570

Balance, DYNIX, and Practical Parallel are registered trademarks of

Sequent Computer Systems, Inc. Symmetry is a trademark of Sequent
Computer Systems, Ine, :

UNIX is a registered trademark of AT&T.

MULTIBUS is a trademark of Intel‘ Corporation.

Copyright © 1987 by Sequent Computer Systems, Inc. All rights
reserved. This document may not be copied or reproduced in any form
without permission from Sequent Computer Systems, Inc. Information in
this document is subject to change without notice.

This book was set in Century Schoolbook and Courier 10 by the author,
using an Imagen 7320 laser printer driven by a Sequent S81 running
under the DYNIX ® operating system.

Printed in the United States of America.

Acknow

The author wishes to thank a
time, expertise, and encouragern
In addition, many thanks to Se
for its responsiveness .and ti{
formatting, and typesetting duti

Cover design: Jeanne Galick
Cover photo: Dahlstrom Photc

About the cover: The cove
segment of the Mande.lbrot se
can be graphed as points on
generated by a Sequent B21 co:

Parallel Programming Tools 3-1

Chapter 3

Parallel Programming Tools

3.1. Introduction

This chapter describes some of the programming tools available on
Sequent systems. Some of these tools are available from Sequent and
some have been developed by Sequent users. Together, they show the
wide range of parallel programming approaches that are supported by
Sequent systems.

The applications that can be adapted for parallel programming vary
greatly in their requirements for data sharing, interprocess communica-
tion, and synchronization. To gain optimal speed-up from a parallel solu-
tion, the programmer must develop an algorithm that meets the require-
ments of the application while still exploiting all of its inherent parallel-
ism. To aid in this effort, the programmer needs tools that adapt easily
to the needs of a given application.

For example, a matrix multiplication on a large data set is best
expressed in terms of data partitioning: the solution requires repeating
the same operation on many different data items. This problem is very
synchronous. The program will have a well-defined beginning and end,
and the programmer can easily predict at what points the processes
must synchronize or communicate shared data. Ideal tools for this appli-
cation would support creation and termination of multiple identical
processes and division of shared data among processes.

In contrast, a large data base application might be much better
expressed in terms of function partitioning. At any time, different users
may be using different utilities to access the data base. These processes
may need to communicate to share data, or one process may need to
ensure that another process doesn’t corrupt its data. This application is
asynchronous: the programmer cannot predict when users will create
processes that need to communicate or access shared data. This applica-
tion requires tools that allow processes to communicate on an as-needed
basis.

3-2 Parallel Programming Tools

The Sequent systems support programming tools for a wide range of
applications:

o The FORTRAN parallel programming directives support parallel
execution of FORTRAN DO loops. With these directives, users
can execute many DO loops in parallel simply by adding a single
line to the source code.

® The microtasking routines in the Parallel Programming Library
support data and function partitioning applications. They allow
users to quickly and easily create sets of processes, schedule
tasks among processes, and synchronize processes between
tasks.

o The Force is a flexible tool which adapts to both data partition-
ing and function partitioning applications. In addition to the
process creation, scheduling, and synchronization capabilities of
data partitioning tools, it supports synchronization based on
availability of shared data.

® The DYNIX operating system includes a number of facilities
that support communication of data and status information
between loogely related processes.

® The parallel Ada tasking facility supports a similarly asynchro-
nous programming approach.

The following sections briefly describe these tools.

3.2. FORTRAN Parallel Programming Directives

The Sequent FORTRAN compiler can restructure DO loops for parallel
execution. The user prepares the program for the preprocessor by insert-
ing a set of directives which identify the loops to be executed in parallel,
the shared and private data within each loop, and any critical sections of
the loops (loop sections containing dependences). The directives also
allow the user to control the scheduling of loop iterations among
processes and the division of data between processes. The directive are
described in the Sequent FORTRAN Compiler User’s Guide.

Once the user has identified the parallel loops and properly marked the
data and critical sections, the preprocessor handles all the low-level

tasks of data partitioning. The preprocessor produces a program that

transparently sets up shared data structures, creates a set of identical
processes, schedules tasks among processes, and handles mutual exclu
sion and process synchronization.

Parallel Progrz

{hapter 4 explains how to use the
- dpectives and how to analyze DO |
- datu and critical code sections.

2.3. Parallel Programming |

The Sequent Parallel Programming :
sflow the programmer to execute C,
parallel. The library includes rou

¢ Allocation of memory for she
¢ Creation of processes to exec
¢ Identification of individual pr
¢ Suspension of processes duri
¢ Mutual exclusion on shared

& Synchronization of processes

frograms that use the Parallel Pro
tomatically balance loads betwee
sdiust the division of computing tas}

processors configured in the syst
HFagrammer to handle the communi
algorithm at a high level while
ilel algorithm.

sapter 5 explains how to use the
#listrates some data analysis and sc

.4, The Force

Force is a set of FORTRAN m:
@ University of Colorado at Bould:
ta partitioning in a manner simila
amming directives, but they al:

gimple data partitioning, the Fo
and termination, declaration

gramming Tools

ogramming tools for a wide range of

srogramming directives support parallel
DO loops. With these directives, users
ps in parallel simply by adding a single

s in the Parallel Programming Library
n partitioning applications. They allow
sily create sets of processes, schedule

and synchronize processes between

51 which adapts to both data partition-
ming applications. In addition to the
ng, and synchronization capabilities of
it supports synchronization based on
a.

ystem includes a number of facilities
ition of data and status information
"ocesses.

facility supports a similarly asynchro-
ach.

-ibe these tools.

‘rogramming Directives

* can restructure DO loops for parallel
program for the preprocessor by insert-
ify the loops to be executed in parallel,
n each loop, and any critical sections of
ng dependences). The directives also
scheduling of loop iterations among
1 between processes. The directive are
N Compiler User’s Guide.

parallel loops and properly marked the
oreprocessor handles all the low-level
preprocessor produces a program that
a structures, creates a set of identical
" processes, and handles mutual exclu-

Parallel Programming Tools 3-3

Chapter 4 explains how to use the FORTRAN parallel programming
directives and how to analyze DO loops to identify shared and private
data and critical code sections.

3.3. Parallel Programming Library

The Sequent Parallel Programming Library is a set of C routines which
allow the programmer to execute C, FORTRAN, or Pascal subprograms
in parallel. The library includes routines to handle the following func-
tions:

® Allocation of memory for shared data

® (Creation of processes to execute subprograms in parallel
® Identification of individual processes

® Suspension of processes during serial program sections
® Mutual exclusion on shared data

e Synchronization of processes during critical sections

Programs that use the Parallel Programming Library can be made to
automatically balance loads between processors and to automatically
adjust the division of computing tasks at run time based on the number
of processors configured in the system. The library routines allow the
programmer to handle the communication and synchronization needs of
an algorithm at a high level while concentrating on the design of the
parallel algorithm.

Chapter 5 explains how to use the Parallel Programming Library and
illustrates some data analysis and scheduling techniques.

3.4. The Force

The Force is a set of FORTRAN macros developed by Harry Jordan of
the University of Colorado at Boulder. These macros support standard
data partitioning in a manner similar to the Sequent FORTRAN parallel
programming directives, but they also offer support for less synchronous
solutions.

For simple data partitioning, the Force provides automatic process crea-
tion and termination, declaration of shared and private data, and

3-4 Parallel Programming Tools

synchronization of critical code sections. It will restructure loops for
parallel execution using either prescheduling or self-scheduling.

The Force also includes a special data type, Asyne, and two special
operations, Produce and Consume, that allow synchronization based on
data availability. An Async variable is a shared variable that has a
"full/empty” state flag associated with it. An Async variable is marked
full by a Produce operation. If the variable is already full, the Produce
operation waits until the variable is empty before writing a new value.
When a process performs a Consume operation on an Async variable, the
Force verifies that the Async variable is in the full state. If not, the Con-
sume operation waits until the variable is full, executes, and then sets
the variable state to empty.

For more information about the Force and where to obtain the Force
macros for Sequent computers, contact Sequent Technical Marketing.

3.5. UNIX Function Partitioning Tools

The DYNIX operating system provides support for asynchronous parallel
programming through standard UNIX 4.2bsd system calls, with special
DYNIX system calls and libraries, and with system calls in the System
V Applications Environment (SVAE).

UNIX system calls such as sigpause(), sigvec(), and sigblock()
allow processes to send and receive signals among themselves. The
SVAE system calls semop(), semget(), and semctl() allow pro-
grams to create and use counting and blocking semaphores. The UNIX
Interprocess Communication (IPC) subsystem allows processes to per-
form direct data transfers among themselves, even across a network of
systems. The SVAE message-passing system calls allow processes to
send and receive data via message queues. Together, these facilities
support a wide range of function partitioning applications, ranging from
a single program with a set of unique parallel processes to a set of pro-
grams working on a shared data base.

All of these facilities are described in more detail in Chapter 5.

Parallel Progra:

3.6. Parallel Ada

The standard Ada language suppo
parallel programming. The Ada lan
called tasks. Tasks resemble subrouti
can be executed in parallel. The S
(PRTS) allows Ada tasks to execute

Ada tasks communicate and sync
ENTRY, ACCEPT, and "call" state:
ENTRY declarations, each of which 1
The task’s ENTRY declarations and
ments in the task body define all the
can perform when it is called by anc
bles a function call that specifies 1
ENTRY in the called task, and the a
task.

At any time during program executio:
suspends its execution until the call
ACCEPT statement. Once the ACC
tasks are said to be "in rendezvous'
suspended until the accepting task h:
ENTRY and passed the results back.
lel execution until either needs to renc

For more information on the Sequent

-_V_ 8.7. Other Tools

arallel researchers have implemeni
gramming tools on Sequent machin
eveloped PPL@, a C-based parallel |
rocess management features. (Appe
on PPL.) Several Sequent users he
or use on their Sequent systems. Dr
-more National Laboratories has

" processes on a Sequent system.

Most applications can be solved effi
' The programming tools described in t
ange of applications, and paral

cramming Tools

ections. It will restructure loops for
cheduling or self-scheduling.

1 data type, Asyne, and two special
, that allow synchronization based on
ble is a shared variable that has a
with it. An Async variable is marked
2 variable is already full, the Produce
is empty before writing a new value.
ne operation on an Async variable, the
ble is in the full state. If not, the Con-
wriable is full, executes, and then sets

Force and where to obtain the Force
tact Sequent Technical Marketing.

:oning Tools

ides support for asynchronous parallel
WIX 4.2bsd system calls, with special

and with system calls in the System
B).

wse(), sigvec(), and sigblock()
eive signals among themselves. The
emget(), and semctl() allow pro-
and blocking semaphores. The UNIX
) subsystem allows processes to per-
themselves, even across a network of
ssing system calls allow processes to
ge queues. Together, these facilities
artitioning applications, ranging from
ique parallel processes to a set of pro-
ase.

in more detail in Chapter 5.

Parallel Programming Tools 3-5

3.6. Parallel Ada

The standard Ada language supports an asynchronous approach to
parallel programming. The Ada language includes program structures
called tasks. Tasks resemble subroutines except that, by definition, they
can be executed in parallel. The Sequent Parallel Run-Time System
(PRTS) allows Ada tasks to execute in parallel.

Ada tasks communicate and synchronize with each other through
ENTRY, ACCEPT, and "call" statements. A task can include several
ENTRY declarations, each of which represents a subroutine declaration.
The task’s ENTRY declarations and the corresponding ACCEPT state-
ments in the task body define all the operations that a task of that type
can perform when it is called by another task. A call statement resem-
bles a function call that specifies the task being called, the desired
ENTRY in the called task, and the arguments to be passed to the called
task.

At any time during program execution, one task can call another. It then
suspends its execution until the called task executes the corresponding
ACCEPT statement. Once the ACCEPT statement is present, the two
tasks are said to be "in rendezvous". At this point, the calling task is
suspended until the accepting task has completed the operations for that
ENTRY and passed the results back. Both tasks can then resume paral-
lel execution until either needs to rendezvous with another task.

For more information on the Sequent PRTS, contact Sequent Marketing.

3.7. Other Tools

Parallel researchers have implemented a variety of other parallel pro-
gramming tools on Sequent machines. Herb Schwetman of MCC has
developed PPL©, a C-based parallel programming language with built-in
process management features. (Appendix D gives a reference for a paper
on PPL.) Several Sequent users have developed hypercube simulators
for use on their Sequent systems. Dr. Eugene Brooks of Lawrence Liver-
more National Laboratories has implemented gang scheduling of
processes on a Sequent system.

Most applications can be solved efficiently with parallel programming.
The programming tools described in this chapter can be applied to a wide
range of applications, and parallel programmers are constantly

3-6 Parallel Programming Tools

developing new tools that can be run on Sequent systems. With its sym-
metric architecture, shared memory, and built-in parallel programming
support, the Sequent architecture can support almost any application
and parallel programming model.

Data Partitioning wit

Cha

Data Partitioning wi

4,1 Introductionccccceeeee.

4.2 Preparing DO Loops............
4.2.1 Analyzing Variable Usage ...
Shared Variables.................
Local Variables..........cccc.e..
Reduction Variables.............
Shared Ordered Variables....
Shared Locked Variables......
Variable Analysis Worksheet
4.2.2 Preparing the Loop..............
Marking the Parallel Loop ...
Marking Ordered Sections....
Marking Locked Sections

4.3 Compiling, Executing, and]
4.3.1 Compiling the Program........
4.3.2 Executing the Program
4.3.3 Debugging the Program

4.4 Additional Sources of Infor;

T
Table No.

4-1 Parallel Programming Directiv

Illus
Fig. No.

4-1 Variable analysis worksheet ..
4-2 Variable analysis worksheet f
4-3 Variable analysis worksheet ft
4-4 Variable analysis worksheet fi

s with DYNIX

i 5-31

TAE . neeerennennnarearrerennesines
buee! g 5-31
... 5-33
e 5-33
P51t ¢ DUUUTUUUUUUUUOURUOPRUSOPP PRI 5-33
les Page
dicrotasking Routines s 5-4
data-Partitioning Routines 5-5
Viemory-Allocation Routines......... 5-5
rations Page

5-11

Data Partitioning with DYNIX 5-1

Chapter 5

Data Partitioning with DYNIX

5.1. Introduction

This chapter explains how to structure C, FORTRAN, and Pascal pro-
grams for data partitioning, and how to use the DYNIX Parallel Pro-
gramming Library to execute loops in parallel. (Sequent FORTRAN
includes special directives for data partitioning of DO loops. If you wish
to data partition a FORTRAN DO loop, refer to Chapter 4.)

This chapter is organized as follows:

*

Section 5.2 introduces the data partitioning method called
microtasking.

Section 5.3 introduces the Parallel Programming Library rou-
tines.

Section 5.4 explains how to analyze data flow within a loop.
Section 5.5 explains how to structure a microtasking program.

Section 5.6 briefly explains how to compile, load, execute, and
debug your program.

Section 5.7 lists additional sources of information.

NOTES

Most examples in this chapter are in C or Pascal. The
discussion and instructions apply to FORTRAN, C,
and Pascal programs except where noted.

