
MS-DOS 6 Development Posl-Mortem
Ben Slivka, Mike Dryfoos
May 3, 1993

I Executive Summary I

Lessons Learned:

Code reviews helped code quality/stability, but more design
reviews were needed ... 1
Focus on robustness improved the product, but needed to be
applied more thoroughly 1
Used third-party resources well, but needed to review their
contributions more carefully 2
Focus on the end date helped unify the team, but also led us to
cut some corners .. ~...2
Beta team did a good job supporting both users and developers.
but was not large enough 2
Strong spirit of cooperation reigned throughout the project team3
Should have specified CVF format and DS APIs completely up front3
Should have taught and enforced coding conventions and assertion
checking .. 3
Should have focused on object-oriented data hiding 4
Should have given developers important 3rd-party hardware and
software .. 4
Should have increased testing focus on boundary conditions and
error and stress scenarios 4
Should have explored patent status thoroughly and immediately .4
Should have done better PSS training, and predicted problem areas
better .. 5

jDetails

Code reviews helped code qualitT/stabilitT, but more desiqn
reviews were needed

One thing we focused on early was doing code reviews for all
check ins, no matter how large or small. While this took more
up-front time, it was a way to communicate coding techniques and
guidelines, and improved the initial quality of all code in the
project, and helped us meet our very aggressive dates. Code
reviews also ensure that at least two people (the author and the
reviewer) are familiar with all the code in the system, which
ensures consistency of design and implementation. Indeed, this
may be the key benefit of code reviews! We should continue this
very valuable practice in future projects.

We need to do a better job, though, of design reviews before
the coding starts. Some aspects of the product suffered from
poorly optimized or excessively ad hoc design, and so became

MS-PCA 2556850

sources of bugs, requiring time-consuming rework. We need to
make our designs more explicit and give them greater review at
the outset. The combination of code and design review will help
ensure that our code is tight in both conception and mechanics.

Focus on robustness improved the product, but needed to be
applied more thorouqhly

When compressing a FAT drive (i.e., turning it into a
DoubleSpace compressed drive), and when we shrink or grow a
DoubleSpace Drive, we hook autoexec.bat so that in the case of a
reboot we can regain control and continue the operation. We also
make sure to disk I/O in such a way that we cam continue without
losing any data. This was very valuable in our product
development, as it allowed us to break in to a Compress in Place
(CIP) and see what was happening, possibly fixing problems and

continuing without data loss. This also proved to be a very
valuable (and highly demoable) customer feature!

Likewise the recovery capabilities of Memmaker have b@en
very useful and important.

Unfortunately, it turns out we needed to be more thorough in
applying the same standards to other areas of the product. We
didn’t do a good enough job supplying tools for data recovery and
repair, nor did we do enough to permit users to access their
compressed volumes when something has gone wrong internally, nor
did we give adequate information to help users or support techs
to solve problems when they arose. Some of the tools we did
supply, such as Defrag and Dblspace /Chkdsk, have proven to have
holes we should have closed up.

Future projects should continue to focus on safety features,
as they speed development and are great features that have real
end-user benefit. We need to make sure developers keep
robustness and recoverability concerns in the forefront when
designing and coding.

Used third-party resources well, but needed to review thei~
contributions more carefully

We greatly enhanced our product through the creative
leverage of third-party resources. In this manner, we were able
to deliver a package offering great value with only a small
investment in in-house development.

Unfortunately, the integration and quality control of the
third-party additions were troublesome, largely because of that
very lack of development attention. Without internally resources
to look over the code and identify problems, we were at the mercy
of our development partners for help. The response from our
partners ranged from the very good at Helix to the very poor at
Central Point. In the future, we need to ensure that we have
some development as well as testing resources available to work
directly with our partners, if we are to make sure their code
upholds the standards we set for our own.

