564

Library of Congress Cataloging-in-Publication Data

Kelly, David A. (David Allen)
ATX/6000 internals and architecture / David A. Kelly.
p. cm.—(J. Ranade workstation series)
Includes index.
ISBN 0-07-034061-7
1. AIX (Computer file) 2. Operating systems (Computers) 3. IBM
RS/6000 Workstation. 1. Title. II. Series.
QA76.76.063K452 * 1996
005.4’469—dc20 95-25794
CIP

McGraw-Hill 72

A Division of The McGraw-Hill Companies

Copyright © 1996 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced or dis-
tributed in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

1234567890 AGM/AGM 9009876

ISBN 0-07-034061-7

The sponsoring editor for this book was Jerry Papke, the editing supervisor was
Fred Bernardi, and the production supervisor was Pamela Pelton. It was set in
Century Schoolbook by Renee Lipton of McGraw-Hill’s Professional Book Group
composition unit.

Printed and bound by Quebecor | Martinsburg.

This book is printed on acid-free paper.

McGraw-Hill books are available at special quantity discounts to use as premiums
and sales promotions, or for use in corporate training programs. For more infor-
mation, please write to the Director of Special Sales, McGraw-Hill, 11 West 19th
Street, New York, NY 10011. Or contact your local bookstore.

Information contained in this work has been obtained by The McGraw-Hill
Companies, Inc. (“McGraw-Hill”) from sources believed to be reliable.
However, neither McGraw-Hill nor its authors guarantees the accuracy or
completeness of any information published herein and neither McGraw-Hill
nor its authors shall be responsible for any errors, omissions, or damages
arigsing out of use of this information. This work is published with the under-
standing that McGraw-Hill and its authors are supplying information, but
are not attempting to render engineering or other professional services. If
such services are required, the assistance of an appropriate professional
should be sought.

Chapter

The Journaled File System

6.1 An Overview of File Systems

The term “file system” has two distinet meanings for UNIX-based systems. The
“global file system” refers to the file tree as viewed by the user. It includes the
entire hierarchical arrangement of directories and files, from a logical perspec-
tive, regardless of the physical components that comprise the tree. In reality,
the global file system is made up of one or more physical file systems, which
reside on separate disk partitions or other storage media. These physical file
systems are connected to form the global file system.

The global file system

~TT""" TFigure 6.1 illustrates the ATX 3.2 file tree and a simplified representation of the
file systems on disk.

Author’s Note: The details of the files found in each directory are appropriate for
a system administration discussion and are not provided here. While Fig. 6.1
shows each file system as a contiguous disk partition, the AIX logical volume man-
ager allows file systems to be fragmented and spread across one or more physical
disk drives, as described in Chap. 2.

Each file system has its own root directory, which is mounted onto a stub direc-
tory in the file system above. The stub directory is called the mount point. Each
mount point directory is shown as boxed in Fig. 6.1.

ATX local disk file systems must reside within disk partitions called “logical
volumes.” Each logical volume is considered a device and thus includes a
device file abstraction in the /dev directory. Table 6.1 lists the AIX 3.2 file sys-
tems, describes their general use, and indicates the device names for their log-
ical volumes.

152 Chapter Six

1 T 1 1

bin sbin etc lib dev

o

bin lIpp lib incllude ccs

-

! /

bin ... usr .. cusidata

P—]

~__

sys

r—

L local... include... ccs '

har

TR
/home

wchase pjames wlong

N—

o &
usr ome tm var

I

adm spool news uucp preserve

Jrmp
{

Figure 6.1 The AIX 3.2 file tree and disk file systems.

TABLE 6.1 AIX 3.2 File Systems

FS Name [Device Name Description
/ /dev/hd4 g;mspgggfg;amm boot
/home /dev/hdl Holds users” HOME directory
‘ lusr /dev/hd2 gﬂguscléc(?;‘:)f’mgam
/tmp /dev/hd3 Holds temporary files
fvar /dev/d9var | Lods ransicnt system files

The phys

The virtu
ST

6.2 Fil

Files

154 Chapter Six

Inodes

4k
> Data

Blocks

2
<

Figure 6.2 AIX 3.2 files.