The Parallel Programming Library is compatible with
Sequent Pascal,pascal(l), not with Berkeley Pascal,
pe(D).

5-2 Data Partitioning with DYNIX

5.2. The Microtasking Method

The data-partitioning method described in this chapter is sometimes
called microtasking. Microtasking programs create multiple independent
processes to execute loop iterations in parallel. The microtasking method
has the following characteristics:

® The parallel processes share some data and create their own
private copies of other data.

e The division of the computing load adjusts automatically to the
number of available processes.

¢ The program controls data flow and synchronization by using
tools specially designed for data partitioning.

You determine which data is shared between parallel processes and how
the program adjusts to the number of available CPUs. (Sections 5.4 and
5.5 explain how to do this.) The Parallel Programming Library contains
the tools to create and control parallel processes in your microtasking
program.

A microtasking program works like this:

® Each loop to be executed in parallel is contained in a subpro-
gram,

¢ For each loop, the program calls a special function which forks a
set of child processes and assigns an identical copy of the sub-
program to each process for parallel execution. The special func-
tion creates a copy of any private data for each process.

¢ Each copy of the subprogram executes some of the loop itera-
tions. You can set up the subprogram to use either static
scheduling or dynamic scheduling.

Data Partitioning

o If the loop being executed in
dent, the subprogram may «
chronize the parallel processe
barriers, and other semaphore

o When all the loop iterations b
from the subprogram. At tl
minates the parallel processe
they are needed to execute ar
to spin in a busy wait state w

5.3. The Parallel Programmi

The DYNIX Parallel Programming 1
tines: a microtasking library, a set of
partitioning programs, and a set of
data partitioning programs. Appendix
for the Parallel Programming Library

5.3.1 The Microtasking Library

The microtasking library routines ¢

' processes, assign the processes to exe

synchronize the processes as neces:
between loop iterations. Table 5-1 lis
Parallel Programming Library.

1g with DYNIX

10d

ribed in this chapter is sometimes
rograms create multiple independent
n parallel. The microtasking method

re some data and create their own

ng load adjusts automatically to the
es.

i flow and synchronization by using
lata partitioning.

| between parallel processes and how
of available CPUs. (Sections 5.4 and
rallel Programming Library contains
-allel processes in your microtasking

this:

in parallel is contained in a subpro-

calls a special function which forks a
assigns an identical copy of the sub-
> parallel execution. The special func-
rivate data for each process.

-am executes some of the loop itera-
he subprogram to use either static
«duling.

Data Partitioning with DYNIX 5-3

® If the loop being executed in parallel is not completely indepen-
dent, the subprogram may contain calls to functions that syn-
chronize the parallel processes at critical points by using locks,
barriers, and other semaphores.

" ® When all the loop iterations have been executed, control returns
from the subprogram. At this point, the program either ter-
minates the parallel processes, suspends their execution until
they are needed to execute another subprogram, or leaves them
to spin in a busy wait state until they are needed again.

5.3. The Parallel Programming Library

The DYNIX Parallel Programming Library includes three sets of rou-
tines: a microtasking library, a set of routines for general use with data
partitioning programs, and a set of routines for memory allocation in
data partitioning programs. Appendix E contains the DYNIX man pages
for the Parallel Programming Library routines.

5.3.1 The Microtasking Library

The microtasking library routines allow you to fork a set of child
processes, assign the processes to execute loop iterations in parallel, and
synchronize the processes as necessary to provide proper data flow
between loop iterations. Table 5-1 lists the microtasking routines in the
Parallel Programming Library.

5-4 Data Partitioning with DYNIX

Data Partition

Table 5-1 Tak
Parallel Programming Library Microtasking Routines Parallel Programming Libre
Routines Descriptions Routines | Des
m_fork Execute a subprogram in parallel. cpus_online Rei
m_get_myid Return process identification number. s_init_barrier Ini
m_get_numprocs | Return number of child processes. S_INIT_BARRIER Cr
m_kill procs Terminate child processes. s_init lock Ini
m_lock Lock a lock. S_INIT LOCK Cr
m_multi End single-process code section. s_lockor s_clock | Lo
m_next Increment global counter. S_LOCKors _CLOCK | Cr
m_park procs Suspend child process execution. s_unlock Un
m_rele_procs Resume child process execution. S_UNLOCK Ci
m_set procs Set number of child processes. s _wait_barrier We
m_single Begin single-process code section. S_WAIT_ BARRIER C1
m_sync Check in at barrier.
m_unlock Unlock a lock.
5.3.3 Memory Allocation Routii
NOTE The memory allocation routines :

allocate and de-allocate shared m
shared and private memory assig

The microtasking library is designed around the memory allocation routines in the]

m_fork routine. The other microtasking routines

should be used only in combination with the m_fork 1 Ta
routine. Otherwise, they can cause unexpected side Parallel Programming Libr:
effects.
53.2 Data Partitioning Lib Routines Desc.
-4 Data tioning Library brk or sbrk Char
The general-purpose data-partitioning routines include a routine to deter- " shbrk or shsbrk | Char
mine the number of available CPUs and several process synchronization] shfree De-a
routines that are more flexible than those available in the microtasking mall All
library. Table 5-2 lists the general-purpose data-partitioning routines in shma’-oc x

the Parallel Programming Library.

1g with DYNIX

2 5-1
-ary Microtasking Routines

sions

a subprogram in parallel.
process identification number.
number of child processes.
ate child processes.
lock.
gle-process code section.

ant global counter.

d child process execution.

3 child process execution.

nber of child processes.

single-process code section.
iingle-process cOUe Ser17r e

in at barrier.

a lock.

OTE

y is designed around .the
ither microtasking routines
ymbination with the m_fork
can cause unexpected side

r

ing routines include a routine to detfar-
Je and several process synchronization
in those available in the microtasking
-purpose data-partitioning routines in

Data Partitioning with DYNIX

Table 5-2

Parallel Programming Library Data-Partitioning Routines

Routines

Descriptions

cpus_online

Return number of CPUs on-line. .

s_init_barrier

Initialize a barrier.

S_INIT BARRIER C macro.
s_init_lock Initialize a lock.
S_INIT LOCK C macro.
s_lock or s_clock | Lock a lock.
S_LOCK or s_CLOCK | C macros.
s_unlock Unlock a lock.
S_UNLOCK C macro.

s_wait_barrier

Wait at a barrier.

S_WAIT BARRIER

C macro.

5.3.3 Memory Allocation Routines

The memory allocation routines allow a data-partitioning program to
allocate and de-allocate shared memory and to change the amount of
shared and private memory assigned to a process. Table 5-3 lists the
memory allocation routines in the Parallel Programming Library.

Table 5-3
Parallel Programming Library Memory-Allocation Routines

Routines Descriptions

brk or sbrk Change private data segment size.
shbrk or shsbrk | Change shared data segment size.
shfree De-allocate shared data memory.
shmalloc Allocate shared data memory.

5-6 Data Partitioning with DYNIX

Section 5.5 explains how to use the Parallel Programming Library rou-
tines in a program and presents some sample programs. For a detailed
reference to the Parallel Programming Library, refer to Section 3P in
Volume 1 of the DYNIX Programmer’s Manual.

5.4. Analyzing Variable Usage

Before you can convert a loop into a subprogram for data partitioning,
you must analyze all the variables in the loop and determine two things:

e Which data can be shared between parallel processes and which
must be local to each parallel process.

e Which variables cause dependences or critical regions, code sec-
tions which can yield incorrect results when executed in parallel.

(If you have already read Chapter 4, you are familiar with the informa-
tion presented in this section. You may wish to turn directly to Section
5.5.)

5.4.1 Shared Variables and Private Variables

A variable must be private if it is initialized in each loop iteration before
it is used. All other variables are shared. Private variables are usually
scalar (single-element) variables, although other data structures may be
private. '

The following sample matrix multiply loop contains both shared and
private variables. (Assume that the outermost loop is the one to be exe-
cuted in parallel.)

foxr (i=0; i<n; i++)
for (k=0; kd<n; k++)
for (3=0; j<m; j++)
r{il[j] = x[il{3j] + s{il[k] * t[k1[j]:

In this loop, the variables i, k, and j are local: they are initialized at
the beginning of each loop iteration before they are used. (Remember
that we are referring to the outermost loop.)

Once you have identified the private variables, you can declare the
shared and private variables in your program. In C, you do this by
using the keywords shared and private in declaration statements.
In FORTRAN, you do this by placing all the shared variables in one or
more COMMON blocks and then using the -F compiler option to declare

Data Partitior

those COMMON blocks to be shar
piler option to make all global va
private.

In C, you need to define only stati
private. Automatic variables are)
variables cannot be shared. To de
simply add the keyword shared -
tion statement. For more inform
keywords, refer to the Sequent C C

In FORTRAN programs, all varial
are explicitly declared to be share
compiled with the -mp option.)

variables in shared COMMON blo
the -F option to declare which COM

Section 5.6.1 also explains how to-
5.4.2 Identifying Dependent V:

Dependent variables are shared v
by more than one loop iteration.
incorrect information between loo
cuted out of order or if two loop ite
taneously. This section explains h
tion 5.5 presents some special toc
dent variables to ensure correct re:

You can use the following simple
variable is dependent:

e Is it a read-only variable
written within the loop?

e Is it an array in which ¢
- loop iteration? (This occw
with the loop index.)

If the answer to either of these ¢
independent and you simply decle
then the variable is dependent an
dependence.

Dependent variables fall into the f

g with DYNIX

Parallel Programming Library rou-
1e sample programs. For a detailed
ing Library, refer to Section 3P in
’s Manual.

ige

a subprogram for data partitioning,
| the loop and determine two things:

etween parallel processes and which
3] process.

ndences or critical regions, code sec-
sct results when executed in parallel.

., you are familiar with the informa-
may wish to turn directly to Section

ate Variables

aitialized in each loop iteration before
shared. Private variables are usually
though other data structures may be

tiply loop contains both shared and
1e outermost loop is the one to be exe-

r)
poJtH) _
= x[i1[3§] + s[il[k] * tikI[31;

nd j are local: they are initialized at

on before they are used. (Remember
wost loop.)

vate variables, you can declare the
your program. In C, you do this by
private in declaration statements.
Bng all the shared variables in one or
#g the -F compiler option to declare

Data Partitioning with DYNIX 5-7

those COMMON blocks to be shared. In Pascal, you use the -mp com-
piler option to make all global variables shared and all local variables
private.

In C, you need to define only static or external variables to be shared or
private. Automatic variables are handled correctly for you, and register
variables cannot be shared. To declare a variable as shared or private,
simply add the keyword shared or private to the variable’s declara-
tion statement. For more information on the shared and private
keywords, refer to the Sequent C Compiler User’s Manual.

In FORTRAN programs, all variables are treated as private unless they
are explicitly declared to be shared. (This assumes the program is not
compiled with the -mp option.) Therefore you must place all shared
variables in shared COMMON blocks. Section 5.6.1 explains how to use
the -F option to declare which COMMON blocks are shared.

Section 5.6.1 also explains how to use the -mp Pascal compiler option.
5.4.2 Identifying Dependent Variables

Dependent variables are shared variables that can be read and written
by more than one loop iteration. These variables can sometimes pass
incorrect information between loop iterations if the iterations are exe-
cuted out of order or if two loop iterations try to write the variable simul-
taneously. This section explains how to identify these variables and Sec-
tion 5.5 presents some special tools and techniques for handling depen-
dent variables to ensure correct results.

You can use the following simple tests to determine whether a shared
variable is dependent:

e Is it a read-only variable; in other words, is it read but never
written within the loop?

e Is it an array in which each element is referenced by only one
loop iteration? (This occurs when the array index varies directly
with the loop index.)

If the answer to either of these questions is “yes,” then the variable is
independent and you simply declare it as shared. If the answer is “no,”
then the variable is dependent and you need to determine the type of its
dependence.

Dependent variables fall into the following three categories:

5-8 Data Partitioning with DYNTIX Data Partitionin

® Reduction variables Locked Variables

¢ Ordered variables

A locked variable is an array or sce
® Tocked variables

properties:

The remainder of this section explains how to identify these types of
dependent variables. Section 5.5.2 describes techniques “for handling
each type of dependence in your program.

Reduction Variables

A reduction variable is an array or scalar variable that has the following
properties:

® It is used in only one associative, commutative operation within
the loop. These operations include addition, multiplication, logi-
cal AND, logical OR, and exclusive OR.

® In C or FORTRAN programs, the operation is of the form:
var = var op expr
In C programs it may also be of the form:
var op= expr
In Pascal programs, the operation is of the form:
var := var op expr

where var is the reduction variable, op is an associative, com-
mutative operation, and expr is an expression that does not
include the variable var. The variable may occur in more that
one such statement, as long as the operation is consistent.

The following example loop contains a reduction variable:

for (k=0; k<i-1; kt+)
9 =9q + b[il[k] * w[i-k];

In this loop, the variables b, w, and 1i are independent, because they
are read-only within the loop. The variable q is a reduction variable. It
is used in a single associative, commutative operation (addition) and the
operation has the correct form. (The loop index, k, is local.)

e The variable can be read a
iteration.

e If the loop iterations were
order, the operations invo
correct results.

Because a locked variable can be rea:
iteration and because we intend tc
ously, we have to ensure that only «
able at a time. The mechanism to
name locked variable.

The following example computes th
number of other cities, then compar
distance, and selects the array inde
tains one locked variable.

x =0

y =1

least = 999999;

for (i=1; i<dn; i++) {

xsqdis = sqg(bvrtn[
ysqdis = sq(bvrtn([
dist = sqrt(xsqd

if (dist < least)
closest = i;
least = dist

}

In this loop, the variables bvrtn
ables: they are read-only within
ysqgdis, and dist are local: they
they are read. The variables cl
They are read and written by each
the iterations are executed does nc
involving them. As long as the loo
dist will be compared with lea:
value of closest or least bet
assignment statement, the loop wil

s with DYNIX

ns how to identify these types of
describes techniques’ for handling
am.

alar variable that has the following

wtive, commutative operation withifl
aclude addition, multiplication, logi-
lusive OR.

3, the operation is of the form:

e of the form:

ration is of the form:

variable, op is an associative, com-
;pr is an expression that does not
he variable may occur in more that
as the operation is consistent.

a reduction variable:

wli-k]l;

id i are independent, because they
rariable q is a reduction variable. It
nutative operation (addition) and the
3 loop index, k, is local.)

Data Partitioning with DYNIX 5-9

Locked Variables

A locked variable is an array or scalar variable that has the following
properties:

® The variable can be read and written by more than one loop
iteration.

e If the loop iterations were executed one at a time in random
order, the operations involving the variable would produce
correct results.

Because a locked variable can be read and written by more than one loop
iteration and because we intend to execute loop iterations simultane-
ously, we have to ensure that only one loop iteration is using the vari-
able at a time. The mechanism to do this is called a lock, hence the
name locked variable.

