571

© 1995 Sun Microsystems, Inc.—Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 US.A.

All rights reserved. This product and related documentation are protected by copyright and distribut-
ed under licenses restricting its use, copying, distribution, and decompilation. No part of this product
or related documentation may be reproduced in any form by any means without prior written autho-
rization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from
UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of Cal~
ifornia, respectively. Third-party font software in this product is protected by copyright and licensed
from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is
subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The product described in this book may be protected by one or more U.S. patents, foreign patents, or
pending applications.

- TRADEMARKS: Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Company, So-
laris, are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other
countries. UNIX is a registered trademark in the United States and other countries; exclusively li-
censed through X/Open, Ltd. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript and
Display PostScript are trademarks of Adobe Systems, Inc. Al other product names mentioned herein
are the trademarks of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks
of SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage,
SPARCware, SPARCcenter, SPARCclassic, SPARCcluster, SPARCdesign, SPARC811, SPARCprinter,
UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed exclusively to Sun Micro-
systems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOKand Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and develop-
ing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclu-
sive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s

- licensees who implement OPEN LOOK GUISs and otherwise comply with Sun’s written license agree-
ments.

X Window System is a product of the Massachusetts Institute of Technology.

The publisher offers discounts on this book when ordered in bulk quantities. For more information
contact: Corporate Sales Department, PTR Prentice Hall, 113 Sylvan Avenue, Englewood Cliffs, NJ
07632. Phone: 201-592-2863. FAX: 201-592-2249. '

1098765432

0-13-160896-7

SunSoft Press
A Prentice Hall Title

What Typographic Changes and Symbols Mean
Table PR-1 describes the type changes and symbols used in this guide.
Table PR-1 Typographic Conventions

Typeface or Meaning Example
Symbol
AaBbCcl23 Commands, files, directories, and C ~ The £ork1() function is new.
functions; code examples Use 1s -a to list all files.
AaBbCc123 Variables, titles, and emphasized The stack_size value is set by...
words You must specify a zero value.
AaBbCc123 What you type, contrasted with on- system$ ce prog.c
screen computer output
page(#) The man page name and sectionin See thr_create(3T).
the Solaris Reference Manual)

Sections of program code in the main text are enclosed in boxes:

nt test (100);
main()
{
register int a, b, ¢, 4, e, f;

test(a) = b & test(c & 0x1) & test(d & Oxl);

xviii Multithreaded Programming Guide

Covering Multithreading Basics 1

The word multithreading can be translated as many threads of control. While a traditional
UNIX process always has contained and still does contain a single thread of nou-n.ar
multithreading (MT) separates a process into many execution threads, each of which runs
independently.

Read this chapter to understand the multithreading basics.

Defining Multithreading Terms page2
Benefiting From Multithreading page 3
Looking At Multithreading Structure page 5
Meeting Multithreading Standards page 9

Because each thread runs independently, multithreading your code can:

¢ Improve application responsiveness
¢ Use multiprocessors more efficiently
¢ Improve your program structure

¢ Use fewer system resources

¢ Improve performance

Defining Multithreading Terms

The following terms are used in this chapter to describe multithreading concepts.

Thread A sequence of instructions executed within the context of a process

Single-threaded Restricting access to a single thread

Multithreaded Allowing access to two or more threads

User-level or Application- Threads managed by the threads library routines in user (as

level threads opposed to kernel) space

Lightweight processes Threads in the kernel that execute kernel code and system calls
(also called LWPs)

Bound threads Threads that are permanently bound to LWPs

Unbound threads Threads that attach and detach from among the LWP pool

Counting semaphore A memory-based synchronization mechanism

Defining Concurrency and Parallelism

Concurrency exists when at least two threads are in progress at the same time. Parallelism
arises when at least two threads are executing simultaneously.

In a multithreaded process on a single processor, the processor can switch execution
resources between threads, resulting in concurrent execution. In the same multithreaded
process on a shared-memory multiprocessor, each thread in the process can run on a
separate processor at the same time, resulting in parallel execution.

When the process has as‘many threads as, or fewer threads than, there are processors, the
threads support system and the operating system ensure that each thread runs on a
different processor. For example, in a matrix multiplication with m processors and m
threads, each thread computes a row of the result.

2 Multithreaded Programming Guide

Benefiting From Multithreading

Improve Application Responsiveness

Any program in which many activities are not dependent upon each other can be
redesigned so that each activity is fired off as a thread. For example, a GUI in which you
are performing one activity while starting up another will show improved performance
when implemented with threads.

Use Multiprocessors Efficiently

Typically, applications that express concurrency requirements with threads need not take
into account the number of available processors. The performance of the application
improves transparently with additional processors.

Numerical algorithms and applications with a high degree of parallelism, such as matrix
muitiplications, can run much faster when implemented with threads on a
multiprocessor.

Improve Program Structure

Many programs are more efficiently structured as ‘multiple independent or
semi-independent units of execution instead of as a single, monolithic thread.
Multithreaded programs can be more adaptive to variations in user demands than are
single threaded programs.

Use Fewer System Resources

Programs that use two or more Processes that access common data through shared
memory are applying more than one thread of control. However, each process has a full
address space and operating Systems state. The cost of creating and maintaining this large
amount of state makes each process much more expensive than a thread in both time and
space. In addition, the inherent separation between Pprocesses can require a major effort
by the programmer to communicate between the threads in different processes or to
synchronize their actions.

‘Combine Threads and RPC

By combining threads and a remote procedure call (RPC) package, you can exploit
non-shared-memory multiprocessors (such as a collection of workstations). This
combination distributes your application relatively easily and treats the collection of
workstations as a multiprocessor.

Covering Multithreading Basics

For example, one thread might create child threads. Bach of these children could then
place a remote procedure call, invoking a procedure on another workstation. Although
the original thread has merely created a number of threads that are now running in
parallel, this parallelism involves other computers.

Improve Performance

The performance numbers in this section were obtained on a SPARCstation™ 2 (Sun
4/75). The measurements were made using the built-in microsecond resolution timer.

Thread Creation Time

Table 1-1 shows the time consumed to create a thread using a default stack that is cached
by the threads package. The measured time includes only the actual creation time. It does
not include the time for the initial context switch to the thread. The ratio column gives the
ratio of the creation time in that row to the creation time in the previous row.

These data show that threads are inexpensive. The operation of creating a new process is
over 30 times as expensive as creating an unbound thread, and about 5 times the cost of
creating a bound thread consisting of both a thread and an LWP.

Table 1-1 Thread Creation Times

Operation Microseconds Ratio

Create unbound thread 52 -

Create bound thread 350 . 6.7

fork(Q 1700 327
Thread Synchronization Times

Table 1-2 shows the time it takes for two threads to synchronize with each other using
two p and v semaphores.

Table 12 Thread Synchronization Times

Operation Microseconds Ratio

Unbound thread 66 -

Bound thread - 390 59

Between processes 200 3

4 Multithreaded Programming Guide

Looking At Multithreading Structure

Traditional UNIX already supports the concept of threads—each process contains a single
thread, so programming with multiple processes is programming with multiple threads.
But a process is also an address space, and creating a process involves creating a new
address space.

Because of this, creating a process is expensive, while creating a thread within an existing
process is cheap. The time it takes to create a thread is on the order of a thousand times
less than the time it takes to create a process, partly because switching between threads

does not involve switching between address spaces.

Communicating between the threads of one process is simple because the threads share
everything—address space, in particular. So, data produced by one thread is immediately
available to all the other threads.

The interface to multithreading support is through a subroutine library, libthread.
Multithreading provides flexibility by decoupling kernel-level and user-level resources.
User-level Threads!

Threads are visible only from within the process, where they share all process resources
like address space, open files, and so on. The following state is unique to each thread.

¢ Thread ID

* Register state (including PC and stack pointer)
¢ Stack

* Signal mask

¢ Priority

¢ Thread-private storage

Because threads share the process instructions and most of its data, a change in shared
data by one thread can be seen by the other threads in the process. When a thread needs
to interact with other threads in the same process, it can do so without involving the
operating system.

Threads are the primary programming interface in multithreaded programming.
User-level threads are handled in user space and so can avoid kernel context switching
penalties. An application can have thousands of threads and still not consume many
kernel resources. How many kernel resources the application uses is largely determined
by the application.

.~.Cmﬂr—ﬁ&E&wﬁggmmBg:ﬁsnaE_ﬁSm_.—nﬁ_g&\tEnrwa%Bgom@mﬁnﬁ
programmers, only. Because this book s for application kemel-level threads are not discussed here.

Covering Multithreading Basics 5

—

By default, threads are very lightweight. But, to get more control over a thread (for
instance, to control scheduling policy more), the application can bind the thread. When an
application binds threads to execution resources, the threads become kernel resources (see
“Bound Threads” on page 8 for more information).

To summarize, Solaris user-level threads are:

* Inexpensive to create because they are bits of virtual memory that are allocated from
your address space at run time .

¢ Fast to synchronize because synchronization is done at the application level, not at the
kernel level

* Easily managed by the threads library, 1ibthread

Traditional
process \ Proc1 Proc2 Proc 3 Proc 4 Proc 5
User
Kerme!
N
Hardware
.vm = Thread O =Lwp Q =Processor

Figure 1-1 Multithreaded System Architecture

6 Multithreaded Programming Guide

Lightweight Processes

The threads library uses underlying threads of control called lightweight processes that are
supported by the kernel. You can think of an LWP as a virtual CPU that executes code or
system calls. :

Most programmers use threads without thinking about LWPs. All the information here
about LWPs is provided so you can understand the differences between bound and
unbound threads, described on page 8.

Note - The LWPs in Solaris 2.x are not the same as the LWPs in the SunOS™ 4.0 LWP
library, which are not supported in Solaris 2.x.

Much as the stdio library routines such as fopen(3S) and fread(3S) use the open(2)
and read(2) functions, the thread interface uses the LWP interface, and for many of the
same reasons.

Lightweight processes (LWPs) bridge the user level and the kernel level. Each process
contains one or more LWPs, each of which runs one or more user threads. The creation of

a thread usually involves just the creation of some user context, but not the creation of an
LWP.

The user-level threads library, with help from the programmer and the operating system,
ensures that the number of LWPs available is adequate for the currently active user-level
threads. However, there is no one-to-one mapping between user threads and LWPs, and
user-level threads can freely migrate from one LWP to another.

The programmer can tell the threads library how many threads should be “running” at
the same time. For example, if the programmer says that up to three threads should run
at the same time, then at least three LWPs should be available. If there are three available
processors, the threads run in parallel. If there is only one processor, then the operating
system multiplexes the three LWPs on that one processor. If all the LWPs block, the
threads library adds another LWP to the pool.

When a user thread blocks due to synchronization, its LWP transfers to another runnable
thread. This transfer is done with a co-routine linkage and not with a system call.

The operating system decides which LWP should run on which processor and when. It
has no knowledge about what user threads are or how many are active in each process.
The kernel schedules LWPs onto CPU resources according to their scheduling classes and
pricrities. The threads library schedules threads on the process pool of LWPs in much the
same way. Each LWP is independently dispatched by the kernel, performs independent
system calls, incurs independent page faults, and runs in parallel on a multiprocessor
system.

Covering Multithreading Basics 7

An LWP has some capabilities that are not exported directly to threads, such as a special
scheduling class.

Unbound Threads

Threads that are scheduled on the LWP pool are called unbound threads. You will usually
want your threads to be unbound, allowing them to float among the LWPs.

The library invokes LWPs as needed and assigns them to execute runnable threads. The
LWP assumes the state of the thread and executes its instructions. If the thread becomes
blocked on a synchronization mechanism, or if another thread should be run, the thread
state is saved in process memory and the threads library assigns another thread to the
LWP to run.

Bound Threads
If needed, you can permanently bind a thread to an LWP.
For example, you can bind a thread to:

* Have the thread scheduled globally (such as realtime)
* Give the thread an alternate signal stack
® Give the thread a unique alarm or timer

Sometimes having more threads than LWPs, as can happen with unbound threads, is a
disadvantage. v

For example, a parallel array computation divides the rows of its arrays among different
threads. If there is one LWP for each processor, but multiple threads for each LWP, each
processor spends time switching between threads. In this case, it is better to have one
thread for each LWP, divide the rows among a smaller number of threads, and reduce the
number of thread switches.

A mixture of threads that are permanently bound to LWPs and unbound threads is also
appropriate for some applications.

An example of this is a realtime application that wants some threads to have system-wide
priority and realtime scheduling, while other threads attend to background computations.
Another example is a window system with unbound threads for most operations and a
mouse serviced by a high-priority, bound, realtime thread.

When a user-level thread issues a system call, the LWP running the thread calls into the
kernel and remains attached to the thread at least until the system call completes.

8 Multithreaded Programming Guide

Meeting Multithreading Standards

The history of multithreaded programming goes back to at least the 1960s. Its
development on UNIX systems goes back to the mid-1980s. Perhaps surprisingly, there is
fair agreement about the features necessary to support multithreaded programming. Even
s0, several different thread packages are available today, each with a different interface.

However, for several years a group known as POSIX 1003.4a has been working on a
standard for multithreaded programming. When the standard is finalized, most vendors
of systems supporting multithreaded programming will support the POSIX interface.
This will have the important benefit of allowing multithreaded programs to be portable.

There are no fundamental differences between Solaris threads and POSIX 1003.4a.
Certainly the interfaces differ, but there is nothing that is expressible with one interface
that cannot be expressed relatively easily with the other. There are no incompatibilities
between the two, so, at least on Solaris systems, there will be one underlying
implementation with two interfaces. Even within a single application, you will be able to
use both interfaces.

Another reason for using Solaris threads is the collection of support tools supplied with
it, such as the multithreaded debugger. txuss, which traces a program’s system calls and
signals, has been extended to report on the activities of a program’s threads as well.

Covering Multithreading Basics 9

10

Multithreaded Programming Guide

Programming with ._..:qmmam 2=

The Threads Library

User-level multithreading is implemented through the threads Library, 1ibthread (see
section 3T in the man Pages(3): Library Routines). The threads library supports signals,
schedules runnable entiti , and handles multiple tasks simultaneously.

This chapter discusses some of the general 1ibthread Toutines, starting with the basic
ways to create threads and becoming more advanced.

Create 4 Thread ~ the Basics thr_create(3T) page 12
Get the Thread Identifier thr_self(3T) page 14
Yield Thread Execution thr_yield(3T) page 14
Suspend or Continue Thread Execution thr_suspend(3T) page 14
thr_continue(3T) page 15

Send a Signal to a Thread thr_kill(3T) page 15
Access the Signal Mask of the Calling Thread thr_sigsetmask(3T) page 16
Terminate a Thread thr_exit(3T) page 17
Wait for Thread Termination thr_join(3T) page 18
Mainiain Thread-Specific Data thr_keycreate(3T) page 21
thr_setspecific(3T) page 22

thr_getspecific(3T) page 22

Create a Thread ~ Advanced Features thr_create(3T) page 26
Get the Minimal Stack Size thr_min_stack(3T) page 30
E& and Set Thread Concurrency Level thr_getconcurrency(3T) page 31
thr_setconcurrency(3T) page 31

Get and Set Thread Priority thr_getprio(3T) page 32
thr_setprio(3T) page 32

1

Create a Thread - the Basics

The thr_create(3T) routine is the most elaborate of all the threads library routines. The
explanations in this section are for those cases when you can use the default values for
the thr_create() arguments.

More advanced thr_create() use, including explanations of non-default argument
values, is covered toward the end of this chapter in “Create a Thread — Advanced
Features” on page 26.

thr_create(3T)

Use thr_create() to add a new thread of control to the current process. Note that the
new thread does not inherit pending signals, but is does inherit priority and signal masks.

#include <thread.h>

int thr_create(void *stack_base, size_t stack_size,
void *(*start_routine) (void *), void *arg, long flags,
thread_t *new_thread) ;

size_t thr_min_stack(void);

stack_base — Contains the address for the stack that the new thread uses. If stack_base is
NULL then thr_create() allocates a stack for the new thread with at least stack_size
bytes.

stack_size — Contains the size, in number of bytes, for the stack that the new thread uses.
If stack_size is zero, a default size is used. In most cases, a zero value works best.

There is no general need to allocate stack space for threads. The threads library
allocates one megabyte of virtual memory for each thread’s stack with no swap space
reserved. (The library uses the MAP_NORESERVE option of mmap(2) to make the
allocations.)

start_routine — Contains the function with which the new thread begins execution. If
start_routine returns, the thread exits with the exit status set to the value returned by
start_routine (see thr_exit(3T)).

12 Multithreaded Programming Guide

flags - Specifies attributes for the created thread. In most cases a zero value works best.

The value in flags is constructed from the bitwise inclusive OR of the following. (The
Iast four flags are explained more fully in “Create a Thread — Advanced Features” on
Ppage 26.)

THR_DETACHED — Detaches the new thread so that its thread ID and other resources
can by reused as soon as the thread terminates. Set this when you do not want to
wait for the thread to terminate.

When there is no explicit synchronization to prevent it, an unsuspended, detached
thread can die and have its thread ID reassigned to another new thread before its
creator returns from thr create(). ’

THR_SUSPENDED - Suspends the new thread and does not execute start_routine until
the thread is started by thr_continue().

THR_BOUND - Permanently binds the new thread to an LWP (the new thread is a bound
thread).

THR_NEW_LWP — Increases the concurrency level for unbound threads by one.
THR_DAEMON Marks the new thread as a daemon. ’

new_thread — Points to a location (when new_thread is not NULL) where the ID of the new
thread is stored. In most cases a zero value works best.

Return Values — thr_create() returns a zero and exits when it completes successfully.
Any other returned value indicates that an error occurred. When any of the following
conditions are detected, thr_create() fails and returns the corresponding value:

EAGAIN A system limit is exceeded, such as when too many LWPs have been
created.

ENOMEM Not enough memory was available to create the new thread.

EINVAL stack_base is not NULL and stack_size is less than the value returned by |
thr_min_stack().

Programming with Threads 13

—

Get the Thread Identifier

thr_self(3T)
Use thr_sel£(3T) to get the ID of the calling thread.

#include <thread.h>

thread_t thr_self (void)

Return Values — thr_self() returns the ID of the calling thread.
Yield Thread Execution
thx_yield(3T)

thr_yield(causes the current thread to yield its execution in favor of another thread
with the same or greater priority.

#include <thread.h>

void thr_yield(void);

Suspend or Continue Thread Execution

thr_suspend(3T)
thr_suspend() suspends thread execution.

Return Values — thr_suspend() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs,
thr_suspend(fails and returns the corresponding value:

ESRCH target_thread cannot be found in the current process.

thr_continue(3T)

thr_continue() resumes the execution of a suspended thread. Once a suspended thread
is continued, subsequent calls to thr._continue() have no effect.

#include <thread.h>

int thr_continue(thread_t #arget_thread) ;

A suspended thread will not be awakened by a signal. The signal stays pending until the
execution of the thread is resumed by thr_continue(.

Return Values — thr_continue() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs,
thr_continue(fails and returns the corresponding vatue:

ESRCH target_thread cannot be found in the current process.

Send a Signal to a Thread

thr_kili(3T)
thr_kill() sends a signal to a thread.

#include <thread.h>

int thr_suspend(thread_t farget_thread) ;

thr_suspend() immediately suspends the execution of the thread specified by
target_thread. On successful return from thr_suspend(), the suspended thread is no
longer executing. Once a thread is suspended, subsequent calls to thr_suspend() have
no effect.

14 Multithreaded Programming Guide

#include <thread.h>
#include <signal.h>

int thr_kill(thread_t target_thread, int sig);

thr_kill() sends the signal sig to the thread specified by target_thread. target_thread must
be a thread within the same process as the calling thread. The sig argument must be from
the list given in signai(5).

When sig is zero, error checking is performed but no signal is actually sent. This can be
used to check the validity of target_thread.

Programming with Threads 15

i i . Any other
Return Values — thr_kill() returns zero after completing mﬁnnmmmm:—_vw he
returned value indicates that an error occurred. When any of the following conditions
oceur, thr_ki11() fails and returns the corresponding value:

EINVAL sig is not a valid signal number.
ESRCH target_thread cannot be found in the current process.

Access the Signal Mask of the Calling Thread

EnlmmMmmgﬂmed
Use thr_sigsetmask() to change or examine the signal mask of the calling thread.

#include <thread.h>
#include <signal.h>

int thr_sigsetmask(int how, const sigset_t *sel, sigset_t *oset);

The how argument determines how the signal set is changed and can have one of the
following values:
SIG_BLOCK — Add set to the current signal mask, where set indicates the set of signals
to block.
SIG_UNBLOCK — Delete set from the current signal mask, where set indicates the set of
signals to unblock.
SIG_SETMASK - Replace the current signal mask with set, where set indicates the new
signal mask.
When the value of sef is NULL, the value of how is not significant and wrm. signal
mask of the thread is unchanged. So, to inquire about currently blocked signals,
assign a NULL value to the set argument.

When the oset argument is not NULL, it points to the space where the previous signal
mask is stored.

Return Values — thr_sigsetmask() returns a zero when it completes mﬁan@n.m?h% Any
other returned value indicates that an error occurred. When any of the moﬂos..sm .
conditions are detected, thr_sigsetmask() fails and returns the corresponding value:

EINVAL The value of set is not NULL and the value of how is not defined.
EFAULT Either set or oset is not a valid address.

16 Multithreaded Programming Guide

Terminate a Thread

thr_exit(3T)
Use thr_exit() to terminate a thread.

#include <thread.h>
void thr_exit (void *status) ;

The thr_exit() function terminates the calling thread. All thread-specific data bindings
are released. If the calling thread is not detached, then the thread’s ID and the exit status
specified by status are retained until the thread is waited for. Otherwise, status is-ignored
and the thread’s ID can be reclaimed immediately.

Return Values — When the calling thread is the last non-daemon thread in the process,
the process terminates with a status of zero. When the initial thread returns from main()
the process exits with a status equal to the return value.

Finishing Up

A thread can terminate its execution in two ways. The first is simply to return from its
first (outermost) procedure. The second is to call thr_exit(), supplying an exit code.

What happens next depends upon how the flags parameter was set when the thread was
created.

The default behavior of a thread (which happens when the appropriate bit in the flags
parameter is left as zero) is to remain until some other thread has acknowledged its
demise by “joining” with it. The result of the join is that the joining thread picks up the
exit code of the dying thread and the dying thread vanishes. You can set a bit in the flags
parameter, by ORing into it THR_DETACHED, to make the thread disappear immediately
after it calls thr_exit() or after it returns from its first procedure. In this case, the exit
code is not picked up by any thread.

An important special case arises when the main thread, the one that existed initially,
returns from the main procedure or calls exit(). This action causes the entire process to
be terminated, along with all its threads. So take care to ensure that the main thread does
not return from main prematurely.

Note that when the main thread merely calls thr_exit(), it terminates only itself—the

other threads in the process, as well as the process, continue to exist. (The process
terminates when all threads terminate.)

Programming with Threads 17

Hasimioncon oo

lh.

Note also that if a thread is nondetached, then it is very important that some thread join
with it after it terminates—otherwise the resources of that thread are not released for use
by new threads. So when you do not want a thread to be joined, create it as a detached

thread.
An additional flags argument to thr_create() is THR_DAEMON. Threads created with this

flag, daemon threads, are automatically terminated when all non-daemon threads have
terminated. These daemon threads are especially useful within libraries.

Daemon threads can be created within library routines—as daemon threads they are
effectively invisible to the rest of the program. When all other threads in the program (the
threads you were aware of creating) terminate, these daemon threads automatically
terminate. If they were not daemon threads, they would not terminate when the other
threads do, and the process would not exit.

Wait for Thread Termination

thr_join(3T)
Use the thr_join() function to wait for a thread to terminate.

#inciude <thread.h>

int thr_join(thread_t wait_for, thread_ t *departed,
void **status) ;

The thr_join() function blocks the calling thread until the thread specified by wait_for
terminates. The specified thread must be in the current process and must not be detached.
When wait_for is (thread_t) 0, then thr_j oin() waits for any undetached thread in the
process to terminate. In other words, when no thread identifier is specified, any

- undetached thread that exits causes thr_join() to return.