The ordinary file is one type of AIX file. Other types of files include directories,
symbolic links, block device special files, character device special files, named
pipes (FIFOs), and sockets. Details of the structures and uses of each of these
file types are provided in appropriate chapters of this book. Directories are
described shortly.

The raw data of an ordinary file are stored in data blocks, as seen in Fig. 6.2.
For local disk files (JF'S), the data block size is 4096 bytes (4 kb). This means
that the smallest disk allocation size for an ordinary file that is not empty is 4
kb. Also, the last data block of a file is always 4 kb, regardless of how much of
the block is actually used. While this tends to waste disk space, especially in
file systems that hold many small files (the JFS in AIX 3.2 does not support
data block fragmentation), the benefit comes from the fact that file I/O is per-
formed in 4-kb chunks via pageins and pageouts (see Chap. 4).

Since the data blocks of an ordinary file contain nothing but raw data, the
attributes of a file, such as the UID of the owner of the file, the GID of the group
associated with the file, and the permission bits and file type, must be kept
elsewhere. These attributes are stored in the file’s inode (short for information
node). Each file has an inode. Figure 6.3 illustrates the JFS inode.

The AIX header file /usr/finclude/jfs/ino.h contains the definition of the disk
inode as a struct dinode. This file is one of the more difficult files to read for two
reasons. The comments are found above the member definitions, instead of to
the right of each definition, and, since there are many different types of files,
the latter portion of the dinode structure is a complex set of nested unions and
structures. An experienced C programmer should have little trouble untan-
gling this convoluted mess, but the novice may need to spend more time on it.

Important members of the dinode structure include:

Directories

o

The Journaled File System 155

di_mode. A mode_t data type that includes the file type and permission bits
\¥» di_nlink. The number of hard links for the inode (described shortly)

di_uid and di_gid. The user ID of the owner and the group ID of the associ-
ated group

di_size. An off_t data type that holds the logical file size in bytes
di_nblocks. The number of data blocks actually used by the file
di_atime. The timestamp of the file’s last access

di_mtime. The timestamp of the file’s last modification

di_ctime. The timestamp of the inode’s last modification

di_acl. A pointer to the file’s access control list, if any (described shortly)

Author’s Note: The “ctime” timestamp is wrongly commented in some UNIX-
based system header files as holding the file’s creation time. Rather, it holds the
date and time of the last change made to the inode itself, such as changed permis-
sions via the chmod command. '

The remainder of the dinode structure is specific to the file type. For ordinary
files, this portion of the inode provides an array of logical block numbers for the
data blocks of the file. A detailed explanation of how the data block addresses
are maintained is found in Sec. 6.5.

The size of an AIX 3.2 inode is 128 bytes. Each file system has its own set of
inodes. A file system’s inodes are maintained in an array allocated to a set of
data blocks within the file system. This is known as an inode table. Each inode
has a number which corresponds to the inode’s index within the table.

Directories

= 1Its important to note that nowhere in the discussion of the file or the inode has
the file name appeared. That’s because file names are not found within the files
(or at least as far as the operating system is aware), nor are they found within

file type

permissions | fle mode logical disk
link count addresses
user ID i
group ID

size (in bytes)

number of blocks

timestamp of last access
timestamp of last modification
timestamp of last inode change

Figure 6.3 The JFS disk inode.

156 Chapter Six

Directory File
“mydata”

Inode #45 “

— |45 | mydata E__, b3

Figure 6.4 Directories and inodes.

the inode. Actually, file names exist only to provide the user with a symbolic ref-
erence to a file. The system performs all file operations based on inode num-
bers. File names are found only within directories.