The following example computes the distance between one city and a
number of other cities, then compares each distance with the minimum
distance, and selects the array index of the nearest city. This loop con-
tains one locked variable.
x =0
y =1
least = 999999;
for (i=1; iln; it++) {
xsqdis = sqg(bvrtn[x]-al[i}ix]);
ysqdis = sq(bvrtn[yl-alillyl):
dist sqrt(xsqdis + ysqdis);
if (dist < least) {
closest = i;
least = dist;

}

In this loop, the variables bvrtn and a are independent shared vari-
ables: they are read-only within the loop. The variables =xsqdis,
ysqdis, and dist are local: they are written in each iteration before
they are read. The variables closest and least must be locked.
They are read and written by each loop iteration, but the order in which
the iterations are executed does not affect the results of the operations
involving them. As long as the loop is executed n times, each value of
dist will be compared with least. As long as nothing changes the
value of closest or least between the if statement and either
assignment statement, the loop will return the correct answers.

5-10 Data Partitioning with DYNIX

Ordered Variables

An ordered variable is an array or scalar variable that has the following
property:

® The loop consistently yields correct results only if the operations
involving the variable are executed one iteration at a time, in
serial order.

The following example loop contains two ordered variables.

for (i=0; i < n; i++) {

x(i) = xa(i) + xb(i);

dx = x(i) - x(i-1);

y(i) = ya(i) + yb(i);

dy = y(i) - y(i-1);

rho(i) = sqrt(dx * dx + dy * dy);
}

In this loop, the variables xa, xb, ya, and yb are shared, because they
are all read-only. The variables dx and dy are local because they are
initialized in each loop iteration before their values are used. The vari-
ables x and y are ordered. If the loop iterations were executed in ran-
dom order, the operations involving x and y would produce different
values than when the loop is executed in sequential order.

5.4.3 Variable Analysis Worksheet

As you analyze the variables in your loop, you may find it helpful to use
the worksheet shown in in Figure 5-1.

Data Partitioni

SHARED LOCAI
b Is the variable Could the variable
VA[‘HABLE read-only within be renamed in
NAME | (o loop OR isit | each ieraiion
an array where without affecting
each element is the program resuit?
read and written
by only one loop
iteration?

Fig. 5-1. Variable

To use this worksheet, simply list
first column. For each variable, n
tions until you either answer "yes
tions. When you mark a "yes" in
type in the label at the top of the ¢

vith DYNIX

ir variable that has the following

rect results only if the operations
:uted one iteration at a time, in

) ordered variables.

¢ + dy * dy);

and yb are shared, because they
nd dy are local because they are
their values are used. The vari-
y iterations were executed in ran-
¢« and y would produce different
n sequential order.

»op, you may find it helpful to use

exch element is
read and written
by only one ioop
iteration?

the program result?

the loop AND is it
always read, then
written?

tions involving this
varéable produce
different resulis?

Data Partitioning with DYNIX 5-11
SHARED SHARED
SHARED LOCAL REDUCTION ORDERED LOCKED
VARIABLE Is the variable Could the variable Is the variable used | [f the loop itera- Have you
. NAME read-only within be renmmed in in only one associ- tions were exectued | answered “no” to
the loop OR is it each iteration ative, commutative | in random order, all the other
an array where without gffecting operation within would the opera- questions?

1003-454532

To use this worksheet, simply list all the variables in your loop in the
first column. For each variable, mark your answers to the listed ques-
tions until you either answer "yes" to one question or run out of ques-
tions. When you mark a "yes" in any column, you'll find the variable

Fig. 5-1. Variable analysis worksheet.

type in the label at the top of the column.

5-12 Data Partitioning with DYNIX

5.5. The Microtasking Program

This section explains how to structure a microtasking program. In such
a program, each loop to be executed in parallel is contained in a subpro-
gram which we will call the looping subprogram. Section 5.5.1 describes
the calling program, Section 5.5.2 describes the looping subprogram, Sec-
tion 5.5.3 discusses shared memory allocation, and Section 5.5.4
presents some complete program examples.

5.5.1 The Calling Program
The calling program handles the following tasks:

® Including any header files required by the Parallel Programming
Library routines (C programs only).

¢ Determining how many parallel processes are created to execute
the loop. This determination is based on the number of CPUs in
the system. The program can either call the Parallel Program-
ming library routine m_set_procs or it can use the default
number computed by the Parallel Programming Library.

e Calling the Parallel Programming Library routine m_fork to
execute each looping subprogram in parallel.

® Suspending or terminating parallel processes between calls to
looping subprograms, and terminating all parallel processes
after the last looping subprogram has been executed.

Parallel Programming Library Header File

DYNIX includes two C header files which contain declaration statements
for the Parallel Proramming Library routines. One file contains declara-
tions for the microtasking routines and the other contains declarations
for the other routines. Both of these header files reside in the directory
/usr/include/parallel. The header files are named microtask.h and
parallel.h. Refer to Section 3P in the DYNIX Programmer’s Manual for
information on which file to include for a specific routine. '

Determining How Many Parallel Processes to Use
To determine how many parallel 'processes your program will use to exe-

cute the loop subprogram, you can either call the Parallel Programming
Library routine m_set procs or you can use a default number

Data Partitionir

computed by the Parallel Prorgam
function sets the number of process
calls to the routine m_fork. (This:
If your program uses m_set_procs
tine cpus_online to find out how &

By default, the number of processes
number of CPUs on-line divided by
function, you can set this number
number of CPUs on-line minus 1.

In C, the calls to the cpus_online
this:

var = cpus_online()
val = m_set proecs(n
In Pascal, the calls to these function
var := cpus_onlineq
val := m_set proecs(
In FORTRAN, the calls to these fun
var = cpus_online(’
vael = m_set_procs(r

The variables var, val, and nprocs
grams, type longint in Pascal -
FORTRAN programs.

Calling the Looping Subprogran

The Parallel Programming Library |
subprogram in parallel. M_fork

existing processes and assigns them
subprogram. It can also pass an arg

In C, the m_fork function cail look:

m_fork(funcl ,arg, ..

In Pascal, the m_fork function call
m_pfork(funcl,arg, .

; with DYNIX

‘am

> a microtasking program. In such
n parallel is contained in a subpro-
ubprogram. Section 5.5.1 describes
icribes the looping subprogram, Sec-
ry allocation, and Section 5.5.4
aples. '

wing tasks:

juired by the Parallel Programming
3 only).

1lel processes are created to execute
is based on the number of CPUs in
n either call the Paralle! Program-
: procs or it can use the defauit
-allel Programming Library.

nming Library routine m_fork to
ram in parallel.

parallel processes between calls to
terminating all parallel processes
sram has been executed.

sader File

‘hich contain declaration statements
routines. One file contains declara-
and the other contains declarations
3 header files reside in the directory
files are named microtask.h and
e DYNIX Programmer’s Manual for
r a specific routine.

Processes to Use
cesses your program will use to exe-

ither call the Parallel Programming
you can use a default number

Data Partitioning with DYNIX 5-13

computed by the Parallel Prorgamming Library. The m_set_procs
function sets the number of processes that will exist after subsequent,
calls to the routine m_fork. (This number includes the parent process.)
If your program uses m_set_procs, you may want to also use the rou-
tine cpus_online to find out how many CPUs are currently on line.

By default, the number of processes created by m_fork is equal to the
number of CPUs on-line divided by two. By using the m_set_procs
function, you can set this number as low as one or as high as the
number of CPUs on-line minus 1.

In C, the calls to the cpus_online and m_set_procs functions look like
this:

var = cpus_online();

val = m_set_procs(nprocs);
In Pascal, the calls to these functions look like this:
var := cpus_online();
val := m_set_procs(nprocs);
In FORTRAN, the calls to these functions look like this:
var = cpus_online()
val = m_set_procs (nprocs)

The variables var, val, and nprocs must all be of type int in C pro-

grams, type longint in Pascal programs, and type INTEGER*4 in
FORTRAN programs.

Calling the Looping Subprogram: The m_fork Routine

The Parallel Programming Library function m_fork executes the looping
subprogram in parallel. M fork creates processes or reuses a set of
existing processes and assigns them to execute copies of the specified loop
subprogram. It can also pass an argument list to each copy.

In C, the m_fork function call looks like this:
m_fork(funcl,arg,...1);

In Pascal, the m_fork function call looks like this:

m_pfork(funcl,arg,...1);

5-14 Data Partitioning with DYNIX

In FORTRAN, the m_fozrk function call looks like this:

external func
call m_fork(funcl,arg,...1)

The func argument is the name of the looping subprogram and the argu-
ments arg are its parameters. These parameters can be of any type. In
a C program, you must declare the m_fork function to be of type void.

When the m_fork function is called, it determines whether there are
existing child processes, processes created by a previous m_fork call. If
there are existing child processes, it reuses them to execute the loop sub-
program. If not, it creates a new set of child processes to execute the
subprogram.

The m_fork routine creates enough child processes to bring the total
number of processes (including the parent process) to either the default
(number of CPUs on-line/2) or the number you set with a previous call to
the m_set_procs function. As m_fork creates child processes, it
assigns each process a private integer variable called m_myid, which
uniquely indentifies that child process within the set of processes belong-
ing to that program. The main program (the parent process) has the
m_myid value 0, the first child process created has the m_myid value 1,
and so on. You can find the identification number of any process by cal-
ling the Parallel Programming Library function m_get_myid.

Once child processes are available, m_fork passes them copies of their
parameters and starts them executing the looping subprogram func.
When all the child processes are started, the parent process gives itself a
copy of the loop subprogram and parameters, and all the processes exe-
cute the loop subprogram until they all return from it. At this point, the
child processes spin, waiting for more work. The parent process can
either kill the child processes, suspend them, or let them spin until they
are reused by another m_fork call.

Re-using and Terminating Parallel Processes

As explained in Section 5.2, a program typically forks as many child
processes as it needs at the beginning and does not terminate them until
all parallel computation is complete. The Parallel Programming Library
includes three routines to manage child processes after m fork calls:
m_park_procs, m_rele_procs, and m_kill procs. By default, after
the program returns from an m_fork call, the child processes spin,
using CPU time. If your program requires a lot of computation before the
next m_fork call, it can suspend the child processes and relinquish their
CPUs for use by other processes by calling the m_park procs routine.

Data Partitionir

The program then resumes child
m_rele_procs routine. After the ls
call the routine m_kill_procs to te

5.5.2 The Looping Subprogram

This section explains how to construc
to executing a loop in parallel, the
lowing tasks:

® Scheduling, determining wl
iterations .

® DProtecting code sections t}
that they yield correct resul

e Synchronizing processes as :

¢ Handling I/0, if required.

Static and Dynamic Scheduling

In data-partitioning programs, you
scheduling. Static scheduling ret
processes. Dynamic scheduling reg
even out an unbalanced computing k

Static Scheduling. If you know i
mately the same for each iteratio
scheduling. The static scheduling
iterations evenly among the processe

The static scheduling algorithm ft
steps:

1. Call the Parallel
m_get_numprocs to dete

created by the m_fork call

2. Call the Parallel Programn
find out my process ID nurc

3. Start by executing the NtAa

- with DYNIX

all looks like this:

PR B

s looping subprogram and the argu-
parameters can be of any type. . In
_fork function to be of type void.

,, it determines whether there are
ated by a previous m_fork call. If
cuses them to execute the loop sub-
st of child processes to execute the

. child processes to bring the total
arent process) to either the default
mber you set with a previous call t_o
. fork creates child processes, it
ger variable called m._myid, ~which
s within the set of processes belong-
igram (the parent process) has the
ss created has the m_myid value 1,
.ation number of any process by cal-
«y function m_get_myid.

m fork passes them copies of their
ting the looping subprogram func.
ted, the parent process gives itself a
rameters, and all the processes exe-
all return from it. At this point, the
ore work. The parent process can
ad them, or let them spin until they

lel Processes

gram typically forks as many chilsi
1g and does not terminate them until
The Parallel Programming Library
child processes after m_fork calls:
d m_kill_procs. By default, aftgr
fork call, the child processes spn,
quires a lot of computation before th'e
1e child processes and relinquish tl_xelr
- calling the m_park_procs routine.

Data Partitioning with DYNIX 5-15

The program then resumes child process execution by calling the
m_rele procs routine. After the last m_fork call, the program should
call the routine m_kill_procs to terminate the child processes.

5.5.2 The Looping Subprogram

This section explains how to construct a looping subprogram. In addition

to executing a loop in parallel, the looping subprogram handles the fol-
lowing tasks:

e Scheduling, determining which process will execute which loop
iterations .

® Protecting code sections that contain dependent variables so
that they yield correct results.

® Synchronizing processes as necessary.

® Handling 1/0, if required.

Static and Dynamic Scheduling

In data-partitioning programs, you can use either static or dynamic
scheduling. Static scheduling requires no communication between
processes. Dynamic scheduling requires more communication, but can
even out an unbalanced computing load.

Static Scheduling. If you know that the computing time is approxi-
mately the same for each iteration of your loop, you can use static
scheduling. The static scheduling algorithm simply divides the loop
iterations evenly among the processes.

The static scheduling algorithm for a process involves the following
steps:

1. Call the Parallel Programming Library routine
m_get_numprocs to determine how many processes were
created by the m_fork call. (We'll call this number M.)

2. (Call the Parallel Programming library routine m_get_myid to
find out my process ID number. (We'll call this number N.)

3. Start by executing the Nth loop iteration.

5-16 Data Partitioning with DYNTX

4. Execute every Mth iteration until I reach the end of the loop.

Refer to Section 5.5.4 for an example program that uses static
scheduling.

Dynamic Scheduling. If you know that the computing time varies for
each iteration of your loop, you can use dynamic scheduling. With
dynamic scheduling, the loop iterations are treated as a task queue, and
each process removes one or more iterations from the queue, executes
those iterations, and returns for more work. This method is sometimes
called “hungry puppies” because the processes “nibble” away at the work
until it is all done.

Dynamic scheduling creates more communication overhead than static
scheduling because all the processes must access a single shared task
queue, but the computing load can be very evenly distributed because no
process is idle while there is still work to be done. For data partitioning,
the task queue can be implemented by using the m_next routine.

A typical dynamic scheduling algorithm includes the following steps:

1. Lock a lock.

2. Check shared loop index and verify that there is still work to be
done.

3. Increment or decrement the shared loop index by N. (The
m_next routine is useful for this if your shared loop index can
start at zero and increment.)

4, Unlock the lock.
Execute N iterations.

6. Repeat steps 1 through 5 until all the work is finished.
If you use the m_next routine, you do not need to explicitly lock and un-
lock a lock. These steps are built into m_next. Refer to Section 5.5.4 for
an example program that uses m_next in dynamic scheduling.

Handling Dependent Variables

This section describes techniques for handling order, reduction, and lock-
type data dependencies.

Data Partitionin;

Handling Locked Sections. If yow
need to use the Parallel Programm
m_unlock to ensure that the code
executed by only one loop iteration a
appear on the line immediately prece
variable, and the m_unlock call sho
following the last reference to a lockes

Refer to Section 5.5.4 for an exampl
to protect the shared loop index in a
gram.