When departed is not NULL, it points to a location that is set to the ID of the terminated
thread when thr_join() returns successfully. When status is not NULL, it points to a
location that is set to the exit status of the terminated thread when thr__join() returns

successfully.
When a stack was specified when the thread was created, the stack can be reclaimed

when thr_join() returns. The thread identifier returned by a successful thr_join() can

then be used by thr_create(.

Multiple threads cannot wait for the same thread to terminate. If they fry to, one thread
returns successfully and the others fail with an error of ESRCH.

18 Mudltithreaded Programming Guide

Return Values — thr_join() returns a i
—t zero when it completes successfully. Any oth.
anﬁb& value mu&.—nmwmm .m_mn an error occurred. When any of the following Won&woum M.m
etected, thr_join() fails and returns the corresponding value;

ESRCH wait_for is not a valid, undetached thread in the current process.
EDEADLK wait_for specifies the calling thread.

Final Steps

The thr_join(routine takes three ar ivi i
1 guments, giving you some flexibility in its use.
%rﬁmnnwm—w uzgw the caller to wait until a specific (nondetached) thread *mnw.%mhww“m. M”WE%
ad’s ID as the mu.wn argument. When you want the caller to wait until any
nondetached thread terminates, supply a zero for the first argument.

When the caller wants to find out who the terminated thread i
ad is, th
should be the address of storage into which the defunct thread’s H% wmn_% MM MNMM -

Otherwise, supply a zero for this ; ; .
i argument. Finally, if you are interested in the exi
of the defunct thread, supply the address of an area to receive it. 1 the exit code

A thread i i -
mo_._oiw—mwms wait until all non-daemon threads have terminated by executing the

while(thr_join(0, 0, 0) == 0)

The declaration for the third joi i
. parameter of thr_join(), void **, might look stran:
Mwwummwon&bm argument of thr_exit() is void *. The intent is that Woﬁ pass an mnﬂ.n_.?m
yte item as the exit code. The C for “arbitrary 4-byte argument” cannot be void i

.because that means that there is no argument. So it is void *. Because the third parameter

of thr_join(} is an output parameter that i

) + : N

e, enie0, st ppoe mnmwmmnm% ter !.B:m point to whatever is supplied by

nWrmBmB_umn that thr_join() S.ou.Wm only for target threads that are nondetached. When
€re 1s no reason to synchronize with the termination of a particular thread, then that

thread should be detached. '

Think of a detached thread as bein,
g the usual sort of thread
threads for only those situations that require them. e seserve nondetached

Programming with Threads 19

A Simple Threads Example

In Code Example 2-1 on page 20, one thread executes the procedure at m.m. top, creating a
helper thread that executes the procedure £etch, which involves a complicated database
Jookup and might take a while. The mainline thread wants the results of the _oo.w_% v_“:

has other work to do in the meantime. So it does those other things m.i then waits for its
helper to complete its job by executing thr_join().

The result is passed as a stack parameter, which can be done here w.mnm:hm the main
thread waits for the spun-off thread to terminate. In general, though, it is better to
malloc(3C) storage from the heap instead of passing an address to thread stack storage.

Code Example 2-1 A Simple Threads Program

void mainline (...) {
char int result;
thread_t helper;
int status;

thr_create(0,0, fetch, &result,0, &helper);

/* do something else for a while */

thr_join(helper, 0, &status);
/* it’s now safe to use result */

void fetch(int *result) {
/* fetch value from a database */

*result = value;
thr_exit (0);

Maintain Thread-Specific Data

Single-threaded C programs have two basic classes of data—local data and global data.
For multithreaded C programs a third class is added—thread-specific data (TSD). This is
very much like global data, except that it is private to a thread. ’

Thread-specific data is maintained on a per-thread basis. TSD is the only way to define
and refer to data that is private to a thread. Each thread-specific data item is associated
with a key that is global to all threads in the process. Using the key, a thread can access a
pointer (void *) that is maintained per-thread.

Maintain thread-specific data with the following three functions.

® thr_keycreate() - Create a key specific to the Pprocess threads.
¢ thr_setspecific() — Bind a thread value to the key.
® thr_getspecific() - Store the value in a specific location.

thr_keycreate(3T)

thx_keycreate() allocates a key that is used to identify thread-specific data in a
process. The key is global to all threads in the process, and all threads initially have the
value NULL associated with the key when it is created.

Once a key has been created, each thread can bind a value to the key. The valués are
specific to the binding thread and are maintained for each thread independently.

#include <thread.h>

int thr_keycreate(thread_key t *keyp,
void (*destructor) (void *value));

20 Multithreaded Programming Guide

“When thr_keycreate(returns successfully, the allocated key is stored in the location

pointed to by keyp. The caller must ensure that the storage and access to this key are
properly synchronized.

An optional destructor function, destructor, can be associated with each key. When a key
has a non-NULL destructor function and the thread has a non-NULL value associated
with that key, the destructor function is called with the current associated value when the
thread exits. The order in which the destructor functions are called for all the allocated
keys is unspecified.

Programming with Threads 21

Return Values — thr_keycreate() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the following
conditions occur, thr_keycreate() fails and returns the corresponding value:

EAGAIN The key name space is exhausted.
ENOMEM Not enough memory is available.

thr_setspecific(3T)

#include <thread.h>

int thr_setspecific(thread key_t key, void *value) ;

thr_setspecific() binds value to the thread-specific data key, key, for the calling
thread.

Return Values — thr_setspecific() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the conditionsbelow
oceur, thr_setspecific(fails and returns the corresponding value:

ENOMEM Not enough memory is available.
EINVAL key is invalid.

thr_getspecific(3T)

#include <thread.h>

int thr_getspecific (thread key_t key, void **valuep);

thr_getspecific(stores the current value bound to key for the calling thread into the
location pointed to by valuep.

Return Values — thr_getspecific() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following condition
occurs, thr_getspecific() fails and returns the corresponding value:

EINVAL key is invalid.

22 Multithreaded Programming Guide

v —

Global and Private Thread-Specific Data

Code Example 2-2 shows an excerpt from a multithreaded program. This code is executed
by any number of threads, but it has references to two global variables, errno and
mywindow, that really should be references to items private to each thread.

Code Example 2-2 Thread-Specific Data — Global but Private

body () {

while (write(fd, buffer, size) == -1) {
if (errmo != EINTR) {
fprintf (mywindow, *%s\n”, strerror (errno));
exit(1l);

References to errno should get the system error code from the system call called by this
thread, not by some other thread. So, references to errno by one thread refer to a
different storage location than references to errno by other threads.

The mywindow variable is intended to refer to a stdio stream connected to a window
that is private to the referring thread. So, as with errno, references to mywindow by one
thread should refer to a different storage location (and, ultimately, a different window)
than references to mywindow by other threads. The only difference here is that the threads
library takes care of errno, but the programmer must somehow make this work for
mywindow.

The next example shows how the references to mywindow work. The preprocessor
converts references to mywindow into invocations of the _mywindow procedure.

Programming with Threads 23

This routine in turn invokes thr_getspecific(), passing it the mywindow_key global
variable (it really is a global variable) and an output parameter, win, which receives the
identity of this thread’s window.

Code Example 2-3 Turning Global References Into Private References

#define mywindow _mywindow()
thread_key_t mywindow_key;

FILE *_mywindow(void) {
FILE *win;

thr_getspecific (mywindow_key, &win);
return{win);

void thread start(...) {
make_mywindow () ;

}

The mywindow_key variable identifies a class of variables for which each thread has its
own private copy; that is, these variables are thread-specific data. Each thread calls
make_mywindow() to initialize its window and to arrange for its instance of mywindow to
refer to it.

Once this routine is called, the thread can safely refer to mywindow and, after _mywindow,
the thread gets the reference to its private window. So, references to mywindow behave as
if they were direct references to data private to the thread.

24 Multithreaded Programming Guide

Code Example 2-4 shows how to set this up.
Code Example 2-4 Initializing the Thread-Specific Data

void make_mywindow(void) {
FILE **win;
static int once = 0;
static mutex_t lock;

mutex_lock (&lock) ;
if (tonce) {
once = 1;
thr_keycreate (&mywindow_key, free_key);
}
mutex_unlock(&lock) ;

win = malloc(sizeof (*win));
create_window(win, ...);

thr_setspecific(mywindow_key, win);
}

void free_key(void *win) {
free(win) ;

}

First, geta unique value for the key, mywindow_key. This key is used to identify the
thread-specific class of data. So, the first thread to call make_mywindow calls
thr_keycreate(), which assigns to its first argument a unique key. The second
argument is a destructor function that is used to deallocate a thread’s instance of this
thread-specific data item once the thread terminates.

The next step is to allocate the storage for the caller’s instance of this thread-specific data
item. Having allocated the storage, a call is made to the create_window routine, which
somehow sets up a window for the thread and sets the storage pointed to by win to refer
to it. Finally, a call is made to thr_setspeci £ic(), which associates the value contained
in win (that is, the location of the storage containing the reference to the window) with
the key.

After this, whenever this thread calls thr_getspecific(), passing the global key, it gets
the value that was associated with this key by this thread when it called
thr_setspecific().

Programming with Threads 25

=<

i ions that were set up in
When a thread terminates, calls are made to the destructor .?Snﬂo:m that
thr_keycreate(). Each destructor function is called oi% um the terminating thread
established a value for the key by calling thr_setspecific(.

Create a Thread - Advanced Features

thr_create(3T)

#include <thread.h>

int thr_create(void *stack_base, size_t stack_size,
void * (*start_routing) (void *), void *arg, long flags,
thread_t *new_thread) ;

size_t thr_min_stack(void);

tack_base
—Contains the address for the stack that the new thread uses. ‘When stack_| s
msmw.%hmwﬁ EMM thr_create() allocates a stack for the new thread with at least stack_size
bytes.
i ize, i thread uses. If
ize—Contains the size, in number of bytes, for the stack that .ﬁﬁ new
mgmwwww size manm?: a default size is used. If stack_size is not zero, it must be greater than
the value returned by thr_min_stack(.

A stack of minimum size might not accommodate the stack mn&.bm for start_routine, so i
a stack size is specified it must provide for the minimum requirement plus room for
the start_routine requirements and for the functions that start_routine calls.

i boundaries and any
Typically, thread stacks allocated by thr_create(begin on page any
mwwﬁmmw size is vounded up to the next page boundary. A page with no access permission
is appended to the top of the stack so that most stack overflows result in sending a
SIGSEGV signal to the offending thread. Thread stacks allocated by the caller are used as
is.
When the caller passes in a pre-allocated stack, that stack cannot be freed until the

thr_join() call for that thread has returned, even when the thread is known to have
exited. Then the process exits with a status equal to the return value.

. threads library
ally, you do not need to allocate stack space for threads. The &

%M—M.n%%oww megabyte of virtual memory for each thread’s stack with no swap space
reserved. (The library uses the MAP_NORESERVE option of mmap(2) to make the
allocations.)

26 Multithreaded Programming Guide

Each thread stack created by the threads library has a red zone. The library creates the red
zone by appending a page to the top of a stack to catch stack overflows. This page is
invalid and causes a memory fault if it is accessed. Red zones are appended to all
automatically allocated stacks whether the size is specified by the application or the
default size is used.

Specify stacks or their sizes to thr_create() only when you're absolutely certain you
know that they are correct. There are very few occasions when it is sensible to specify a
stack, its size, or both to thr_create(). It is difficult even for an expert to know if the
right size was specified. This is because even an ABI-compliant program can’t determine
its stack size statically. Its size is dependent on the needs of the particular runtime
environment in which it executes.

Building Your Own Stack

When you specify the size of a thread stack, be sure to account for the allocations needed
by the invoked function and by each function called. The accounting should include
calling sequence needs, local variables, and information structures.

Occasionally you want a stack that is a bit different from the default stack. An obvious
situation is when the thread needs more than one megabyte of stack space. A less obvious
situation is when the default stack is too large. You might be creating thousands of
threads and just not have the virtual memory necessary to handle the several gigabytes of
stack space that this many default stacks require.

The limits on the maximum size of a stack are often obvious, but what about the limits on
its minimum size? There must be enough stack space to handle all of the stack frames
that are pushed onto the stack, along with their local variables and so on.

You can get the absolute minimum on stack size by calling thr_min_stack(), which
returns the amount of stack space required for a thread that executes a null procedure.
Useful threads need more than this, so be very careful when reducing the stack size.

You can specify a custom stack in two ways. The first is to supply a NULL for the stack
location, thereby asking the runtime library to allocate the space for the stack, but to
supply the desired size in the stack-size parameter to thr_create(.

The other approach is to take overall aspects of stack management and supply a pointer
to the stack to thr_create(). This means that you are responsible not only for stack
allocation but also for stack deallocation—when the thread terminates, you must arrange
for the disposal of its stack.

Programming with Threads 27

When you allocate your own stack, be sure to append a red zone to its end by calling
mprotect(2).

start_routine ~ Contains the function with which the new thread begins execution. When
start_routine returns, the thread exits with the exit status set to the value returned by
start_routine (see thr_exit(3T)).

Note that you can supply only one argument. To get your procedure to take multiple
arguments, encode them as one (such as by putting them in a structure). This
argument can be anything that is described by void, which is typically any 4-byte
value. Anything larger must be passed indirectly by having the argument point to it.

flags — Specifies attributes for the created thread. In most cases you want to supply a zero
to the flags argument.

The value in flags is constructed from the bitwise inclusive OR of the following.

THR_ SUSPENDED - Suspends the new thread and does not execute starf_routine until
the thread is started by thr_continue(). Use this to operate on the thread (such as
changing its priority) béfore you run it. The termination of a detached thread is
ignored.

THR_DETACHED - Detaches the new thread so that its thread ID and other resources
can by reused as soon as the thread terminates. Set this when you do not want to
wait for the thread to terminate.

When there is no explicit synchronization to prevent it, an unsuspended, detached
thread can die and have its thread ID reassigned to another new thread before its
creator returns from thr_create().

EOGZU|Wm§gm%E=%5mumS§mEgréAgobmsgammmgzam
thread). .

THR_NEW_LWP — Increases the concurrency level for unbound threads by one. The
effect is similar to incrementing concurrency by one with
thr_setconcurrency(3T), although this does not affect the level set through the
thr_setconcurrency() function. Typically, THR_NEW_LWP adds a new LWP to
the pool of LWPs running unbound threads.

When you specify both THR_BOUND and THR_NEW_LWE, two LWPs are typically
created—one for the bound thread and another for the pool of LWPs running
unbound threads.

28 Muiltithreaded Programming Guide

THR_DAEMON — Marks the new thread as a daemon. The process exits when all
non-daemon threads exit. Daemon threads do not affect the process exit status and
are ignored when counting the number of thread exits.

A process can exit either by calling exit(2) or by having every thread in the
process that was not created with the THR_DAEMON flag call thr_exit(3T). An
application, or a library it calls, can create one or more threads that should be
ignored (not counted) in the decision of whether to exit. The THR_DAEMON flag
identifies threads that are not counted in the process exit criterion.

new_thread — Points to a location (when new_thread is not NULL) where the ID of the new
thread is stored when thr_create() is successful. The caller is responsible for
supplying the storage this argument points to. The ID is valid only within the calling
process.
If you are not interested in this identifier, supply a zero value to new_thread.

Return Values — thr_create() returns a zero and exits when it completes successfully.
Any other returned value indicates that an error occurred. When any of the following
conditions are detected, thr_create() fails and returns the corresponding value:

EAGAIN A system limit is exceeded, such as when too many LWPs have been
created.

ENOMEM Not enough memory was available to create the new thread.
EINVAL stack_base is not NULL and stack_size is less than the value returned by
thr_min_stack().
thr_create(3T) Example

Code Example 2-5 on page 30 shows how to create a default thread with a new signal
mask (new_mask) that is assumed to have a different value than the creator’s signal mask
(orig_mask).

In the example, new_mask is set to block all signals except for SIGINT. Then the
creator’s signal mask is changed so that the new thread inherits a different mask, and is
restored to its original value after thr_create(returns.

Programming with Threads

This example assumes that SIGINT is also unmasked in the creator. When it is masked by
the creator, then unmasking the signal opens the creator up to this signal. The other
alternative is to have the new thread set its own signal mask in its start routine.

Code Example 2-5 thr_create() Creates Thread With New Signal Mask

thread_t tid;
sigset_t new_mask, orig_mask;
int error;

(void)sigfillset (&new_mask) ;

(void)sigdelset (&new_mask, SIGINT); (void) thr_sigsetmask (SIGSETMASK,
&new_mask, &orig_mask):

error = thr_create(NULL, 0, dofunc, NULL, 0, &tid);

(void) thr_sigsetmask (SIGSETMASK, NULL, &orig_mask);

Get and Set Thread Concurrency Level

thr_getconcurrency(3T)

Use thr_getconcurrency() to get the current value of the desired concurrency level.
Note that the actual number of simultaneously active threads can be larger or smaller
than this number.

Get the Minimal Stack Size

thr_min_stack(3T)
Use thr_min_stack(3T) to get the minimum stack size for a thread.

#include <thread.h>

size_t thr_min_stack(void);

thr_min_stack() returns the amount of space needed to execute a null thread (a null
thread is a thread that is created to execute a null procedure).

A thread that does more than execute a null procedure should allocate a stack size greater
than the size of thr_min_stack().

When a thread is created with a user-supplied stack, the user must reserve mﬁoumw space
to run the thread. In a dynamically linked execution environment, it is difficult to know
what the thread minimal stack requirements are.

Most users should not create threads with user-supplied stacks. User-supplied stacks

exist only to support applications wanting complete control over their execution
environments.

Instead, users should let the threads library manage stack allocation. The threads library -

provides default stacks that should meet the requirements of any created thread.

30 Multithreaded Programming Guide

#include <thread.h>

int thr_getconcurrency(void)

Return Values — thr_getconcurrency() always returns the current value for the
desired concurrency level. -

thr_setconcurrency(3T)

Use thr_setconcurrency() to set the desired concurrency level.

#include <thread.h>

int thr_setconcurrency(new_level)

Unbound threads in a process might or might not be required to be simultaneously .
active. To conserve system resources, the threads system ensures by default that enough
threads are active for the process to make progress and to ensure that the process will not
deadlock through a lack of concurrency.

Because this might not produce the most effective level of concurrency, .
thr_setconcurrency () permits the application to give the threads system a hint,
specified by new_level, for the desired level of concurrency.

The actual number of simultaneously active threads can be larger or smaller than
new_level.

Note that an application with multiple compute-bound threads can fail to schedule all the
runnable threads if thr_setconcurrency() has not been called to adjust the level of
execution resources.

You can also affect the value for the desired concurrency level by setting the
THR_NEW_LWP flag in thr_create().

Programming with Threads 31

Return Values — thr_setconcurrency() returns a zero when it completes successfully.
Any other returned value indicates that an error occurred. When any of the following

nww&moum E.m&mﬂmnnm?nrﬂlmmnoounﬁﬁﬂmuoivmmwmmbnamnﬁgmnwm corresponding
value:

EAGAIN The specified concurrency level would cause a system resource to be
exceeded.

EINVAL The value for new_level is negative.

Get and Set Thread Priority
An unbound thread is usually scheduled only with respect to other threads in the process

using mﬁﬁ_m priority levels with no adjustments and no kernel involvement. Its system
priority is usually uniform and is inherited from the creating process.

thr_getprio(3T)
Use thr_getprio(to get the current priority for the thread.

#include <thread.h>

int thr_getprio(thread_t target_thread, int *pri)

Each thread inherits a priority from its creator. thr_getprio() stores the current priority,
target_thread, in the location pointed to by pri.

Return Values — thr_getprio() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs,
thr_getprio() fails and returns the corresponding value:

ESRCH target_thread cannot be found in the current process.
thr_setprio(3T)
Use thr_setprio() to change the priority of the thread.

#include <thread.h>

int thr_setprio(thread_t target_thread, int pri)

32) Multithreaded Programming Guide

thr_setprio() changes the priority of the thread, specified by farget_thread, within the
current process to the priority specified by pri. By default, threads are scheduled based on
fixed priorities that range from zero, the least significant, to the largest integer. The
target_thread will preempt lower priority threads, and will yield to higher priority
threads.

Return Values — thr_setprio() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, thr_setprio() fails and returns the corresponding value:

ESRCH target_thread cannot be found in the current process.

EINVAL The value of pri makes no sense for the scheduling class associated with
the target_thread.

Scheduling and the Threads Library
The following 1ibthread routines affect thread scheduling.

* thr_setprio() and thr_getprio() '
These routines alter and retrieve the priority of the target_thread, which is the priority
used by the scheduler in the user-level threads library, and not the priority used by the
operating system to schedule LWPs.

This priority affects the assignment of threads to LWPs—when there are more
runnable threads than there are LWPs, the higher-priority threads are given LWPs. The
scheduling of threads is preemptive, meaning that when a thread becomes runnable
and its priority is higher than that of some thread currently assigned to an LWF, and
there are no other available LWPs, then the lower-priority thread must relinquish its
LWP to the higher-priority thread.

* thr_suspend() and thr_continue()
These routines control whether a thread is allowed to run. By calling thr_suspend(,
you put a thread into the suspended state, meaning that it is set aside and will not be
granted an LWP even if one is available. The thread is taken out of this state when
some other thread calls thr_continue() with the suspended thread as the target.
These two routines should be used with care—their effects can be dangerous. For
example, the thread being suspended might be holding a lock on a mutex, and
suspending it could result in a deadlock.

A thread can be created in the suspended state by including the THR_SUSPENDED flag
in the flags parameter of thr_create(.

Programming with Threads 33

* thr yield()
The thr_yield() routine causes the calling thread to relinquish its LWP when a
thread of equal priority is runnable and not suspended. (There cannot be a runnable
thread of higher priority that is not running, since it would have taken the LWP by
preemption.) This routine is of particular importance because there is no time-slicing of
threads on LWPs (although, of course, the operating system time-slices the execution of
LWPs).

Finally, note that priocnt1(2) also affects thread scheduling. See “LWPs and Scheduling
Classes” on page 76 for more information.

34 Multithreaded Programming Guide

Programmingwith
Synchronization Objects 3

This chapter describes the four synchronization types available with threads and
discusses synchronization concerns.

Mutual Exclusion Locks page 36
| Condition Variables page 45
Multiple-Readers, Single-Writer Locks page 57
Semaphores page 63
Synchronization Across Process Boundaries page 70
Comparing Primitives page 72

Synchronization objects are variables in memory that you access just like data. Threads in

* different processes can synchronize with each other through synchronization variables

placed in shared memory, even though the threads in different processes are generally
invisible to each other.

Synchronization variables can also be placed in files and can have lifetimes beyond that of
the creating process.

The types of synchronization objects are:

* Mutex Locks

¢ Condition Variables
® Readers/Writer Locks
® Semaphores

Here are some multithreading situations in which synchronization is important.

* Threads in iwo or more Pprocesses can use a single synchronization variable jointly.
Note that the synchronization variable should be initialized by only one of the
cooperating processes, as reinitializing a synchronization variable sets it to the unlocked
state.

¢ Synchronization is the only way to ensure consistency of shared data.

3

o A process can map a file and have a thread in this process get a record’s lock. When
nr% muodification _M done, the thread releases the lock Em& unmaps the m_m.. Once Em.
lock is acquired, any other thread in any process mapping the file that tries to acquire
the lock is blocked until the lock is released.

Synchronization can ensure the safety of mutable data.

*

oy . . R A iable.
Synchronization can be important even when accessing a m.Em_m primitive variable,
mWMa as an integer. On machines where the integer is not aligned to the bus data width
or is larger than the data width, a single memory load can use more than one memory
cycle. While this cannot happen on the SPARC® architecture, portable programs cannot
rely on this.

Mutual Exclusion Locks .
Use mutual exclusion locks (mutexes) to serialize thread execution. Mutual exclusion

locks synchronize threads, usually by ensuring that oEM one thread at a time executes a
R..Enm_v.“—m&ou of code. Mutex locks can also preserve single-threaded code.

