficult and important problems to solve or make progress on. Good
solutions can lead to improvements in the user model, usability for sharing and multiple views, and
programmability performance. The importance of this separation will also be obvious in the design for generalized
selections. We have to stop overlooking this problem. Our implementations may not have to support this as
separated view and data components, but they should be able to virtualize this through the programming object
model.

Concurrency Model

This is the other hard part of the problem that should get solved with the above design work. The desktop
environment is going to need to support more and more concurrency as shared data, external programming, agents,
queries, etc. are used. We have to stop overlooking the problem. 1 would suggest having a long term model for an
ideal level of support that is consistent with a more pragmatic solution for the near to medium term. }

Data Transfer Model

This is an easy problem to address (and overlock). A singie person should look at all the information objects in
Integrated Office and tabulate the data transfer semantics between objects. This table can be reviewed for
consistency and completeness identifying missing high priority work. Splitting the responsibility for this to the
individual object developers would be more likely to miss:something.

Programmability

With the Integrated Office work it is time to get serious about standards and architectural issues. 1 have written
extensively about the benefits of doing this and I will not repeat it here. 1 suggest rereading my memos, extracting
an initial set of high level requirements that serve as guidelines, and use them (o review the existing object models
to point out any problem areas. Properly defining objects and absiractions is difficult and slow work. This effort
can be greatly accelerated if the product architecture (component relationships) is really known. The object models
shouid be somewhat consistent with future directions for the product. This will assure the longest possible life for
end users’ code written to the object mode).

Eat your own dog food Challenge

This is a simple challenge to keep in mind when designing Intcgraied Office document components. The printed
manuals. on-line documentation, and help should be able 1o be produced with the Integrated Office components
with perhaps the exception of any multimedia objects (which are just OLE 2.0 objects). 1 am not trying to say that
help should be replaced by these documents, only that it shoutd be possible. In the future on-line (never printed as

Microsoft Confidential What is a Document? Page 15

MX 604
CONFIDENTTAL

MS-PCA 1431798
CONFIDENTIAL

a whole) documents will become more and more commonplace. Our product designs need to anticipate this and
not avoid it.

Summary of VBA Customizable Integrated Office Objects
4
I have included a list of container objects that should be customizable by VBA.

Documents

Spreadsheets

VB Forms wr

Composite View objects

Composite Text objects

Composite Tabie objects

Custom Monikers and other code fragments including expressions
Custom queries

Integrated Office System Performance

The current code base for the deskiop applications is tuned to a particular use - document creation and editing. In
the future the usage of the components will broaden from document creation ‘o include viewing or browsing,
querying, and programming against the components in application solutions. The componentization work will
have an impact on performance by requiring that interfaces be used in more situations where the old
implementations could break the layers of abstraction by directly addressing the underlying data structures. It
should be possible with the reengineering work to make some gains back by focusing on the new usage areas and
understanding bow to make these simpler components perform. The gains at this lower level should be visible to
the document creation and editing scenarios. The good news about doing the performance work this way is that
the coding changes add to the value of the code base without creating so many new interdependencies that are hard
to remember or control as the product evolves. 1 wrote a talk for a JOOP conference in London that addressed
object oriented reenginecring. BobAtk and CathyLi botwr ised these as a starting point for additional materials
related to object orieated design.

There are some additional issues that should be add:esseu carly in the sofiware design process. These are outlined
below. I can discuss further details as required.

Installation and activation
32-bit improvements - preassigned addmses / fully bound
Working set modeling
Separated function to reflect three types of usage - programmability, viewing/printing, and cditing
View and data level activation should reflect the usage
Muitiple instances and code separation - background printing, content {iliering
External querying and navigation

Critical n Areas, Team Building, and Risk Management

The above componentization work which primarily addresses the top level course grained objects is a new type of
work for many of the teams. This needs to be undersiood and accounting for in the project planning. The project
risk will occur at the interface points for the components. This means that carlier design, validation, testability,
and stability of these interfaces can iead to quicker development of the key and dependent components. I would
suggest rereading my 2-part email memo on “Investing in Architectural Objectives” 1o heip get an understanding
of some of the issues as it would apply 10 the Integraied Office system of objects.