A directory is a type of file that does have a structure recognized by the oper-
ating system. Each directory is made up of slots that hold file names and their
corresponding inode numbers. In other words, a directory serves as a lookup
table for converting file names to inode numbers. Figure 6.4 provides a simpli-
fied view of the relationship of a directory to an inode to a file.

Figure 6.5 shows how a complete pathname to a file is represented through
directories and inodes. Since a directory is a type of file, it will have an inode
which is referenced in that directory’s “parent” directory. Thus a linked list, of
sorts, is formed from the root directory to the file. Note that each directory con-
tains a file'named “.” which represents that directory. The “.” (dot) name is use-
ful when issuing commands such as cp /etc/motd ./ mymotd. Each directory also
contains a file named “..” (dot-dot) which represents the directory’s parent
directory. This is used in commands such as cd .. to change the current direc- 4
tory to the parent directory. These file names are shown in Fig. 6.5.

Inode #2

I

26

Inode #412 b’

ponies t% d_jno

> 1. Tnode #387
&)

387 | bin
‘7 /home/dave
A 1s
/mome/dave/bin/ponies IE

Figure 6.5 A pathname example. Figure6.6 A

/home/dave/bin

e RSN SAR d

The Journaled File System 157

The old style directory, as was used in AIX Version 2 for the RT, had a simple
directory structure that consisted of two fields, a short integer for the inode num-
ber and a character array of 14 characters for the file name. The file name limit,
therefore, was 14 characters. AIX 3.2 employs a directory structure similar to
that of the BSD version of UNIX, which provides for variable-length file names.

The AIX 3.2 directory structure is defined as a struct direct in the file
/usrfinclude/jfs/dir.h. The structure has four fields:

d_ino. An unsigned long for the inode number

. d_reclen. An unsigned short for the length of the entire directory entry
d_namlen. An unsigned short for the length of the file name
d_name[D_NAME_MAX + 1]. A charécter array for the file name

_D_NAME_MAX is defined in the dir.h file as 255 and is the size of the longest
allowed file name. The MAXNAMELEN symbolic constant is also defined with-
in the same file for BSD compatibility. Since AIX file names are terminated
with a null character (\0), the d_name[] array is 256 characters. The d_namlen
field contains the length of the file name. The file name is always padded up to
the next 4-byte boundary. Figure 6.6 illustrates an example of a directory.
ATX allocates directory space in 512-byte blocks (see DIRBLKSIZ in dir.h). A
directory consists of one or more of these blocks. Directory entries claim all of the
bytes in a block. This is accomplished by having the last directory entry claim all
of the remaining free bytes in the block within that entry’s d_reclen field. When
an entry is deleted from a directory, the free bytes from the deleted entry are
claimed by the previous entry’s d_reclen field. Figure 6.7 represents a before and
after example. The dir.h header file includes a macro called DIRSIZ that indi-
cates the minimum record length required to hold a directory entry. The dir.h
header file also provides information on many library routines for manipulating
directories, including opendir(), readdir(), closedir(), and rewinddir().

Links
ATX 3.2 supports hard links and symbolic links. A hard link exists between a
directory entry and an inode within the same file system. The In command
|
4bytes 2bytes 2bytes dbytes 4 bytes 2bytes 2bytes 4 bytes
d_ino d_reclen d_nsmlen d_namef] d_ino d_reclen d_pamlen d_namef]
a1 2 | 1 | XX o [1]2].w
s 32 | 21 [a very long file_name\ 21 | 16
6__| mydamwo [X] ... & pamel]
24 bytes

Figure 6.6 A directory example.

158 Chapter Six

Before:
47 12 1 0w D a9 | 12] 2 | v l
121 16 6 mydata\0 M 168 | 20 | o g
inventory\0 210 | 32 | 21 [a_very long file_nameW :
231 420 | 6 | ponies\0 S
W
After: rm inventory
47 12 1 w XX 49 [12] 2 | .
121 20 6 mydata\0 !
I 210 [32 [21 [a very long file_name\ :
231 | 420 | 6 | poniesio [XX)
wy

Figure 6.7 Directory space reallocation.

allows users to create additional links for an inode by establishing additional
directory entries which reference that inode. For example, two users can create
links to a data file or executable file such that the file appears to exist in each
of their home directories. Figure 6.8 illustrates such an example. Hard links
also allow a single file to have multiple names within the same directory. For
instance, AIX 3.2 links /usr/bin/sh to /usr/bin/ksh to treat the Korn shell as the
default shell.