Tuble3-1 Routines for Mutual Exclusion Locks

Routine Operation Page

mutex_init(3T) Initialize « Mutual Exclusion Lock page 37
mutex_lock(3T) Lock a Mutex page 37
§=~§H3\gmd Lock with a Nonblocking Mutex page 38
mutex_unlock(3T) Unlock a Mutex page 38
mutex_destroy(3T) Destroy Mutex State page 39

. s hen
Mutexes can be used to synchronize threads in this process and other processes W]
they are allocated in memory that is writable and shared among the cooperating
processes (see mmap(2)) and if they have been initialized for this behavior.

Mutexes must be initialized before use.

Note that there is no defined order of acquisition when multiple threads are waiting for a
mutex.

36 Muiltithreaded Programming Guide

Initialize a Mutual Exclusion Lock

mutex_init(3T)

#include <synch.h> (or #include <thread.h>)

int mutex_init(mutex_t *mp, int fype, void * arg) ;

Use mutex_init(to initialize the mutex pointed to by mp. The type can be one of the
following (note that arg is currently ignored).

USYNC_PROCESS ~ The mutex can be used to synchronize threads in this and other
processes.

USYNC_THREAD ~ The mutex can be used to synchronize threads in this process, only

Zﬁmxmmnmbu._mowmwmmmmn&vwmbonmmgmbnﬂommBmBogFSEnrnmmmm%mom
USYNC_THREAD is assumed. :

Multiple threads must not initialize the same mutex simultaneously. A mmitex lock must
not be reinitialized while other threads might be using it.

Return Values — mutex_init(returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT mp or arg points to an illegal address.

Lock a Mutex

mutex_lock(3T)

#include <synch.h> (or #include <thread.h>)

int mutex_lock{mutex_t *mp);

Use mutex_lock(to lock the mutex pointed to by mp. When the mutex is already
locked, the calling thread blocks until the mutex becomes available (blocked threads wai

on a prioritized queue). When mutex,_lock(returns, the mutex is locked and the calling
thread is the owner.

Programming with Synchronization Objects

Return Values — mutex_lock() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and feturns the corresponding value:

EINVAL Invalid argument.
EFAULT mp points to an illegal address.
Lock witha N onblocking Mutex

mutex_trylock(3T)

#include <synch.h> (or #include <thread.h>)

int mutex_trylock (mutex_t *mp) ;

Use mutex_trylock() to attempt to lock the mutex pointed to by mp. This function is a
nonblocking version of mutex_lock(). When the mutex is already locked, this call
returns with an error. Otherwise, the mutex is locked and the calling thread is the owner.

Return Values — mutex_trylock() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value:

EINVAL
EFAULT mp points to an illegal address,
EBUSY The mutex pointed to by mp was already locked.

Invalid argument.

Unlock a Mutex

mutex_unlock(3T)

#include <synch.h> (or #include <thread.h>)

int mutex_unlock (mutex_t *mp) ;

Use mutex_unlock() to unlock the mutex pointed to by mp. The mutex must be locked
and the calling thread must be the one that last locked the mutex (the owner). When any
other threads are waiting for the mutex to become available, the thread at the head of the
queue is unblocked.

38 Multithreaded Programming Guide

i fully. Any other
Return Values — mutex_unlock() returns zero after completing success ny
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT mp points to an illegal address.
Destroy Mutex State

mutex_destroy(3T)

#include <synch.h> (or #include <thread.h>)

int mutex_destroy (mutex_t *mp) ;

Use mutex_destroy() to destroy any state associated with the mutex pointed to by mp.

Note that the space for storing the mutex is not freed.

i fully. Any
Return Values — mutex_destroy() returns zero after completing success:)
other returned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value:

EINVAL
EFAULT

Invalid argument.
mp points to an illegal address.

Programming with Synchronization Objects

39

Mutex Lock Code Example

Code Example 3-1 Mutex Lock Example

mutex_t count_mutex;
int count;

increment_count ()

{
mutex_lock{&count_mutex) ;
count = count + 1;
mutex_unlock (&count_mutex);

}

int
get_count ()
{

int ¢;

mutex_lock(&count_mutex) ;

¢ = count;

metex_unlock (&count_mutex) ;
return (¢);

3

Using Locking Hierarchies

You will occasionally want to access two resources at once. Perhaps you are using one of
the resources, and then discover that the other resource is needed as well. As shown in
Code Example 3-2, there could be a problem if two threads attempt to claim both
resources but lock the associated mutexes in different orders. In this example, if the two
threads lock mutexes 1 and 2 respectively, then a deadlock occurs when each attempts to
lock the other mutex.

Code Example 3-2 Deadlock
Thread 1 Thread 2

mutex_lock{&ml);
/* use resource 1 */
mutex_lock (&m2) ;

/* use resources
1 and 2 */

mutex_unlock (&m2) ;
mutex_unlock (&ml) ;

matex_lock(&m2);

mutex_lock(&ml);

1 and 2 */

mutex_unlock(&ml) ;
mutex_unlock (&m2);

/* use resource 2 */

/* use resources

The two functions in Code Example 3-1use the mutex lock for different purposes.
increment_count() uses the mutex lock simply to assure an atomic! update of the
shared variable. get_count() uses the mutex lock to guarantee that memory is
synchronized when it refers to count.

P

40 Multithreaded Programming Guide

The best way to avoid this problem is to make sure that whenever threads lock multiple
mutexes, they do so in the same order. This technique is known as lock hierarchies: order
the mutexes by logically assigning numbers to them.

Also, honor the restriction that you cannot take a mutex that is assigned i when you are
holding any mutex assigned a number greater than i.

Note - The lock_1int tool can detect the sort of deadlock problem shown in this
example. The best way to avoid such deadlock problems is to use lock hierarchies: when
locks are always taken in a prescribed order, deadlock cannot occur.

Programming with Synchronization Objects 41

However, this technique cannot always be used—sometimes you must take the mutexes
in an order other than the prescribed one. To prevent deadlock in such a situation, one
thread must release the mutexes it currently holds if it discovers that deadlock would
otherwise be inevitable. Code Example 3-3 shows how this is done.

Code Example 3-3 Conditional Locking

Thread 1 Thread 2
for (;:) {
mutex lock(&ml) ; mutex_lock (&m2) ;
mutex_lock (&m2) ; if (mutex_trylock(&ml)
==0)
mutex_unlock(&m2) ; /* got itt */
break;

mutex_unlock(&ml) ;
/* didn‘t get it */
mutex_unlock(&m2) ;

}

mutex_wunlock{&ml);

mutex_unlock(&m2) ;

& mm—

This example uses a singly linked list structure with each node containing a mutex. To
remove a node from the list, first search the list starting at ListHead (which itself is
never removed) until the desired node is found.

To protect this search from the effects of concurrent deletions, lock each node before any
of its contents can be accessed. Because all searches start at ListHead, there is never a
deadlock because the locks.are always taken in list order.

When the desired node is found, lock both the node and its predecessor because the

change involves both nodes. Because the predecessor’s lock is always taken first, you are
again protected from deadlock.

Code Example 3-5 shows the C code to remove an item from a singly linked list.
Code Example 3-5 Singly Linked List with Nested Locking

In this example, thread 1 is locking the mutexes in the prescribed order, but thread 2 is
taking them out of order. To make certain that there is no deadlock, thread 2 has to take
mutex 1 very carefully: if it were to block waiting for the mutex to be released, it is likely
to have just entered into a deadlock with thread 1.

To make sure this does not happen, thread 2 calls mutex_trylock, which takes the
mutex if it is available. If it is not, thread 2 returns immediately, reporting failure. At this
point, thread 2 must release mutex 2, so that thread 1 can lock it, then release both mutex
1 and mutex 2.

Nested Locking With a Singly Linked List

Code Example 3-4 takes three locks at once, but prevents deadlock by taking the locks in
a prescribed order.

Code Example 3-4 Singly Linked List Structure

nodel_t *delete(int value) {
nodel_t *prev, *curent;

prev = &ListHead;
mutex_lock (&prev->lock) ;

while ((current = prev-s>link) != NULL) {
mutex_lock(¤t->lock) ;
if (current->value == value) {

prev->link = current->link;
mutex_unlock(¤t->lock) ;
mutex_unlock (&prev->lock) ;
current->link = NULL;
return(current) ;

}

mutex_unlock {&prev->lock) ;

prev = current;

}
mutex_unlock {&prev->lock) ;
return (NULL) ;

typedef struct nodel {
int value;
struct nodel *1link;
mutex_t lock;

} nodel_t;

nodel_t ListHead;

2 Multithreaded Programming Guide

2 ing with Synchronization Objects 43

b

Nested Locking With a Circular Linked List

Code m..,.xmh.%_m 3-6 modifies the previous list structure by converting it into a circular list.
.?Q.m is no longer a &.wgmamr& head node; now a thread might be associated with a
WMM_M“_E :omm Mbn might Wmnmc”._g Mvm.»mosm on that node and its neighbor. Note that
erarchies do not work easily here because the obvious hi i
o y erarchy (following the

Code Example 3-6 Circular Linked List Structure .

typedef struct node2 {
int value;
struct node2 *1link;
mutex_t lock;

} node2_t;

Code Example 3-7 shows the C code that acquires the locks on two nodes and performs
an operation involving both of them.

Code Example 3-7 Circular Linked List With Nested Locking

void Hit Neighbor(node2_t *me) {
while (1) {
mutex_lock(&me->lock) ;

if (mutex_lock(&me->link->lock)) {
/* failed to get lock */
mutex,_unlock (&me->lock) ;
continue;

}

break;
}
me->link->value += me->value;
me->value /=2;

mutex_unlock(&me->link->lock]) ;
mutex_unlock (&me-~>1lock) ;

44 . Multithreaded Programming Guide

Condition Variables

Use condition variables to atomically block threads until a particular condition is true.
Always use condition variables together with a mutex lock.

Table3-2 Routines for Condition Variables

Routine Operation Page
cond_init(3T) Initialize a Condition Variable page 46
cond_wait(3T) Block on a Condition Variable page 46
cond_signal(3T) Unblock a Specific Thread page 48
cond_timedwait(3T) Block Until a Specified Event page 49
cond_broadcast(3T) Unblock All Threads page51 .
cond_destroy(3T). Destroy Condition Variable State page 52

With a condition variable, a thread can atomically block until a condition is satisfied. The
condition is tested under the protection of a mutual exclusion lock (mutex).

When the condition is false, a thread usually blocks on a condition variable and
atomically releases the mutex waiting for the condition to change. When another thread
changes the condition, it can signal the associated condition variable to cause one or more
waiting threads to wake up, reacquire the mutex, and re-evaluate the condition.

Condition variables can be used to synchronize threads among processes when they are
allocated in memory that is writable and shared by the cooperating processes.

Always initialize condition variables before using them. Also, note that there is no
defined order of unblocking when multiple threads are waiting for a condition variable.

Programming with Synchronization Objects 45

Initialize a Condition Variable

cond_init(3T)

#include <synch.h> (or #include <thread.h>)

int cond_init(cond_t *cvp, int type, int arg);

Use cond_init() to initialize the condition variable pointed to by cop. The fype can be
one of the following (note that arg is currently ignored).

USYNC_PROCESS - The condition variable can be used to synchronize threads in this
and other processes. arg is ignored.

USYNC_THREAD — The condition variable can be used to synchronize threads in this
process, only. arg is ignored.

Condition variables can also be initialized by allocation in zeroed memory, in which case
a type of USYNC_THREAD is assumed.

Multiple threads must not initialize the same condition variable simultaneously. A
condition variable must not be reinitialized while other threads might be using it.

Return Values -— cond_init() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL type is not a recognized type.
EFAULT cop or arg points to an illegal address.

Block on a Condition Variable

cond_wait(3T)

Any change in the value of a condition associated with the condition variable cannot be
inferred by the return of cond_wait() and any such condition must be re-evaluated.

cond_wait() always returns with the mutex locked and owned by the calling thread
even when returning an error.

The function blocks until the condition is signaled. It atomically releases the associated
mutex lock before blocking, and atomically reacquires it before returning.

In typical use, a condition expression is evaluated under the protection of a mutex lock.
When the condition expression is false, the thread blocks on the condition variable. The
condition variable is then signaled by another thread when it changes the condition
value. This causes one or all of the threads waiting on the condition to unblock and to ry
to reacquire the mutex lock. ’

Because the condition can change before an awakened thread returns from cond_wait(),
the condition that caused the wait must be retested before the mutex lock is acquired. The
recommended test method is to write the condition check as a while loop that calls
cond_wait()."

mutex_lock() ;
while (condition_is_false)
cond_wait();

mutex_unlock();

#include <synch.h> (or #include <thread.h>)

int cond_wait (cond_t *cop, mutex_ t *mp);

Use cond_wait(to atomically release the mutex pointed to by mp and to cause the
calling thread to block on the condition variable pointed to by cup. The blocked thread -
can be awakened by cond_signal(Q), cond_broadcast(), or when interrupted by
delivery of a signal or a fork().

46 Multithreaded Programming Guide

No specific order of acquisition is guaranteed when more than one thread blocks on the
condition variable. . '

Return Values — cond_wait() returns zero after &Bﬁ?.mnm successfully. Any other

“ returned value indicates that an error occurred. When any of the following conditions
. occuy, the function fails and returns the corresponding value:

EFAULT cop points to an illegal address.
'EINTR The wait was interrupted by a signal or a fork(.

Programming with Synchronization Objects 47

Unblock a Specific Thread

cond_signal(3T)

#include <synch.h> (or #include <thread.h>)

int cond_signal (cond_t *cop) ;

Use cond_signal() to unblock one thread that is blocked on the condition variable
pointed to by cup. Call cond_signal () under the protection of the same mutex used
with the condition variable being signaled. Otherwise, the condition variable could be
signaled between the test of the associated condition and blocking in cond_wai t(), which
can cause an infinite wait.

When no threads are blocked on the condition variable, then cond_signal() has no
effect. .

Return Values — cond_signal() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value:

EFAULT - cop points to an illegal address.

48 Multithreaded Programming Guide

Code Example 3-8 Example Using cond_wait(3T) and cond_signal(3T)

mutex t count_lock;
cond_t count_nonzero;
unsigned int count;

decrement_count ()
{
mutex_lock (&count_lock) ;
while (count == 0)
cond_wait (&count_nonzero, &count_lock):;
count = count -~ 1;
mutex_unlock (&count_lock) ;
}
increment_count ()
{
mutex_lock(&count_lock) ;
if (count == 0)
cond_signal (&count_nonzero) ;
count = count + 1;
mutex_unlock(&count_lock) ;

Block Until a Specified Event

cond_timedwait(3T)

#include <synch.h> (or #include <thread.h>)

int cond_timedwait(cond_t *cop, mutex_t *mp,
timestruc_t *abstime);

Use cond_timedwait() as you would use cond_wait(), except that cond_timedwait()
does not block past the time of day specified by abstime.

cond_timedwait() always returns with the mutex locked and owned by the calling
thread even when returning an error.

Programming with Synchronization Objects 2

The cond_timedwait() function blocks until the condition is signaled or until the i
c e time
Mm day m%mn_mmm_ by the last argument has passed. The time-out is specified as a time of
ay so the condition can be retested efficiently without recomputing the tim
as shown in Code Example 3-9. 7 priing e fmeont value,

Return Values — cond_timedwai t() returns zero after completing successfully. An
onrma. returned value indicates that an error occurred. When any ommm_m mouo«isvw Y
conditions occur, the function fails and returns the corresponding value:

EINVAL The specified number of seconds in abstime is greater than the start time
of the application plus 50,000,000, or the number of nanoseconds is
greater than or equal to 1,000,000,000.

EFAULT cop or abstime points to an illegal address.
EINTR The wait was interrupted by a signal or a fork().
ETIME The time specified by abstime has passed.

Code Example 3-9 Timed Condition Wait

Unblock All Threads

cond_broadcast(3T)

#include <synch.h> (or #include <thread.h>)

int cond_broadcast(cond_t *cop);

timestruc_t to;
mutex_t m;
cond_t c;

mutex_lock (&m) ;
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;
while (cond == FALSE) {
err = cond_timedwait(&c, &m, &to);
if (err == ETIME) {
/* timeout, do something */
break;
}
}
mutex_unlock (&m) ;

50 Multithreaded Programming Guide

Use cond_broadcast() to unblock all threads that are blocked on the condition variable
pointed to by cop. When no threads are blocked on the condition variable then
cond_broadcast() has no effect.

This function wakes all the threads blocked in cond_wait(). Since cond_broadcast()
causes all threads blocked on the condition to contend again for the mutex lock, use it
with care.

For example, use cond_broadcast() to allow threads to contend for variable resource
amounts when resources are freed, as shown in Code Example 3-10.

Code Example 3-10 Condition Variable Broadcast

mutex_t rsrc_lock;
cond_t rsrc_add;
unsigned int resources;

get_resources (int amount)

{
mutex_lock(&xrsrc_lock);
while (resources < amount) {

cond_wait (&rsrc_add, &rsrc_lock);

}
resources -= amount;
mutex_unlock(&rsrc_lock) ;

}

add_resources (int amount)

{
mutex_lock{&rsrc_lock) ;
resources += amount;
cond_broadcast (&rsrc_add) ;
mutex_unlock (&rsrc_lock) ;

Programming with Synchronization Objects 51

Note that in add_resources() it does not matter whether resources is updated first or
cond_broadcast() is called first inside the mutex lock.

Return Values — cond_broadcast() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following condition
occurs, the function fails and returns the corresponding value:

EFAULT - cop points to an illegal address.

Call cond_broadcast() under the protection of the same mutex used with the condition
variable being signaled. Otherwise, the condition variable could be signaled between the
test of the associated condition and blocking in cond_wai t(), which can cause an infinite
wait.

Destroy Condition Variable State

cond_destroy(3T)

#include <synch.h> (or #include <thread.h>)

int cond_destroy(cond_t *cup);

Use cond_destroy() to destroy any state associated with the condition variable pointed
to by cop. The space for storing the condition variable is not freed.

Return Values — cond_destroy(returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition occurs, the
function fails and returns the corresponding value:

EFAULT - cop points to an illegal address.

The Lost Wake-Up Problem

Calling cond_signal() or cond_broadcast() when the thread does not hold the mutex
lock associated with the condition can lead to lost wake-up bugs. A lost wake up occurs
when a signal or broadcast has been sent but a thread is waiting on the condition variable
even though the condition is true. This happens when the thread that calls
cond_signal(does not hold the mutex locally.

If the thread calls cond_signal() when another thread is between the test of the
condition and the call to cond_wait(), there are no waiting threads and the signal has no
effect. :

52 - Multithreaded Programming Guide

The Producer/Consumer Problem

This problem is one of the small collection of standard, well-known problems in
concurrent programming: a finite-size buffer and two classes of threads, producers and
consumers, put items into the buffer (producers) and take items out of the buffer
(consumers).

A producer must wait until the buffer has space before it can put something in, and a
consumer must wait until something is in the buffer before it can take something out.

A condition variable represents a queue of threads waiting for some condition to be
signaled.

Code Example 3-11 has two such queues, one (1ess) for producers waiting for a slot in
the buffer, and the other (more) for consumers waiting for a buffer slot containing
information. The example also has a mutex, as the data structure describing the buffer
must be accessed by only one thread at a time.

This is the code for the buffer data structure.
Code Example 3-11 The Producer/{Consumer Problem and Condition Variables

typedef struct {
char buf [BSIZE];
int occupied;
int nextin;
int nextout;
mutex_t mutex;
cond_t more;
cond_t less;

} buffer_t;

buffer_t buffer;

As Code Example 3-12 on page 54 shows, the producer thread takes the mutex protecting
the buffer data structure and then makes certain that space is available for the item
being produced. If not, it calls cond_wait(), which causes it to join the queue of threads
waiting for the condition less, representing there is room in the buffer, to be signaled.

At the same time, as part of the call to cond_wait(), the thread releases its lock on the
mutex. The waiting producer threads depend on consumer threads to signal when the

condition is true (as shown in Code Example 3-12). When the condition is signaled, the
first thread waiting on less is awakened. However, before the thread can return from

cond_wait(), it must reacquire the lock on the mutex.

Programming with Synchronization Objects 53

This ensures that it again has mutually exclusive access to the buffer data structure. The
thread then must check that there really is room available in the buffer; if s0, it puts its
item into the next available slot.

At the same time, consumer threads might be waiting for items to appear in the buffer.
These threads are waiting on the condition variable more. A producer thread, having just
deposited something in the buffer, calls cond_signal() to wake up the next waiting
consumer. (If there are no waiting consumers, this call has no effect.) Finally, the producer
thread unlocks the mutex, allowing other threads to operate on the buffer data structure.

Code Example 3-12" The Producer|/Consumer Problem — the Producer

void producer (buffer_t *b, char item) {
mutex_lock (&b->mutex) ;

while (b-»occupied >= BSIZE)
cond_wait (&b->less, &b->mutex);

assert (b->occupied < BSIZE);
b~>buf [b->nextin++] = item;

b->nextin %= BSIZE;
b->occupied++;

/* now: either b->occupied < BSIZE and b~>nextin is the index
of the next empty slot in the buffer, or
b->occupied == BSIZE and b->nextin is the index of the
next (occupied) slot that will be emptied by a consumer
(such as b->nextin == b->nextout) */

cond_signal (&b->more) ;

mutex_unlock(&b->mutex) ;

}

Note the use of the assert() statement; unless the code is compiled with NDEBUG
defined, assert(does nothing when its argument evaluates to true (that is, non-zero),
but causes the program to abort if the argument evaluates to false (zero).

Such assertions are especially useful in multithreaded programs—they immediately point
out runtime problems if they fail, and they have the additional effect of being useful
comments.

54 Multithreaded Programming Guide

3

The code comment a few lines later could better be expressed i .
> as an assertion, but it i
complicated to say as a Boolean-valued expression MH.M s0 is said here in MMWEM-.: Bieo

Both the assertion and the comments are examy invari i
ples of invariants. These are logical
MJMBQR that should not be .mm_mmmmm by the execution of the program, mxnmw“ during
m“._ f moments when a n_.ﬁwmm is modifying some of the program variables mentioned in
€ invariant. (An assertion, of course, should be true whenever any thread executes it.)

Using invariants is an extremely useful techni
ot que. Even when they are not st i
program text, think in terms of invariants when you analyze a ﬁquntH.ﬂo stated in the

comment to just after the mutex_unlock(), this does not necessaril i
. ! - \ remain true. If
move this comment to just after the assert, this is still true. Y soyon

The point is that this invariant expresses a i i

y q property that is true at all times, except wh
either a producer or a consumer is changing the state of the buffer. While a msmmﬂ is =
operating on the buffer (under the protection of a mutex), it might temporarily falsify the
Invariant. However, once the thread is finished, the invariant should be true again.

Code Example 3-13 shows the code for the i ic wi
e oot consumer. Its flow is symmetric with that of

Programming with Synchronization Objects 55

]
S

Code Example 3-13 The Producer| Problem — the C

char consumer (buffer_t *b) {
char item;
mutex_lock(&b->mutex) ;
while(b->occupied <= 0)
cond_wait (&b->more, &b->mutex);

assert (b->occupied > 0);
item = b->buf [b->nextout++];
b->nextout %= BSIZE;

b->occupied--;

/* now: either b->occupied > 0 and b->nextout is the index
of the mext occupied slot in the buffer, or

b->occupied == 0 and b->nextout is the index of the next
{empty) slot that will be filled by a producer (such as
b->nextout == b->nextin) */

cond_signal (&b->less);
mutex_unlock (&b->mutex) ;

return(item);

W
i

Multiple-Readers, Single-Writer Locks

Readers/Writer locks allow simultaneous read access by many threads while restricting
write access to only one thread at a time.

Table 3-3 Routines for Readers{Writer Locks

56 Multithreaded Programming Guide

Routine Operation Page

rwlock_init(3T) Initiglize a Readers{Writer Lock page 58
rw_rdlock(3T) Acquire a Read Lock page 58
rw_tryrdlock(3T) Try to Acquire a Read Lock page 59
rw_wrlock(3T) Acquire @ Write Lock page 59
rw_trywrlock(3T) Try to Acquire a Write Lock page 60
rw_unlock(3T) Unlock a Readers|Writer Lock page 60
rwlock_destroy(3T) Destroy Readers/Writer Lock State page 61

When any thread holds the lock for reading, other threads can also acquire the lock for
reading but must wait to acquire the lock for writing. If one thread holds the lock for
writing, or is waiting to acquire the lock for writing, other threads must wait to acquire
the lock for either reading or writing.