The m_lock and m_unlock routine
subprogram. If your program require
can use the s_init lock, s_lock
tines. Refer to the s_lock(5P) man
Manual for more information on thes:

Handling Reduction Variables.
locked variables, except that you ne
part of the time. You can create a
within the parallel loop routine, and
for the reduction variable name thro
loop subprogram, you can call the =
tion operation to combine the local
reduction variable, and call the »
efficient than an ordinary locked var
the locked section only once.

For example, consider the following e

for (k=mystart; k<end;
q9 =4q + bli] [k];

The reduction variable q is shared.

in any order, but the loop can produ
try to read or write g simultaneous]
this way, it cannot be executed in p;
cal variable, 1q, each process can

affecting any other process. Once e:
it can lock the shared variable q, adi

ith DYNIX

il I reach the end of the loop.

ple program that uses static

at the computing time varies for
use dynamic scheduling. With
are treated as a task queue, and
ations from the queue, executes
work. This method is sometimes
cesses “nibble” away at the work

nunication overhead than static
\ust access a single shared task
ery evenly distributed because no
o be done. For data partitioning,
1sing the m_next routine.

includes the following steps:

arify that there is still work to be

shared loop index by J\ (The
his if your shared loop index can

_all the work is finished.
not need to explicitly lock and un-

a next. Refer to Section 5.5.4 for
- in dynamic scheduling.

andling order, reduction, and lock-

Data Partitioning with DYNIX 5-17

Handling Locked Sections. If your loop contains locked variables, you
need to use the Parallel Programming Library routines m_lock and
m_unlock to ensure that the code section containing those variables is
executed by only one loop iteration at a time. The m_lock call should
appear on the line immediately preceding the first reference to a locked
variable, and the m_unlock call should appear on the line immediately
following the last reference to a locked variable.

Refer to Section 5.5.4 for an example program that uses these routines
to protect the shared loop index in a dynamically scheduled loop subpro-
gram,

The m_lock and m_unlock routines support only one lock per looping
subprogram. If your program requires more than one lock at a time, you
can use the s_init_lock, s_lock or s_clock, and s_unlock rou-
tines. Refer to the s_lock(5P) man page in the DYNIX Programmer’s
Manual for more information on these routines.

Handling Reduction Variables. Reduction variables are similar to
locked variables, except that you need to protect them.with locks only
part of the time. You can create a local reduction variable, initialize it
within the parallel loop routine, and substitute the local variable name
for the reduction variable name throughout the loop. At the end of the
loop subprogram, you can call the m_lock function, perform the reduc-
tion operation to combine the local reduction variable with the shared
reduction variable, and call the m_unlock function. This is more
efficient than an ordinary locked variable because each process executes
the locked section only once.

For example, consider the following example loop from Section 5.4.2:

for (k=mystart; k<end; k+=incr)
q = q + blii[k];

The reduction variable q is shared. The loop iterations can be executed
in any order, but the loop can produce incorrect results if two processes
try to read or write q simultaneously. As long as the loop is structured
this way, it cannot be executed in parallel. However, if we declare a lo-
eal variable, 1q, each process can add its values of b to 1lq without
aflecting any other process. Once each process finishes its calculations,
it can lock the shared variable g, add its 1g value, and unlock q.

c 648 Data Partitioning with DYNIX

Data Partitioning

ig = 0;

for (k=mystart; k<{end; k+=incr)
lg = 1g + b[i][k];

m_lock();

qg=49q+ 1q;

m_unlock();

Handling Ordered Sections. If your loop contains an ordered variable,
you need to ensure that the code sections containing that variable are ex-

ecuted in loop iteration order. To ensure this, repeat the following pro-
cedure for each ordered variable in the loop.

1. In the main program, declare a shared integer variable to hold
the current loop iteration number. (If the shared ordered vari-
able is named i, you might name the new variable something
like iguaxrd.) Initialize the new variable to the starting value
of the loop index.

2. In the looping subprogram, on the line before the first reference
to the shared ordered variable, insert a conditional statement
that loops on itself until the loop index value is equal to the
value of the iteration count variable.

3. On the line after the last reference to the shared ordered vari-

able, insert a statement to increment the shared iteration
counter variable.

NOTE

At some optimization levels, the C optimizer can re-
move conditional tests in spin loops. If your codes uses
any spin loops on shared variables, always compile
with the -i compiler option to ensure that the condition-
al tests are preserved. For more information on the -i
option, refer to cc(1).

If the ordered variable is written and then read more than once within
the loop, you can speed up execution by treating each write/read se-
quence as a different variable. This allows execution to proceed in paral-
lel between ordered sections.

The following example loop from Section 5.4.2 illustrates these
modifications. The shared variables x and y are ordered. Assume that
we have declared two shared variables named xguard and yguard in
the main program and initialized them to zero.

for (i=0; i < n; i++) |
while (xguard (= 1)
continue;
x(i) = xa(i) + xb(i]
dx = x(i) - x(i-1);
xquard = xguard + 1,
while (yguard != i)
continue;
y(i) = ya(i) + yb(i
dy = y(i) - y(i-1);
yguard = yguard + 1
rho(i) = sgrt(dx * «

Synchronizing Processes

A looping subprogram sometimes con
on all the processes having complete
Tor example, a looping subprogram 1x
the same set of data, and the alg
processes finish executing the first !
second loop. In such situations, you
the processes.

The Parallel Programming Library ir
of barriers. The routine m_sync syn
gle, pre-initialized barrier. To set mo
ize a subset of the processes, t
s init_ barrier to initialize a barr:
to synchronize processes at the barrie

Handling VO

Section 2.9 mentioned the complicat
portion of a program. The Parallel 1
avoid these complications by setting
looping subprogram. The looping su
gramming Library routine m_single
while the parent process performs I
routine to start child process executi
while the parent is doing 1/0O.

with DYNIX

k+=incr)

- loop contains an ordered variable,
ns containing that variable are ex-
e this, repeat the following pro-
loop.

a shared integer variable to hold
nber. (If the shared ordered vari-
name the new variable something
1ew variable to the starting value

i the line before the first reference
le, insert a conditional statement
loop index value is equal to the
riable.

arence to the shared ordered vari-
increment the shared iteration

E

the C optimizer can re-
s loops. If your codes uses
ariables, always compile
ensure that the condition-
ore information on the -i

then read more than once within
1 by treating each write/read se-
llows execution to proceed in paral-

Section 5.4.2 illustrates these
t and y are ordered. Assume thgt
s named xguaxrd and yguard in
1 to zero.

Data Partitioning with DYNIX 5-19

for (i=0; i < n; i++) {

while (Xguard 1= j_)
continue;
X(i) = xa(i) + xb(i);

dx = x(i) - x(i-1);

xguard = xguard + 1;

while (yguard != i)

continue;

Y(i) = ya(i) + yb(i);

dy = y(i) - y(i-1);

yguard = ygquard + 1;

rho(i) sqrt(dx * dx + dy * dy);

mou

Synchronizing Processes

A looping subprogram sometimes contains a code section which depends
on all the processes having completed execution of the preceding code.
For example, a looping subprogram might execute more than one loop on
the same set of data, and the algorithm might require that all the
processes finish executing the first loop before starting to execute the

second loop. In such situations, you can set up barriers to synchronize
the processes.

The Parallel Programming Library includes routines to set up two kinds
of barriers. The routine m_sync synchronizes all the processes at a sin-
gle, pre-initialized barrier. To set more than one barrier, or to synchron-
ize a subset of the processes, the looping subprogram can call
s_init_barrier to initialize a barrier and then call s_wait_barrier
to synchronize processes at the barrier.,

Handling VO

Section 2.9 mentioned the complications of doing I/O from the parallel
portion of a program. The Parallel Programming Library allows you to
avoid these complications by setting up single-process sections within a
looping subprogram. The looping subprogram can call the Parallel Pro-
gramming Library routine m_single to halt execution of child processes
while the parent process performs 1/0. 1t can then call the m multi

routine to start child process execution again. The child processes spin
while the parent is doing I/0.

5-20 Data Partitioning with DYNIX

5.5.3 Shared Memory Allocation

The Parallel Programming Library containg a set of routines for dynamic
allocation and management of shared memory. For C programs, the
shmalloc and shfree routines allocate and release shared memory for
data structures whose size is determined at run time. The shmalloc
routine returns a shared pointer to the newly allocated shared memory.
(In Pascal, dynamic shared memory allocation is handled by the NEw
routine, and FORTRAN does not allow dynamic memory allocation.)

The shbrk and shsbrk routines increase the size of a process’s shared
data segment and verify that the increase does not cause the shared
data segment to overlap the process’s shared stack. The Parallel Pro-
gramming Library brk and sbrk routines are used like the standard
DYNIX brk and sbrk to increase a process’s private data segment size,
but they also verify that the increase does not cause the private data
segment to overlap the process’s shared data segment.

The -Z linker option also allows you to control the size and base address
of the shared data segment. For more information on this option, refer to
the Id(1) man page.in the DYNIX Programmer’s Manual.

5.5.4 Example Programs

Static Scheduling - C Example

/* multiply two matrices, store results in third matrix,
and print results */

#include <{stdio.h>

#include <(parallel/microtask.h> /* microtasking headexr */
#include <(parallel/parallel.h> /* parallel 1lib headexr */
#define SIZE 10 /* size of matrices */

/* Global shared memory data */

shared float a[SIZE][SIZE]; /* first array */
shared float b[SIZE]}[SIZE]; /* second array */
shared float c[SIZE][SIZE]; /* result array */

main ()
{
void init_matrix(), m_fork(), m _kill procs(),
matmul(), print_mats();
int nprocs; /* number of parallel processes */

Data Partitionin

printf("Enter number of
scanf ("%d", snprocs) ;

init matrix(a, b);
m_set_procs(nprocs) ;
m_fork(matmul, a, b, c);
m_kill procs();
print_mats(a, b, c);

}
/* initialize matrix function

void

init_matrix(a, b)

float a[]l[SI2E]}, b[][SIZE];
{

int i, 3j;

for (i = 0; i < SIZE; i +

for (j = 0; j < SIZE;
afil[j}] = (float
b[i][j] = (float

/* matrix multiply function *

void

matmul(a, b, c)

float a[]J[SIZE], b[][SIZE], c
{

int i, j, k, nprocs;

nprocs m_get_numprocs()
for (i m_get myid(); i
for (j = 0; j < SIZE,

for (k = 0; k <
c[i][k] += a

/* print results function */

void
print_mats(a, b, c)
float a[][SIzE], b[][SIZE], ¢

g with DYNIX

ntains a set of routines for dynamic
red memory. For C programs, the
cate and release shared memory for
mined at run time. The shmalloc
the newly allocated shared memory.
y allocation is handled by the NEwW
»w dynamic memory allocation.)

icrease the size of a process’s shared
increase does not cause the shared
ig’s shared stack. The Parallel Pro-
routines are used like the standard
L process’s private data segment size,
ase does not cause the private data
red data segment.

. to control the size and base address
re information on this option, refer to
rogrammer’s Manual.

.ore results in third matrix,

t.h> /* microtasking headexr */
.h> /* parallel 1ib headexr */
/* size of matrices */

ty data */

[SIZE]; /* fixst array */
[SIZE]; /* second array */
[SIZE]; /* result array */

fork(), m_kill procs(),
ts();
* of parallel processes */

Data Partitioning with DYNIX 5-21

printf("Enter number of prbcesses:");
scanf("%d", snprocs) ;

init matrix(a, b); /* initialize data */
m_set_ procs(nprocs); /* set # of processes */
m_f?rk(matmul, a, b, ¢);/* execute parallel loop */
m_¥1ll_procs(); /* kill child processes */
print_mats(a, b, c); /* print results */

}
/* initialize matrix function */
void
init_matrix(a, b)
float al][s1zE], b[][SIZE];
int i, j;

for (i = 0; i ¢ SIZE; i ++) {

for (j = 0; 3 < SIZE; j ++) [
a[il[j] = (float)i + i;
b[il[j] = (ficat)i - j;

}
/* matrix multiply function */

void
matmul(a, b, c)
float a[l[s1izE], b[][sS1zE], c[1[S1IzE];

int i, j, k, nprocs;

nproc§ = m_get numprocs(); /* no. of processes */
for (i = m _get myid(); i < SIZE; i += nprocs) {

for (j = 0; j < sIzZE; 3 ++) {
for (k = 0; k ¢ SIZE; k ++)

c[i]lk] += a[il[j] * bI31[k];

/* print results function */

void
print_mats(a, b, ¢)
float a[][SIZE], b[][SIZE], c[][SIZE];

5-22 Data Partitioning with DYNIX

int i, 3j;

for (i = 0; 1 < SIZE; i ++) {
for (j = 0; j < SIZE; j ++) {
printf("a[sdj[%d] = %3.2fb{%d][%d] = %3.2f",
i, jr a[ll[jll i, Je blll[j]);
printf("c[%d]l[%d] = %3.2f\n", i, 3,
clil[31):

Static Scheduling - Pascal Example

{ multiply two matrices, store results in third
matrix, and print results }

program matrix mul ;

const

SIZE = 9 ; { (size of matrices)-1 }

type

matrix = array[0..SIZE, 0..SIZE] of real;
integer = longint;

var

a : matrix { first array }
b : matrix { second array }
¢ : matrix ; { result array }

nprocs: longint; { number of processes }
ret_val: longint; { return value for m_set_procs }

. N e

procedure m_lock;
cexternal;
procedure m_unlock;
cexternal;
function m_set procs(var i : longint) : longint;
cexternal;
procedure m_pfork(procedure aj);
cexternal;
function m_get numprocs : longint;
cexternal;

Data Partitioning

function m_get myid : longint;
cexternal;

procedure m_kill procs;
cexternal; '

{ initialize matrix function }

procedure init matrix ;
var

i, j : integer ;
begin
for 1 := 0 to SIZE do
begin
for j := 0 to SIZE do
begin
ali, 31 == (i + 3
bli, j] := (i - 3
end;
end;

end; { init_matrix }

{ matrix multiply function }
procedure matmul ;

var

i, 3, k
nprocs

integer; { local loo
integer; { number of

begin
nprocs := m_get numprocs;
i := m_get_myid; { ste
while (i <= SI2E) do
begin
for j := 0 to SIZE do
begin
for k := 0 to SIZ
cli, k] := c[
end;
i := i + nprocs;
end;
end; { matmul}

{ print results procedure }

procedure print_mats ;
var

ag with DYNIX

++)

P B o

i1 = %3.2fb[%d}[%4] = %3.2£",
t, i, 3, bI[i1[3D):

1] = $3.26\n", i, 3,

iple

re results in third

}

:rices)-1 }

3IZE] of real;

irray }

array }

array 1}

f processes }

ralue for m_set procs }

: longint) : longint;
aj):

sngint;

Data Partitioning with DYNIX 5-23

function m_get_myid : longint;
cexternal;

procedure m kill procs;
cexternal;