The disk inode structure (dinode) includes a field named di_nlink which indi-
cates the number of hard links to the file represented by the inode. In the exam-
ple in Fig. 6.8, the inode has a link count of three. When a user removes a file
via the rm command, the directory entry for that file is deleted and the di_nlink
value is decremented for that inode. When an inode’s di_nlink count reaches
zero, the file is considered completely removed. The inode is then placed back
on the free list of inodes and the file’s data blocks are released back to the free
list of data blocks. :

The di_nlink count shows up in the output from ls -1, as shown in Fig. 6.9.
File inode numbers can be determined with the 1s -i command. The ncheck com-
mand converts inode numbers to file path names. The find command also
includes a switch for determining file names for inode numbers. Hard links can
only exist between directory entries and inodes within the same file system.
Symbolic links were added to UNIX to provide links between directory entries

In /hos
in /hos

Y
38
38
#1
/de

1
/he
fhe

Figure

The Journaled File System 159

} .- /home/wilma
-h.omc Inode #387 \"\
di_nlink=3 387} salaries
l fred | | wilmal 387] mysal
salaries salaries
mysal

I /home/wilma/salaries /home/wilma/mysal
I /home/wilma/salarics /home/fred/salaries

/home/fred

387] salaries

/home File System

Figure 6.8 A hard link example.

f# pwd . \

/home/wilma
#1s-1

aW-r-—- 3 wilma payroll 38755 June 1208:31 mysal
“IW-r----- 3 wilma payroll 38755 June 1208:31 salaries

#1s-

] 387 mysal
387 salaries
ncheck -i1387 /home
/dev/hd2:
/home/fred/salaries
/home/wilma/mysal
/home/wilma/salaries
find /home -inum 387 -print
/home/fred/salaries
/home/wilma/mysal
\ fhome/wilma/salaries /

Figure 6.9 File names and inode numbers.

and inodes that are in different file systems. The In -s command is used to cre-
ate a symbolic link.

Figure 6.10 illustrates how a symbolic link is created between two file sys-
tems. The symbolic link (/home/carolyn/bin/ponies) is a special type of file. Its
inode contains the full path name of the target file (/usr/local/bin/ponies). The
dinode struct defined in /usr/include/jfs/ino.h includes a character array called

160 Chapter Six

/usrflocal/bin

ponies

In ~s fust/local/bin/ponies /home/carolyn/bin/ponies

fhome/carolyn/bin

[411] ponies
/usr File System fhome File System

Figure 6.10 A symbolic link example.

_s_private{D_PRIVATE] which holds the path name of the target file as long as
the path name is less than D_PRIVATE, which is defined as 48 characters. If
the target file’s path name is 48 characters or more (don’t forget the null ter-
mination character), the path name is stored in a data block pointed to by the
inode. This is all defined in the di_sym union.

The 1s -1 /home/carolyn/bin command shows the following (Fig. 6.11): The “1”
character for the file type indicates the symbolic link. Notice the permissions
for the symbolic link file. They are “wide open” since the target file’s inode holds
the actual permissions for the target file. Symbolic links do not increment the
target file’s link count.