Readers/Writer locks are slower than mutexes, but can improve performance when they
protect data that are not frequently written but that are read by many concurrent threads.

Use readers/writer locks to synchronize threads in this process and other processes by
allocating them in memory that is writable and shared among the cooperating processes
(see mmap(2)) and by initializing them for this behavior.

By default, the acquisition order is not defined when muitiple threads are waiting for a
readers/writer lock. However, to avoid writer starvation, the Solaris threads package
tends to favor writers over readers.

Readers/Writer locks must be initialized before use.

Programming with Synchronization Objects 57

Initialize a Readers/Writer Lock

rwlock_init(3T)

#include <synch.h> (or #include <thread.h>)

int rwlock_init(rwlock_t *rwlp, int fype, void * arg);

Use rwlock_init() to initialize the readers/writer lock pointed to by xwlp and to set
the lock state to unlocked. type can be one of the following (note that arg is currently
ignored).

USYNC_PROCESS ~— The readers/writer lock can be used to synchronize threads in this
process and other processes. arg is ignored.

USYNC_THREAD ~ The readers/writer lock can be used to synchrorize threads in this
process, only. arg is ignored.

Multiple threads must not initialize the same readers/writer lock simultaneously.
Readers/Writer locks can also be initialized by allocation in zeroed memory, in which
case a type of USYNC_THREAD is assumed. A readers/writer lock must not be reinitialized
while other threads might be using it.
Return Values — rwlock_init() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument

EFAULT rwlp or arg points to an illegal address.
Acquire a Read Lock

rw_rdlock(3T)

#include <synch.h> {or #include <thread.h>)

int rw_rdlock(xrwlock_t *rwip);

Use rw_rdlock(to acquire a read lock on the readers/writer lock pointed to by rwip.
When the readers/writer lock is already locked for writing, the calling thread blocks until
the write lock is released. Otherwise, the read lock is acquired.

58 Multithreaded Programming Guide

J aswa

Return Values — rw_rdlock() returns zero after completing mnnommm?_w%. Any o.m._on
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

_EINVAL Invalid argument.
EFAULT rwip points to an illegal address.

Try to Acquire a Read Lock

rw_tryrdlock(3T)

*MuowﬂmmAm&bor.uvS:mbnwcmm Anﬁmmm.#vv ,
int rw_tryrdlock(xrwlock_t *rwlp);

Use rw_tryrdlock() to attempt to acquire a read lock on the readers/ Su..w.mn E.nw .
pointed to by rwlp. When the readers/writer lock is already locked for writing, it returns
an error. Otherwise, the read lock is acquired.

Return Values — rw_tryrdlock() returns zero after completing wﬂnn@m.m?h%. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT rwlp points to an illegal address.
EBUSY The readers/writer lock pointed to by rwlp was already locked.

Acquire a Write Lock

rw_wrlock(3T)

#include <synch.h> (or #include <thread.h>)

int rw_wrlock(rwlock_t *ruwlp);

i i i i by rwip.
Use rw_wrlock(to acquire a write lock on the anmnm.\ 'writer Ho.n% pointed to by
When the readers/writer lock is already locked for reading or writing, the calling thread
blocks until all the read locks and write locks are released. Only one thread at a time can
hold a write lock on a readers/writer lock.

Programming with Synchronization Objects 59

—

Return Values — rw_wrlock() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT rwlp points to an illegal address.

Try to Acquire a Write Lock

w_trywrlock(3T).

#include <synch.h> (or #include <thread.h>)

int rw_trywrlock(rwlock_ t *rwlp);

Use rw_trywrlock() to attempt to acquire a write lock on the readers/writer lock
pointed to by rwip. When the readers/writer lock is already locked for reading or writing,
it returns an error.

Return Values — rw_trywrlock(returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT rwlp points to an illegal address.
EBUSY The readers/writer lock pointed to by rwlp was already locked.

Unlock a Readers/Writer Lock

rw_unlock(3T)

#include <synch.h> (or #include <thread.h>)

int rw_unlock(rwlock_t *rwlp);

Use rw_unlock(to unlock a readers/writer lock pointed to by rwlp. The readers/writer
lock must be locked and the calling thread must hold the lock either for reading or
writing. When any other threads are waiting for the readers/writer lock to become
available, one of them is unblocked.

60 Multithreaded Programming Guide

Return Values — rw_unlock() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT rwlp points to an illegal address.

Destroy Readers/Writer Lock State

rwlock_destroy(3T)

#include <synch.h> (or #include <thread.h>)

int rwlock_destroy(xrwlock_ t *rwlp);

Use rwlock_destroy() to destroy any state associated with the readers/writer lock
pointed to by rlwp. The space for storing the readers/writer lock is not freed.

_ Return Values — rwlock_destroy() returns zero after completing successfully. Any

other returned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT rwlp points to an illegal address.

Code Example 3-14 uses a bank account to demonstrate readers/writer locks. While the
program could allow multiple threads to have concurrent read-only access to the accoun
balance, only a single writer is allowed. Note that the get_balance() function needs the
lock to ensure that the addition of the checking and saving balances occurs atomically.

Programming with Synchronization Objects ¢

Code Example 3-14 Read|Write Bank Account

fwlock_t account_lock;
float checking_balance = 100.0 :
float saving_balance = 100.0;

rwlock_init (&account_lock, 0, NULL);
float

get_balance() {

float bal;

rw_rdlock (&account_lock) ;

bal = checking_balance + saving_balance;
rw_unlock (&account_lock) ;

return(bal);

}

void :

transfer checking_to_savings(float amount) {
rw_wrlock (&account_lock) ;

checking_balance = checking_balance - amount;
savings_balance = savings_balance + amount;
rw_unlock (&account_lock) ;

62 Muitithreaded Programming Guide

g
5

Semaphores

Semaphores are a programming construct designed by E. W. Dijkstra in the late 1960s.
Dijkstra’s model was the operation of railroads: consider a stretch of railroad in which
there is a single track over which only one train at a time is allowed.

Guarding this track is a semaphore. A train must wait before entering the single track
until the semaphore is in a state that permits travel. When the train enters the track, the
semaphore changes state to prevent other trains from entering the track. A train that is
leaving this section of track must again change the state of the semaphore to allow
another train to enter.

In the computer version, a semaphore appears to be a simple integer. A thread waits for
permission to proceed and then signals that it has proceeded by performing a P operation
on the semaphore.

The semantics of the operation are such that the thread must wait until the semaphore’s
value is positive, then change the semaphore’s value by subtracting one from it. When it
is finished, the thread performs a V operation, which changes the semaphore’s value by
adding one to it. It is crucial that these operations take place atomically—they cannot be
subdivided into pieces between which other actions on the semaphore can take place. In
the P operation, the semaphore’s value must be positive just before it is decremented
(resulting in a value that js guaranteed to be non-negative and one less than what it was
before it was decremented).

In both P and V operations, the arithmetic must take place without interference. If two V
operations are performed simultaneously on the same semaphore, the net effect should be
that the semaphore’s new value is two greater than it was.

The mnemonic significance of P and V is Iost on most of the world, as Dijkstra is Dutch.
However, in the interest of true scholarship: P stands for prolagen, a made-up word
derived from proberen te verlagen, which means try to decrease. V stands for verhogen, which
means increase. This is discussed in one of Dijkstra’s technical notes, EWD 74.

sema_wait(3T) and sema_post(3T) correspond to Dijkstra’s P and V operations.
sema_trywait(3T) is a conditional form of the P operation: if the calling thread cannot
decrement the value of the semaphore without waiting, the call returns immediately with
a non-zero value.

There are two basic sorts of semaphores: binary semaphores, which never take on values
other than zero or one, and counting semaphores, which can take on arbitrary non-
negative values. A binary semaphore is logically just like a mutex.

However, although it is not enforced, mutexes should be unlocked only by the thread
holding the lock. There is no notion of “the thread holding the semaphore,” so any thread
can perform a V (or sema_post(3T)) operation.

Programming with Synchronization Objects 63

Counting semaphores are about as powerful as conditional variables (used in conjunction
with mutexes). In many cases, the code might be simpler when it is implemented with
counting semaphores rather than with condition variables (as shown in the next few
examples).

However, when a mutex is used with condition variables, there is an implied
bracketing—it is clear which part of the program is being protected. This is not
necessarily the case for a semaphore, which might be called the &o to of concurrent
programming—it is powerful but too easy to use in an unstructured, unfathomable way.

Counting Semaphores

Conceptually, a semaphore is a non-negative integer count. Semaphores are typically
used to coordinate access to resources, with the semaphore count initialized to the
number of free resources. Threads then atomically increment the count when resources
are added and atomically decrement the count when resources are removed.

When the semaphore count becomes zero, indicating that no more resources are present,
threads trying to decrement the semaphore block until the count becomes greater than
zero. .

Table3-4 Routines for Semaphores

Routine Operation Page

sema_init(3T) Initialize a Semaphore page 65
sema_posH(3T) Increment a Semaphore page 65
sema_wait(3T) Block on a Semaphore Count page 66
sema_trywait(3T) ' Decrement a Semaphore Count page 66
sema_destroy(3T) Destroy the Semaphore State page 67

Because semaphores need not be acquired and released by the same thread, they can be
used for asynchronous event notification (such as in signal handlers). And, because
semaphores contain state, they can be used asynchronously without acquiring a mutex
lock as is required by condition variables. However, semaphores are not as efficient as
mutex locks.

By default, there is no defined order of unblocking if multiple threads are waiting for a
semaphore,

Semaphores must be initialized before use.

64 Muitithreaded Programming Guide

Initialize a Semaphore

sema_init(3T)

#include <synch.h> (or #include <thread.h>)

int sema_init(sema_t *sp, unsigned int count,int type, void * arg);

Use sema_init() to initialize the semaphore variable pointed to by sp by count amount.
type can be one of the following (note that arg is currently ignored).

USYNC_PROCESS - The semaphore can be used to synchronize threads in this process
and other processes. Only one process should initialize the semaphore. arg is
ignored.

USYNC_THREAD — The semaphore can be used to synchronize threads in this process,
only. arg is ignored.

Multiple threads must not initialize the same semaphore simultaneously. A semaphore
must not be reinitialized while other threads may be using it.

Return Values — sema_init() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT sp or arg points o an illegal address.

Increment a Semaphore

sema_post(3T)

int sema_post (sema_t *sp)

#include <synch.h> (or #include <thread.h>) |‘

Use sema_post() to atomically increment the semaphore pointed to by sp. When any
threads are blocked on the semaphore, one is unblocked.

Programming with Synchronization Objects

Return Values — sema_post() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT sp points to an illegal address.

Block on a Semaphore Count

sema_wait(3T)

#include <synch.h> (or #include <thread.h>)

int sema_wait (sema_t *sp)

O

Return Values — sema_trywait() returns zero after completing successfully. Any other
Teturned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT sp points to an illegal address.
EBUSY The semaphore pointed to by sp has a zero count.

Destroy the Semaphore State

sema_destroy(3T)

Use sema_wait() to block the calling thread until the count in the semaphore pointed to
by sp becomes greater than zero, then atomically decrement it.

Return Values — sema_wait() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT sp points to an illegal address.
EINTR The wait was interrupted by a signal or a foxk().

Decrement a Semaphore Count

sema_trywait(3T)

#include <synch.h> (or #include <thread.h>)

int sema_destroy(sema_t *sp)

#include <synch.h> (or #include <thread.h>)

int sema_trywait(sema_t *sp)

Use sema_trywait() to atomically decrement the count in the semaphore pointed to by
sp when the count is greater than zero. This function is a nonblocking version of
sema_wait().

66 Multithreaded Programming Guide

Use sema_destroy() to destroy any state associated with the semaphore pointed to by
sp. The space for storing the semaphore is not freed.

Return Values — sema_destroy() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value:

EINVAL Invalid argument.
EFAULT sp points to an illegal address.

Programming with Synchronization Objects 67

—-—

i

The Producer/Consumer Problem, Using Semaphores

The data structure in Code Example 3-15 is similar to that used for the solution with
condition variables; two semaphores represent the number of full and empty buffers and
ensure that producers wait until there are empty buffers and that consumers wait until
there are full buffers.

Code Example 3-15 The Producer/Consumer Problem with Semaphores

Code Example 3-16 The Producer/Consumer Problem ~ the Producer

typedef struct {
char buf {BSIZE];
sema_t occupied;
sema_t empty;
int nextin;
int nextout;
sema_t pmut;
sema_t cmut;

} buffer_t;

buffer_t buffer;

sema_init (&buffer.occupied, 0, USYNC_THREAD, 0);
sema_init (&buffer.empty, BSIZE, USYNC_THREAD, 0);
sema_init (&buffer.pmut, 1, USYNC_THREAD, 0);
sema_init (&buffer.cmut, 1, USYNC_THREAD, 0);
buffer.nextin = buffer.nextout = 0;

Another pair of (binary) semaphores plays the same role as mutexes, controlling access to
the buffer when there are multiple producers and multiple empty buffer slots, and when
there are multiple consumers and multiple full buffer slots. Mutexes would work better
here, but would not provide as good an example of semaphore use.

68 Mudltithreaded Programming Guide

void producer (buffer_t *b, char item) {
sema_wait (&b->empty) ;

sema_wait (&b->pmut);
b->buf [b->nextin] = item;
b->nextin++;

b->nextin %= BSIZE;

sema_post (&b->pmut) ;

sema_post (&b->occupied) ;

Code Example 3-17 The Producer/Consumer Problem - the Consumer

char consumer (buffer_t *b) {
char item;

sema_wait (&b->occupied) ;
sema_wait (&b->cmut) ;

item = b->buf[b->nextout];
b->nextout++;

b->nextout %= BSIZE;
sema_post (&b->cmut) ;

sema_post (&b->empty) ;

return(item);

Programming with Synchronization Objects

69

=5

Synchronization Across Process Boundaries

Each of the four synchronization primitives can be set up to be used across process
boundaries. This is done quite simply by ensuring that the synchronization variable is
located in a shared memory segment and by calling the appropriate init routine with
type set to USYNC_PROCESS. If this has been done, then the operations on the
synchronization variables work just as they do when fype is USYNC_THREAD.

Code Example 3-18 The Producer/Consumer Problem, Using USYNC_PROCESS

mutex_init (&m, USYNC_PROCESS, 0);
rwlock_init (&rw, USYNC_PROCESS, 0);
cond_init(&cv, USYNC_PROCESS, 0);

sema_init(&s, count, USYNC_PROCESS, 0);

Code Example 3-18 shows the producer/consumer problem with the producer and
consumer in separate processes. The main routine maps zero-filled memory (that it shares
with its child process) into its address space. Note that mutex_init() and cond_init(
must be called because the type of the synchronization variables is USYNC_ PROCESS.

A child process is created that runs the consumer. The parent runs the producer.

This example also shows the drivers for the producer and consumer. The
producer_driver() simply reads characters from stdin and calls producer(). The
consumer_driver() gets characters by calling consumex() and writes them to stdout.

70 Multithreaded Programming Guide

main() {
int 2z£4;
buffer_t *buffer;

z£d = open(®“/dev/zero”, O_RDWR):;
buffer = (buffer_t *)mmap(NULL, sizeof (buffer_t),

. PROT_READ|PROT WRITE, MAP_SHARED, zfd, 0);
buffer->occupied = buffer->nextin = buffer->nextout =

mutex_init (&buffer->lock, USYNC_PROCESS, 0);
cond_init (&buffer->less, USYNC_PROCESS, 0);
cond_init (&buffer->more, USYNC_PROCESS, 0):;
if (fork() == 0)

consumer_driver (buffer);
else

producer_driver (buffer) ;

}

void producer_driver (buffer_t *b) {
int item;

while (1) {
item = getchar():;
if (item == EOF) {
producer(b, *\0’);
break;
} else
producer (b, (char)item);

}

void consumer_driver (buffer_t *b) {
char item;

while (1) {
if ((item = consumer(b)) == ‘\0’)
break;
putchar (item);

0;

Programming with Synchronization Objects

A child process is created to run the consumer; the parent runs the producer.

Comparing Primitives

The most basic synchronization primitive in Solaris threads is the mutual exclusion lock.
So, it is the most efficient mechanism in both memory use and execution time. The basic
use of a mutual exclusion lock is to serialize access to a resource.

The next most efficient primitive in Solaris threads is the condition variable. The basic use
of a condition variable is to block on a change of state. Remember that a mutex lock must
be acquired before blocking on a condition variable and must be unlocked after returning
from cond_wait() and after changing the state of the variable.

The semaphore uses more memory than the condition variable. It is easier to use in some
circumstances because a semaphore variable functions on state rather than on control.
Unlike a lock, a semaphore does not have an owner. Any thread can increment a
semaphore that has blocked.

The readers/writer lock is the most complex Solaris threads synchronization mechanism.
This means that the readers/writer lock is most efficiently used with a much coarser
granularity than is effective with the other synchronization primitives. A readers/writer
Jock is basically used with a resource whose contents are searched more often than they
are changed.

72 Multithreaded Programming Guide

Programming withthe Operating
System | 4

This chapter describes how multithreading interacts with the Solaris operating system
and how the operating system has changed to support multithreading.

Processes — Changes for Multithreading page73 _
Alarms, Interval Timers, and Profiling page75
Non-local Goto — setjmp(3C) and longjmp(3C) page75
Resource Limits page 75
LWPs and Scheduling Classes page 76
Extending Traditional Signals page 79
1/O Issues page 88

' Processes — Changes for Multithreading

Duplicating Parent Threads

fork(2)

With the fork(2) and fork1(2) functions, you can choose between duplicating all parent
threads in the child or only one parent thread in the child.

The £ork() function duplicates the address space and all the threads (and LWPs) in the
child. This is useful, for example, when the child process never calls exec(2) but does use
its copy of the parent address space.

To illustrate, think about a thread in the parent process—other than the one that called
fork(—that has locked a mutex. This mutex is copied into the child process in its locked
state, but no thread is copied over to unlock the mutex. So, any thread in the child that
tries to lock the mutex waits forever. To avoid this sort of situation, use fork(to
duplicate all the threads in the process.

Note that when one thread in a process calls fork0, threads blocked in an interruptible
system call will return EINTR.

fork1(2)

The forki(2)! function duplicates the complete address space in the child but duplicates
only the thread that called £fork10. This is useful when the child process immediately
calls exec(), which is what happens after most calls to £ork(). In this case, the child
process does not need a duplicate of any thread other than the one that called £ork(2).

Do not call any library functions after calling fork1() and before calling exec()—one of
the library functions might use a lock that is held by more than one thread.

Cautions for Both fork(2) and fork1(2)
For both fork() and fork1(), be careful when you use global state after a call to either.

For example, when one thread reads a file serially and another thread in the process
successfully calls fork(), each process then contains a thread that is reading the file.
Because the seek pointer for a file descriptor is shared after a fork(), the thread in the
parent gets some data while the thread in the child gets the rest.

Also for both fork() and moﬁnpo.\ be careful not to create locks that are held by both the
. parent and child processes. This can happen when locks are allocated in memory that is
sharable (that is mmap(2)'ed with the MAP_SHARED flag).

viork(2)

vEork(2) is like fork1() in that only the calling thread is copied in the child process. As
in nonthreaded implementations, vEoxrk() does not copy the address space for the child
process.

Be careful that the thread in the child process does not change memory before it calls
exec(2). Remember that vEork() gives the parent address space to the child. The parent
gets its address space back after the child calls exec() or exits. It is important that the
child not change the state of the parent.

For example, it is dangerous to create new threads between the call to vEork() and the

call to exec().

1. Terminology will probably change when POSIX 1003.4a is adopted. What is currently called £ork(2) will be called
forkall0, and what s called £ork1(2) will be called £ork0. Also added in POSIXis theidea of the “fork cleanup
handler”— you can call pthread_at£ork() toregister th functions to be called, respectively, just before the £ork(
takes place, and justafter the fork(in both the parent and the child processes. These routines are to clean up locks and so
on, although this is necessary only with the version of ork0 that creates only one thread in the child process.

74 Multithreaded Programming Guide

Executing Files and Terminating Processes

exec(2) and exit(2)

Both the exec(2) and exit(2) system calls work as they do in single-thread processes
except that they destroy all the threads in the address space. Both calls block until all the
execution resources (and so all active threads) are destroyed.

When exec(rebuilds the process, it creates a single LWF. The process start-up code
builds the initial thread. As usual, if the initial thread returns it calls exit() and the
process is destroyed.

When all the threads in a process exit, the process itself exits with a status of zero.

Alarms, Interval Timers, and Profiling

Each LWP has a unique realtime interval timer and alarm that a thread bound to the LWP
can use. The timer or alarm delivers one signal to the thread when the timer or alarm
expires.

Each LWP also has a virtual time or profile interval timer that a thread bound to the LWP

can use. When the interval timer expires, either SIGVTALRM or SIGPROF, as appropriate,
is sent to the LWP that owns the interval timer.

You can profile each LWP with pro£i1(2), giving each LWP its own buffer or sharing
buffers between LWPs. Profiling data is updated at each clock tick in LWP user time. The
profile state is inherited from the creating LWP. ’

Non-local Goto - setjmp(3C) and longjmp(3C)

The scope of setjmp() and 1ongjmp() is limited to one thread, which is fine most of the
time. However, this does mean that a thread that handles a signal can long3j wp() only
when setjmp() is performed in the same thread.

Resource Limits
Resource limits are set on the entire process and are determined by adding the resource
use of all threads in the process. When a soft resource limit is exceeded, the offending

thread is sent the appropriate signal. The sum of the resource use in the process is
available through getrusage(3B).

Programming with the Operating System 75

LWPs and Scheduling Classes

The Solaris kernel has three classes of process scheduling. The highest priority scheduling
class is realtime (RT). The middle priority scheduling class is system. The system
scheduling class cannot be applied to a user process. The lowest priority scheduling class
is timeshare (TS), which is also the default class.

Scheduling class is maintained for each LWP. When a process is created, the initial LWP
inherits the scheduling class and priority of the parent process. As more LWPs are created
to run unbound threads, they also inherit this scheduling class and priority. All unbound
threads in a process have the same scheduling class and priority.

Each scheduling class maps the priority of the LWP it is scheduling to an overall
dispatching priority according to the configurable priority of the scheduling class.

Bound threads have the scheduling class and priority of their underlying IWPs. Each
bound thread in a process can have a unique scheduling class and priority that is visible
to the kernel. Bound threads are scheduled with respect to all other LWPs in the system.

The scheduling class is set by prioent1(2). How you specify the first two arguments
determines whether just the calling LWP or all the LWPs of one or more Processes are

affected. The third argument of priocntl() is the command, which can be one of the
following.

¢ PC_GETCID - Get the class ID and class attributes for a specific class.
* PC_GETCLINFO ~ Get the class name and class attributes for a specific class.

® PC_GETPARMS - Get the class identifier and the class-specific scheduling parameters of
a process, an LWP with a process, or a group of processes.

® PC_SETPARMS - Set the class identifier and the class-specific scheduling parameters of
a process, an LWP with a process, or a group of processes.

Use priocnt1(only on bound threads. To affect the priority of unbound threads, use
thr_setprio(3T).

Timeshare Scheduling

Timeshare scheduling fairly distributes the processing resource to the set of processes.
Other parts of the kernel can monopolize the processor for short intervals without
degrading response time as seen by the user.

The priocnt1(2) call sets the nice(2) level of one or more processes, priocntl1() affects
the nice() level of all the timesharing class LWPs in the process. The nice() level ranges

from 0 to +20 normally and from -20 to +20 for processes with superuser privilege. The
lower the value, the higher the priority.