{ initialize matrix function }

procedure init matrix ;

var
i, j : integer ;
begin
for i := 0 to SIZE do
begin
for j := 0 to SIZE do
begin
ali, 31 = (i + 3) ;
bli, 31 := (i - 3) ;
end;
end;

end; { init_matrix }

{ matrix multiply function }
procedure matmul ;

var

i, j, k
nprocs

integer; { local loop indices }
integer; { numbexr of processes 1}

begin
nprocs := m_get numprocs; { number of processes }
i := m_get_myid; { start at Nth iteration }
while (i <= SIZE) do

begin
for j := 0 to SIZE do
begin
for k := 0 to SIZE do .
cli, k] := e[i, k] + al[i, j] * b[j, k1;
end;
i := i + nproes;
end;

end; { matmul}
{ print results procedure }

procedure print_mats ;
var

5-24 Data Partitioning with DYNIX Data Partitionir

stxruct location {

i, j : integex; { local loop indices } char *name:
r

"RENO", 200., -600
"PORTLAND", -17.,

"WASHINGTON D.C.",
"TILLAMOOK", -70.,

end; {print mats}

begin { main program starts here}

begin
for i := 0 to SIZE do . float x, y;
begin ’
I for j := 0 to SIZE do - shared struct location c:
begin { "CHICAGO", 2000.,
writeln(‘al’,i,",",3,'1 = ',ali,jl, o o e 0% ™5
’b[’li'llr’ljr'] = ',b[iyj],’ C[',i,',’, { " RK 4 150-1
Lopa T, 2 { "SEATTLE", 0., 200
i1 = feld, 31y " "
MIAMI 3500., -2
end; { " ’ ’l'
end; E SAN FRANCISCO", -
{
{
{

1

writeln('Enter number of processes:’); .
shared struct location b

readln(nprocs) ;

0., 0. };
init_matrix; { initialize data arrays } .
ret_val := m_set_procs(nprocs); { set # of processes } main ()
m_pfork(matmul); { do matrix multiply } { . e . . .
m_kill procs; { terminate child processes } void get cities(), find di:
print_mats; { print results }

shortest = 999999999, ;

m_fork(find dis, cities);

printf("%s is closest to Be
cities[closest].name);

Dynamic Scheduling - C Example : printf("%s is $3.2f miles f
& cities[closest].name,

end. { main program }

3 }
/* use Cartesian coordinates to find the city closest to] /* find distance to nearest «
Beaverton, Oregon, and print the name and distance 1
from Beaverton */ E 4 void
p find _dis(cities)
#include <(stdio.h> ; struct location cities[];
#include <math.h> % {
#include <parallel/microtask.hd> /* microtasking header x/ 2 int i, base, top; /* local !
#include <parallel/parallel.h> /* parallel library float xsqgdis, ysqdis, dist;
header */ ' .
3 while ((base = BITE*(m_next(.
#define NCITIES 10 /* number of cities */ 3 top = base + BITE; /*
$define BITE 1 /* bite of work for hungry puppy */ 1 if (top >= NCITIES)

top = NCITIES-1;

/* Global shared memory data */
/* execute all iterxra

shared float shortest; /* distance to .] \ .
nearest city */ for (i = base; i (=
shared int closest; /* index of ; xsqdis = pow(fab

nearest city */

ith DYNIX Data Partitioning with DYNIX 5-25
i

struct location {

char *name;
float x, y;
g }i
shared struct location cities[NCITIES] = {
"CHICAGO", 2000., 100. },
"DENVER", 500., ~550. 1},
"NEW YORK", 150., 100. 1},
"SEATTLE", 0., 2060. 1},
"MIAMI", 3500., —-2000. },
"SAN FRANCISCO", -100., -1000. },
"RENO", 200., -600. },
"PORTLAND", ~17., O.),
"WASHINGTON D.C.", 3000., ~400. },
"PILLAMOOK", -70., -50. 1},

dices 1}

fjl'] = ,Ia[ilj]l .
= ',b[i,j],' C[,lll'l'l

1):

re}

L Rate K N e M W Was W W W]

3 }:
rocesses:’); -3 shared struct location beaverton = { "BEAVERTON",
3 0., 0. };

tialize data arrays }

ocs); [set # of processes }
do matrix multiply }

minate child processes }

nt results }

main ()
{

void get_cities(), find_dis(), m_fork();

shortest = 999999999, ;
m_fork(find_dis, cities);
printf("%s is closest to Beaverton.o0,
cities[closest] .name);
printf("%s is %3.2f miles from Beaverton.\n",
cities{closest].name, shortest);
}

o find the city closest to /* find distance to nearest city */

't the name and distance .
void

find dis(cities)

struct location cities[];

{

int i, base, top; /* local loop index, start & end value

> /* microtasking header */
w2/ J float =xsqdis, ysqdis, dist;

llel library

while ((base = BITE*(m next{)-1)) < NCITIES) {
top = base + BITE; /* take a bite of work */
if (top >= NCITIES)
top = NCITIES-1;

ser of cities */
> of work for hungry puppy */

data */ /* execute all iterations in bite of work */

/* distance to
est city */

/* index of
est city */

for (i = base; 1 <= top; i++) {

*/

xsqdis = pow(fabs(beaverton.x ~ cities[il.x),2.);

5-26 Data Partitioning with DYNIX Data Partitioning

ysqdis = pow(fabs(beaverton.y - cities[i].y),2. function m_next : longint;

dist = sqrt(xsqdis + ysqdis); cexternal;

m_lock();

if (dist < shortest) { { initialize array of city dat
closest = i;
?hortest = dist; procedure init_cities ;

m_unlock(); begin
cities(1l] .name := ’'CHICAG!t
cities[1l].x := 2000.0;
cities{1l).y := 100.0;
cities[2].name := 'DENVER
cities[2].x := 500.0;
cities{2].y := -550.0;
cities[3].name := 'NEW YO
cities[3].x := 1500.0;
cities[3}.y := 100.0;
cities{4].name := ’SEATTL
cities{4].x := 0.0;
cities[4).y := 200.0;
cities[5].name := ‘MIAMI’

Dynamic Scheduling - Pascal Example

{ use Cartesian coordinates to find the city closest
to Beaverton, Oregon, and print the name and
distance from Beaverton }

program find distance ;

const
cities[5].x := 3500.0;
NCITIES = 10; { number of cities } C}t}eS[Zl-y 2= ?20?-0;
BITE = 1; { bite of work for a hungry puppy } z;tiz:E6}'§an 'IoosﬁN FR
LK o= - .0;
type cities[6].y := -1000.0;
cities[7].name := ’'RENO’;
cityrecord = cities[7].x := 200.0;
record cities[7}.y := -600.0;
name : string [15]; { names of cities } C%t%es[gl'namf i: " PORTLA
x : real; { x coordinates } z;z;::%g%-i = X 320,
eidf real { y coordinates } cities[9]:naée :; :WASHIN
o cities[9].x := 3000.0;
cities{9].y := —-400.0;

vaxr A
cities[10] .name := ‘TILLA

cities[10].x := -70.0;

closest : integer ; { index of nearest city } ;. ities[10] 50.0
! cities .y = —50.0;

shortest : real ; { distance to nearest city }
cities : array[l..NCITIES] of cityrecord ; { city info }

P
beaverton : cityrecord ; { coordinates of Beaverton } beaverton.name : BEAVER

%f beaverton.x := 0.0}
¥ 0.0;

procedure m_lock; beaverton.y :=

cexternal;

procedure m_unlock;
cexternal;

procedure m_pfork(procedure a);
cexternal;

end; { of init cities }

{ £find distance to nearest ci
procedure find dis;

1g with DYNIX

3

s(beaverton.y — cities[i]l.y),2.):§

qdis + ysqdis);

est) {

list;

:ample

to find the city closest
{ print the name and

>f cities }
work for a hungry puppy 1}

names of cities }
>rdinates }
srdinates 1}

of nearest city]}

nce to nearest city }

of cityrecord ; { city info }
coordinates of Beaverton }

Data Partitioning with DYNIX

cexternal;

begin

cities[1].name
cities[1].x :=
cities[1l].y :=
cities[2].name
cities[2].x :=
cities[2].y :=
cities[3].name
cities{3].x :=
cities{3].y :=
cities[4].name
cities{4].x :=
citiesf4].y :=
cities[5].name
cities[5].x :=
cities[5].y :=
cities[6].name
cities[6].x :=
cities[6].y :=
cities[7].name
cities[7].x :=
cities[7}.y :=
cities[8].name
cities[8].x :=
cities[8].y :=
cities[9].name
cities[9].x :=

beaverton.name
beaverton.x :=
beaverton.y :

it

function m_next : longint;

{ initjalize array of city data]}

procedure init cities ;

"CHICAGO';

2000.0;
100.0;

"DENVER' ;

500.0;
~-550.0;

'NEW YORK';

1500.0;
100.0;

"SEATTLE' ;

0.0;
200.0;

=

"MIBMI’ ;

3500.0;
2000.0;

"SAN FRANCISCO';

-100.0;
-1000.0;

'RENO’ ;

200.0;
-600.0;

"PORTLAND' ;

~17.0;
0.0;

2=

"WASHINGTON D.C';

3000.0;
cities[9].y := —-400.0;
cities[10] .name := "TILLAMOOK';
cities[10].x := -70.0;
cities[10].y := -50.0;

end; { of init cities }

{ find distance to nearest city }
procedure find dis;

5-28 Data Partitioning with DYNIX Data Partition

var Dynamic Shared Memory Alloc:

i, base, top : longint ; { local index, start value,
end value }

xsqdis, ysgdis, dist : real ;

/* multiply two matrices, s
matrix, and print result

#include <stdio.h>
#include <parallel/microtas:
#include <{parallel/parallel

begin .
base := BITE * m next;
while (base < NCITIES) do
begin
top := base + BITE;
i := base;
while (i < top) do
begin
xsqdis := sqr(beaverton.x -
cities[i].x);
ysqdis := sqr(beaverton.y -
cities[i}.y);
dist t= sqrt(xsqdis + ysqdis);

/* Global shared memo

shared float **a; /*
shared float **b; /*
shared float **c; /*

main ()

{
char *shmalloc();
float ** setup_matrix();
void init_matrix(), m_for

m_lock; _

if (dist ¢ shortest) then matmul(), print mats();

begin int size ; /* loop end va
closest := i; . . ' .
shortest := dist; printf("Enter array size:

end; scanf("%d", &size);

m unlock; . .

- a = setup matrix (size,

i b = setup matrix (size,

i::=1i+1;
c = setup_matrix (size,

init_matrix(a, b, size,
m_set procs(3);
m_fork(matmul, a, b, ¢, s
m_kill procs();

print mats(a, b, ¢, size,

end;
base := BITE * m next;
end;
end;

nnhun

begin { main program starts here }

}

shortest := 999999999.0;
/* initialize matrix functi
init_cities;
m_pfork(find_dis);
writeln(cities[closest].name,

' is closest to Beaverton.’);
writeln(cities[closest].name, ' is ’, shortest, {

' miles from Beavertonmn.'); int 1, 3; .
float **new_matrix;

float *x
setup matrix(nrows, ncols)
int nrows, ncols;

end.
/* allocate pointer arra

address of newly allo

1g with DYNIX

local index, start value,

averton.x -
)i
averton.y -

)i

tsqdis + ysqdis);

:est) then

i;
dist;

here }

.name,
rerton.’);
.name, ' is ', shortest,

on.’);

Data Partitioning with DYNIX 5-29

Dynamic Shared Memory Allocation - C Example

/* multiply two matrices, store results in third
matrix, and print results */

#include <stdio.h>
#include <(parallel/microtask.h>
#include <parallel/parallel.h>

/* Global shared memory data */

shared float **a; /* first array */
shared float **b; /* second array */
shared float **c; /* result array */

main ()
{
char *shmalloc();
float ** setup_matrix():;
void init_matrix(), m_fork(), m_kill procs(),
matmul(), print mats();
int size ; /* loop end value and loop increment */

printf("Enter array size:");
scanf("%d", &size);

a = setup matrix (size, size); /* allocate shared */
b = setup matrix (size, size); /* memory */

¢ = setup_matrix (size, size);

init_matrix(a, b, size, size); /* initialize data */

m_set_procs(3); /* set # of processes */
m_fork(matmul, a, b, ¢, size, size); /* execute matmul */
m_kill procs(); /* kill childprocesses */

print_mats(a, b, ¢, size, size); /* print results */

}
/* initialize matrix function */

float **
setup_matrix(nrows, ncols)
int nrows, ncols;

{

int i, j;

float **new_matrix;

/* allocate pointer arrays : set new _matrix to
address of newly allocated shared matrix */

5-30 Data Partitioning with DYNIX

new_matrix = (float*x*)shmalloc((unsigned)nrows*
(sizeof (float=*)}));

/* allocate data arrays : set first element of
new_matrix to address of first element of
newly allocated data array */

new matrix[0}] = (float*)shmalloc((unsigned)nrows *
ncols * (sizeof(float)));

* inijitialize pointer arrays : set each element of
P y
new_matrix to address of corresponding element
of data array */

for (i = 1; 1 < nrows; it++) {
new_matrix[i] = new matrix[0] + (ncols * i);
}
return (new matrix);

}

/* initialize matrix function */

void

init _matrix(a, b, nrows, ncols)
float **a, **b, **c;

int nrows, ncols;

{

int i1, j;

for (i = 0; i < nrows; i ++) {
for (j = 0; j < ncols; j ++) {
al[il[j] = (float)i + j;
b[i][j] = (float)i - j;

}

void

matmul(a, b, ¢, nrows, ncols)
float **a, **b, **c;

int nrows, ncols;

{

int i, j, k, nprocs;

nprocs = m_get numprocs();
for (i = m_get_myid(); i < nrows; i += nprocs) {
for (k = 0; k < ncols; k ++) {
c[i][k] = 0.0;
for (j = 0; jJ < ncols; j ++) {
c[i}[k] += a[i]l[j] * b[jI[kI;

Data Partition

void

print _mats(a, b, ¢, nrows, r
float **a, **b, **c;

int nrows, ncols;

{
int i, j;
for (i = 0; i < nrows;
for (3 = 0; j < nco
printf("al[ed]l[%
i, 3, alil[31,
printf("c[sd][%
1
]
i

5.6. Compiling, Executing

To complete development of your ¢
steps:

1. Invoke the appropriate cor
your program with the Pa:

2. Execute the program and «

3. If necessary, use the DYD
to debug the program.

5.6.1 Compiling the Program

To compile and link a C program, ¢
cc program.c -1pps

This command compiles a C source

Parallel Programming Library, prc

You can also include the -g compil

information. (For more informatic
piler options, refer to the Sequent (

1g with DYNIX

>c{{unsigned)nrows*

set first element of
>f first element of

rray */

lloc({unsigned)nrows *
zeof(float)));

ays : set each element of
of corresponding element

‘ix[0] + (ncols * i);

n x/
1s)

Lo+ {

1s; 3 ++) {
tyi + j;
©)i - j;

i < nrows; i += nprocs) {
.1s; k ++) {

. ncols; 3 ++) {
alil[3]1 * b[j1[k]:

Data Partitioning with DYNIX 5-31

}

void

print _mats(a, b, ¢, nrows, ncols)
float **a, *%xb, **c;

int nrows, ncols;

{
int i, j;
for (i = 0; i < nrows; i ++) {
for (j = 0; j < ncols; j ++) {
printf("a[%d}[%d] = %3.2fb[%d][%d] = %3.2f",
i, jr a[i][j]l i, jl b[i][j]);
printf("c[td]l[2d] = %3.2f\n", i, j, cl[il[3]);

5.6. Compiling, Executing, and Debugging

To complete development of your data-partitioned program, follow these
steps:

1. Invoke the appropriate compiler with the proper options to link
your program with the Parallel Programming Library.
2. Execute the program and check the results,.