Symbolic links, while necessary, include a number of potential problems.
First, if the target file of a symbolic link is remove, moved, or renamed, the link :
is broken. For instance, if the file named /usr/local/bin/ponies is renamed to s/
/usr/local/bin/horses, trying to execute /home/carolyn/bin/ponies would result :
in the error message “Cannot open /home/carolyn/bin/ponies.” The error mes-

$ Is -1 /home/carolyn/bin

Irwxrwxewx 1 ;:.jarolyn staff 0 July 1'!;‘09:43 ia';)nies—>/usrllocallbin/ponies

Figure 6.11 Symbolic links and the ls command.) Figure

The Journaled File System 161

sage is misleading because it does not indicate the fact that the system cannot
traverse the link. Care must also be taken when executing any type of file
manipulation command on a symbolic link file. The results depend on whether
or not the command knows how to deal with symbolic links.

Symbolic links offer one big advantage over hard links, aside from allowing
links across file systems. Symbolic links can be established for entire directo-
ries. For instance, the /bin directory in AIX 3.2 is actually a symbolic link to the
/usr/bin directory. This way, not every file in the /bin directory has to be estab-
lished as a link.

Author’s Note: Some UNIX-based systems allow hard links of entire directories as
long as the directories are within the same file system. ATX 3.2 does not allow this
option for hard links.

Author’s Note: AIX 3.2 introduced the symbolic links of the /bin directory to
/usr/bin and the /lib directory to fusr/lib to help maintain backward compatibility
with ATX 3.1. Most of the /bin and /lib directory contents were moved to /usr/bin and
fusr/lib, respectively, in AIX 3.2 to reduce the size of the root file system for support
of diskless workstations.

Finally, if a user moves from the parent directory of a symbolically linked direc-
tory, down through the symbolically linked directory, then references the “..”
directory name or issues the pwd command, the results can be surprising. For
instance, consider the example in Fig. 6.12. If a user starts at /home/carolyn and
moves to /home/carolyn/lib (which is really /usr/local/lib), then issues the pwd
command, the output is “/usr/local/lib” if the user is using the Bourne shell or

In -s /usrflocabflib home/carotynflib

[- fhome/carolyn
221} lib

fusr File System /home File System

Figure 6.12 Symbolic links and directories.

. r o et e e e

162 Chapter Six

the C shell. If the user is using the Korn shell, however, the output is “/home/car-
olyn/lib”! Similar results occur when the user issues a “cd ..” command.

Access control lists

ATX 3.2 implements access control lists (ACLs) as a way of providing extended
permission capability. The owner of a file can issue the commands acledit,
aclget, and aclput to look at or modify the extended permissions of that file.
(See the manual pages or InfoExplorer for more details on these commands.)
Since the access control lists allow permission sets to be created for any user or
group, additional space is required within the file’s control data structure to
hold this information. To avoid increasing the size of the disk inode, since ACLs
might only be applied to a small number of files on most systems, IBM created
a structure called an extended inode. The extended inode is an additional
amount of disk space allocated only for files that require it. The dinode struc-
ture defined in /usr/include/jfs/ino.h has a field called di_acl which points to the
data block holding the file’s extended inode. If the value of di_acl is null, the file
has no extended inode. The header file /usr/include/sys/acl.h defines the struc-
tures used to maintain ACLs. The header file lacks comments, but the struc-
tures are easy to understand once one understands the application of ACLs (see
the manual page for acledit).

64 TI

6.3 The Journaled File System (JFS)

The JFS represents one of IBM’s finest contributions to the open systems mar-
ketplace, although it is not without some controversy. The JFS applies a data
base logging approach to file system control structures. In this way, if a system
crashes while these control structures are being updated, a log redo utility
allows the file system to be returned to a known state. It is important to under-
stand that the JFS does not log changes made to user data. Therefore, a sys-
tem crash might still result in the loss of user data. The JFS attempts to assure
that the file system maintains its integrity through a crash.

Prior to the JF'S, a system administrator relied on tools such as fsck or fsdb
to fix a corrupted file system. The fsck utility looks for inodes that have non-
zero link counts yet are not claimed by any directory entry, or data blocks which
are not on the free list yet are not claimed by any inode. When fsck finds such
“orphans,” it has little choice but to place the inodes (files) or data blocks
(assigned to a file by fsck) into the lost+found directory located in the root
directory of the file system. Finding the owners of the contents of the
lost+found directory after running fsck relies upon the UNIX savvy of the sys-
tem administrator and is usually not an easy task.