76 Multithreaded Programming Guide

- . : . CPU use
The dispatch priority of time-shared LWPs is calculated w.oB zwm Emgﬁbmo:m Un
rate of %.m H.Sww mbmw from its nice() level. The nice() level Enunnﬁm the relative priority
of the processes to the timeshare scheduler. LWPs with a greater nice() 4.&5 geta
smaller, but non-zero, share of the total processing. An LWP that wu.m _.mnw.Emm a larger
amount of processing is given lower priority than one that has received little or no
processing.

Realtime Scheduling

The realtime class (RT) can be applied to a whole process or to one or more LWPs in a
waomn“m. This requires superuser privilege. Unlike the nice(2) _m<mm of nr.m _“_.Bomrg.m ..mwm@
LWPs that are classified realtime can be assigned priorities either _.5&5955 or jointly.
A priocntl(2) call affects the attributes of all the realtime LWPs in the process.

uler always dispatches the highest-priority realtime LWP. It preempts a lower-
WMMMW@M% when M Emrmu...vnoaq ﬁimw becomes runnable. A preempted LWP is .E.mnmm
at the head of its level queue. A realtime LWP retains control of a processor until it is
preempted, it suspends, or its realtime priority is changed. LWPs in the RT class have
absolute priority over processes in the TS class.

'w LWP inherits the scheduling class of the parent process or LWP. An RT nmmmm FE
WMM&W the parent’s time slice, S.rmm.m—. finite or infinite. An LWP S#w.m finite time slice
runs until it terminates, blocks (for example, to wait for an 1/0 event), is mﬁmmn.-vnmm bya
higher-priority runnable realtime process, or the time slice expires. ?.. LWP with an
infinite time slice ceases execution only when it terminates, blocks, or is preempted.

LWP Scheduling and Thread Binding

The threads library automatically adjusts the number of LWPs in the pool used to run
unbound threads. Its objectives are:

¢ To prevent the program from being blocked by a lack of unblocked LWPs]
m..oa.vmxmn-wﬁ\ nmmrmmow are more runnable unbound threads than LWPs and all the active
threads block in the kernel in indefinite waits (such as reading a tty), the process
cannot progress until a waiting thread returns.

* To make efficient use of LWPs .
For example, if the library creates one LWP for each thread, many ra.sum will usually
be idle and the operating system is overloaded by the resource requirements of the
unused LWPs.

. . . is onk
Keep in mind that LWPs are time-sliced, not threads. This means that when there is only
one m.eﬁu there is no time slicing within the process—threads run on ”&-m LWP until they
block (through inter-thread synchronization), are preempted, or terminate.

Programming with the Operating System 77

You can assign priorities to threads with thr_setprio(3T): lower-priority unbound
threads are assigned to LWPs only when no higher-priority unbound threads are
available. Bound threads, of course, do not compete for LWPs because they have their
own.

Bind threads to your LWPs to get precise control over whatever is being scheduled. This
control is not possible when many unbound threads compete for an LWP.

Realtime threads are useful for getting a quick response to external stimuli. Consider a
thread used for mouse tracking that must respond instantly to mouse clicks. By binding
the thread to an LWP, you guarantee that there is an LWP available when it is needed. By
assigning the LWP to the realtime scheduling class, you ensure that the LWP is scheduled
quickly in response to mouse clicks.

SIGWAITING—Creating LWPs for Waiting Threads

The library usually ensures that there are enough LWPs in its pool for a program to
proceed. When all the LWPs in the process are blocked in indefinite waits (such as
blocked reading from a tty or network), the operating system sends the new signal,
SIGWAITING, to the process. This signal is handled by the threads library. When the
process contains a thread that is waiting to run, a new LWP is created and the appropriate
waiting thread is assigned to it for execution.

The SIGWAITING mechanism does not ensure that an additional LWP is created when
one or more threads are compute bound and another thread becomes runnable. A
compute-bound thread can prevent multiple runnable threads from being started because
of a shortage of LWPs. This can be prevented by calling thr_setconcurrency(3T) or by
using THR_NEW_LWP in calls to thr_create(3T).

Aging IWPs

When the number of active threads is reduced, some of the LWPs in the pool are no
longer needed. When there are more LWPs than active threads, the threads library

* destroys the unneeded ones. The library ages LWPs—they are deleted when they are
unused for a “long” time, currently set at five minttes.

78 Multithreaded Programming Guide

Extending Traditional Signals

The traditional UNIX signal model is extended to threads in a fairly natural way. The
disposition of signals is established process-wide, using the traditional mechanisms
(signal(2), sigaction(2), and so on).

When a signal handler is marked SIG_DFL or SIG_IGN, the action on receipt of the signal
(exit, core dump, stop, continue, or ignore) is performed on the entire receiving process,
affecting all threads in the process. See signal(5) for basic information about signals.

Each thread has its own signal mask. This lets a thread block some signals while it uses
memory or other state that is also used by a signal handler. All threads in a process share
the set of signal handlers set up by sigaction(2) and its variants, as usual.

A thread in one process cannot send a signal to a specific thread in another process. A

" signal sent by kill(2) or sigsend(2) is to a process and is handled by any one of the

receptive threads in the process.

Unbound threads cannot use alternate signal stacks. A bound thread can use an alternate
stack because the state is associated with the execution resource. An alternate stack must
be enabled for the signal through sigaction(2), and declared and enabled through
sigaltstack(2).

An application can have per-thread signal handlers based on the per-process signal
handlers. One way is for the process-wide signal handler to use the identifier of the
thread handling the signal as an index into a table of per-thread handlers. Note that there
is no thread zero.

Signals are divided into two categories: traps and exceptions (synchronous signals) and
interrupts (asynchronous signals).

As in traditional UNILX, if a signal is pending, additional occurrences of that signal have
no additional effect~—a pending signal is represented by a bit, not a counter.

As is the case with single-threaded processes, when a thread receives a signal while
blocked in a system call, the thread might return early, either with the EINTR error code,
or, in the case of I/O calls, with fewer bytes transferred than requested.

Of particular importance to multithreaded programs is the effect of signals on
cond_wait(3T). This call usually returns in response to a cond_signal(3T) or a
cond_broadcast(3T), but, if the waiting thread receives a UNIX signal, it returns with
the error code EINTR. See “Interrupted Waits on Condition Variables” on page 86 for
more information.

Programming with the Operating System 79

-

Synchronous Signals

Traps (such as SIGILL, SIGFPE, SIGSEGV) result from something a thread does to itself,
such as dividing by zero or explicitly sending itself a signal. A trap is handled only by the
thread that caused it. Several threads in a process can generate and handle the same type
of trap simultaneously.

Extending the idea of signals to individual threads is easy for synchronous signals—the
signal is dealt with by the thread that caused the problem. However, if the thread has not
chosen to deal with the problem, such as by establishing a signal handler with
sigaction(2), the entire process is terminated.

Because such a synchronous signal usually means that something is seriously wrong with
the whole process, and not just with a thread, terminating the process is often a good
choice.

Asynchronous Signals

Interrupts (such as SIGINT and SIGIO) are asynchronous with any thread and result
from some action outside the process. They might be signals sent explicitly by other
threads, or they might represent external actions such as a user typing Control-C. Dealing
with asynchronous signals is more complicated than dealing with synchronous signals.
An interrupt can be handled by any thread whose signal mask allows it. When more than
one thread is able to receive the interrupt, only one is chosen.

When multiple occurrences of the same signal are sent to a process, then each occurrence
can be handled by a separate thread, as long as threads are available that do not have it
masked. When all threads have the signal masked, then the signal is marked pending and
the first thread to unmask the signal handles it.

80 Multithreaded Programming Guide

Continuation Semantics

Continuation semantics are the traditional way to deal with signals. The idea is that when
a signal handler returns, control resumes where it was at the time of the interruption.
This is well suited for asynchronous signals in single-threaded processes, as shown in
Code Example 4-1. This is also used as the exception-handling mechanism in some
programming languages, such as PL/1.

Code Example 4-1 Continuation Semantics

unsigned int nestcount;

unsigned int A(int i, int j) {
nestcount++;

if (i==0)
return(j+1)
else if (j==0)
return(A(i-1, 1));
else
return(A(i-1, A(i, j-1)));
}

void sig(int i) {
printf(*nestcount = %d\n”, nestcount);
}

main() {
sigset (SIGINT, sig);
A(4,4):

}

New Operations on Signals

Several new signal operations for multithreaded programming have been added to the
operating system.

thr_sigsetmask(3T)

thr_sigsetmask(3T) does for a thread what sigprocmask(2) does for a process—it sets
the (thread’s) signal mask. When a new thread is created, its initial mask is inherited from
its creator.

Avoid using sigprocmask(in multithreaded programs because it sets the signal mask
of the underlying LWP, and the thread that is affected by this can change over time.

Programming with the Operating System 81

—

Unlike sigprocmask(), thr_sigsetmask() is relatively inexpensive to call because it
does not generally cause a system call, as does sigprocmask().

thr_kill(3T)
thr_kil1(3T) is the thread analog of kil1(2)—it sends a signal to a specific thread.

This, of course, is different from sending a signal to a process. When a signal is sent to a
process, the signal can be handled by any thread in the process. A signal sent by
thr_ki11() can be handled only by the specified thread.

Note than you can use thr_kill() to send signals only to threads in the current process.
This is because the thread identifier (type thread_t) is local in scope—it is not possible
to name a thread in any process but your own. .

sigwait(2)

sigwait(2) causes the calling thread to wait until any signal identified by its set
argument is delivered to the thread. While the thread is waiting, signals identified by the
set argument are unmasked, but the original mask is restored when the call returns.

Use sigwait() to separate threads from asynchronous signals. You can create one thread
that is listening for asynchronous signals while your other threads are created to block
any asynchronous signals that might be set to this process.

When the signal is delivered, sigwait() clears the pending signal and returns its number.
Many threads can call sigwait() at the same time, but only one thread returns for each
signal that is received.

With sigwait() you can treat asynchronous signals synchronously—a thread that deals
with such signals simply calls sigwait() and returns as soon as a signal arrives. By
ensuring that all threads (including the caller of sigwait()) have such signals masked,
you can be sure that signals are handled only by the intended handler and that they are
handled safely.

Usually, you use sigwait() to create one or more threads that wait for signals. Because
sigwait() can retrieve even masked signals, be sure to block the signals of interest in all
other threads so they are not accidentally delivered. When the signals arrive, a thread
returns from sigwait(), handles the signal, and waits for more signals. The signal-
handling thread is not restricted to using Async-Safe functions and can synchronize with
other threads in the usual way. (The Async-Safe category is defined in “MT Interface
Safety Levels” on page 95.)

Note - sigwait() should never be used with synchronous signals.

82 Multithreaded Programming Guide

sigtimedwait(2)

sigtimedwait(2) is similar to sigwait(2) except that it fails and returns an error when
a signal is not received in the indicated amount of time.

Thread-Directed Signals

The UNIX signal mechanism is extended with the idea of thread-directed signals. These are
just like ordinary asynchronous signals, except that they are sent to a particular thread
instead of to a process.

Waiting for mmva_nr_..ouao:m signals in a separate thread can be safer and easier than
installing a signal handler and processing the signals there.

A better way to deal with asynchronous signals is to treat them synchronously. By calling
sigwait(2), discussed on page 82, a thread can wait until a signal occurs.

Code Example 42 Asynchronous Signals and sigwait(2) -

main() {
sigset_t set;
void rumA(void);

sigemptyset (&set) ;

sigaddset (&set, SIGINT);

thr_sigsetmask (SIG_BLOCK, &set, NULL);
thr_create(NULL, 0, runaA, NULL, THR_DETACHED, NULL);

while (1) {
sigwait (&set);
printf(*nestcount = %d\n*, nestcount);
}
}

void runa() {
A(4,4);
exit(0);

}

Code Example 4-2 modifies the code of Code Example 4-1: the main routine masks the
SIGINT signal, creates a child thread that calls the function A of the previous example,
and finally issues sigwaits to handle the SIGINT signal.

Programming with the Operating System 83

Note that the signal is masked in the compute thread because the compute thread inherits
its signal mask from the main thread. The main thread is protected from SIGINT while,
and only while, it is not blocked inside of sigwait(.

Also, note that there is never any danger of having system calls interrupted when you use
sigwait().

Completion Semantics

Another way to deal with signals is with completion semantics. Use completion semantics
when a signal indicates that something so catastrophic has happened that there is no
reason to continue executing the current code block. The signal handler runs instead of the

remainder of the block that had the problem. In other words, the signal handler completes
the block.

In Code Example 4-3, the block in question is the body of the then part of the if
statement. The call fo setjmp(3C) saves the current register state of the program in jbuf
and returns 0—thereby executing the block.

Code Example 43 ~ Completion Semantics

sigjmp_buf jbuf;

void mult_divide(void) {
int a, b, ¢, d;
void problem();

sigset (SIGFPE, problem);
while (1) {
if (sigsetjmp (&jbuf) == 0) {
printf (“Three numbers, please:\n”);
scanf ("%d %d %d*, &a, &b, &c);
d = a*b/c;
printf (*$d*$d/%d = %d\n”, a, b, ¢, d);

}

void problem(int sig) {
printf (*Couldn’t deal with them, try again\n”);
siglongimp(&jbuf, 1);

}

If a SIGFPE (a floating-point exception) occurs, the signal handler is invoked.

84 Multithreaded Programming Guide

The signal handler calls siglongimp(3C), which restores the register m_..m.”m saved in jbuf,
causing the program to return from sigsetjmp() again (among the registers saved are
the program counter and the stack pointer). -

This time, however, sigsetjmp(3C) returns the second argument of mm_.o.poﬂnn._ mp(),
which is 1. Notice that the block is skipped over, only to be executed during the next
iteration of the while loop.

Note that you can use sigsetjmp(3C) and siglongimp(3C) in multithreaded programs,
but be careful that a thread never does a siglongimp() using the results of another
thread’s sigsetjmp (). Also, sigsetimp() and siglongjmp() save and restore the
signal mask, but setjmp(3C) and 1ongimp(3C) do not. It is best to use sigsetjmp() and
siglongimp() when you work with signal handlers.

Completion semantics are often used to deal with exceptions. In particular, the Ada®
programming language uses this model.

Note — Remember, sigwait(2) should never be used with synchronous signals.

Signal Handlers and Async Safety

- A concept similar to thread safety is async safety. Async-Safe operations are guaranteed

ot to interfere with operations being interrupted.

The problem of async safety arises when the actions of a signal g&mﬂ can mbwmmmum with
the operation being interrupted. For example, suppose 2 program is in the middle of a
call to print£(3S) and a signal occurs whose handler itself calls print£(): the output of
the two print£(statements would be intertwined. To avoid this, the handler should not
call print£() itself when print£() might be interrupted by a signal.

This problem cannot be solved by using synchronization primitives .aonm:mm any
attempted synchronization between the signal handler and the operation being
synchronized would produce immediate deadlock.

For example, suppose that print£(is to protect itself by using a mutex. Now suppose
that a thread that is in a call to print£(), and so holds the lock on the mutex, is
interrupted by a signal. If the handler (being called by the thread that is still mm_m_mm of
print£() itself calls print£(), the thread that holds the lock on the mutex will attempt
to take it again, resulting in an instant deadlock.

To avoid interference between the handler and the operation, either ensure that the
situation never arises (perhaps by masking off signals at critical moments) or invoke only
Async-Safe operations from inside signal handlers.

Programming with the Operating System 85

Because setting a thread’s mask is an inexpensive user-level operation, you can
inexpensively make functions or sections of code fit in the Async-Safe category.

Interrupted Waits on Condition Variables

When a signal is delivered to a thread while the thread is waiting on a condition variable,
the old convention (assuming that the process is not terminated) is that interrupted calls
return EINTR.

The ideal new condition would be that when cond_wait(3T) and cond_timedwait(3T)
return, the lock has been retaken on the mutex.

This is what is done in Solaris threads: when a thread is blocked in cond_wait() or
cond_timedwait() and an unmasked, caught signal is delivered to the thread, the
handler is invoked and the call to cond_wait() or cond_timedwait() returns EINTR
with the mutex locked.

This implies that the mutex is locked in the signal handler because the handler might
have to clean up after the thread.

86 Maultithreaded Programming Guide

H
Il

This is illustrated by Code Example 4-4.

Code Example 44 Condition Variables and Interrupted Waits

int sig_catcher() {
sigset_t set;
void hdlr();

mutex_lock (&mut) ;

sigemptyset (&set) ;
sigaddset (&set, SIGINT);
thr_sigsetmask (SIG_UNBLOCK, &set, 0);

if (cond_wait(&cond, s&mut) == EINTR) {
/* signal occurred and lock is held */
cleanup () ; :
mutex_unlock (&mut) ;
return(0);
}
normal_processing() ;
mutex_unlock (&mut) ;
return(l);

}

void hdlr() { .
/* lock is held in the handler */

}

Assume that the STGINT signal is blocked in all threads on entry to sig_catcher(and
that hdlx() has been established (with a call to sigaction(2)) as the handler for the
SIGINT signal.

When an unmasked and caught instance of the SIGINT signal is delivered to the thread
while it is in cond_wait(), the thread first reacquires the lock on the mutex, then calls
hdlz(), and then retums EINTR from cond_wait().

Note that whether SA_RESTART has been specified as a flag to sigaction() has no effect
here—cond_wait(3T) is not a system call and is not automatically restarted. When a
caught signal occurs while a thread is blocked in cond_wai t(, the call always returns
EINTR.

Programming with the Operating System 87

i

I/O Issues

One of the attractions of multithreaded programming is I/0 performance. The traditional
UNIX API gave the programmer little assistance in this area—you either used the
facilities of the file system or bypassed the file system entirely.

This section shows how to use threads to get more flexibility through 1/0 concurrency
and multibuffering. This section also discusses the differences and similarities between
the approaches of synchronous I/0O (with threads) and asynchronous I/0 (with and
without threads).

1/O as a Remote Procedure Call

In the traditional UNIX model, I/O appears to be synchronous, as if you were placing a
remote procedure call to the I/O device. Once the call returns, then the I/O has
completed (or at least it appears to have completed—a write request, for example, might
merely result in the transfer of the data to a buffer in the operating system).

The advantage of this model is that it is easy to understand because programmers are
very familiar with the concept of procedure calls.

" An alternative approach not found in traditional UNIX systems is the asynchronous model,

in which an I/0 request merely starts an operation. The program must somehow discover
when the operation completes.

This approach is not as simple as the synchronous model, but it has the advantage of
allowing concurrent I/0 and processing in traditional, single-threaded UNIX processes.

Tamed Asynchrony

You can get most of the benefits of asynchronous I/0 by using synchronous I/Q in a
multithreaded program. Where, with asynchronous 1/0, you would issue a request and
check later to determine when it completes, you can instead have a separate thread
perform the I/O synchronously. The main thread can then check (perhaps by calling
thr_join(3T)) for the completion of the operation at some later time.

. Asynchronous 1/0

In most situations there is no need for asynchronous 1/0, since its effects can be achieved
with the use of threads, each doing synchronous I/O. However, in a few situations,
threads cannot achieve what asynchronous 1/0 can.

88 Multithreaded Programming Guide

The most straightforward example is writing to a tape drive to make the tape drive
stream. This technique prevents the tape drive from stopping while it is being written to
and moves the tape forward at high speed while supplying a constant stream of data that
it writes to tape.

To do this, the tape driver in the kernel must issue a queued write request when the tape
driver responds to an interrupt indicating that the previous tape-write operation has
completed.

Threads cannot guarantee that asynchronous writes will be ordered because the order in
which threads execute is indeterminate. Trying to order a write to a tape, for example, is
not possible.

Asynchrenous I/O Operations

#include <sys/asynch.h>

int aioread(int fildes, char *bufp, int bufs, off_t offset, N
int whence, aio_result_t *resultp);

int aiowrite(int filedes, const char *bufp, int bufs,
off_t offset, int whence, aio_result_t *resultp):

aio_result_t *aijowait(const struct timeval *timeout);

int aiocancel (aio_result_t *resultp);

aioread(3) and aiowrite(3) are similar in form to pread(2) and pwrite(2), except for
the addition of the last argument. Calls to aioread() and aiowrite() result in the
initiation (or queueing) of an 1/0 operation.

The call returns without blocking, and the status of the call is returned in the structure
pointed to by resultp. This is an item of type aio_result_t that contains

int aio_return;
int aio_errno;

When a call fails immediately, the failure code can be found in aio_errno. Otherwise,
this field contains ATO_TNPROGRESS, meaning that the operation has been successfully
queued.

Programming with the Operating System 89

You can wait for an outstanding asynchronous 1I/0 operation to complete by calling
aiowait(3). This returns a pointer to the aio_result_t structure supplied with the
original aioread(3) or aiowrite(3) call. This time aio_result contains whatever
read(2) or write(2) would have returned if it had been called instead of the
asynchronous versions, and aio_errno contains the error code, if any.

aiowait() takes a timeout argument, which indicates how long the caller is willing to
wait. As usual, a NULL pointer here means that the caller is willing to wait indefinitely,
and a pointer to a structure containing a zero value means that the caller is unwilling to
wait at all.

You might start an asynchronous I/0 operation, do some work, then call aiowait() to
wait for the request to complete. Or you can use SIGIO to be notified, asynchronously,
when the operation completes.

Finally, a pending asynchronous 1/0 operation can be cancelled by S.:Sm aiocancel().
This routine is called with the address of the result area as an argument. This result area
identifies which operation is being cancelled.

Shared 1/O and New I/O System Calls

When multiple threads are performing 1/O operations at the same time with the same file
descriptor, you might discover that the traditional UNIX 1/0O interface is not thread-safe.
The problem occurs with non-sequential I/0. This uses the 1seek(2) system call to set
the file offset, which is then used in the next read(2) or write(2) call to indicate where in
the file the operation should start. When two or more threads are issuing 1seek(2)'s to
the same file descriptor, a conflict results.

To avoid this conflict, use the new pread(2) and pwrite(2) system calls.

#include <sys/types.h>
#include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte, off t offset);

ssize_t pwrite(int filedes, void *buf, size_t nbyte,
off_t offset);

These behave just like read(2) and write(2) except that they take an additional
argument, the file offset. With this argument, you specify the offset without using
lseek(2), so multiple threads can use these routines safely for I/0 on the same file
descriptor.

90 . Multithreaded Programming Guide

Alternatives to getc(3S) and putc(3S)

An additional problem occurs with standard I/0. Hugm.uwgmam are Wnncmnou.—mm to
routines such as getc(35) and putc(3S) being very n_.Enw|5m% are Ev_mgﬁamm as
macros. Because of this, they can be used within the inner loop of a program with no
concerns about efficiency.

ive—they
However, when they are made thread safe they suddenly become more expensiv
now require (at least) two internal subroutine calls, to lock and unlock a mutex. To get
around this problem, alternative versions of these routines are
supplied—getc_unlocked(3S) and putc_unlocked(3S).

i i igi thread-safe
These do not acquire locks on a mutex and so are as quick as the originals, non
versions of getc(3S) and putc(3S). However, to use them in a thread-safe way, you must
explicitly lock and release the mutexes that protect the standard I/ O streams, using
flock£ile(3S) and funlockfile(3S). The calls to these latter routines are placed
outside the loop, and the calls to getc_unlocked() or putc_unlocked() are placed
inside the loop.

Programming with the Operating System 91

Mudtithreaded Programming Guide

Safe and Unsafe Interfaces 5

This chapter defines MT-safety levels for functions and libraries.

Thread Safety page 93

MT Interface Safety Levels page 95

Async-Safe Functions page 96

MT Safety Levels for Libraries page 97
Thread Safety

Thread safety is the avoidance of data races—situations in which data are set to either
correct or incorrect values depending upon the order in which multiple threads access
and modify the data.

When no sharing is intended, give each thread a private copy of the data. When sharing
is important, provide explicit synchronization to make certain that the program behaves
deterministically.

A procedure is thread safe when it is logically correct when executed simultaneously by
several threads. At a practical level, it is convenient to recognize three levels of safety.

¢ Unsafe
¢ Thread safe — Serializable
* Thread safe — MT-safe

An unsafe procedure can be made serializable by surrounding it with statements locking
and unlocking a mutex. Code Example 5-1 on page 94 shows first a nonthread-safe
implementation of a simplified fputs().