3. If necessary, use the DYNIX parallel symbolic débugger, Pdbx,
to debug the program.

5.6.1 Compiling the Program
To compile and link a C program, enter the following command:

ce program.c -1lpps
This command compiles a C source file and links the object code with the
Parallel Programming Library, producing an executable file named a.out.
You can also include the -g compiler option to create a file of debugging

information. (For more information on these options and other C com-
piler options, refer to the Sequent C Compiler User’s Manual.)

5-32 Data Partitioning with DYNIX

NOTE

At some optimization levels, the C optimizer can
remove conditional tests in spin loops. If your codes
uses any spin loop on shared variables, always compile
with the -i compiler option to ensure that the
conditional tests are preserved. For more information
on the -i option, refer to cc(1).

To compile and link a Pascal program, enter the following command:
pascal -mp program.p

This command compiles a Pascal source file and links the object code
with the Parallel Programming Library, producing an executable file
named c¢.out. It also places all global variables into shared memory.
You can also include the -g, compiler option to create a file of debugging
information. To use the Pdbx debugger on Pascal programs, you will also
need to use the -0 compiler option to give the executable file the same
base name as the source file. (For more information on these options
and other Pascal compiler options, refer to the Sequent Pascal Compiler
User’s Manual.)

To compile and link a FORTRAN program, enter the following com-
mand:

fortran -F/_shcom_/ program.name -lpps

This command compiles a FORTRAN source file and links the object
code with the Parallel Programming Library, producing an executable file
named g.out. It also places all COMMON blocks declared with the -F
option into shared memory. (The COMMON block names must start
and end with underbars and be enclosed in slashes (/).) You can also in-
clude the -g or -gv compiler option to create a file of debugging informa-
tion. To use the Pdbx debugger on FORTRAN programs, you will also
need to use the -o compiler option to give the executable file the same
base name as the source file. (For more information on these options
and other FORTRAN compiler options, refer to the Sequent FORTRAN
Compiler User’s Manual.)

For more information on the DYNIX linker, refer to the ld(1) man page
in the DYNIX Programmer’s Manual.

Data Partitioni:

5.6.2 Executing the Program

To execute the program, simply ent
a DYNIX command. The default file

5.6.3 Debugging the Program

If your program produces incorrect r
debugger to isolate any problems. ¥
ic debugger. It is based on dbx, a
tems.

When using Pdbx to debug program
library, remember that by default t
exit from child processes. When tl}
points, you must enter a Ctrl-Z to
execution. To disable the automati
ignore exit.

The Parallel Programming library
mine when to allocate more space {
bugger automatically stops whenew
able these automatic breakpoints,
For more information on Pdbx, refer

5.7. Additional Sources of

The following sources provide inforn

o The Sequent C Compiler
Sequent C language, the co

o The Sequent Pascal Compi
the Sequent Pascal langua;

e The Sequent FORTRAN C
detail the Sequent FORTE
options.

e The DYNIX Programmer
descriptions of the DYNIX
tines and the DYNIX linke;

g with DYNIX

e

s, the C optimizer caon
spin loops. If your codes
1 variables, always compile
tion to ensure that the
sed. For more information
).

1, enter the following command:

ource file and links the object code
brary, producing an executable file
sbal variables into shared memory.
r option to create a file of debugging
er on Pascal programs, you will also
to give the executable file the same
more information on these options
efer to the Sequent Pascal Compiler

program, enter the following com-

name -lpps

AN source file and links the object
Library, producing an executable file
MMON blocks declared with the -F
COMMON block names must start
osed in slashes (/).) You can also in-
to create a file of debugging informa-
FORTRAN programs, you will also
to give the executable file the same
r more information on these options

ons, refer to the Sequent FORTRAN

X linker, refer to the Id(1) man page
.

Data Partitioning with DYNIX 5-33

5.6.2 Executing the Program

To execute the program, simply enter the name of the executable file as
a DYNIX command. The default file name is a.out.

5.6.3 Debugging the Program

If your program produces incorrect results, you can use the DYNIX Pdbx
debugger to isolate any problems. Pdbx is a high-level language symbol-
ic debugger. It is based on dbx, a debugger widely used in UNIX sys-
tems.

When using Pdbx to debug programs that use the Parallel Programming
library, remember that by default the debugger takes a breakpoint upon
exit from child processes. When the debugger encounters these break-
points, you must enter a Ctrl-Z to return control to Pdbx and continue
execution. To disable the automatic breakpoint, use the Pdbx command
ignore exit.

The Parallel Programming library uses the signal SIGSEGV to deter-
mine when to allocate more space for a process’s shared stack. The de-
bugger autormatically stops whenever this signal is encountered. To dis-
able these automatic breakpoints, use the command ignore sigsegv.
For more information on Pdbx, refer to the Sequent Pdbx User’s Manual.

5.7. Additional Sources of Information

The following sources provide information that may be helpful to you:

¢ The Sequent C Compiler User’s Manual describes in detail the
Sequent C language, the compiler, and its options.

& The Sequeni Pascal Compiler User’s Manual describes in detail
the Sequent Pascal language, the compiler, and its options.

e The Sequent FORTRAN Compiler User’s Moanual describes in
detail the Sequent FORTRAN language, the compiler, and its
options.

e The DYNIX -Programmer’s Manual provides more detailed
descriptions of the DYNIX Parallel Programming Library rou-
tines and the DYNIX linker, Id.

5-34

Data Partitioning with DYNIX

The Sequent Pdbx User’s Manual provides instructions for using
the Pdbx debugger and reference information on the debugger
command set.

Appendices A and B discuss factors that may affect the execu-
tion speed of your program.

Appendix D contains the DYNIX man pages for the Parallel
Programming Library.

Appendix E lists other literature on parallel programming.

Function Partitioning

Cha

Function Partitionin

6.1 Introduction

6.2 Models for Function Partitic
6.2.1 The Fork-Join Technique
6.2.2 The Pipeline Technique.........

6.3 Support for Function Partit
6.3.1 Process Creation...................
6.3.2 Assignment of Processing Ta
6.3.3 Process Synchronization........
Synchronization Using the P:
Synchronization Using Signa
Synchronization Using Syste:
6.3.4 Interprocess Communication.
Shared Memory..........cuu.......
The UNIX IPC Facility.........
System V Support
6.3.5 Exclusive Access to Files.......

6.4 Additional Sources of Infort

THust
Fig. No.

6-1 Fork-join function-partitioning
6-2 Pipeline function-partitioning n

Locking Mechanisms and Shared Memory C-1

Appendix C

Locking Mechanisms and Shared Memory

C.1. Introduction

This appendix provides more detail on shared memory and locking
mechanisms for readers who are interested in designing their own paral-
lel programming support packages. For more information on Sequent
architecture, refer to the Balance Technical Summary or the Symmetry
Technical Summary.

The DYNIX operating system allows two or more processes to share a
common region of system memory. Any process with access to a shared
memory region can read or write in that region in the same way that it
reads or writes in ordinary memory. (The DYNIX support for shared
memory is based on the interface proposed in the article “4.2bsd System
Manual,” a copy of which is found in Volume 2 of the DYNIX
Programmer’s Manual .)

To help ensure that one process does not modify a shared data structure
while another process is using it, Sequent systems provide hardware
locking mechanisms. On Sequent systems, single-byte load and store
operations are always atomic (indivisible), as are 16 and 32-bit loads
and stores that are aligned on natural boundaries. To ensure that any
other operation is executed atomically, you must protect it with a locking
routine using the Balance or Symmetry locking mechanisms.

Balance systems include a set of hardware locks (called Atomic Lock
Memory) on each MULTIBUS adapter board. For Symmetry systems,
locking is handled by special System Bus and cache protocol. Access to
both shared memory and ALM is controlled by the mmap() system call.
(See mmap (2) for a detailed specification of the mmap() system call.)
The locking mechanism in the Symmetry system is invoked with a spe-
cial prefix to certain Symmetry assembly language instructions.

C-2 Locking Mechanisms and Shared Memory

C.1.1 Balance Systems: Atomic Lock Memory

Mapping Atomic Lock Memory

By default, the only Multibus physical addresses directly accessible to
user programs are those associated with ALM. (The superuser can
make additional regions of the physical address space, such as those
associated with special hardware devices, available using the pmap util-
ity; see pmap (4) and pmap (8).)

BEach MULTIBUS adapter board is assigned 1 Mbyte near the top of the
System Bus (physical) address space. Each MULTIBUS adapter’s
address range is subdivided into several regions, including a 64-Kbyte
region for ALM. The 32 2-Kbyte regions of ALM on the first MUL-
TIBUS adapter board are accessed through the special files alm00
through alm31 in the /dev/alm directory. To gain access to an ALM
region, a process opens the corresponding file to connect to the pmap dev-
ice driver, then maps it into its virtual address space by using the

mmap () system call. Then the process can simply read or write the
ALM address space.

Locking Mechanisms

/| MULTIBUS
’ Interface 3

/ MULTIBUS

Interface 2
(e}

Mb /
(4 Mbytes) MULTIBUS ’

Interface 1

A MULTIBUS

N Interface 0 n
Memory Wit
(28 Mbytes) Balance |/0 Space M
@ Mbytes) N I
\

AN
R
Balance Memory Map Mer
(32 Mbytes) MULTIE

¢

Fig. C-1. ALM in the £

Each 32-bit double-word in the AL
of 16K locks per MULTIBUS ada:
any lock contains useful informatio
through byte operations on doubl
operation causes the system to sen

Lock Operations: Test-and-Set :

A lock’s least significant bit deten
(0). Reading a lock returns the st
automatically to 1, thereby locking
or atomic. Writing a 0 to a lock lo

D

On reads from the ALM
undefined; they must be r.
from bytes other than thi
lock but don’t necessarily
Similarly, writes to b

nd Shared Memory

ck Memory

:al addresses directly accessible to
with ALM. (The superuser can
ical address space, such as those
ces, available using the pmap util-

isigned 1 Mbyte near the top of the
we. Each MULTIBUS adapter’s
aral regions, including a 64-Kbyte
sgions of ALM on the first MUL-
through the special files alm00
ctory. To gain access to an ALM
ing file to connect to the pmap dev-
rtual address space by using the
ess can simply read or write the

Locking Mechanisms and Shared Memory C-38

,/ | MuLTIBUS)/
’ interface 3 ’ Reserved
/ ’
’ ! , ! Write here to
MULTIBUS ‘ st mapping
interface 2 Mapping)
Yo , / Registers registers.
(4 Mbytes) 4 Atomic Lock
MULTIBUS ’
Interface 1 | 7 Memory
N ’ b (64 Kbytes) Read/write here
\ MULTIBUS \ 64-Kbyte to read/write in
N Interface 0 768-Kbyte ‘. | window into L "MULTIBUS 1/0
Memory A Window into \ MULTIBUS /O space.
(28 Mbytes) Balence I/O Space MULTIBUS /O Window for
(4 Mbytes) % Memory MULTIBUS Interface 0
\ (256 Kbytes)
\
\
Bal M M Read/write here
e o AP Memory Map for to read/write in
(32 Mbytes) MULTIBUS Interface 0 MULTIBUS memory.
{1 Mbyte)

Fig. C-1. ALM in the Systermn Bus address space.

Each 32-bit double-word in the ALM represents one lock, yielding a total
of 16K locks per MULTIBUS adapter. Only the least-significant bit of
any lock contains useful information. Software must access this bit only
through byte operations on double-word boundaries. Any other type of
operation causes the system to send a SIGBUS signal to the process.

Lock Operations: Test-and-Set and Clear

A lock’s least significant bit determines its state: locked (1) or unlocked
(0). Reading a lock returns the state of this bit (0 or 1) and then sets it
automatically to 1, thereby locking the lock. This operation is indivisible,
or atomic. Writing a 0 to a lock location unlocks the lock.

NOTE

On reads from the ALM, bits other than bit 0 are
undefined; they must be masked off in software. Reads
from bytes other than the least-significant byte set the
lock but don’t necessarily return the correct lock state.
Similarly, writes to bytes other than the least-

C4 Locking Mechanisms and Shared Memory

significant byte may randomly affect the lock state.
Accesses that cross a 32-bit boundary affect two locks
simultaneously.

Simple Lock and Unlock Routines

The following code sample illustrates simple routines for locking and
unlocking a lock in ALM. The lock() routine simply loops until another
process clears the lock to 0. The routine can return at this point,
because the hardware relocks the lock (sets it to 1) after reading the 0.

/*
* Lock the ALM lock whose address is lockp.
*/
lock (lockp)
char *lockp;
{
while (*lockp & 1)
continue;
}
/*
* Unlock the ALM lock whose address is lockp.
*/
unlock (lockp)
char *lockp;
{
*lockp = 0;
}

This implementation works correctly, except that it may place an
unnecessary burden on the Systern Bus. If the ALM lock is locked when
the lock() routine is called, lock() repeatedly attempts to read the
ALM lock, using System Bus cycles in the process, until the lock is
unlocked by another process. (See Figure C-2.) Since accesses to the
ALM consume bus bandwidth and compete with accesses to MULTIBUS
peripherals, heavy use of this lock() routine may degrade system per-
formance.

Locking Mechanis

MULTIBUS ADAPTER B(

Fig. C-2. Spinning on

Eliminating Unnecessary Bus

An alternative approach is to st
copy of the lock in shared mei
cached by the dual-processor bo
from the shadow variable, the bl
variable is stored in the pro
satisfied by the cache until the
the shadow variable (i.e., unloc
sees the write occur, it invalidat
dow variable, and the next r¢
memory. (See Figure C-3.)

1d Shared Memory

Uy affect the lock state.
oundary affect two locks

i simple routines for locking and
routine simply loops until another
outine can return at this point,
sets it to 1) after reading the 0.

se address is lockp.

hose address is lockp.

r, except that it may place an
s. If the ALM lock is locked when
repeatedly attempts to read the
in the process, until the lock is
igure C-2.). Since accesses to the
ipete with accesses to MULTIBUS
routine may degrade system per-

Locking Mechanisms and Shared Memory C-5

EP——

\[] |
[\ SYSTEM BU§\, l l |

ALM

DUAL PROCESSOR BOARD

MULTIBUS ADAPTER BOARD

Fig. C-2. Spinning on ALM lock uses System Bus.

Eliminating Unnecessary Bus Usage

An alternative approach is to spin on a shadow of the ALM lock—i.e., a
copy of the lock in shared memory. Reads from system memory are
cached by the dual-processor board. The first time the processor reads
from the shadow variable, the block of memory that contains the shadow
variable is stored in the processor’s cache. Subsequent reads are
satisfied by the cache until the processor holding the lock writes a 0 to
the shadow variable (i.e., unlocks the lock). When the cache controller
sees the write occur, it invalidates the cache block that contains the sha-
dow variable, and the next read returns the new value (0) out of
memory. (See Figure C-3.)