In addition, we need to be more thorough and concrete about
specifying acceptance criteria in our acquisition contracts.
Third-party code must be subject to review for overall quality,
buildability, and localizability. Specific requirements must be

MS-I~A 2556851

stated in these areas. Final acceptance must be withheld until
these requirements are met. To do otherwise, as we now know from
both MS-DOS 5 and 6, is to invite trouble and extra work.

Focus on the end date helped unify the team, but also led us to
cut some corners

The product team really kept a strong focus on the ship date
throughout the project. We all shared a clear understanding of
where we were going, and kept in mind the tradeoffs we had to
make to get there. The shared goal was a strong unifying force
for the team.

Unfortunately, to a degree we became captives to the ship
date. More time for creative testing and tracking down non-
readily-reproducible bugs might have helped avoid some of the
problems customers are now experiencing. While it isn’t clear
that we would have found or corrected any of the problems
encountered since release, a less rushed atmosphere at the end
would have given us more of a chance.

Beta team did a qood job supportinq both users and developers.
but was not larqe enouqh

The beta team did an effective job of front-line support and
service to the beta testers. Bug reports were screened
effectively, keeping the developers from being inundated by
duplicate and already-solved problems. Rollout of beta releases
was quick and responsive to rapidly changing circumstances, as
beta candidates were modified and bugs fixed.

But, due to the number of beta test sites, and the
complexity of MS-DOS 6, the beta team was quickly overwhelmed
with problem reports, and there were sometimes lags of one week
or more before the development team got some reports, and when
reports were bounced back to the beta team to acquire more
information, there were sometimes delays of over a month. In
future projects, we should ensure that the beta team is staffed
adequately with very experienced PSS technicians -- those that we
did have had a major impact on the productivity of the beta team.

Stronq spirit o~ cooperation reiqned throuqhout the project te~m
The different functional groups (development, program

management, testing, documentation, etc.) within the project team
worked together very smoothly.. Lots of informal communication
and cooperation, in the good Microsoft style, helped keep
everyone productive, and the project running wet1. Different
teams and team members worked jointly to set priorities and carry
out tasks, without turf battles or excessive conflict.

Should have specified CVF format and DS APIs completely up front
We licensed code from Vertisoft, and then hopped into

modifying and rewriting that code (both in the DoubleSpace
Manager and the driver) before we had fully understood the
compressed volume file layout. This approach led to several off-
by-1 errors and disagreements between the device driver and the
maintenance code, which were took a lot of time to find, debug,
and fix.

MS-PCA 2556852

We also did not add DBLSPACE.BIN API to do direct I/O to the
compressed volume file, as asked for by Norton. Had we done so,
we could have introduced the concep~ of mounting drives without
creating a host drive in a future release, without causing MS-DOS
6-compatible disk utilities to break.

In the future, all media and interface standards should be
spec’d up front, even if they are going to change over time, to
improve the chance that different pieces of code will agree. We
should also review these with key third-party ISVs and listen to
their feedback.

Should have tauqht and enforced codinq conventions and assertion
checkinq

We had an early go at code reviews that focused on coding
conventions, coding style, and assertion checking, but these were
not enforced through the full cycle of the product. Hence we had
code that was not maintainable (mysterious names, multi-page
functions, duplicated code, duplicate constant definitions~ lack
of constant definitions, lack of asserts) that made it difficult
and time consuming to make global changes when we were under
extreme time pressure. There were several changes we made at the
end that were complicated by the definition of the same concept
in multiple locations, thus requiring us to search for and change
much more code than otherwise would have been necessary.

We did not put assertion checking into the driver until our
2nd external beta, which delayed catching many bugs, including
our off by 1 errors in our understanding of the MDFAT. We also
did not check the areas of the CVF that the manager was writing
to on grow/shrink operations, and so had to track down some very
subtle bugs based on some very obscure s~rmptoms. The DEBUG build
actually had a bit too many debug "squirty outs" -- debugging
trails written to a log file. We should have been more focused
on producing a smaller, more meaningful set of information.