Next is a serializable version of this routine with a single mutex protecting the procedure
from concurrent execution problems. Actually, this is stronger synchronization than is
necessary in this case. When two threads are calling fputs(to print to different files, one
need not wait for the other—both can safely print at the same time.

93

The last <m~.mm.05 of the routine is MT-safe. It uses one lock for each file, allowing two
threads to print to different files at the same time. So, a routine is MT-safe when it is
thread safe and its execution does not negatively affect performance.

Code Example 5-1 Degrees of Thread Safety

/* not thread-safe */
fputs(const char *s, FILE *stream) {
char *p;
for (p=s; *p; p++)
putce((int)*p, stream);
}

/* serializable */
fputs (const char *s, FILE *stream) {
static mutex_t mut;
char *p;
mutex_lock(&m) ;
for (p=s; *p; p++)
putc{(int)*p, stream);

mutex_unlock (&m) ;
}

/* MT-Safe */

mutex_t m{NFILE];

fputs(const char *s, FILE *stream) {
static mutex_t mut;
char *p;
mutex_lock(&m[fileno(stream)]);
for (p=s; *p; p++)

putc((int)*p, stream);

mutex_unlock(&m[fileno(stream)]0;

94 Multithreaded Programming Guide

MT Interface Safety Levels

The man Pages(3): Library Routines use the categories listed in Table 5-1 to describe how
well an interface supports threads (these categories are explained more fully in the
Intro(3) man page).

Table 5-1 Categories Used by Library Routines

Category Description

Safe This code can be called from a multithreaded application.

Safe with See the NOTES sections of these pages for a description of the exceptions.

exceptions

Unsafe This interface is not safe to use with multithreaded applications unless the
application arranges for only one thread at a time to execute within the
library.

MT-Safe This interface is fully prepared for multithreaded access in that it is both safe

and it supports some concurrency.
MT-Safe with See the NOTES sections of these pages in the man Pages(3): Library Routines

exceptions for descriptions of the exceptions.

Async-Safe This routine can safely be called from a signal handler. A thread that is
executing an Async-Safe routine does not deadlock with itself when
interrupted by a signal.

See the table in Appendix B, “MT Safety Levels: Library Interfaces,” for a list of safe
interfaces from the man Pages(3): Library Routines. If an interface from Section 3 is not in
this table, it is probably unsafe (this does not include the Source Compatibility Library).
Check the man page to be sure.

All functions described in the man Pages(2): System Calls are MT-Safe except for vork(2).
Some functions have purposely not been made safe for the following reasons.

* Making the function MT-Safe would have negatively affected the performance of
single-threaded applications.

® The function has an Unsafe interface. For example, a function might return a pointer to
a buffer in the stack. You can use reentrant counterparts for some of these functions.
The reentrant function name is the original function name with “_r” appended.

end in “_x” is MT-Safe other than by checking its reference manual page. Use of
¥ \ a function identified as not MT-Safe must be protected by a synchronizing

w Caution - There is no way to be certain that a function whose name does not
device or restricted to the initial thread.

Safe and Unsafe Interfaces 95

Reentrant Functions for Unsafe Interfaces

For most functions with Unsafe interfaces, an MT-Safe version of the routine exists. The
name of the new MT-Safe routine is always the name of the old Unsafe routine with “_r”
appended. The “_r” routines listed in Table 5-2 are supplied in the Solaris system:

Table 5-2 Reentrant Functions

asctime_r(3C) . ctermid_r(3s) ctime_r(3C)
fgetgrent_x (3C) fgetpwent_xr (3C) fgetspent_x (3C)
gamma_x (3M) getgrgid_r(3C) getgrnam_x (3C)
getlogin_x(3C) getpwnarm_x (3C) getpwuid_x(3C)
getgrent_xr (3C) gethostbyaddr_x (3N) gethostbyname_x (3N)
gethostent_r (3N) getnetbyaddr_r (3N) getnetbyname_r (3N)
wmgmnmbnln (3N) getprotobyname_x (3N) getprotobynumber_xr (3N)
getprotoent_xr (3N) getpwent_x (3C) getrpcbyname_r (3N)
getrpcbynumber_x (3N} getrpcent_x (3N) getservbyname_r (3N)
getservbyport_xr (3N) getservent _x (3N) getspent_xr (3C)
getspnam_r(3C) gntime_x (3C) lgamma_x (3M)
localtime_(3C)r nis_sperror_r (3N) rand_r(3C)
readdir_r(3C) strtok_x (3C) tmpnam_r (3C)
ttymame_x (3C)

Async-Safe Functions

Functions that can safely be called from signal handlers are Async-Safe. The POSIX
standard defines and lists Async-Safe functions (IEEE Std 1003.1-1990, 3.3.1.3 (3)(®), page
55). In addition to the POSIX Async-Safe functions, the following three functions from the
threads library are also async safe.

* sema_post(3T)
* thr_sigsetmask(3T)
¢ thr_ kill(3T)

96 Multithreaded Programming Guide

MT Safety Levels for Libraries

All routines that can potentially be called by a thread from a multithreaded program
should be MT-Safe.

This means that two or more activations of a routine must be able to correctly execute
concurrently. So, every library interface that a multithreaded program uses must be
MT-Safe.

Not all libraries are now MT-Safe. The commonly used libraries that are MT-Safe are
listed in Table 5-3. Additional libraries will eventually be modified to be MT-Safe.

Tuble5-3 Some MT-Safe Libraries

Library Comments
lib/libe getXXbyYY interfaces are MT-Safe
lib/libdl_stubs (To support static switch compiling)
lib/Yibintl
lib/libm MT-Safe only when compiled for the shared library, but not MT-Safe
when linked with the archived library
lib/libmalloc
. lib/libmapmalloc
lib/libnsl Including the TLI interface, XDR, RPC clients and servers, netdir,
and netselect. getXXbyYY interfaces are not safe, but have
thread-safe interfaces of the form getXXbyYY_r
1ib/libresolv (Thread-specific erro support)
lib/libsocket
" lib/kibw
lib/nametoaddr
libX11
1ibC (Not part of the Solaris system; can be purchased separately).
Unsafe Libraries

Routines in libraries that are not guaranteed to be MT-Safe can safely be called by
multithreaded programs only when such calls are single-threaded.

Safeand Unsafe Interfaces

98

Multithreaded Programming Guide

Compiling and Debugging 6

This chapter describes how to compile and debug your multithreaded programs.

Compiling a Multithreaded Application page 99
Debugging Multithreaded Programs page 101

L]

Compiling a Multithreaded Application

Using the C Compiler

Make sure the following software is available so you can successfully compile and link a
multithreaded program.

¢ Include files:

* thread.h
* errno.h

¢ The standard C compiler

¢ The standard Solaris linker

* The threads library (1ibthread) |

¢ MT-safe libraries (1ibc, libm, libw, l1ibintl, libmalloc, libmapmalloc, libnsl,
and so on)

Compiling with the_REENTRANT Flag

Compile multithread programs with the -p —REENTRANT flag.

This applies to every module of a new application. When the ~D_REENTRANT flag is not
Present, the old definitions for errno, stdio, and so on, are used. To compile a
single-threaded application, make sure that the —REENTRANT flag is undefined.

Link Old with New Carefully

Table 6-1 shows that multithreaded object modules should be linked with old object
modules only with great caution.

Tuble 6-1 Compiling with and without the _REENTRANT Flag

The File Type Compiled Reference And Return

Old object files Without the Static storage The traditional errno

(nonthreaded) and _REENTRANT flag

new obiject files

New object files With the __errno, the new The address of the
~REENTRANT flag binary entry point thread’s definition of

errno

Programs using TLIin With the —t_errno, a new The address of the

libns1! —REENTRANT flag entry point thread’s definition of
(required) t_errno

Using libthread

To use 1ibthread, specify ~1thread before -1c on the 14 command line, or last on the
cc command line.

All calls to 1ibthread are no-ops if the application does not link 1ibthread,

Libe has defined libthread stubs that are nul1 procedures. True procedures are
interposed by 1ibthread when the application links both 1ibe and 1ibthread,

The behavior of the C library is undefined if a program is constructed with an 14
command line that includes the fragment:
20’8 ... -lc ~lthread ...

Do not link a single-threaded program with -1thread. Doing so establishes
multithreading mechanisms at link time that are initiated at run time. These waste
resources and produce misleading results when you debug your code.

Using Non-C Compilers
The threads library uses the following items from 1ibc:

¢ System call wrappers
¢ Something (usually print£(Q) to display error messages
¢ Runtime linking support to resolve symbols (because the library is dynamically linked)

100 Multithreaded Programming Guide

(—

You can eliminate these dependencies by writing both your own system .nm.: wrappers
and your own print£() function, and by having the linker resolve all 1ibthread
symbols at link time rather than at runtime.

The threads library does not use dynamically allocated memory when the threads are

created with application-supplied stacks. The thr_create(3T) routine lets the
application specify its own stacks.

Debugging Multithreaded Programs

Common Oversights

The following list points out some of the more frequent oversights that can cause bugs in
multithreaded programming.
¢ Using a local or global variable for passing an argument to a new thread

¢ Accessing global memory (shared changeable state) without the protection of a
synchronization mechanism

* Creating deadlocks caused by two threads trying to acquire rights to the same pair of
global respurces in alternate order (so that one thread controls the @.mn ummcﬁam.mbm
the other controls the second resource and neither can proceed until the other gives
up)

. i i i chronization protection. This is caused when a code
mwnmm“_ﬂb:m MHWMMMM wwwuwﬁvwmﬁoaummoz Bwnwmamn. n.oaﬁbm a SH_ to a function that
frees and then reacquires the synchronization mechanism before it returns to the caller.
The result is that it appears to the caller that the global data has been protected when
it actually has not.

" roblems bevanse molithrended progsams bave s more Hsied stack sive than angle
threaded programs.

® Specifying an inadequate stack size

* Providing stack other than through the thread library calls

And, note that multithreaded programs (especially buggy ones) often behave differently

in two successive runs given identical inputs because of differences in the thread
scheduling order.

In general, multithreading bugs are statistical instead of deterministic in character.
.b.mmgm is usually more mWonmé in finding problems in the order of execution than is

breakpoint-based debugging.

Compiling and Debugging 101

[

Using adb

When you bind all threads in a multithreaded program, a thread and an LWP are
synonymous. Ther you can access each thread with the adb commands (described in
Table 6-2) that support multithreaded programming.

Table 6-2 MT adb commands

Table 6-3 dbx Options for MT Programs (Continued)

Option Description

step... tid Steps the given thread. When a function call is skipped, all LWPs
are implicitly resumed for the duration of that function call.
Nonactive threads cannot be stepped.

step... lid Steps the given LWP. Does not implicitly resume all LWPs when
skipping a function.

stepi... lid The given LWF.

stepi... tid The LWP on which the given thread is active.

thread Displays current thread. Switches to thread tid. In all the following

variations, an optional tid implies the current thread.

thread -info [tid]

Prints everything known about the given thread.

Command Description

pid:-A Attaches to process # pid. This stops the process and all its LWPs.
R Detaches from process. This resumes the process and all its LWPs,
$L Lists all active LWPs in the (stopped) process.

n:l Switches focus to LWP # n

$l Shows the LWP currently focused

num:3i Ignores signal number num
Using dbx

With the dbx utility you can debug and execute source
FORTRAN, and Pascal. dbx accepts the same comman

but uses a standard terminal (tty) interface. Both dbx and the SPARCworks Debugger
now support debugging multithreaded Pprograms.

For a full overview of dbx and Debu
the Debugging a Program user’s guide.

The dbx options listed in Table 6-3 support multithreaded programs.
Table 6-3 dbx Options for MT Programs

thread -locks [tid]

Prints all locks held by the given thread.

thread -suspend { tid]

Puts the given thread into suspended state,

thread -continue | tid]

Unsuspends the given thread.

programs written in C++, ANSI C,
ds as the SPARCworks™ Debugger

thread -hide [tid]

Hides the given (or current) thread. It will not show up in the
generic threads listing.

gger features see the SunPro dbx(1) man page and

thread -unhide [tid] Unbhides the given (or current) thread.
allthread-unhide Unbhides all threads.

threads Prints the list of all known threads.

threads-all Prints threads that are not usually printed (zombjes).

all filterthreads-mode

Controls whether threads prints all threads or filters them by
default.

auto | manualthreads-mode

Enables automatic updating of the thread listing in the Thread
Inspector of the GUI interface (SPARCworks Debugger).

threads-mode

Echoes the current modes. Any of the previous forms can be
followed by a thread or LWP ID to get the traceback for the

specified entity.

Option Description

cont at line [sig signo id) Continues execution at line line with signal signo. See continue for
dbx command language loop control. The id, if Present, specifies
which thread or LWP to continue. Default value is ail.

Iwp Displays current LWP. Switches to given LWP [lwpid].

Iwps Lists all LWPs in the current process.

next ... tid Steps the given thread. When a function call is skipped, all LWPs
are implicitly resumed for the duration of that function call,
Nonactive threads cannot be stepped.

next ... lid Steps the given LWP. Does not implicitly resume all LWPs when
skipping a function. The LWP on which the given thread is active.
Does not implicitly resume all LWP when skipping a function.

102

Multithreaded Programming Guide

Compiling and Debugging 103

Mudtithreaded Programming Guide

Programming Guidelines 7

This chapter gives some pointers on programming with threads. Differences between
single-threaded thinking and multithreaded thinking are emphasized.

Rethinking Global Variables page 106
Providing For Static Local Variables page 108
Synchronizing Threads page 107
Avoiding Deadlock page 111
Following Some Basic Guidelines page 113
Working with Multiprocessors page 116

Historically, most code has been designed for single-threaded programs. This is especially
true for most of the library routines called from C programs. The following implicit
assumptions were made for single-threaded code:

* When you write into a global variable and then, a moment later, read from it, what you
read is exactly what you just wrote.

* This is also true for non-global, static storage.
* You do not need synchronization because there is nothing to synchronize with.

The next few examples discuss some of the problems that arise in multithreaded
programs because of these assumptions, and how you can deal with them.

105

Rethinking Global Variables

Traditional, single-threaded C and UNIX have a convention for handling errors detected
in system calls. System calls can return anything as a functional value (for example,
write(returns the number of bytes that were transferred). However, the value -1 is

reserved to indicate that something went wrong. So, when a system call returns -1, you
know that it failed.

Code Example 7-1 Global Variables and errmo

extern int errno;

if (write(file_desc, buffer, size) == -1) {
/* the system call failed */
fprintf(stderr, “something went wrong, *
“error code = %¥d\n”, errno);
exit(l);

Rather than return the actual error code (which could be confused with normal return
values), the error code is placed into the global variable errno. When the system call
fails, you can look in errno to find what went wrong.

Now consider what happens in a multithreaded environment when two threads fail at
about the same time, but with different errors. Both expect to find their error codes in
errno, but one copy of exxrno cannot hold both values. This global variable approach
simply does not work for multithreaded programs.

The Solaris threads package solves this problem through a conceptually new storage
class—thread-specific data. This storage is similar to global storage in that it can be
accessed from any procedure in which a thread might be running. However, it is private
to the thread—when two threads refer to the thread-specific data location of the same
name, they are referring to two different areas of storage.

So, when using threads, each reference to exrno is thread specific because each thread
has a private copy of errno.

106 Mudtithreaded Programming Guide

Providing For Static Local Variables

Code Example 7-2 shows a problem similar to the errno problem, vnm 5<0H&bm. static
storage instead of global storage. The function gethostbyname (3N) is called S.E. .z._m
computer name as its argument. The return value is a pointer to a structure noa.mh:.ﬁm
the required information for contacting the computer through network communications.

Code Example 7-2 The gethostbyname() Problem

struct hostent *gethostbyname (char *name) {
static struct hostent result;
/* Lookup name in hosts database */
/* Put answer in result */
return(&result);

Returning a pointer to an automatic local variable is generally not a good idea, m:ro&mr
it works in this case because the variable is static. However, a&..mz two m:.mmmm call this
variable at once with different computer names, the use of static storage conflicts.

Thread-specific data could be used on a replacement for static storage, as in the errno
problem, but this involves dynamic allocation of storage and adds to the expense of the
call.

A better way to handle this kind of problem is to make the caller of gethostbyname()
supply the storage for the result of the call. This is done by rmﬁ.sm.m.m caller wﬂﬂu@ an
additional argument, an output argument, to the routine. This requires a new interface to
gethostbyname().

This technique is used in Solaris threads to fix many of these problems. In most cases, the
name of the new interface is the old name with “_z” appended, as in
gethostbyname_xr(3N).

Programming Guidelines 107

Synchronizing Threads

The threads in an application must cooperate and synchronize when sharing the data and
the resources of the process.

A problem arises when multiple threads call something that manipulates an object. In a
single-threaded world, synchronizing access to such objects is not a problem, but as
Code Example 7-3 illustrates, this is a concern with multithreaded code. (Note that the
Solaris print £(35) is safe to call for a multithreaded program; this example illustrates
what could happen if print£() were not safe.)

Code Example 7-3 The printf() Problem

/* thread 1: */
printf(*"go to statement reached") ;

/* thread 2: */
printf(*hello world-*);

printed on display:
go to hello

Single-Threaded Strategy

One strategy is to have a single, application-wide mutex lock that is acquired whenever
any thread in the application is running and is released before it must block. Since only
one thread can be accessing shared data at any one time, each thread has a consistent
view of memory.

Because this is effectively a single-threaded program, very little is gained by this strategy.

Reentrance

A better approach is to take advantage of the principles of modularity and data
encapsulation. A reentrant function is one that behaves correctly if it is called
simultaneously by several threads. Writing a reentrant function is a matter of
understanding just what behaves correctly means for this particular function.

Functions that are callable by several threads must be made reentrant. This might require
changes to the function interface or to the implementation.

108 Multithreaded Programming Guide

4

Functions that access global state, like memory or files, have reentrance problems. These
functions need to protect their use of global state with the appropriate synchronization
mechanisms provided by Solaris threads.

The two basic strategies for making functions in modules reentrant are code locking and
data locking.

Code Locking

Code locking is done at the function call level and guarantees that a function executes
entirely under the protection of a lock. The assumption is that all access to data is done
through functions. Functions that share data should execute under the same lock.

Some parallel programming languages provide a construct called a monitor that
implicitly does code locking for functions that are defined within the scope of the
monitor. A monitor can also be implemented by a mutex lock.

Functions under the protection of the same mutex lock or within the same monitor are
guaranteed to execute atomically with respect to each other.

Data Locking

Data locking guarantees that access to a collection of data is maintained consistently. For
data locking, the concept of locking code is still there, but code locking is around
references to shared (global) data, only. For a mutual exclusion locking protocol, only one
thread can be in the critical section for each collection of data.

Alternatively, in a multiple readers, single writer protocol, several readers can be allowed
for each collection of data or one writer. Multiple threads can execute in a single module
when they operate on different data collections and do not conflict on a single collection
for the multiple readers, single writer protocol. So, data locking typically allows more
concurrency than does code locking.

What strategy shou’d you use when using locks (whether implemented with mutexes,
condition variables, or semaphores) in a program? Should you try to achieve maximum
parallelism by locking only when necessary and unlocking as soon as possible (fine-
grained locking)? Or should you hold locks for long periods to minimize the overhead of
taking and releasing them (coarse-grained locking)?

The granularity of the lock depends on the amount of data it protects. A very coarse-
grained lock might be a single lock to protect all data. Dividing how the data is protected
by the appropriate number of locks is very important. Too fine a grain of locking can
degrade performance. The small cost associated with acquiring and releasing locks can
add up when there are too many locks.

Programming Guidelines 109

The common wisdom is to start with a coarse-grained approach, identify bottlenecks, and
add finer-grained locking where necessary to alleviate the bottlenecks. This is reasonably
sound advice, but use your own judgment about taking it to the extreme,

Invariants

For both code locking and data locking, invariants are important to control locking
complexity. An invariant is a condition or relation that is always true.

The definition is modified somewhat for concurrent execution: an invariant is a condition
or relation that is true when the associated lock is being set. Once the lock is set, the
invariant can be false, However, the code roEEm the lock must reestablish the invariant
before releasing the lock.

An invariant can also be a condition or relation that is true when a lock is being set.
Conditional variables can be thought of as having an invariant that is the condition.

Code Example 74 Testing the Invariant With assert(3X)

mutex_lock(&lock) ;
while(condition)

cond_wait (&ev, &lock);
assert ((condition)==TRUE) ;

mutex_unlock() ;

The assert() statement is testing the invariant. The cond_wait() function does not

preserve the invariant, which is why the invariant must be re-evaluated when the thread
returns.

Another example is a module that manages a doubly linked list of elements. For each
item on the list a good invariant is the forward pointer of the previous item on the list
that should also point to the same thing as the backward pointer of the forward item.

Assume this module uses code-based locking and therefore is protected by a single global
mutex lock. When an item is deleted or added the mutex lock is acquired, the correct
manipulation of the pointers is made, and the mutex lock is released. Obviously, at some
point in the manipulation of the pointers the invariant is false, but the invariant is
reestablished before the mutex lock is released.

110 Muitithreaded Programming Guide

Avoiding Deadlock

Deadlock is a permanent blocking of a set of threads that are competing for a set of
resources. Just because some thread can make progress does not mean that there is not a
deadlock somewhere else.

The most common error causing deadlock is self deadlock or recursive deadlock: a thread
tries to acquire a lock it is already holding, Recursive deadlock is very easy to program by
mistake.

For example, if a code monitor has every module function grabbing the mutex lock for
the duration of the call, then any call between the functions within the module protected
by the mutex lock immediately deadlocks. If a function calls some code outside the
module which, through some circuitous path, calls back into any method protected by the
same mutex lock, then it will deadlock too.

The solution for this kind of deadiock is to avoid calling functions outside the module
when you don’t know whether they will call back into the module without reestablishing
invariants and dropping all module locks before making the call. Of course, after the call
completes and the locks are reacquired, the state must be verified to be sure the intended
operation is still valid.

An example of another kind of deadlock is when two threads, thread 1 and thread 2, each
acquires a mutex lock, A and B, respectively. Suppose that thread 1 tries to acquire mutex
lock B and thread 2 tries to acquire mutex lock A. Thread 1 cannot proceed and it is
blocked waiting for mutex lock B. Thread 2 cannot proceed and it is blocked waiting for
mutex Jock A. Nothing can change, so this is a permanent blocking of the threads, and a
deadlock.

This kind of deadlock is avoided by establishing an order in which locks are acquired (a
lock hierarchy). When all threads always acquire locks in the specified order, this deadlock
is avoided.

Adhering to a strict order of lock acquisition is not always optimal. When thread 2 has
many assumptions about the state of the module while holding mutex lock B, giving up
mutex lock B to acquire mutex lock A and then reacquiring mutex lock B in order would
cause it to discard its assumptions and reevaluate the state of the module.

The blocking synchronization primitives usually have variants that attempt to get a lock
and fail if they cannot, such as mutex_trylock(). This allows threads to violate the lock
hierarchy when there is no contention. When there is contention, the held locks must
usually be discarded and the locks reacquired in order.

Programming Guidelines n

Scheduling Deadlocks

Because there is no guaranteed order in which locks are acquired, a common problem in
threaded programs is that a particular thread never acquires a lock (usually a condition
variable), even though it seems that it should.

This usually happens when the thread that holds the lock releases it, lets a small amount
of time pass, and then reacquires it. Because the lock was released, it might seem that the
other thread should acquire the lock. But, because nothing blocks the thread holding the
lock, it continues to run from the time it releases the lock until it reacquires the lock, and
so no other thread is run.

You can usually solve this type of problem by calling thr_yield(3T) just before the call
to reacquire the lock. This allows other threads to run and to acquire the lock.

Because the time-slice requirements of applications are so variable, the threads library

does not impose any. Use calls to thr_yield() to make threads share time as you require.

Locking Guidelines
Here are some simple guidelines for locking:

* Try not to hold locks across long operations like I/O where performance can be
adversely affected.

¢ Don’t hold locks when calling a function that is outside the module and that might
reenter the module.