Incidentally, AIX 3.2 includes the fsck utility which still can be used to check
the integrity of a file system. In fact, if the JFS log redo fails for any reason,
fsck may be the only way to fix a corrupted file system, short of restoring from
a backup. AIX 3.2 also offers the fsdb (file system debugger), which allows a
user to examine and change the data found in RI& System control structures.

The Journaled File System 163

Each journaled file system within a volume group (see Sec. 2.3 for informa-
tion on volume groups) usually shares a common JFS log. The JF'S log for the
root volume group is in the /dev/hd8 logical volume. It is a 4-megabyte circular
log which is updated by the operating system at regular intervals. The details
of the JFS logging are described in Sec. 6.6.

One unfortunate aspect of the JFS is that it is not supported for floppy
diskette file systems.

6.4 The JFS Architecture

As previously mentioned, the JFS design is similar to other UNIX-type file sys-
tems. It includes a boot block, a super block, inodes, indirect blocks, and data
blocks. Anyone familiar with other types of UNIX file systems might be tempt-
ed to skip this section of the book. However, the JF'S supplies a few interesting
twists to the traditional UNIX file system paradigm. This section explores
those nuances. It also serves as an introduction to the fundamental concepts of
file systems.

Before describing the design on the JFS it's necessary to say a few things about
how AIX 3.2 manages disk space. As explained in Chap. 2, the LVM carves all
physical disk space up into contiguous physical partitions. The default size of
these partitions is 4 megabytes on most RISC System/6000 models. Some small-
er RISC System/6000 models use a 2-megabyte default physical partition size. In
any case, the size of a volume group’s physical partitioning is constant through-
out the volume group and can be set by the system administrator when the vol-
ume group is created. IBM recommends 4 megabytes as the optimal size.

When a journaled file system is created, the system allocates it to one or more
physical partitions. This means that the smallest file system that can be created
in a volume group is equal to the size of the physical partitioning of that volume
group. Figure 6.13 shows a volume group with 4-megabyte physical partitions. It
also shows a couple of 4-megabyte file systems and a 12-megabyte file system.
Another nice feature of the JFS (with help from the LVM) is the ability to easily
extend a file system. When a file system becomes full, the system administrator

VG
)
f

P2y
VopR
.-m-m'

PP3 o JES3
| PP4 =R JE5S3 I

N A——

Figure 6.13 The JFS and the LVM.

164 Chapter Six

can simply allocate more physical partitions, as long as free physical partitions The JF!
exist within the volume group. The partitions allocated to a file system need not
be contiguous or even on the same physical disk drive. Best of all, the file system
can be extended while it is mounted and in use by users’ processes..

While the logical volume manager refers to the 4-megabyte chunks of con-
tiguous disk space as physical partitions, the journaled file system calls them
allocation groups. As shown in Fig. 6.13, each allocation group contains its own
set of inodes. This is similar to the BSD file system concept of cylinder groups.

Each JFS consists of the following components, as illustrated in Fig. 6.14:

Block 0. The boot block (also called the ipl block), which is not used for any-
thing.

Block 1. The super block, which contains control information for the entire
file system.

Block 31. The spare super block copy, used in the event of a corrupted super
block. While many UNIX file systems allocated a large number of spare
super blocks, the JFS only allocates one. This is because the JFS logging
makes it less likely for the super block to become corrupted. Also, as
described shortly, the information found in the JFS super block is not as
important to the integrity of the file system as the information found in the
super block of other UNIX file systems.

Blocks 32 through 63. The inode table for this allocation group.
Blocks 2 through 31, and 64 through the end of the file system. Data blocks.