C-6 Locking Mechanisms and Shared Memory

Cached Copy
of Shadow
cpU Memory

DUAL PROCESSOR ache SYSTEM
BOARD] MEMORY

Shadow Copy

of ALM tock

[SYSTEM BUS ‘
[:‘ ALM

MULTIBUS ADAPTER BOARD

Fig. C-3. Spinning on shadow of lock uses cache.

The following code illustrates lock() and unlock() routines using this
technique:

struct lock_t {
char *1k_alm;
char 1k_shadow;
};

/* address of ALM lock */
/* shadow in memory */

/*
* Lock the AIM lock whose address is lockp.
*/
lock (lockp)
register struct lock t *lockp;
{
/* Go for the ALM lock. */
while (*(lockp->lk_alm) & 1) {
Ve
* Didn’t get it. Spin until shadow
* is unlocked and try again.
*/
while (lockp->1k_shadow)
continue;

Locking Mechanisms an¢

/* Got the AIM lo
lockp—>1k_shadow
}

/*
* Unlock the ALM lock wh
*/

unlock (lockp)

struct lock t *

{
lockp->1k_shadow
*(lockp~->1k_alm)

Multiplexed Locks

Some applications may require more
hardware. To solve this problem, you
guard multiple “soft” locks. Each soft
value of 1 (locked) or 0 (unlocked).
unlock a soft lock or to spin waiting for
before locking a soft lock, you must o
lock to ensure that no other process is
time. Since the hardware lock is held
being changed to the locked state, th
negligible.

The following code illustrates lock()
plexed locks:

typedef unsigned char

#define L_UNLOCKED ©0
#define IL_LOCKED 1

/*
* ALM HASH() is used to
*/

extern char*_alm_base;
#define ALM HASH(x) ((i

#define ALM UNLOCKED 0
$define ALM LOCKED 1

/*

shared Memory

| SYSTEM

i =
1 Shadow Copy MEMORY

of ALM Lock
j

L

of lock uses cache.

lunlock() routines using this

‘* address of ALM lock */
‘* shadow in memory */

address is lockp.

skt *lockp;

ock, */
L alm) & 1) {

“Jet it. Spim until shadow
sked and try again.

tp—>1k_shadow)
wtinue;

Locking Mechanisms and Shared Memory C-7

/* Got the ALM lock. Lock the shadow. */
lockp~>1k_shadow = 1;
}

VE:
* Unlock the ALM lock whose address is lockp.
*/

unlock (lockp)

struct lock t *lockp;

{

lockp->1k_shadow = 0;
*(lockp->1k_alm) = 0;
}
Multiplexed Locks

Some applications may require more locks than are available in the
hardware. To solve this problem, you can use a single hardware lock to
guard multiple “soft” locks. Each soft lock is a byte in memory with a
value of 1 (locked) or 0 (unlocked). No hardware lock is required to
unlock a soft lock or to spin waiting for it to become unlocked. However,
before locking a soft lock, you must obtain the corresponding hardware
lock to ensure that no other process is locking the soft lock at the same
time. Since the hardware lock is held only while one of its soft locks is
being changed to the locked state, the effect on System Bus traffic is
negligible.

The following code illustrates lock() and unlock() routines for multi-
plexed locks:

typedef unsigned char

#define L_UNLOCKED 0
#define IL_LOCKED 1

/*
*/

extern chaxr*_alm_base;
#define ALM HASH(x) ((int)(&(x)) & (O0XFF << 2))

#define ALM UNLOCKED 0
#define AILM LOCKED 1

/'k

slock _t; /* ‘s’ for "spin"-lock */

* ALM HASH() is used to hash an address to an ALM offset.

/* virt addr of mapped ALM's */

C-8 Locking Mechanisms and Shared Memory Locking Mechani

* lock() provides in-line access to locks for C programs; To set the bus lock, precede a

*/ prefix. This prefix assures th
3 prefixes. The LOCK prefix can

$define lock(lp) { \ 3 instructions for 8, 16, and 32
register char *lock _alm = & _alm base [AI’J’K__HASH(*(lp}H’:§ XCHG, ADD, OR, ADC, SBB, ANI

for (;i) { \ . to the Symmmetry Series Asse

/* Wait for lock to be available */ \ E information on these instruction:

while (*(lp) == L_LOCKED) \ 3

continue; \ 3
/* Grab ALM gate for atomic access to lock */ \ 3
while (*lock_alm & ALM LOCKED) \

continue; \ The XCHG instruction
/* Can race with others trying to get the lock */ preceded by the LOCK p
if (*(lp) == L_UNLOCKED) { \
/* No race (oxr won it) -- grab the lock */ \
*(lp) = L_LOCKED; \ Simple Lock and Unlock Rou
*lock_alm = ALM_UNLOCKED; \
break; \ Symmetry locking and unlocl
/* Lost race, try again */ \ 3 instruction to perform atomic te
*lock alm = ALM UNLOCKED; \ E The following example shows on
} PN asm void LOCK(locka
{
s $reg lockadd; lab 1
: unlock() provides in-line unlocking for C programs; 3 loop: movb $LOCK,
/ : xchgb %dl, (1

#define unlock(lp) (*(lp) = L_UNLOCKED)
* cmpb $UNLOCE
C.1.2 Symmetry Systems: Locked Instructions 4

je done
in: b UNLOCE
The Symmetry locking mechanism is basically the same as the Balance span gr;lp ioop
locking mechanism: bytes of memory are used as locks. The difference is E jmp spin
that Symmetry systems do not require processes to map ALM regions. 3 done:
Instead, any byte of memory may be used as a lock. 3 1
The LOCK Prefix Notice that because this rout

atomic test-and-set operation,
also that if the routine’s first ¢

Locki echanisms are the f re implemented in S tr bly] spins in. cache while waiting fc
ng m i erefore implemented in Symmetry assembly traffic on the System Bus.

language. These can be included in C programs as asm functions. (For
information on asm functions, refer to the Sequent C Compiler User’s
Manual.) They can also be implemented as out-of-line locking subrou-
tines such as s_lock and s_unlock.

red Memory Locking Mechanisms and Shared Memory C-9

To set the bus lock, precede an assembly instruction with the LOCK
prefix. This prefix assures the atomicity of the instruction that it
prefixes. The LOCK prefix can be used with the following assembler
instructions for 8, 16, and 32-bit operations: BT, BTS, BTR, BTC,
m = & alm base[ALM HASH(*(1p))} XCHG, ADD, OR, ADC, SBB, AND, SUB, XOR NOT, NEG, and INC. (Refer
to the Symmmetry Series Assembler User’s Manual for more detailed
information on these instructions.)

cess to locks for C programs;

@ available */ \
‘*KED) \
atomic access to lock */ \ NOTE

M_LOCKED) \
The XCHG instruction is always locked, whether it is

:¥s trying to get the lock */ \ preceded by the LOCK prefix or not.
ED) { \

>n it) -- grab the lock */ \

P\ Simple Lock and Unlock Routines

JNLOCKED; \

Symmetry locking and unlocking routines typically use the XCHG
instruction to perform atomic test-and-set and test-and-clear operations.

uin */ \
KED; \ The following example shows one implementation of a locking routine:
asm void LOCK(lockadd)
{
$reg lockadd; lab loop, spin, done;
1 i .
unlocking for C programs; loop: movb $LOCK, %41l /* lock byte to register */
xchgb %dl, (lockadd) /* atomic test-and-set *x/
L_UNLOCKED) /* on "soft" lock in mem */
cmpb $UNLOCK, %dl /* if mem location was */
ctions /* unlocketzl, we got lock */
je done /* we're finished */
. spin: cmpb $UNLOCK, (lockadd) /* spin in cache until *x/
lly the same as t}_le Balange je loop /* unlocked, then try *x/
3d as locks. The difference is jmp spin /* again for lock x/
:esses to map ALM regions. done:
- a lock. }

Notice that because this routine uses the XCHG instruction for the
atomic test-and-set operation, it does not need the LOCK prefix. Notice
also that if the routine’s first attempt to set the lock is unsuccessful, it
spins in cache while waiting for the lock and does not create additional
traffic on the System Bus.

¢ the System Bus hardware.
nted in Symmetry assembly
ams as asm functions. (For
Sequent C Compiler User’s

s out-of-line locking subrou-

C-10 Locking Mechanisms and Shared Memory

The following example shows one implementation of an unlocking rou-
tine:

asm void UNLOCK(lockadd)

{
%$reg lockadd;

movb S$UNLOCK, %al /* unlock byte to registexr */

xchgb %al, (lockadd) /* atomic test-and-clear
}

Again, notice that this routine uses the XCHG instruction for the atomic
test-and-set operation, so it does not need the LOCK prefix. When the
address of the lock is sent out on the System Bus, any processor spin-
ning in cache and waiting for a lock will see the address on the bus and
try again to set the lock.

C.1.3 Shared Memory

The mmap (2) entry in Volume 1 of the DYNIX Programmer’s Manual is
a detailed specification of the mmap() system call, upon which the
DYNIX shared-memory implementation is based. The following para-
graphs examine certain features of mmap() that may be of interest to a
programmer writing a parallel programming support package.

Mapping Shared Memory

In general, mmap() can be used to map a portion of any file or any
region of the system’s physical address space into a process’s virtual
address space. A process creates a shared-memory region by opening an
ordinary file, then using mmap () to map the file into the process’s virtual
address space. If the high end of the mapped region is above the current
program “break” (as returned by the sbrk() system call), the “break” is
set to the high end of the mapped region. However, any memory
between the old break and the low end of the mapped region is inaccessi-
ble (unless it is subsequently mmap-ed).

A shared-memory allocator analogous to malloc() (see malloc(3)) can
be built using mmap() to acquire needed memory in the same way that
malloc() uses sbrk(). In fact, the Parallel Programming Library
routines shmalloc(), shbrk(), and shsbrk() use mmap() in this
way.

Mapped regions created with x;unap() are inherited (i.e., shared) by the
process’s children. Thus, in an application involving a parent process
and one or more identical (not exec-ed) children, the parent first maps

Locking Mechanism

the necessary shared-memory an
locks or other shared variables, t.
Programming Library handles init
Balance systems, ALM by calling
a program’s main() routine. TH
‘data segment into shared memor
sary, and performs miscellaneous
routines.) Unrelated processes car
mapping the same file into their Vi

Note, however, that mmap () affe
subsequently forked children. I
memory region, the expansion will
If B tries to access a variable set
dress space, B will receive a SIGS
course, B can catch this signal an
to grow its own shared-memory re
used by the Parallel Programming
memory regions up to date.

Mapped Files

The Parallel Programming Librar
file that it uses to create the shar
many ways to use the file that is 1

e The file acts like a paginy
The memory contents are
is swapped or when it exi
mapped by the last proce
can be useful in post-mort

e If the mapped portion of
mapped, the contents of
memory.” (Technically, t
needed.) Thus, a prev
memory can be easily resi

e An application-specific mc
ecuting parallel applice
mapped file into its own 5

® Read() and write() op
file also affect the corres)
ties such as cp can be
memory.

Shared Memory

mentation of an unlocking rou-

/* unlock byte to register x/

/* atomic test-and-clear

XCHG instruction for the atomic
ed the LOCK prefix. When the
ystem Bus, any processor spin-
see the address on the bus and

'YNIX Programmer’s Manual is

system call, upon which the
is based. The following para-
() that may be of interest to a
ing support package.

p a portion of any file or any
. space into a process’s virtual
'd-memory region by opening an
the file into the process’s virtual
pped region is above the current
k() system call), the “break” ig
egion. However, any memory
“the mapped region is inaccessi-

malloc() (see malloc(3)) can
memory in the same way that
Parallel Programming Library
shsbrk() use mmap() in this

e inherited (i.e., shared) by the
tion involving a parent process
children, the parent first maps

*/

Locking Mechanisms and Shared Memory C-11

the necessary shared-memory and ALM regions, then initializes any
locks or other shared variables, then forks the children. (The_Parallel
Programming Library handles initialization of shared memory and, for
Balance systems, ALM by calling the _ppinit() routine before calling
a program’s main() routine. This routine maps the program’s shared
“data segment into shared memory, allocates a block of ALM if neces-
sary, and performs miscellaneous run-time initilization for other library
routines.) Unrelated processes can also share memory by independently
mapping the same file into their virtual memory .

Note, however, that mmap() affects only the calling process and any
subsequently forked children. If child process A expands its shared-
memory region, the expansion will not show up in its sibling process, B.
If B tries to access a variable set up by A in the new portion of A’s ad-
dress space, B will receive a SIGSEGV (segmentation fault) signal. Of
course, B can catch this signal and use it as an indication that B needs
to grow its own shared-memory region to match A’s. This mechanism is
used by the Parallel Programming Library to keep all processes’ shared-
memory regions up to date.

Mapped Files

The Parallel Programming Library immediately unlinks the temporary
file that it uses to create the shared memory region. However, there are
many ways to use the file that is mapped into a shared memory region:

e The file acts like a paging area for the mapped memory region.
The memory contents are copied out to the file when the process
is swapped or when it exits, or when the region is otherwise un-
mapped by the last process that has it mapped. Thus, the file
can be useful in post-mortems.

e If the mapped portion of the file already exists when the file is
mapped, the contents of the file are immediately available “in
memory.” (Technically, the contents are paged in as they are
needed.) Thus, a previously obtained snapshot of shared
memory can be easily restored.

® An application-specific monitor or debugger can plug in to an ex-
ecuting parallel application by mapping the application’s
mapped file into its own address space.

® Read() and write() operations to the mapped regions of the
file also affect the corresponding memory. Thus, ordinary utili-
ties such as cp can be used to capture the contents of shared
memory.

C-12 Locking Mechanisms and Shared Memory

Note. however, that a file cannot be truncated while it is mapped. . Thus,
cp saved_mem mapped_file
will not work.

Also note that if you map a file whose size is not an integral multiple of
the file system block size (usually 8192), mmap () will pad the file with
null bytes to the end of the block. If you do not have write access to the
file, mmap () will fail.

Mapping Shared Memory from Unrelated Processes

The following pages contain examples showing how to use the mmap
system call to create shared memory for unrelated processes. The exam-
ples illustrate two techniques. The first, and simplest, technique is to
create a single shared file and to use the DYNIX loader, 1d, to locate the
shared data in memory. The second technique is to create multiple
shared files and use assembler directives to locate the shared data.

Creating a Single Shared File. Creating a single shared file is a two-
part process:

1. Set up a _ppinit subprogram to call mmap and initialize
shared files. This procedure is automatically called before the
main program.

2. Use ld to declare the necessary global variable or common block
as shared and to declare its location in memory.

The following examples illustrate this process.
- NOTE

These examples do not use a full pathname for the
shared file, so they must be executed in the same direc-
tory.

The following two FORTRAN programs declare the common block
SHARED and then take turns writing values to the shared file. The first
program, x1.f, waits for the other program to write the shared variable
A, writes the shared variable B, waits for the other program to write ¢,
then exits.