¢ Don't try for excessive processor concurrency. Without intervening system calls or 1/0
operation, locks are usually held for short amounts of time and contention is rare. Fix
only those locks that have measured contention.

¢ When using multiple locks, avoid deadlocks by making sure that all threads acquire
the locks in the same order.

112 Multithreaded Programming Guide

Following Some Basic Guidelines

¢ Know what you are importing and whether it is safe.
A threaded program cannot arbitrarily enter nonthreaded code.

* Threaded code can safely refer to unsafe code only from the initial thread.
This ensures that the static storage associated with the initial thread is used only by
that thread.

* Sun-supplied libraries are defined to be safe unless explicitly documented as unsafe.
If a reference manual entry does not say whether a function is MT-Safe, it is safe. All
MT-unsafe functions are identified explicitly in the manual page.

¢ Use compilation flags to manage binary incompatible source changes.
Either specify -D_REENTRANT when compiling or be sure that _REENTRANT is defined
before any header file is included.

* When making a library safe for multithreaded use, do not thread global process
operations.

Do not change global operations (or actions with global side effects) to behave in a
threaded manner. For example, if file I/O is changed to per-thread operation, threads
cannot cooperate in accessing files.

For thread-specific behavior, or thread cognizant behavior, use thread facilities. For
example, when the termination of main () should terminate only the thread that is
exiting main (), the end of main () should be:

thr_exit();

/*NOTREACHED* /

Creating Threads

The Solaris threads package caches the threads data structure, stacks, and LWPs so that
the repetitive creation of unbound threads can be inexpensive.

Unbound thread creation is very inexpensive when compared to process creation or even
to bound thread creation. In fact, the cost is similar to unbound thread synchronization
when you include the context switches to stop one thread and start another.

So, creating and destroying threads as they are required is E:»b% better than attempting
to manage a pool of threads that wait for independent work.

A geod example of this is an RPC server that creates a thread for each request and
destroys it when the reply is delivered, instead of trying to maintain a pool of threads to
service requests.

Programming Guidelines 13

While thread creation is relatively inexpensive when compared to process creation, it is
not inexpensive when compared to the cost of a few instructions. Create threads for
processing that lasts at least a couple of thousand machine instructions.

Thread Concurrency

By default, Solaris threads attempts to adjust the system execution resources (LWPs) used
to run unbound threads to match the real number of active threads. While the Solaris
threads package cannot make perfect decisions, it at least ensures that the process
continues to make progress.

When you have some idea of the number of unbound threads that should be
simultaneously active (executing code or system calls), tell the library through
thr_setconcurrency(3T).

For example:

*® A database server that has a thread for each user should tell Solaris threads the
expected number of simultaneously active users.

* A window server that has one thread for each client should tell Solaris threads the
expected number of simultaneously active clients. ’

¢ A file copy program that has one reader thread and one writer thread should tell
Solaris threads that the desired concurrency level is two.

Alternatively, the concurrency level can be incremented by one through the
THR_NEW_LWP flag as each thread is created.

Include unbound threads blocked on inter-process (USYNC_PROCESS) synchronization
variables as active when you compute thread concurrency. Exclude bound threads—they
do not require concurrency support from Solaris threads because they are equivalent to
LWPs.

Efficiency

A new thread is created with thr_create(3T) in less time than an existing thread can be
restarted. This means that it is more efficient to create a new thread when one is needed
and have it call thr_exit(3T) when it has completed its task than it would be to
stockpile an idle thread and restart it.

14 Multithreaded Programming Guide

/=

Bound Threads

Bound threads are more expensive than unbound threads. Because bound threads can
change mxm attributes of the underlying LWP, the LWPs are not cached when the bound
threads exit. Instead, the operating system provides a new LWP when a bound thread is
created and destroys it when the bound thread exits.

Use bound threads only when a thread needs resources that are available only through
the underlying LW, such as a virtual time interval timer or an alternate stack, or when
the thread must be visible to the kernel to be scheduled with respect to all other active
threads in the system, as in realtime scheduling.

Use unbound threads even when you expect all threads to be active simultaneously. This

allows Solaris threads to efficiently cache LWP and thread resources so that thread
creation and destruction are fast.

Thread Creation Guidelines

Here are some simple guidelines for using threads.

* Use threads for independent activities that must do a meaningful amount of work.
® Use threads to take advantage of CPU concurrency.

¢ Use bound threads only when absolutely nec , that is, wh -
underlying LWP is required. y necessary, 1s, when some facility of the

Use thr_setconcurrency(3T) to tell Solaris threads how many threads expect
be simultaneously active. Y yeu 8

Programming Guidelines 15

Working with Multiprocessors

The Solaris threads package lets you take advantage of multiprocessors. In many cases,
programmers must be concerned with whether the multithreaded application runs on a
uniprocessor or a multiprocessor.

One such case involves the memory model of the multiprocessor. You cannot always
assume that changes made to memory by one processor are immediately reflected in the
other processors’ views of that memory.

Another multiprocessor issue is efficient synchronization when threads must wait until
all have reached a common point in their execution.

Note — The issues discussed here are not important when the threads synchronization
primitives are always used to access shared memory locations.

The Underlying Architecture

When threads synchronize access to shared storage locations using the Solaris threads
synchronization routines, the effect of running a program on a shared-memory
multiprocessor is identical to the effect of running the program on a uniprocessor.

However, in many situations a programmer might be tempted to take advantage of the
multiprocessor and use “tricks” to avoid the synchronization routines. As

Code Example 7-5 on page 117 and Code Example 7-6 on page 119 show, such tricks can
be dangerous.

Understanding the memory models supported by common multiprocessor architectures
helps to understand the dangers.

The major multiprocessor components are:

® The processors themselves

* Store buffers, which connect the processors to their caches

¢ Caches, which hold the contents of recently accessed or modified storage locations
¢ memory, which is the primary storage (and is shared by all processors).

In the simple traditional model, the multiprocessor behaves as if the processors are
connected directly to memory: when one processor stores into a location and another
immediately loads from the same location, the second processor loads what was stored by
the first. Caches can be used to speed the average memory access, and the desired
semantics can be achieved when the caches are kept consistent with one another.

116 Muitithreaded Programming Guide

4 mem

A problem with this simple approach is that the processor must often be delayed to make
certain that the desired semantics are achieved. Many modern multiprocessors use
various techniques to prevent such delays, which, unfortunately, change the semantics of
the memory model. Two of these techniques and their effects are explained in the next
two examples.

“Shared-Memory” Multiprocessors

Consider the purported solution to the producer/consumer problem shown in

Code Example 7-5. Although this program works on current SPARC-based
multiprocessors, it assumes that all multiprocessors have strongly ordered memory. This
program is therefore not portable.

Code Example 7-5 The Producer/Consumer Problem — Shared Memory Multiprocessors

char buffer[BSIZE];
unsigned int in = 0;
unsigned int out = 0;

void char
producer (char item) { consumer (void) {
char item;
do
;/* nothing */ do
while ;/* nothing */
(in - out == BSIZE); while

(in - out == 0);
buffer [in%BSIZE] = item; item = buffer[out$BSIZE];
in++; out+;

When this program has exactly one producer and exactly one consumer and is run on a
shared-memory multiprocessor, it appears to be correct. The difference between inand
out is the number of items in the buffer. The producer waits (by repeatedly computing
this difference) until there is room for a new item, and the consumer waits until there is
an item in the buffer.

For memory that is strongly ordered (for instance, a modification to memory on one
processor is immediately available to the other processors), this solution is correct Gtis
correct even taking into account that in and out will eventually overflow, as long as
BSIZE is less than the largest integer that can be represented in a word).)

Programming Guidelines 17

Shared-memory multiprocessors do not necessarily have strongly ordered memory. A
change to memory by one processor is not necessarily available immediately to the other
processors. When twa changes to different memory locations are made by one processor,
the other processors do not necessarily see the changes in the order in which they were
made because changes to memory don't happen immediately.

First the changes are stored in sfore buffers that are not visible to the cache. The processor
looks at these store buffers to ensure that a program has a consistent view, but because
store buffers are not visible to other processors, a write by one processor doesn’t become
visible until it is written to cache.

The Solaris synchronization primitives (see Chapter 3, “Programming with
Synchronization Objects”) use special instructions that flush the store buffers to cache. So,
using locks around your shared data ensures memory consistency.

When memory ordering is very relaxed, Code Example 7-5 has a problem because the
consumer might see that in has been incremented by the producer before it sees the
change to the corresponding buffer slot. This is called weak ordering because stores made
by one processor can appear to happen out of order by another processor (memory,
however, is always consistent from the same processor). To fix this, the code should use
mutexes to flush the cache.

The trend is toward relaxing memory order. Because of this, programmers are becoming
increasingly careful to use locks around all global or shared data. As demonstrated by
Code Example 7-5 and Code Example 7-6, locking is essential.

Peterson’s Algorithm

The code in Code Example 7-6 is an implementation of Peterson’s Algorithm, which
handles mutual exclusion between two threads. This code tries to guarantee that there is
never more than one thread in the critical section and that, when a thread calls
mut._excl(), it enters the critical section sometime “soon.”

118 Multithreaded Programming Guide

An assumption here is that a thread exits fairly quickly after entering the critical section.
Code Example 7-6 Mutual Exclusion for Two Threads?

void mut_excl(int me /* 0 or 1 */) {
static int loser;
static int interested[2] = {0, 0};
int other; /* local variable */

other = 1 - me;

interested[me] = 1;

loser = me;

while (loser == me && interested([other])

i

/* critical section */
interested[me] = 0;
}

This algorithm works some of the time when it is assumed that the multiprocessor has
strongly ordered memory.

Some multiprocessors, including some SPARC-based multiprocessors, have store buffers.
When a thread issues a store instruction, the data is put into a store buffer. The buffer
contents are eventually sent to the cache, but not necessarily right away. (Note that the
caches on each of the processors maintain a consistent view of memory, but modified data
does not reach the cache right away:) :
When multiple memory locations are stored into, the changes reach the 8&.8 (and
memory) in the correct order, but possibly after a delay. SPARC-based multiprocessors
with this property are said to have total store order (TSO).

When one processor stores into location A and then loads from _oo»monm B, .wum m:o.n_—mn
Pprocessor stores into location B and loads from location 4, Pm expectation is that either
the first processor fetches the newly modified value in location B or the mmmobm processor
fetches the newly modified value in location 4, or both, but that the case in which both
Processors load the old values simply cannot happen.

However, with the delays caused by load and store buffers, the “impossible case” can
happen.

Programming Guidelines 119

What could happen with Peterson’s algorithm is that two threads running on separate
processors each stores into its own slot of the interested array and then loads from the
other slot. They both see the old values (0), assume that the other party is not present, and
both enter the critical section. (Note that this is the sort of problem that might not show
up when you test a program, but only much later.)

This problem is avoided when you use the threads synchronization primitives, whose
implementations issue special instructions to force the writing of the store buffers to the
cache.

Parallelizing a Loop on a Shared-Memory Parallel Computer

In many applications, and especially numerical applications, while part of the algorithm
can be parallelized, other parts are inherently sequential (as shown in Code Example 7-7).

Code Example 7-7 Multithreaded Cooperation (Barrier Synchronization)

while(a_great_many iterations) {
sequential_computation

parallel_computation
}

For example, you might produce a set of matrices with a strictly linear computation, then
perform operations on the matrices using a parallel algorithm, then use the results of
these operations to produce another set of matrices, then operate on them in parallel, and
S0 on.

The nature of the parallel algorithms for such a computation is that little mv..unr.aaummg
is required during the computation, but synchronization of all the threads employed is
required at the end to ensure that all have finished.

When the time spent executing the parallel algorithm is large compared to the time
required to create and synchronize the threads, the cost of thread creation and
synchronization is no problem. But if the time required for the computation is not so
large, then the thread-creation and synchronization times become very important.

120 Multithreaded Programming Guide

Summary

This guide has covered basic threads programming issues. Look in Appendix A, “Sample
Application Code” for program examples that use many of the features and styles that
have been discussed.

Further Reading

For more information related to the subjects in this guide, see the following books:

¢ Algorithms for Mutual Exclusion by Michel Raynal (MIT Press, 1986)

* Concurrent Programming by Alan Burns & Geoff Davies (Addison-Wesley, 1993)

* Distributed Algorithms and Protocols by Michel Raynal (Wiley, 1988)

* Operating System Concepts by Silberschatz, Peterson, & Galvin (Addison-Wesley, 1991)
® Principles of Concurrent Programming by M. Ben-Ari (Prentice-Hall, 1982)

Programming Guidelines 121

.12

Multithreaded Programming Guide

'Sample Application Code A

.H.rmmo:osgmmmh%—mﬁamusm w?o%o:m:mmmw&roiwo:mm multithreading in a
variety of ways. -

File Copy page 123

Matrix Multiplication page 125

RPC Program page 128

Window System Server page 133
File Copy

Generating several 1/0 requests at once so that the I/O access time can be overlapped is

- often advantageous. A simple example of this is file copying. If the input and output files

are on different devices, the read access for the next biock can be overlapped with the
write access for the last block. Code Example A-1 shows some of the code.

The main routine creates two threads: one to read the input, and one to write the output.

The reader thread reads from the input and places the data in a double buffer. The writer
thread gets the data from the buffer and continuously writes it out. The threads
synchronize using two counting semaphores; one that counts the number of buffers
emptied by the writer and one that counts the number of buffers filled by the reader.

Note that the reader thread initializes semaphore emptybuf_sem because it needs a
nonzero initial value. The writer thread need not explicitly initialize semaphore
fullbuf_sem because it is allocated in zeroed memory.

Code Example A-1 File Copy Example Witk a Semaphore

sema_t emptybuf_sem, fullbuf_sem;

/* double buffer */
struct {
char data{BSIZE];

123

Code Example A-1 File Copy Example With a Semaphore (Continued)

int size;
} bufl2];

reader()
{

int i = 0;

sema_init (&emptybuf_sem, 2, 0, NULL);
while (1) {
sema_wait (&emptybuf_sem) ;
buf[i].size = read(0, buf(i].data, BSIZE);
sema_post (&fullbuf_sem) ;
if (bufl[i]l.size <= 0}

break;
i~=1;
}
3}
writer ()
{
int 1 = 0;
while (1) {
sema_wait (&fullbuf_sem) ;
if (bufl[i).size <= 0)
break;
write(l, buf[il.data, buf{i].size);
sena_post (&emptybuf_sem);
i~=1;
3}
}
main()

{
thread_t twriter;

(void) thr_create(NULL, NULL, reader, NULL, THR DETACHED, NULL)
(void) thr_create(NULL, NULL, writer, NULL, , &twriter, NULL);
thr_join(twriter, NULL, NULL);

124 Multithreaded Programming Guide

The example is a bit contrived because the system already generates asynchronous read-
ahead and write-behind requests when accessing regular files. The example is still useful

- when the files to be copied are raw devices, since raw-device access is synchronous.

Matrix Multiplication

Computationally intensive applications benefit from the use of all available processors.
Matrix multiplication is a good example of this.

When the matrix multiplication function is called, it acquires a mutex lock to ensure that
only one matrix multiplication is in progress. This relies on mutex locks that are statically
initialized to zero. The requesting thread checks whether its worker threads have been
created. If not, it creates one for each CPU.

Once the worker threads are created, the requesting thread sets up a counter of work to
do and signals the workers with a condition variable. Each worker selects a row and
column from the input matrices, then updates the row and column variables so that the
next worker will get the next row or column or both. .

It then releases the mutex lock so that computing the vector product can proceed in
parallel. When the results are ready, the worker reacquires the mutex lock and updates
the counter of work completed. The worker that completes the last bit of work signals the
requesting thread.

Code Example A2 Matrix Multiplication

struct {
mutex_t lock;
cond_t start_cond, done_cond;
int (*ml) [SZ]1[SZ), (*m2)(S2][SZ]1, (*m3) [sZ][s21;
int row, col;
int todo, notdone, workers;
} work;
mutex_t mul_lock;

void *
matmul (int (*ml) {S2][SZ]), int (*m2) [S2Z] [SZ], int (*m3)[SZ] [82});
{

int i;

mutex_lock(&mul_lock) ;
mutex_lock (&work.lock) ;

Sample Application Code : 125

Code Example A-2 Matrix Multiplication (Continued)

}

{

if (work.workers == 0) { .
work.workers = sysconf (_SC_NPROCESSORS_ONLN) ;
for (i = 0; i < work.workers; i++) {
(void) thr_create (NULL, NULL, worker, (void *)NULL,

THR_NEW_LWP | THR_DETACHED, NULL);
}

work.mi=ml; work.m2=m2; work.m3=m3;
work.row = work.col = 0;
work.todo = work.notdone = SZ*SZ;
cond_broadcast (&work.start_cond) ;
while (work.notdone)

cond_wait (&work.done_cond, &work.lock);
mutex_unlock (&work.lock) ;
mutex_unlock (&mul_lock) ;

void *
worker ()

int (*ml) {82](sz], (*m2){sz2}1s2]), (*m3)ISZ}(SZ];
int row, col, i, result;

while (1) {
mutex_lock{&work.lock) ;
while (work.todo == Q)
cond_wait (&work.start_cond, &work.lock);
work.todo~-;
mi=work.ml; m2=work.m2; m3=work.m3;
row = work.row; col = work.col;
work.col++;
if (work.col == SZ) {
work.col = 0;
work.row++;
if (work.row == SZ)
work.row = 0;
}
mutex_unlock(&work.lock) ;
result = 0;
for (i = 0; i < SZ; i++)
result += (*ml)[row][i] * (*m2) [i]([col];
(*m3) [row] [col) = result;
mutex_lock (&work.lock) ;

126

Multithreaded Programming Guide

Code Example A-2 Matrix Multiplication (Continued)

work.notdone~-;

if (work.notdone == ()
cond_signal (&work.done_cond) ;

mutex_unlock (&work.lock) ;

Note that each iteration computed the results of one entry in the result matrix.

In some cases the amount of work is not sufficient to justify the overhead of
synchronizing. In these cases it is better to give each worker more work per

synchronization. For example, each worker could compute an entire row of the output
matrix.

Sample Application Code 127

RPC Program

In a multithreaded client program, a thread can be created to issue each RPC request.
When multiple threads share the same client handle, only one thread at a time can make
a RPC request. The other threads must wait until the outstanding request is complete.

However, when multiple threads make RPC requests using unique client handles, the
requests are carried out concurrently. The following diagram illustrates a possible timing
of a multithreaded client implementation consisting of two client threads using different
client handles.

HOST A
Client thread 1 Client 1 thread continues
Client thread 2 Client 2 thread continues
HOST B
Invoke Request
Server Daemon service completed
Returmn
answer
Service
HOSTB executes
Invoke Request
Server Daemon yservice completed
Retum
answer
Service
Time executes

Figure A-1 Two Client Threads Using Different Client Handles (Realtime)

128 Multithreaded Programming Guide

- o am—

Code Example A-3 shows the implementation of an rstat program with a multithreaded
client and single-threaded servers. The client program creates a thread for each host. Each
thread creates its own client handle and makes various RPC calls to a specified host.
Because each client thread uses its own handle to make the RPC calls, the threads can
carry out the RPC calls concurrently.

You can compile and run this program with:

% cc -D_REENTRANT -0 exaxple example.c -lnsl =lxpecsve -ithread
% example hostl host2 host3...

Code Example A-3 RPC rstat Program With Multithreaded Client

/* €(#)rstat.c2.3 88/11/30 4.0 RPCSRC */

\ﬁ.

* Simple program that prints the status of a remote host, in a
* format similar to that used by the ‘w’ command.

*/

#include <thread.h>
#include <synch.h>
#include <stdio.h>
#include <sys/param.h>
#include <rpc/rpc.h>
#include <rpesve/rstat.h>
#include <errno.h>

mutex_t tty; /* control of tty for printf‘s */
cond_t cv_finish;

int count = 0;

int nthreads = 0;

main(arge, argv)
int argc;
char **argv;
{
int i;
thread_t tid;
void *do_rstat();

if (arge < 2) {

Sample Application Code 129

Code Example A-3 RPC rstat Program With Multithreaded Client (Continued)

fprintf (stderr, “usage: %s \"host\” [...]\n*, argv[0});
exit(1);

}

mutex_lock (&tty) ;

for (i = 1; i < arge; i++) {

if (thr_create(NULL, 0, do_rstat, argvii], 0, &tid) != 0) {
fprintf (stderr, “thr_create failed: %d\n~, i);
exit(1);

} else

fprintf (stderr, *tid: %d\n~*, tid);
}
nthreads = argec - 1;
while (count < nthreads) {
printf(targc = %d, count = %d\n”, nthreads, count);
cond_wait (&cv_£finish, &tty);

}

exit(0);
}

bool_t rstatproc_stats{);

void *

do_rstat (host)
char *host;

{
CLIENT *rstat_clnt;
statstime host_stat;
bool_t rval;
stxuct tm *tmp_time;
struct tm host_time;
struct tm host_uptime;
char days_buf[16];
char hours_buf[16];

mutex_lock (&tty) ;
printf(*%s: starting\n”, host);
mutex_unlock (&tty) ;

/* client handle to rstat */

Code Example A-3 RPC rstat Program With Multithreaded Client (Continued)

130 Mudltithreaded Programming Guide

rstat_clnt = clnt_create(host, RSTATPROG, RSTATVERS_TIME,
ﬂ._.n%!v ;
if (rstat_clnt == NULL) {
mutex_lock({&tty) ; /* get control of tty */
clnt_pcreateerror (host) ;
count-++;
cond_signal (&cv_£inish);
mutex_unlock(&tty);/* release control of tty */

thr_exit (0);
}

rval = rstatproc_stats(NULL, &host_stat, rstat_clnt);
if (lrval) {
mutex_lock(&tty);/* get control of tty */
clnt_perror(rstat_clnt, host);
count-++;

cond_signal (&cv_finish);
mutex_unlock(&tty) ;/* release control of tty */

thr_exit(0);
}
tmp_time = localtime_r (&host_stat.curtime.tv_sec, &host_time);
host_stet.curtime.tv_sec ~= host_stat.boottime.tv_sec;
tmp_time = gmtime_r (&host_stat.curtime.tv_sec, &host_uptime);
if (host_uptime.tm_yday != 0)

sprintf (days_buf, “$d day%s, °, host_uptime.tm_yday,

(host_uptime.tm_yday > 1) ? ®s” : “%);
else

days_buf[0] = ’\0’;
if (host_uptime.tm hour != 0)

sprintf (hours_buf, “%2d:%024,”,

host_uptime.tm hour, host_uptime.tm_min);

else if (host_uptime.tm min != 0)
sprintf (hours_buf, ®*%2d mins,”, host_uptime.tm min);

Sample Application Code

131

Code Example A-3 RPC rstat Program With Multithreaded Client (Continued)

else
hours_buf{0] = ‘\0‘;

Eﬁnmxl“_.oofmnn%:\»cmﬂnounﬂou.omnnw*\
printf(*%s: *, host); :

: host_time.tm_hour,
host_time.tm _min,
(host_time.tm hour >= 12) ? ‘p’
s ‘a’,
days_buf,
hours_buf,
(double)host_stat.avenrun[0} /FSCALE,
(double)host_stat.avenrun{l] /FSCALE,
(double)host_stat.avenrun[2] /FSCALE) ;
count++;
cond_signal (&cv_£inish);
mutex_unlock (&tty);/* release control of tty */
clnt_destroy(rstat_clnt);

sleep(10);
thr_exit (0);
}

*

i Client side implementation of MT rstat program

*/

static struct timeval TIMEOUT = { 25, 0 };

bool_t

rgtatproc_stats (argp, clnt_resp, clnt)
void *argp;
statstime *clnt_resp;
CLIENT *clnt;

memset ((char *)clnt_resp, 0, sizeof (statstime));
if (clnt_call{(clnt, RSTATPROC_STATS,

printf(* %2d4:%02d%cm up %¥s%s load average: %.2f %.2f %.2f\n-,
(host_time.tm hour > 12) ? host_time.tm hour - 12

/* Default timeout can be changed using clnt_contxol() */

132 Muitithreaded Programming Guide

£ X mam—

Code Example A-3 RPC rstat Program With Multithreaded Client (Continued)

(xdrproc_t) xdr_void, (caddr_t) argp,
(xdrproc_t) xdr_statstime, (caddr_t) clnt_resp,
TIMEOUT) != RPC_SUCCESS) {

return (FALSE);

3}
return (TRUE);

Window System Server

A networked window system server tries to handle each client application as
independently as possible. Each application should get a fair share of the machine
resources, and any blocking on I/O should affect only the connection that caused it.

