568

DISK

included

Solaris 2.X

internals and Architecture

John R. Graham

McGraw-Hill, Inc.

New York San Francisco Washington, D.C. Auckland Bogoté
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi SanJuan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Graham, John R.
Solaris 2.x : internals and architecture / by John R. Graham.
p. cm.
Includes index.
ISBN 0-07-911876-3
1. Operating systems (Computers) 2. Solaris (Computer file)
L Title.
QAT6.76.063G72 1995
005.4'469—dc20 95-10087
CIp

Copyright © 1995 by McGraw-Hill, Inc. Printed in the United States of
America. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

pbk 1234567890 DOC/DOC 998765
ISBN 0-07-911876-3

The sponsoring editor for this book was Gerald Papke. The book editor
was Jim Gallant, and the managing editor was Susan W. Kagey. The di-
rector of production was Katherine G. Broun. This book was set in ITC
Century Light. It was composed by TAB Books.

Printed and bound by R. R. Donnelley & Sons Company of
Crawfordsville, Indiana.

Product or brand names used in this book may be trade names or
trademarks. Where we believe that there may be proprietary claims to such
trade names or trademarks, the name has been used with an initial capital or
it has been capitalized in the style used by the name claimant. Regardless of
the capitalization used, all such names have been used in an editorial
manner without any intent to convey endorsement of or other affiliation
with the name claimant. Neither the author nor the publisher intends to
express any judgrent as to the validity or legal status of any such
proprietary claims.

Information contained in this work has been obtained by McGraw-
Hill, Inc. from sources believed to be reliable. However, neither
McGraw-Hill nor its authors guarantee the accuracy or
corapleteness of any information published herein and neither
McGraw-Hill nor its authors shall be responsible for any errors,
omissions, or damages arising out of use of this information. This
work is published with the understanding that McGraw-Hill and
its authors are supplying information but are not attempting to
render engineering or other professional services. If such services
are required, the assistance of an appropriate professional should

be sought.

MH95
9118763

26 Kernel Overview

= The trap handler will invoke the routine syseall() to handle the system call.

= When the system call returns, the wrapper examines the registers for return val-
ues and returns to the user.

The real work of the system call is done in the internal routine syscall(). Syscall
is called with two arguments: the trap type and a copy of the registers. For system
calls, the trap type should be type 0 (ST_OSYSCALL) or type 8 (ST_SYSCALL).
These trap types are defined in /usr/include/sys/trap.h. The only time type 0 will
be used is when trying to run an old SunOS 4.x (BSD) type program. Trap 0 is used
to indicate that the system call number is old and will have to be remapped to the

new system call number. Trap type 8 is the usual way SunOS 5.x calls syscall(). Hardware

System Call Number

The system call number is an index into the system call entry table, the sysent array,
for short. The actual table is stored at the kernel symbol sysent|]. The table is an ar-
ray of struct sysent. The declaration of a struct sysent can be found in fusr/include/

sys/systm.h
struct sysent {
char sy_narg; /* number of arguments *
char sy_flags; /* flags */
int (*sy_call) (); /* the actual function address */

krwlock_t sy_lock; /* lock for loadable calls */

Interrupt

The system call nurber assigned to a particular system call can be found in fusr/ P
include/sys/syscall.h.® When the wrapper for a system call is entered, the system
call number, or index into the sysent array, is placed in one of the registers and ex-
tracted by the syscall() routine to fetch the arguments and invoke the code for the
system call. The pseudo-code for the syscall() routine follows.

syscall (type,rp) {

fetch the address of the code from the sysent[] entry;
fetch the number of arguments from the sysent[] entry;
copy the correct number of arguments from the user stack frame;
make the actual call;
Check for errors;
if error was due to interrupt or sigmal {

check restart flag to restart call;

~ QR ~

réturn error (EINTR);
elge /* some other error */

5€L return value and error;
}
check far signals and process (ISSIG);
check for preempts (cpu_runrun);

#Thers ja also a file, /ete/name_to_sysnum, that is used to map system calls to system call numbers.
Code for & gunple system call module and the modifications needed for this file are shown in Appendix B.

140 File System Management

2. The search will continue using the lookup routine in the vnode for /usr. Again,
the lookup routine will discover the next component of the path /usr/openwin is
a mount point.

3. Following the v_vfsmountedhere pointer, the search will continue on the re-
mote file system.

4. The search on the remote file system is successful and a vnode is created on the
local system representing /usr/openwin/fubar.