S A AR A S B R B il

Locking Mechani

10

20

COMMON /SHAR
INTEGER*4 A,

WRITE(0,1)
FORMAT(12H

CONTINUE
IF (A .EQ.

WRITE (O, 2)
FORMAT(9H W

B =1

WRITE(O,3)
FORMAT(12H

CONTINUE
IF (C .EQ.

STOP
END

The second program, x2.f, writ
other program to write the shai

C, then exits.

10

COMMON /SHAI
INTEGER*4 A,

WRITE(O,1)
FORMAT(9H V

A =1

WRITE(O,2)
FORMAT(12H

CONTINUE
IF (B .EQ.

WRITE(O,3)
FORMAT(9H 1

c=1

STOP
END

shared Memory

Locking Mechanisms and Shared Memory

C-13

ited while it is mapped. Thus,

1

. . . 10
e is not an integral multiple of
mmap () will pad the file with
jo not have write access to the

2

ted Processes

wowing how to use the mmap :

mrelated processes. The exam- : 3
and simplest, technique is to :
DYNIX loader, 1d, to locate the
:chnique is to create multiple
o locate the shared data.

20

1g a single shared file is a two-

COMMON /SHARED/ A,B,C
INTEGER*4 A,B,C

WRITE(O,1)
FORMAT(12H WAIT FOR A)

CONTINUE
IF (A .EQ. 0) GOTO 10
WRITE(0,2)

FORMAT(9H WRITE B)

B =1

WRITE(O,3)
FORMAT(12H WAIT FOR C)

CONTINUE
IF (C .EQ. 0) GOTO 20
STOP

END

The second program, x2.f, writes the shared variable A, waits for the

other program to write the shared variable B, writes the shared variable

to call mmap and initialize C, then exits.

wtomatically called before the

lobal variable or common block 2
on in memory. £ 1

‘eS8,

ull pathname for the

. . 10
tted in the same direc-

15 declare the common block
es to the shared file. The first
m to write the shared variable
- the other program to write C,

COMMON /SHARED/ A,B,C
INTEGER*4 A,B,C

WRITE(O,1)
FORMAT(9H WRITE A)

A=1

WRITE(O,2)
FORMAT(12H WAIT FOR B)

CONTINUE

IF (B .EQ. 0) GOTO 10

WRITE(O,3)
FORMAT(9H WRITE C)

c=1

STOP
END

C-14 Locking Mechanisms and Shared Memory

The following file, ppinit.c, is linked with both FORTRAN programs and
is called automatically when the programs are run. This subprogram ini-
tializes the shared file and rounds the size of the shared memory seg-
ment up to the nearest page boundary:

/ *

* ppinit.c

Parallel program run-time
* environment initialization.

*/

*

#include <a.out.h>
#include <strings.h>
#include <(sys/errno.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <(sys/file.h>
#include <{sys/mman.h>

#include <machine/pmap.h>
#include "parc.h"

/*
* _ppinit() .
* Parallel startup for C programs. "
. _.(91‘
. ey) he by LY
*/ “ o <

extern int errno;
int _pgoff;
extern shared char/éshstart_, _shend_;

S~

W

_ppinit()
{
int f£4;

int szshared;

fd = open("SHARED FILE", O _RDWR|O CREAT, 0666} ;
if (£d < 0)
bad_init("open", errno);

_pgoff = getpagesize() - 1;
szshared = (int) PGRND(&_shend_ - &_shstart_);

if (MMAP(fd, &_shstart , szshared, 0) < 0)
bad_init("mmap"”, errno);

RIS

RS

Locking Mechanisms :

/*

* bad_init()

* Foxr some reason, cc
* complain and exit w

*/

static
bad_init(msg, err)
char *msg;
int erxr;

perror(msqg) ;
_exit(err);

}

The f;c;]lo&g header file, pare.h, de
used iryfini¥c.
A i"‘k C/1:
Lt
Eﬂ - * parc.h
N * Parallel C support
*/

/*
* MMAP() is short-han¢
*/

#define MMAP(fd,va,sz,)
mmap(va, sz, PROT_]

-

/*
* PGRND() rxrounds up a
*/

#define PGRND(x) (char

Finally, the following file, Makefile,
various sections of this application.
lines use the loader option -F to de
the loader option -ZO to declare 100f
data segment.

all
x1

xl x2
x1.f ppinit.o
fortran -F/SHARE]

.
:
.
2

x2 : x2.f ppinit.o

id Shared Memory

th both FORTRAN programs and
ams are run. This subprogram ini-
2 size of the shared memory seg-

~time
zation.

C programs.

P e |
Lt 7

A o~

N

LE", O_RDWR|O_C
errno);

{) - 1;

ND(& _shend - & shstart_);

xt_, szshared,
errno) ;

Set

REAT, 0666);

0) < 0)

A -
e \Q/,"\, 5
‘\a\ﬁ {/‘7‘0‘\? e

Locking Mechanisms and Shared Memory C-15

/*
* bad_init()
* For some reason, couldn’t init -—-
* complain and exit with exrror status.

*/

static
bad_init(msg, err)
char *msg;
int err;

pexrror(msg) ;
_exit(err);

}

The following header file, parc.h, defines the MMAP and PGRND macros
used iryfiniye.

.‘.:t.}" 'L/*

?iﬁ * parc.h
T * Parallel C support library definitioms.

*/

/%
* MMAP() is short-hand for calling mmap().
*/

#define MMAP(fd,va,sz,pos) \
mmap(va, sz, PROT_RDWR, MAP SHARED, fd, pos)
/*
* PGRND() rounds up a value to next page boundary.

*/
#define PGRND(x) (chaxr *) (((int)(x) + _pgoff) & ~_pgoff)

Finally, the following file, Makefile, compiles, links, and executes the
various sections of this application. Notice that the fortran command
lines use the loader option -F to declare the shared common block and
the loader option -ZO to declare 10000 as the base address of the shared
data segment.

all
x1

x1 x2
x1l.f ppinit.o
fortran -F/SHARED/ -Z010000 -e -o x1 xl.f/, init.o
—— 4
i !
x2 : x2.f ppinit.,o v Y

C-16 Locking Mechanisms and Shared Memory

fortran -F/SHARED/ -Z010000 -e -o x2 x2.f finit.q’

ppinit.o: ppinit.c

clean :
rm —-f x1 x2 *.o SHARED_FILE

run :
rm -f SHARED FILE
x1l &
sleep 5
X2 &

Creating Multiple Shared Files. Creating multiple shared files is a
three-part process:

1. Set up your main programs to explicitly call a subprogram that
initializes shared memory.

2. Set up the subprogram to call mmap and initialize shared files.

3. Set up a file of assembler directives that define the starting ad-
dress of each shared file.

The following examples illustrate this process. (Some of these examples
are similar or identical to those in the previous section.)

NOTE

These examples do not use a full pathname for the
shared file, so they must be executed in the same direc-
tory.

The following two FORTRAN programs declare the common block
SHARED, call the subroutine FINIT to initialize shared memory, and
then take turns writing values to the shared file. The first program,
x1.f, waits for the other program to write the shared variable A, writes
the shared variable B, waits for the other program to write C, then ex-
its.

Locking Mechanisms ¢

10

20

COMMON /SHARED/
INTEGER*4 _START

EXTERNAL _FINIT
CALL _FINIT(_STA

WRITE(O,1)
FORMAT(12H WAIT

CONTINUE
IF (A .EQ. 0)

WRITE(O,2)
FORMAT(9H WRITE

B =1

WRITE(O,3)
FORMAT(12H WAIT

CONTINUE
IF (C .EQ. 0)

STOP
END

The second program, x2.f, initializes
then writes the shared variable A,
the shared variable B, writes the sh:

10

COMMON /SHARED/
INTEGER*4 _STAR1

EXTERNAL _FINIT
CALL _FINIT(_ST?

WRITE(O,1)
FORMAT(9H WRITI

A=1

WRITE(0,2)
FORMAT(12H WAII

CONTINUE
IF (B .EQ. 0)

I Shared Memory Locking Mechanisms and Shared Memory C-17

-2010000 —e -o x2 x2.f £init.o COMMON /SHARED/ _START,A,B,C,_ END
P INTEGER*4 _START,A,B,C,_END

R

’ EXTERNAL _FINIT
D_FILE CALL _FINIT(_START, END)

WRITE(O0,1)
1 FORMAT(12H WAIT FOR A)

10 CONTINUE
IF (A .EQ. 0) GOTOC 10

WRITE(O0,2)
eating multiple shared files is a 2 FORMAT(9H WRITE B)

B =1
explicitly call a subprogram that WRITE(0,3)
3 FORMAT(12H WAIT FOR C)

amap and initialize shared files.
20 CONTINUE

tives that define the starting ad- IF (C .EQ. 0) GOTO 20

STOP

rocess. (Some of these examples END

revious section.) The second program, x2.f, initializes itself in the same way as xI1.f. It
then writes the shared variable A, waits for the other program to write
the shared variable B, writes the shared variable C, and exits.

full pathname for the COMMON /SHARED/ _START,A,B,C, END
cuted in the same direc- INTEGER*4 _START,A,B,C, END

EXTERNAL _FINIT

CALL _FINIT(_START, _END)

uns declare the common block
) initialize shared memory, and
shared file. The first program,
ite the shared variable 2, writes
1er program to write C, then ex-

WRITE(O,1)
1 FORMAT(9H WRITE A)

A =1

WRITE(O,2)
2 FORMAT(12H WAIT FOR B)

10 CONTINUE
IF (B .EQ. 0) GOTO 10

i
1

C-18 Locking Mechanisms and Shared Memory

WRITE(O,3)
3 FORMAT(9H WRITE C)

cC =1

STOP
END

The following file, finit.c, initializes the shared file and rounds the size of
the shared memory segment up to the nearest page boundary:

/*
* finit.c
* Parallel program run—-time
* environment initialization.

*/

#include <a.out.h>
#include <{(strings.h>
#include <{sys/errno.h>
#include <(sys/ioctl.h>
#include <sys/types.h>
#include <(sys/file.h>
#include <(sys/mman.h>

#include <machine/pmap.h>
#include "parc.h"

/*
* finit()
* Parallel startup for C programs.
*

*/

extern int errno:;
int _pgoff;

finit(end, start)

char *start, *end;
{

int fd;

int szshared;

printf("start %$x, end %;ﬁ?’start, end) ;
fd = open("SHARED FILE", O_RDWR|O_CREAT, 0666);
if (fd < 0)

bad_init("open", errno);

_pgoff = getpagesize() - 1;

Locking Mechanisms

szshared = (int) P
if (MMAP(fd, start
bad_init("mmap

* bad_init()
For some reason, cC
* complain and exit

*/

*

static
bad_init(msg, err)
char *msq;
int err;

perror(msqg);
_exit(err);

}

The following header file, parc.h, d
used in finit.c.

/*
* parc.h
* Parallel C support

*/

/*
* MMAP() is short-han
*/

#define MMAP(fd,va,sz,
mmap(va, sz, PROT_
/*
* PGRND() rounds up a
*/

#define PGRND(x) (char

The following assembly language fi
SHARED common block:

.globl /SHARED/
.set /SHARED/,QEEJ

o

Shared Memory

hared file and rounds the size of
:arest page boundary:

:ime
ition.

! programs.

AN
%;BV start, end);
", O_RDWR|O_CREAT, 0666);

:rrno);

Locking Mechanisms and Shared Memory C-19

szshared = (int) PGRND(end - start);
if (MMAP(fd, start, szshared, 0) < 0)
bad_init("mmap", errno);

* bad_init()
For some reason, couldn’t init --
* complain and exit with error status.

*/

static
bad_init(msg, err)
char *msg;
int err;

perror(msg) ;
_exit(err);

}

The following header file, parc.h, defines the MMAP and PGRND macros
used in finit.c.
/ *
* parc.h
* Parallel C support library definitions.

*/

/*
* MMAP() is short-hand for calling mmap().
x/

#define MMAP(fd,va,sz,pos) \
mmap(va, sz, PROT_RDWR, MAP SHARED, fd, pos)
/*
* PGRND() rounds up a value to next page boundary.
x/
#define PGRND(x) (chaxr *) (((int)(x) + _pgoff) & "_pgoff)

The following assembly language file, x.s, sets the base address of the
SHARED common block:

.globl /SHARED/
.set /SHARED/,0x100000

A SR S

C-20 Locking Mechanisms and Shared Memory

Finally, the following file, Makefile, compiles, links, and executes the
various sections of this application.

all : x1 x2
x1 : x1.f x.0 finit.o
fortran -e ~o x1 x1.f x.o finit.o

x2 : x2.f x.0 finit.o
fortran ~e -o %2 x2.f x.o finit.o

X.0 : X.s
finit.o : finit.c
clean H

rm —f x1 x2 *.,o SHARED FILE

run :
rm —-f SHARED FILE
xl & x2 &

C.2. Balance Configuration Requirements for ALM

For a program that uses ALM to run on your Balance system, the fol-
lowing conditions must be true. The associated configuration steps must
be performed by the superuser.

NOTE

There are no special configuration requirements for
Symmetry Systems, since they do not use ALM.

1. The pmap pseudo-device driver must be configured into the
DYNIX kernel. Verify that your kernel configuration file (e.g.,
/sys/conf/DYNIX) contains this line:

pseudo~device pmap

If this line is not present, you need to add it to the end of your
kernel configuration file and rebuild the kernel, as described in
the DYNIX System Administrator’s Guide .

phys-map driver

S e e

Locking Mechanie

The special files almO(
/dev/alm directory. Ift
commands at the systen

#. cd /dev
MAKEDEV alm

The revision number of
be 2:1 or greater: earlic
execute the MAKEDEV
not include ALM, MAK1

OLD REV MBAD, NO Al
DEVICES

If your MULTIBUS ad:
than 2:1, contact your
grade.

If the MULTIBUS ada
TIBUS interface board
adapter board only for it
must be properly jumper

Shared Memory

npiles, links, and executes the

)
x1l x1.f x.0 finit.o

)
x2 x2.f x.o0 finit.o

[ARED FILE

quirements for ALM

2 your Balance system, the fol-
ciated configuration steps must

wtion requirements for
2 not use ALM.

* must be configured into the
ir kernel configuration file (e.g.,
line:

p # phys—-map driver

eed to add it to the end of your
ild the kernel, as described in
w’s Guide .

Locking Mechanisms and Shared Memory C-21

The special files alm00 through alm31 must reside in the
/dev/alm directory. If this directory does not exist, enter these
commands at the system prompt:

cd /dev
MAKEDEV alm

The revision number of your MULTIBUS adapter board must
be 2:1 or greater: earlier revisions do not contain ALM. If you
execute the MAKEDEV alm command and your system does
not include ALM, MAKEDEYV will respond as follows:

OLD REV MBAD, NO ALM SUPPORT —-—- CAN'T INSTALL ALM
DEVICES

If your MULTIBUS adapter board has a revision number less
than 2:1, contact your local sales representative about an up-
grade.

If the MULTIBUS adapter board is not connected to a MUL-
TIBUS interface board (e.g., you are using the MULTIBUS
adapter board only for its ALM), the MULTIBUS adapter board
must be properly jumpered for this configuration.