You could assure that each application gets a fair share of machine resources by allocating
a bound thread for each client application. While this would work, it is wasteful since
more than a small subset of the clients are rarely active at any one time.

Allocating an LWP for each connection ties up large amounts of kernel resources basically
for waiting. On a busy desktop, this can be several dozen LWPs. (A window system
server designed to run with a single-level threads model would have different
considerations about kernel resources and could be designed quite differently.)

The code shown in Code Example A-4 takes a different approach. It allocates two
unbound threads for each client connection, one to process display requests and one to
write out results.

This approach allows further input to be processed while the results are being sent, yet it
maintains strict serialization within the connection. A single control thread looks for
requests on the network. The relationship between threads is shown in Figure A-2.

Sample Application Code 133

U_mu_m<

AoA]

Connection . Mouse

Figure A-2 Window Server Threads

With this arrangement, an LWP is used for the control thread and whatever threads
happen to be active concurrently. The threads synchronize with queues. Each queue has
its own mutex lock to maintain serialization, and a condition variable to inform waiting

threads when something is placed on the queue. A bound thread processes mouse events
to provide a quick response to inputs.

Code Example A-4 Window Server

Code Example A4 Window Server (Continued)

main ()
{
/* set up server and listen port */
for(;;) {
poll (&fds, nfds, 0):;
for (i = 0; i < nfds; i++) {
if (fds([i).revents & POLLIN)
checkfd(fds[i].£d)

134 Muitithreaded Programming Guide

}

checkfd (int £4d)
{

struct connection *connp;

if (fd == listenfd) {
/* new connection request */
connp = create_new_connection();

THR_DETACHED, NULL);

THR_DETACHED, NULL);
} else {

requestp = new_msg();
requestp->len =

connp = find_connection (£4);
put_g (connp->input_g, requestp):;

}

send_xeplies (struct connection *connp)
{
struct msg *replyp;

while (1) {
replyp = get_q (conmp->output_gq);

}

svc_requests (struct connection *connp)
{

struct msg *requestp, *replyp;

while (1) {
requestp = get_g (connp->input_q);
replyp = do_request (requestp);
if (replyp)
put_qg (connp->output_g, replyp);

{void) thread_create (NULL, NULL, svc_requests, connp,

(void) thread_create (NULL, NULL, send replies, connp,

t_rcv (£d, requestp->8ata, BUFSZ, &flags):

t_snd (conmp->fd, replyp->data, replyp->len, &flags);

Sample Application Code

135

—— < L

Code Example A4 Window Server (Continued)

put_g (struct queue *gp, struct msg *msgp)
{
mutex_lock (&qp->lock);
if (list_empty (gp->list))
cond_signal (&gp->notempty._cond);
add_to_tail (msgp, &gp->list);
mutex_unlock (&gp->lock);

struct msg *
get_qg struct queue *gp)
{ .

struct msg *msgp;

mutex_lock (&gp->lock);
while (list_empty (gp->list))

cond_wait (&gp->notempty_cond, &gp->lock);
msgp = get_from_head (&qp->list);
mutex_unlock (&gp->lock);
return (msgp);

136 Multithreaded Programming Guide

MT Safety Levels: Library
Interfaces B

Table B-1 lists the interfaces from Section 3 of the man Pages(3): Library Routines belonging
to one of the safe categories. If an interface from Section 3 (not including the Source
Compatibility library) is not in this table, it is probably unsafe. (See “MT Interface Safety
Levels” on page 95 for explanations of the safety categories.)

Table B-1 MT Safety Levels of Library Interfaces

Interface (Man Page) Category
_tolower (conv(3C)) MT-Safe with exceptions
_toupper (conv(3C)) MT-Safe with exceptions
a64l (a641(3C)) MT-Safe
abort (abort(3C)) Safe
abs (abs(3C)) MT-Safe
acos (trig(3M)) MT-Safe
acosh (hyperbolic(3M)) MT-Safe
addseverity (addseverity(3C)) Safe
alloca (malloc(3C)) Safe
ascftime (strftime(3C)) Unsafe
asin (trig(3M)) MT-Safe
asinh (hyperbolic (3M)) ' MT-Safe
assert (assert(3X)) Safe
atan2 (trig(3M)) MT-Safe
atan (trig(3M)) MT-Safe
atanh (hyperbolic(3M)) MT-Safe
atexit (atexit(3C)) Safe
atof (strtod(3C)) MT-Safe
atoi (strtol(3cC)) MT-Safe
atol (strtol(3C)) MT-Safe
atoll (strtol(3C)) MT-Safe
bessel (bessel (3M)) MT-Safe
bindtextdomain (gettext(3I)) Safe with exceptions
bsearch (bsearch(3C)) Safe
calloc {(malloc(3C)) Safe

137

— -

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

calloc (malloc(3X))
calloc (mapmalloc{3X))
catclose (catopen(3C))
catgets (catgets(3C))
catopen (catopen(3C))
cbrt (sqrt(3M))

ceil (floor(3M))
cfgetispeed (termios(3))
cfgetospeed (termios(3))
cfree (mapmalloc(3X))
cfsetispeed (termios(3))
cfsetospeed (termios(3))
cftime (strftime(3C))
clearerr (ferror(3S))
clock (clock(3C))
closedir (directory(3C))
closelog (syslog(3))
conv (conv(3C))

cos (trig(3M))

cosh (hyperbolic(3M))
crypt (cxypt(3¢C))
csetcol (cset(3I))

cset (cset(3I))

csetlen (cset(3I))
‘csetno (cset(3I))
ctermid (ctermid(3s))
ctype (ctype(3C))
cuserid (cuserid(3s))
decimal_to_quadruple
(decimal to_floating(3))
decimal_to_single
(decimal_to_floating(3))
dgettext (gettext(3I))
directory (directory(3C))
div (div(3C))

diclose (dlclose(3X))
dlerror (dlerror(3X))

Safe
Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
Safe
MT-Safe
MT-Safe
Unsafe
MT-Safe
MT-Safe
Safe
Safe

MT-Safe with exceptions

MT-Safe
MT-Safe
Safe

MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions

Unsafe

MT-Safe with exceptions

MT-Safe
MT-Safe

MT-Safe

Safe with exceptions

Safe

MT-Safe
MT-Safe
MT-Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

138

Multithreaded Programming Guide

dlopen (dlopen(3X})
dlsym (dlsym(3X))
double_to_decimal
(floating_to_decimal (3))
drand48 (drand48(3C))
econvert (econvert(3))
encrypt (crypt(3C))
erand48 (drand48(3C))
erfc (erf(3M))

erf (erf(3M))

euccol (euclen(3I))
euclen (euclen(3I))
eucscol (euclen(3I))
exit (exit(3C))

exp (exp(3M})
extended_to_decimal
(floating_to_decimal (3))
fabs (ieee_functions(3M))
fattach (fattach(3C))
fclose (fclose(38)))
fconvert (econvert(3))
fdopen (fopen(38))

feof (ferror(3s))
ferror (ferror(3S))
£flush (£fclose(38))

ffs (££s(3C))

fgetc (getc(38))
fgetpos (fsetpos(3C))
fgets (gets(38))

fgetwc (getwc(3I))
fgetws (getws(3I))
fileno (ferror(3S))
file_to_decimal
(string_to_decimal(3))
finite (isnan(3C))
floor (floor(3M))

fmod (ieee_functions(3M))

MT-Safe
MT-Safe
MT-Safe

Safe
MT-Safe
Unsafe
Safe
MT-Safe
MT-Safe
Safe
Safe
Safe
Safe
MT-Safe
Mt-safe

MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe

MT-Safe
MT-Safe
MT-Safe

MT Safety Levels: Library Interfaces

139

Tuble B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

fmtmsg (fmtmsg(3C))

fopen (fopen(3S))

fpclass (isnan(3C))
fpgetmask (fpgetround(3C))
fpgetround (fpgetround(3C))
fpgetsticky (fpgetround(3C))
fprintf (printf(3S))
fpsetmask (fpgetround(3C))
fpsetround (fpgetround(3C))
fpsetsticky (fpgetround(3cC))
fputc (putc(3s))

fputs (puts(38))

fputwe (putwe(3I))

fputws (putws(31))

fread (fread(3s))

free (malloc(3C))

free (malloc(3X))

free (mapmalloc(3X))
freopen (fopen(3s))

frexp (frexp(3C))

fscanf (scanf(38))

fseek (fseek(3S))

fsetpos (fsetpos(3C))
ftell (fseek(3S)) '

ftok (stdipc(3C))
ftruncate (truncate(3C))
ftw (£tw(3C))
func_to_decimal
(string_to_decimal (3))
fwrite (fread(3S))
geonvert (econvert(3))
getc (getc(38))

getchar (getc(38))
getchar_unlocked (getc(3S))
getc_unlocked (getc(3S))
getcwd (getcwd(3C))

getenv {(getenv(3C))

MT-Safe
MT-Safe
MT-Safe

MT-Safe

MT-Safe
MT-Safe
MT-Safe
MT-Safe
Unsafe
Unsafe
Safe
Safe

140 Multithreaded Programming Guide

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category
getlogin (getlogin(3C)) Unsafe
getmntany (getmntent(3C)) Safe
getmntent (getmntent(3C)) Safe
getpw (getpw(3C)) Safe
gets (gets(38)) MT-Safe
getsubopt (getsubopt(3C)) MT-Safe
gettext (gettext(3I)) Safe with exceptions
gettimeofday (gettimeofday(3C)) MT-Safe
gettxt (gettxt(3C)) Safe with exceptions
getvfsany (getvisent (3C)) Safe
getvEsent (getvEsent (3C)) Safe
getvsfile (getvEsent(3C)) Safe
getvEsspec (getvfsent (3C)) Safe
getwe (getwc(3I)) MT-Safe
getwchar (getwc(3I)) MT-Safe
getw (getc(38)) MT-Safe
getwidth (getwidth(3I)) MT-Safe with exceptions
getws (getws(3I)) MT-Safe
grantpt (grantpt(3C)) Safe
gsignal (ssigmal(3C)) Unsafe
hasmntopt (getmntent (3C)) Safe
hereate (hsearch(3C)) Safe
hdestroy (hsearch(3C)) Safe
hsearch (hsearch(3C)) Safe
hyperbolic (hyperbolic(3M)) MT-Safe
hypot (hypot (3M)) MT-Safe
ieee_functions (ieee_functions(3M)) MT-Safe
ieee_test (ieee_test(3M)) MT-Safe
isalnum (ctype(3C)) MT-Safe with exceptions
isalpha (ctype(3C)) MT-Safe with exceptions
isascii (ctype(3C)) MT-Safe with exceptions
isastream (isastream(3C)) MT-Safe
iscntrl (ctype(3C)) MT-Safe with exceptions
isdigit (ctype(3C)) MT-Safe with exceptions
isenglish (wctype(3I)) MT-Safe with exceptions
isgraph (ctype(3C)) MT-Safe with exceptions
isideogram (wctype(3I)) MT-Safe with exceptions

MT Safety Levels: Library Interfaces 141

Tuble B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

igslower (ctype(3C))
isnand (isnan(3C))
isnan (ieee_functions(3M))
isnan (isnan(3C))
ispanf (isnan(3C))
isnumber (wctype(3I))
isphonogram (wctype(3I))
isprint (ctype(3C))
ispunct (ctype(3C))
isspace (ctype(3C))
isspecial (wctype(3I))
isupper (ctype(3C))
iswalnum (wctype(3I))
iswalpha (wctype(31))
iswascii (wectype(3I))
iswentrl (wetype(31))
iswdigit (wctype(3I))
iswgraph (wctype(3I))
iswlower (wctype(3I))
iswprint (wctype(31I))
iswpunct (wctype(3I1))
iswspace (wctype(3I))
iswupper (wctype(3I))
iswxdigit (wctype(3I))
isxdigit (ctype(3C))
jrand4s (arandas(3c))
j0 (bessel(3M))

il (bessel(3M))

in (bessel(3M))
jrand48 (drandd8(3C))
164a (a641(3C))

labs (abs(3C))
lckpwdf (lckpwdf (3C))
lcong48 (drandd8(3C))
ldexp (frexp(3C))
1ldiv (div(3C))

1lfind (1search(3C))

MT-Safe with exceptions
MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
Safe

MT-Safe

MT-Safe

MT-Safe

Safe

MT-Safe

MT-Safe

MT-Safe

Safe

MT-Safe

MT-Safe

Safe

Table B-1 MT Safety Levels of Library Interfaces (Continued)

142 Multithreaded Programming Guide

Interface (Man Page) Category
llabs (abs(3C)) MT-Safe
11idiv (div(3C)} MT-Safe
lltostr (strtol(3C)) MT-Safe

localeconv (localeconv(3C))
lockf (lock£f(3C))

log (exp(3M))

logi0 (exp(3M))

logb (frexp(3C))

logb (ieee_test(3M))
lrand48 (drand48(3C))
lsearch (lsearch(3C))
madvise (madvise(3))
major (makedev(3C))
makecontext (makecontext(3C))
makedev (makedev(3C))
mallinfo (malloc(3X))
malloc (malloc(3C))
malloc (malloc(3X))
mallopt (malloc(3X))
mapmalloc (mapmalloc(3X))
matherr (matherr(3M))
mbchar (mbchar (3C))
mblen (mbchax(3C))
mbstowes (mbstring(3C))
mbstring (mbstring(3C))
mbtowec (mbchar(3C))
memalign (malloc(3C))
memccpy (memory(3C))
memchr (memory(3C))
memcmp (memory(3C))
mementl (memcntl(3))
memcpy (memory(3C)}
memmove (memory(3C))
memory (memoxry(3C))
memset (memory(3C))
minor (makedev(3C))
mkfifo (mkfifo(3C))

Safe with exceptions
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
Safe
Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

Safe

Safe

Safe

Safe

Safe

MT-Safe

MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT Safety Levels: Library Interfaces

143

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

mktemp (mktemp(3C))
mlockall (mlockall(3C))
mlock (mlock(3C))

modf (frexp(3C))

modff (frexp(3C))
monitor (monitox(3C))
mrand48 (drand48(3C))
msync (msync(3C))
munlockall (mlockall(3C))
munlock (mlock(3C))
nextafter (frexp(3C))
nextafter (ieee_functions(3M))
nftw (£tw(3C))
nl_langinfo (nl_langinfo(3C))
nlist (nlist(3E))
nrand48 (drand48(3C))
offsetof (offsetof(3C))
opendir (directory(3C))
openlog (syslog(3))
perror (perror(3C))

pow (exp(3M))

printf (printf(3s))
psiginfo (psignal(3C))
psignal (psignal(3C))
ptspame (ptsname(3C)).
putc (putc(38))

putchar (putc(3s))
putenv (putenv(3C))
putmntent (getmntent (3C))
puts (puts(38))

putwe (putwc(3I))
putwchar (putwc(3I))
putw (putc(38))

putws (putws(3I))

gsort (gsort(3C))
quadruple_to_decimal
{floating_to_decimal(3))

Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

Safe

Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

Safe with exceptions
Safe with exceptions
Safe

Safe
MT-Safe
Safe
Safe
MT-Safe
MT-Safe
MT-Safe, Async-Safe
Safe

Safe
MT-Safe
MT-Safe
Safe
Safe

‘MT-Safe

MT-Safe
MT-Safe
MT-Safe
MT-Safe
Safe

MT-Safe

144 Multithreaded Programming Guide

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page) Category
raise (raise(3C)) MT-Safe
readdir (directory(3C)) Unsafe
realloc {(malloc(3C})) Safe
realloc (malloc(3X}) Safe
realpath (realpath(3C)) MT-Safe
remainder (ieee_functions(3M)) MT-Safe
remove (remove({3C)) MT-Safe
rewinddir (directory(3C)) Safe
rewind (fseek(38)) MT-Safe
scalb (frexp(3C)) MT-Safe
scalb (ieee_test(3M)) MT-Safe
scanf (scanf(3S)) MT-Safe
seconvert (econvert(3)) MT-Safe
seedd8 (drandd8(3C)) Safe
seekdir (directory(3C)) Safe
select (select(3C}) MT-Safe
setbuf (setbuf(3s)) MT-Safe
setkey (crypt(3C)) Safe
setlocale (setlocale{3C)) Safe with exceptions
setlogmask (syslog(3)) Safe
settimeofday (gettimeofday(3C)) MT-Safe
setvbuf (setbuf(3S)) MT-Safe
sfconvert (econvert(3)) MT-Safe
sgeonvert (econvert(3)) MT-Safe
sigaddset (sigsetops(3C)) MT-Safe
sigdelset (sigsetops(3C)) MT-Safe
sigemptyset (sigsetops(3C)) MT-Safe
sigfillset (sigsetops(3C)}) MT-Safe
sigismember (sigsetops(3C)) MT-Safe
significand (ieee_test(3M)) MT-Safe
sigsetops (sigsetops(3C)) MT-Safe
sin (trig(3M)) MT-Safe
single_to_decimal MT-Safe
(floating_to_decimal(3))
sinh (hyperbolic(3M)) MT-Safe
sleep (sleep(3C)) Safe
sprintf (printf(3S)) MT-Safe

MT Safety Levels: Library Interfaces 145

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

sqrt (sqrt(3M))

srand48 (drand48(3C))
sscanf (scanf (3S))
ssignal (ssigmal(3C))
strcasecmp (string(3C))
strcat (string(3C))
strchr (string(3C))
stramp (string(3C))
strcoll (strecoll(3cC))

MT-Safe
Safe
MT-Safe
Unsafe
MT-Safe
~ MT-Safe
MT-Safe
MT-Safe

Safe with exceptions

strepy (string(3C)) MT-Safe
strespn (string(3C)) MT-Safe
strdup (string(3C)) MT-Safe
strerror (strerror (3C)) Safe
strftime (strftime(3C)) Unsafe
string (string(3C)) MT-Safe
string_to_decimal MT-Safe
(string_to_decimal(3))

strlen (string(3C)) MT-Safe
strncasecmp (string(3C)) MT-Safe
strncat (string(3C)) MT-Safe
strnemp (string(3C)) MT-Safe
strncpy (string(3C)) MT-Safe
strpbrk (string(3C)) MT-Safe
strrchr (string(3C)) MT-Safe
strsignal (strsignal(3C)) Safe
strspn (string(3C)) MT-Safe
strstr (string(3C)) MT-Safe
strtod (strtod(3C)) MT-Safe
strtok (string(3C)) Unsafe
strtol (strtol(3C)) MT-Safe
strtoll (strtol(3C)) MT-Safe
strtoul (strtol(3C)) MT-Safe
strtoull (strtol(3C)) MT-Safe
strxfrm (strxfrm(3C)) Safe with exceptions
swab (swab(3C)) MT-Safe
swapcontext (makecontext (3C)) MT-Safe
sysconf (sysconf (3C)) Safe
146 Multithreaded Programming Guide

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

syslog (syslog(3)) Safe

system (system(38)) MT-Safe
t_accept (t_accept(3N)) MT-Safe
t.alloc (t_alloc(3N)) MT-Safe
t_bind (t_bind(3N)) MT-Safe
t_close (t_close(3N)) MT-Safe
t_connect (t_connect (3N)) MT-Safe
t_error (t_error(3N)) MT-Safe
t_free (t_free(3N)) MT-Safe
t_getinfo (t_getinfo(3N)) MT-Safe
t_getstate (t_getstate(3N)) MT-Safe
t_listen (t_listen(3N}) MT-Safe
t_look (t_look(3N)) MT-Safe
t.open (t_open(3N)) MT-Safe
t_optmgmt (t_optmgmt (3N)) MT-Safe
t_rcvconnect (t_rcvconnect (3N)) MT-Safe
t_rcvdis (t_rcvdis(3N))} MT-Safe
t_rcev (t_rev(3N)) MT-Safe
t_rcvrel ({(t_rcvrel(3N)) MT-Safe
t_rcvudata (t_rcvudata(3N)) MT-Safe
t_rcvuderr (t_rcvuderr(3N)) MT-Safe
t_snddis (t_snddis(3N)) MT-Safe
t_snd (t_snd(3N)) MT-Safe
t_sndrel (t_sndrel(3N)) MT-Safe
t_sndudata (t_sndudata({3N)) MT-Safe
t_sync (t_sync(3N)) MT-Safe
t_unbind (t_unbind(3N)) MT-Safe
tan (trig(3M)) MT-Safe
tanh (hyperbolic(3M)) MT-Safe
tcdrain (termios(3)) MT-Safe
teflow (termios(3)) MT-Safe
tcflush (termios(3)) MT-Safe
tegetattr (termios(3)) MT-Safe
tcgetpgrp (termios(3)) MT-Safe
tegetsid {termios(3)) MT-Safe
tcsendbreak (termios(3)) MT-Safe
tcsetattr (termios(3)) MT-Safe

MT Safety Levels: Library Interfaces

147

Tuble B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

tesetpgrp (tesetpgrp (3C))

tecsetpgrp (termios(3))
tdelete (tsearch(3c))
tempnam (tmpnam(3S))
telldir (directory(3c))
termios (termios(3))
textdomain (gettext(3I))
tfind (tsearch(3c))
tmpfile (tmpfile(3s))
tmpram (tmpnam(3S))
toascii (conv(3C))
tolower {(comnv(3C))
toupper (conv(3C))
towlower (wconv(3I))
towupper (wconv(3I))
trig (trig(3M))
truncate (truncate(3C))
tsearch (tsearch(3C))
ttyslot (ttyslot(3C))
twalk (tsearch(3c))
ulckpwdf (lckpwdf (3C))
ulltostr (strtol(3c))
ungetc (ungetc(3s))
ungetwc (ungetwe(3I)
unlockpt (unlockpt(3C))
unordered (isnan(3C))
valloc (malloc(3C))
vEprintf (vprintf(3s))
vprintf (vpriatf(3s))
vsprintf (vprintf(3s))
vsyslog (vsyslog(3))
watof (wstod(3I))
watoi (wstol(3I))
watol (wstol(3I))
watoll (wstol(3I))
weonv (wconv(3I))
wesetno (cset(3I))

MT-Safe

MT-Safe

Safe

Safe

Safe

MT-Safe

Safe with exceptions
Safe

Safe

Unsafe

MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe

MT-Safe

Safe

Safe

Safe

MT-Safe

MT-Safe

MT-Safe

MT-Safe

Safe

MT-Safe

Safe

MT-Safe

Async-Safe

Async-Safe
Safe

MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe with exceptions
MT-Safe with exceptions

148

Muitithreaded Programming Guide

Table B-1 MT Safety Levels of Library Interfaces (Continued)

Interface (Man Page)

Category

westombs (mbstring(3C))
wetomb (mbchar (3C))
wetype (wctype(3I))
windex (wstring(3I))
wrindex (wstring(3I))
wscat (wstring(3I))
wschr (wstring(3I))
wscrnp (wstring(3I))
wscol (wstring(3I))
wscoll (wscoll{(3I))
wscpy (wstring(3I))
wsespn (wstring(3I))
wsdup (wstring(3I))
wslen (wstring(3I))
wsncat (wstring(3I))
wsncmp (wstring(3I))
wsnepy (wstring(3I))
wspbrk (wstring(3I))
wsprintf (wsprintf(3I))
wsrchr (wstring(3I))
wsscanf (wsscanf(3I))
wsspn (wstring(3I))
wstod (wstod(3I))
wstok (wstring(3I))
wstol (wstol(3I))
wstring (wstring(3I))
wsxfrm (wsxfrm(31))
y0 (bessel(3M))

¥1 (bessel (3M))

yn (bessel (3M))

MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe with exceptions
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
Safe with exceptions
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
MT-Safe
Safe with exceptions
MT-Safe
MT-Safe
MT-Safe

MT m&xn@\ Levels: Library Interfaces

149