The header file /usr/include/jfs/filsys.h has some excellent comments describing
the design of the JFS. It also containg the definition of the super block structure.

gQ} N
} g d&/ First Allocation Group
; 17‘ ~F01112] EL
32.63 §64 0 = Boot Block
1 = Super Block
31 = Spare Super Block
32-63 = Inode Table

@_ 1023 2-30) & 64 - 1023 = Data Blocks

I g The ino
o6 0- 31 = Inode Table

32- 1023 = Data Blocks

1023
A

Subsequent Allocation Groups

Figure 6.14 JFS block allocation.

The Journaled File System 165

The JFS super block
Block one of the JFS is the super block for that file system. The structure of the
super block is defined in the header file /usr/include/jfs/filsys.h. The JFS super
block is not as “super” as its counterparts in other UNIX-based file systems.
Traditionally, the super block contains pointers to the linked lists of free inodes
and data blocks for the file system it represents. For this reason, if the super
block became corrupted, the file system was trashed. This is why many UNIX-
based file systems have spare super block copies scattered throughout the file
system. As you will see shortly, IBM has implemented another methed of main-
taining inode and data block—free lists. The method does not rely on the JFS
super block.
The JFS super block contains a few interesting fields, such as:

s_fsize. The file system size (in 512-byte blocks). AIX 3.2 supports a maxi-
mum file system size of 2 gigabytes.

s_bsize. The block size for this file system.
s_fname[]. The name of the file system.
s_logdev. A dev_t type (device major and minor numbers) for the JFS log of
this file system.
s_ronly. A character field set if the file system is mounted as read-only.
s_time. A time_t type that holds the timestamp of the last super block
update.
s_fmod. A character flag that indicates the state of the file system. Values
include:]

0. File system is clean and unmounted.

1. File system is mounted.

2. File system was mounted when dirty or commit failed.

3. Log redo processing attempted but failed.

Beyond these fields, the JF'S super block isn’t very interesting.

The inode table and inode allocation

Blocks 32 through 63 of a JF'S hold the inode table for the first allocation group.
The JFS in ATX 3.2 dynamically allocates another inode table for each new allo-
cation group when the file system is extended. The inode table occupies blocks
0 through 31 of each allocation group after the first allocation group. The JFS
attempts to assign data blocks for inodes from the same allocation group when-
ever possible. Unlike traditional UNIX-based file systems that allow the sys-
tem administrator to specify the number of inodes for a file system when the
file system is created, the JF'S in AIX 3.2 defaults to one inode per data block

166 Chapter Six

within the allocation group. Since the size of an allocation group is 4 mega-
bytes, and each data block is 4 kilobytes, the JF'S creates 1024 inodes for each
allocation group. This is illustrated in Fig. 6.14.

In theory, this inode allocation scheme should mean that a file system will
never run out of inodes as long as there are still data blocks because of the one-
to-one ratio. In practice, however, it is possible to run out of inodes and still
have data blocks left over because zero-length files, such as symbolic links and
device special files, require an inode without ever allocating a data block.

Author’s Note: The latter example occurred for one of my students who was work-
ing with AIX 3.2 on IBM’s SP/2 system. She needed to define a large number of
device special files in the /dev directory, only to find that the system ran out of
inodes in the root file system. The only solution was to extend the root file system
to create more inodes.

Reserved inodes

The first 16 inodes of every JFS file system (inodes 0 through 15) are reserved
by the JFS. A description of each reserved inode is found in the comments of the
/usr/include/jfs/filsys.h header file. Most of these reserved inodes have file
names that begin with a “.” (dot) character because they are hidden files, but
unlike the hidden files found throughout the system directories, these files are
“really hidden,” as they do not appear in any directory. This is accomplished by
handecrafting the inodes so that they do not require a directory entry to support
their link count value. Remember that every open file is represented by a seg-
ment in the VMM (see Chap. 4). Many of the reserved inodes are associated
with files that are only present in the VMM when a file system is mounted and
never actually exist on disk.

Author’s Note: The /usr/include/jfs/filsys.h header file erroneously comments that
inodes 9-16 are reserved for future use, when actually inodes 9-15 are reserved.
This error can be tested by creating a new file system and creating a file within the
new file systems. The first file created should have an inode number of 16. This just
goes to show that you can’t always trust the comments!