A variation on this search is when the file name starts with “..” as is . /home/fileb.
The search mechanism is similar except when the “..” is encountered in the path. If
we are currently looking at the root of a mounted ﬁle system, the “..” will mean we
have to go to the parent of the file system. We will know this is a root for a file sys-
tem because the flags field of the viode will be set to VROOT (see vhode.h). In this
case, follow the v_vfsp pointer to continue the search in the parent file system.

Local Structures and Links

So far we have seen how the kernel manages files and file systems. The real objec-
tive with an open(2) call, is to create a local access to the file. The return value from
the open(2) is a file descriptor. In the case of fopen(83), a file pointer is returned
that is a pointer to a file descriptor. This section will examine how a file descriptor at
the local level is linked into the kernel structures we have just examined.

File Descriptors

The first structure of interest is the file descnptor structure. When a file is opened, a
file descriptor is returned to the user. The filé descriptor is of type int and is used as
an index into a table of open file descriptors. The table is stored in the user area por-
tion of the proc structure. In previous releases, the file descriptors were stored in a stat-
ically sized table within the user area. The problem with this was that the table could
get full and the user could not open more files. In SunOS 5.x, this restriction no longer
applies. File descriptors are now allocated in chunks of 24 (#define NFPCHUNK 24
I* <sysfuser.h> */). The file descriptor table is a list of chunks linked together. The The oper
start of this list is pointed to by the u_file field in the user structure. Each entryin a
chunk is a field of type struct file that is defined in /usr/include/sys/file.h. The first
24 file descriptors are stored in the user area itself. If there are more than 24, the
uf_next pointer in the ufchunk structure is used to find the next chunk
Following is a partial listing of ﬁle.h

struct ufchunk {
struct file *uf_ofile{NFPCHUNK] ;
char uf_pofile[NFPCHUNK] ;
* struct ufchunk *uf_next;
}:

/f
* One file structure is allocated for each open/creat/pipe call.
* Main use is to hold the read/write pointer associated with

. Again,

nwin is
the re-

ion the

e/ffileb.
path. If
nean we
file sys-
). In this
em.

al objec-
lue from
‘eturned
riptor at

pened, a
; used as
jrea por-
in a stat-
sle could
10 longer
UNK 24
her. The
ntry in a
The first
124, the

* each open file.

*/

typedef struct file {
struct file *f_next; /* pointer to next entry */
struct file *f_prev; /* pointer to previous entry */
ushort_t £ _flag:;
cnt_t ' f_count; /* reference count */
struct vnode *f_vnode; /* pointer to vnode structure */
offset_t f_offset; /* read/write character pointer */
struct cred *f cred; /* credentials of user who opened it */
caddr_t f_audit_data; /* file audit data */
kmutex_t £ _tlock; /* short terxrm lock */
kcondvar_t f_done;
int f_refent;

} file_t; ’

The file_t structures are allocated as needed in kernel memory. For the purposes
of our discussion, the most important fields in the file structure are:

= f next and f_prev, pointers to the next and previous file descriptors.

= f_offset, an offset in bytes from the beginning of the file where the next read or
write will take place. The offset will change each time a read or write takes place
or when the Iseek(2) call is used.

= f vnode, a vnode pointer that completely describes the open file.

= f count, a count that is incremented when using the dup(Z) or dup2(3) call and
decremented when using a close(2) call.

Figure 14.4 illustrates file descriptor components.

There is another advantage to allocating file descriptors in this manner. Under
previous releases (before 5.x), the total number of files open by all processes at a
given time was limited to the size of a static table known as the System Open File
Table (SOFT). The SOFT was a table of file structures. With SunOS 5.x, there is no
static table and the number of file structures can grow dynamically as needed. Since
the file structures are allocated in kernel virtual memory, the only limit is the size of
kernel virtual memory not in use, a very large number.

The open() System Call

With all of the pieces in place, we can now examine how the open system call uses
the pieces to do its job. The following steps are completed in opening a file:

= Allocate an entry in the local file descriptor table.

= Allocate an entry for the file in the ufchunk structure.

s Using the lookup scheme described earlier, search the vfs and vnode structure un-
til the file to be opened is located.

s Allocate a viode and point to it through the file structure.

= Using the v_op routines verify permission (VOP_ACCESS) and then open ('VQ}? _': L

OPEN) the file.
a Return a file descriptor index to the user.