In the future, these standards should be written down and
agreed to up front, and rigorously enforced. While Microsoft can
often be a democracy, in matters of coding style, an exception
should be made, and there should be one person who has final say
in selecting and enforcing the coding conventions (most likely
the development lead). This enforcement must occur through the
life of the project, stopping only, perhaps, in the last month
before you ship. "Hacking" in changes without regard to
maintainability may seem expedient in the short term, but it will
likely hurt you in your current product, and will definitely hurt
you for future products.

As for assertion checking, you can never have too much,
except as far as emitting too many debug trails. Especially in
core code, you should have asserts that compute valid situations
in more than one way, as a way to "assert the assert" -- i.e., to
make sure the assertion checks do not have the same bugs that may
exist in the code.

Should have focused on object-oriented data hiding
The split between the user interface of DoubleSpace Manager

and the "Compression Engine Library" (CEL) was conceived to allow

MS-PCA 2556853

a Windows-based UI to be written without requiring changes to the
CEL. CEL would understand all the details of the CVF format,
restartability, etc. Unfortunately, this concept was not carried
out, and so major, major aspects of Restartability, Robustness,
and CVF limits and properties are spread throughout both Manager
and CEL.

In future, we should make sure all team members have
practice at object-oriented design (focusing on data hiding and
minimal interfaces), to ensure that code will be modular,
decoupled, and maintainable. A 2-4 week teaching period where
project is designed and implemented would be a very, very good
thing.

Should have qiven developers important 3rd-party hardware and
software

Some of the areas we had significant or repeated problems,
such as removable hard drives, non-Microsoft networks, and add-
on shells, become problems because developers don’t use these
things themselves. We typically rely on the beta test to ~eveal
problems, but by the time the issues are revealed and understood,
it is too late to make the design changes that might be necessary
to accommodate them smoothly. We need to make sure more of these
common add-ons are in the hands of developers from the beginning,
so support for them is designed in from the beginning.

Should have increased testinq focus on boundary conditions an~
error and stress scenarios

Many of the errors we encountered relate to the margins of
normal operation, such as physical hardware errors and disk-full
conditions. These have proven to be holes in the product,
through which too many users have fallen.

More creative focus on stress, error, and boundary
conditions would have made our product more robust. Achieving
effective coverage in these areas typically requires more time
and imagination than the more straightforward system testing we
usually do. The testing and development teams need to work
together to design the appropriate test cases. Thorough exercise
of boundary and error conditions should remain in the hands of
the test team, but developers can help out by doing more such
testing up front.

In future, we should make sure the development team
routinely includes some boundary case testing of new code.
Developers should be required to produce mini test plans, along
with the results of that testing, before checking code in.

Should have explored patent status thorouqhl7 and immediately
We got surprised by the Stac Electronics lawsuit. We should

have seen it coming, and we should have spent much more lawyer
time digging up other relevant patents and looking at prior art.

In future, and projects which create new technology or
license existing technology that has even the tiniest whiff of
patents around it should call in the lawyers and spend some time
digging up and examining patents. I know this is expensive, but
especially for mass-market software, the downside can be

MS-PCA 2556854

tremendous -- we’ve spent untold hours in development, marketing,
and testing on responding to requests from legal in response to
the Stac suit.

Should have done better PSS traininq, and predicted problem areas
better

More advance PSS training from those closest to the product,
on the areas we expected to be problematic, would have helped the
support technicians deal with the initial load. Doing a really
good job on this would require that we anticipate all the
problems our users are going to have, which we have had only
mixed success doing, but a more thoroughgoing effort should have
been made at the outset. PSS ne@ds to make an early commitment
to advance training for as many techs who can be accommodated,
and the product team needs to make delivering quality training a
priority.

Many of the product team members participated directly in
product support after release. This task was tackled with
seriousness and commitment, despite the frustrating nature~of the
work. The team’s efforts made a significant impact on the
overall support effort.

<<< the end >>>

MS-PCA 2556855