Microsoft Confidential What is a Document? Page 16

604
CONFTOENERLS

MS-PCA 1431799 .
CONFIDENTIAL

There are some specific process, design, and software engineering issues that can positively impact the plan if the
opportunities are recognized early. A few of these are outlined below:

Understanding the generic document goals versus what the clients want
Properties - implementation requiredV annotational - client / user

Evaluating alternative ways t0 implement features

Identifying opporunities for reusing solutions

Developing and reusing a new programming model for product extensions
Use the new document architecture and form invocation model

Getting client requirements for changes they want from applications

Software Clients for Integrated Office Documents

The above discussion is primarily 2 proposal for the implementors of Integrated Office and secondarily for the end-
user perspective. This part of the discussion will cover some of the client software needs with respect to the
information in and about documents that are beyond the above.

From an external perspective a document model is only as good as its interfaces. 1 am not familiar with all the
clients (i.e., Ren, Explorer, Navigator, etc.) of documents that we want to provide or even all the implementors
beyond Integrated Office (i.e., Powerpoint, workbook, Publisher, Works, Viewer, etc.) of these interfaces. I can not
find a visible process at Microsoft for determining our working set of clients and providers which should be
involved in the definition or review.

I will try o characterize a few of the external requirements that seem to be out there. Other people should add to
the list (remember that I am not going to finish it). My characterizations may not be completely correct in the
detail.. .

Passive and Active Object Models - Whether the object.s passive or active is an important point to remember
when looking at the requirements that the various pieceS of client software. Most of the requirements to date
assume that the (document) object is in a passive state. As a result, there is a pervasive model of design which says
that a class specific handler is activated to perform lhf desired function. The implementation for this can be
completely independent from the active object implememtation. Furthermore, if these passive object interfaces to
the handlers were examined, we would probably find thal they do not even closcly match the object model for the
underlying information. Instead, they typically flatten the object conceptually converting it 1o a single new
instance of the type matching the interface. This design approach satisfies the extensibility requiremnent for
heterogeneous information types. Cairo and Chicago have a different way of binding to the required
impiementations. Cairo uses an aggregation concept in the OLE binding and Chicago must use some non-OLE
association in the registry.

(Passive) Content Filters (Cairo) - Information type specific cuntent filler handlers convent the content of an
object to & stream that can be indexed by the content indexer. This is a special purpose interface so that it is fast.

(Passive) Preview Filters (Chicago) - These are content view (first page) previews of the object used by something
in Chicago (file find dialog and shell?). The views arc crcated without invoking the actual application. The
operating systern does not cache these views. They are created on demand. This is a special purpose interface so
that it is fast.

(Passive) Document Properties (everybody) - I am not certain that the same interfaces are used by everybody. If
DAO 3.0 is accepted and implemented by the various data stores, then this problem is ameliorated for most clients.
The basic requirement is that an object expose a cenain set of properties externally from itself. Each of the stores
has a different way of dealing with theses propertics. In EMS and Ren the document level properties are moved

Microsoft Confidential What is a Document? Page 17
MX 604594
CONF IDENTIA!S.
MS-PCA 1431800
CONFIDENTIAL

into a fields in a database row. In Cairo the properties are available through both the top level storage docfile
interfaces and the object propenty set interfaces. In other OLE 2.0 systems (Chicago and Mac) the properties
would only be availabie for objects stored in QOLE 2.0 docfiles and accessed using the top ievel storage level docfile
interfaces (same as Cairo). Some of our designs allow end user additions to this set of properties. Different
designs have different schema mechanisms for properties. It may be possible to change the value of a property of
an object in the passive state that will now be used when the object is reactivated. There are not strong guarantecs
that the passive state will validate changes the same way the active state does. Some designs (LMS and EMS)
would not allow object activation for property changes because they don't support docfiles (also OLE 2.0 does not
support replaceable docfile impiementations). These approaches are very simple database-like and they don't do
rauch to support the active object notions of encapsulation because they assume that the propertics arc available at
ajl times. (53 .

It is interesting to note that there is a class of applications (Ren Views) that assume that all the object state can be
expressed as (modifiable) properties. This is clearly naive for documents which can be very hierarchical structured
objects, i.e., there might be a few properties, but the majority of the state must remain a BLOB. However, there are
a class of objects for which very useful property view applications can be created. The Ren demos have many good
examples of this. These applications are very similar to property page views. If we looked at how the design
problems could be solved with OLE binding and activation, then we could probably figure out how to migrate and
support this style of object customization application with the VB programming model.

CDE is trying to do the same things as Ren except they can do a littie more because of the OLE characteristics of
OFS and Cairo. Perhaps, for OFS object customization we could look at Ren as being the Phase | solution and
build on that to get to the Phase 2 solution that is synchronized with Cairo. This would mean adding docfile
support to LMS and EMS and a few other OLE support changes. This might be a better strategy than the current
dueling banjos.

1 think that there is a little too much design anarchy still remaining between all of our clients and system providers.
We should have the same function or a comprehensible migration story. If we could sit down and sort through
this, then I think we couid have a reasonable strategy. The situation has been in design deadlock because the
parties have been unwilling 10 compromise their requiremepds or ongoing implementation work.
"1

I am assuming that the interfaces are random (arbitrarily different). I certainly can't figure it out from day to day
due to the design instability of the various projects. Somebody give us good news and tell me that | am wrong. [
want to be wrong about this.

D b

(Active?) Document Library (DocLib) - I have not seen any of the design work for this, but it must be something
that will track the versions of an object and support some notion of object comparison that can yield fine grained
differences. It could be a passive design, but that might be even more difficult. This is a very special purpose
interface. ‘

(both) Explorer (Cairo) - The Explorer has a set of interfaces (a Cairo typc) that objects should support if they
want to act like Cairo "seams” in the Explorer. These interfaces arc somewhat special purpose and require that the
views fit into the Cairo Explorer pane architecture. There is no view and data scparation in the design and the
interfaces can not really be used effectively at the data level. This mcans that they are not uscful for programming
against by other clients.

{both) Queries (everybody) - This is where we finally start getting lo BillG's favorite query scenarios. The query
interface designs that have resulied from the different client requircments and data store implementations are all
over the map. DAO 3.0 is trying 10 address some of this probiem, hut it requires a flatiened passive data view on
objects. This does not map weli onto the internal structures of a document. There are other probiems related the
construction of queries. Certainly, it will be difficult for the averaye end user 1o construct these. (I could continue,
but I am getting tired of writing. You are probably getting tired of rcading.)

Microsoft Confidential What is a Document? Page 18
MX 6045946
CONFIDENTIAL
-) ' MS-PCA 1431801

CONFIDENTIAL

(active) Structured Objects (nobody?) - | pointed out some problems with the above two areas of client
requirements. There is an alternative way to address both sets of problems. My description (of the requircments)
will be somewhat rough, but I am sure that the details and probiems can be resolved if we decide this is worth
pursuing. (I am not gaing to design it or implement it. I might review it.)

1. Consider that container objects might have a set of Fstructured” objects that they can return. (We can find 2
better name for "structured™ later). It should be possible to add to this set usiag the vbject custormization features of

the dynamic binding in the programmability model.

2. These "structured” objects have human readable names so that what they do is understandable (perhaps as the
result sets from queries). There is an intemalionalization.issue. with this design.

3. Client tools can enumeratc this set and find particular structured objects that they want to return. End users
could choose from a list of possibilities if desired. Perhaps, as part of the interface, there is a way to specify an
information type W be returned for the nodes of the structured objects. As an example, by using the IDispatch
dynamic binding model it would even be possible to pass a fragment of code (moniker-like) that would evaluate 10
the name, view, or some other consistent object type.

4. It should be possible to create a small set of interesting viewers for the various structures that the objects could
return. This gives us the view and data separation. The set of structures that “container” objects should be
standardized, i.e., lists, tables, outlines, graphs, etc. We should keep the list short because we don't want to
overwhelm ourselves with the possibilities.

5. It should be possible to make these structures composible. This would satisfy some of the hierarchical examples
from BillG's email, categorization, and Navigator.

6. It is also possibie 10 use the metamodel relationships to construct some of the structured objects that can be -
returned. This is certainly requires more infrastructural suppart that will be present in the future. This should not
be an immediate goal for our objects. :

.

7. Extending the above to be reasonable for passive objxu'éhou!d be simple in comparison to the above.

If this is not clear enough, I can verbally walk people through the above. I don't think that this is a particularly
novel approach since we have solved some similar problems in 2 similar fashion, i.c., Explorer or Navigator. The
difference is a couple of added degrees of freedom and layering in the design. The total combination should prove
easier to live with. T

The following is another relevant comment from one of my email messages that 1 wanted to repeat without
spending the time to fold it into this memo.

There are problems with taking a simple hierarchical vicw hecause many of the hicrarchies that
you might want to expose in the process of resolving a4 query may be virtual or computed.
Changing an object can have many complex interactions with the various hierarchies and caches.
Also, the problem can't be completely simplified 10 onc of mapping storage into OFS. Which
hierarchical relationships do you store? When the rubber meets the road we will have to have
those types of semantics defined. Also, OFS has cenain restrictions on its nodes with respect to
naming. We can't expect all objects lo have “names” that are meaningful (o the end-user.

Metaphor Capsules - This is a very interesting product to look at closely for two very non-cbvious rcasons. As a
product, it has somewhat limited value and appeal which means that it is not a strong revenue opportunity worth
pursuing. First, it is important 10 understand the requirements it places on the architeclure of the objects that the
capsule operates on. These requirements are not unique 10 Mctaphor. Second, it is important to think about how

Microsoft Confidential What 1s a Document? Page 19

MX 50
CONFIDE#?A‘Z

MS-PCA 1431802
CONFIDENTIAL

Metaphor could be a more atiractve product and what additional requirements that would generate on our
document and data architectures.

Summary of the above - It is interesting to note the pattern that cach client has determined that they need special
purpose interfaces 10 perform their function. This is'not inherently bad, since this is just what they all need. It is
difficult to fault any specifics of the design work. Perhaps. one criticism could be related to object robustness and
the active / passive inconsistencies that we have. These centainly project themselves out into the user model. The
best of the above - queries and Metaphor - could use the object’s programmability models as a last resort.

Look at this situation from our applications’ or [SVs' point of view. They are being bombarded by special requests
from everywhere. It is hard to prioritize the imporance -of anything and the priorities would be different
depending on the platform! With this picture it is easy 10 see why OLE 2.0 couid get the bandwidth of applications
over the above. OLE 2.0 had a very consistent message with demonstrable vaiuc on all platforms. Maybe we need
to step back and look at the big picture and perhaps develop a message that has broader understandability and
consistent value.

How much of the design work shouid be in OLE 3.0/4.0?

This memo includes a number of items that could lead to new interfaces for inclusion as part of our systems, i.c.,
generic enough to be public. Other parts are more clearly part of Microsoft's product architectures. I won't answer
the question here. It is an issue that needs ongoing attention over time.

Future Directions or Parallei Activities

I think that the component software technology direction will intensify in the future as more people learn how o
write this type of software. We have seen some evidence of this trom Claris Works, Software Publishing and
Metaphor, OpenDoc, Digitalk Parts, and Borland. We shoutd have some excess capacity to explore the technology
further. 1 wrote about some of the general issues in my “APPA Mission and Notes” document. The architectural
efforts could be made a little more concrete by one or both of the following activities.

New ground up component code base development ; This effort should try 10 break some new architectural
ground while maintaining compatibility with the Imegm@d Office architecture.

Single level store version of our components - The goal should bc 10 understand how to move our
implementations to a system that should offer the ultimate in object performance by using an object-oriented
dauabase engine for the persistence. The metamodel relationships present in our document architectures would
allow an OODB to cache cenain information that could be uscei by somc of the querics (ones backed by real
navigation).

Summary - What is a document?

This is an instance of a document. It satisfies my criterion that it Ix . container of organized information.

This memo is only a proposal for salisfying some high level objeciives or requirements for Microsoft Integrated
Office documents. 1t is neither a specification nor a development plan nor a stralegy including a statement of
syncrgy. The team implementing Integrated Office and the teains that want to work with Integrated Office
components will have to produce those.

Microsoft Confidential What is a Document” Page 20

MX 60 :
CONFIDENT 348
MS-PCA 1431803

CONFIDENTIAL