Inode 0 of the JFS is never used.

Root directory. Inode 2 of the JFS is always used for the root directory of the
file system. An interesting thing happens if one performs the Is -ia command in
the root file system, then compares the output with that of an Is -ia command
in the /home directory. The inode number for /home within the root file system
is 2. In other words, since the file system is mounted, the 1s command reports
the /home directory as the root of the /home file system. In addition, the inode
number of “” in the /home directory is also 2 since that is the inode for the root
directory of the /home file system, not the /home mount point.

TR R R ST e

The Journaled File System 167

.superblock. Inode 1 of the JFS is reserved for a file named .superblock. This
virtual file simply refers to the super block and spare super block. Examining
the inode reveals that the file consists of two data blocks, blocks 1 and 31.

.inodes. Inode 3 of the JFS is reserved for a file named .inodes. This file keeps
track of all file system data blocks being used to hold inodes. This is similar to
a disk or cylinder group map in other UNIX-based file systems.

.indirect. Inode 4 of the JFS is reserved for a virtual file named .indirect. The
VMM uses this file to map the pages of indirect blocks for the entire file sys-
tem. An explanation of indirect blocks is given shortly.

- .inodemap. Inode 5 of the JFS is reserved for a virtual file named .inodemap.

This file takes the place of the traditional linked list of free inodes via a bit map
where each inode of the file system is represented by a bit flag. When an inode
is in use (di_nlink>0), the bit flag is turned on for the corresponding bit in the
map. When a new file is created in the file system and a new inode is needed,
the file system scans the .inodemap segment for the first bit flag that is turned
off. The bit flag is turned on and the corresponding inode is assigned to the new
file. This technique is much faster than manipulating linked lists.

diskmap. Inode 6 of the JFS is reserved for a virtual file named .diskmap. As
the .inodemap file keeps track of the free and allocated inodes, the .diskmap file
keeps track of free and allocated data blocks within the file system. The
.diskmap file, however, is not a simple bit map. The file uses a set of hash buck-
ets built on a binary tree principle to point to chains of contiguous free data
blocks. This way, when a new file is allocated with a known size, such as when

" alarge file is copied to another file, the JFS can search for a large enough set

of contiguous data blocks to allow the file to be stored with the least amount of
fragmentation.

.inodex. Inode 7 of the JFS is reserved for a virtual file named .inodex. The file
contains information about inode extensions, as used by access control lists (see
Sec. 6.2).

.inodexmap. Inode 8 of the JFS is reserved for a virtual file named .inodexmap.
The file contains a bit map used to keep track of free and allocated inode exten-
sions. It is similar to the .inodemap file.

Many of these virtual files are created when the file system is mounted.

As mentioned earlier, inodes 9 through 15 of the JFS are reserved for future
use. Figure 6.15 recaps the reserved inodes.

168 Chapter Six

Not Used

.superblock

Root directory of the File System
.inodes

.indirect

.inodemap

.diskmap

.inodex

.inodexmap

Reserved

NN RN —O

ed
¥

—

W

Figure 6.15 Reserved inodes. _di_vi

_di_n

6.5 JFS Storage Schemes

The earlier discussion of inodes alluded to the fact that a file’s inode contains i

the logical disk addresses for the data blocks of that file. One might wonder P Figure 6.1

how the inode, which is only 128 bytes, can hold enough logical disk addresses B

to accommodate large files. This is done through a series of storage schemes,

each designed to efficiently handle files of various sizes. While the JF'S method
. of addressing data blocks is similar to the direct, single indirect, double indi-

rect, and triple indirect schemes used by many UNIX file systems, it differs

slightly in its implementation. ' ,

The disk inode contains an array of eight logical addresses for the first eight
data blocks of a file. The term “logical address” refers to the data blocks’ num-
bers within the file system. The actual disk addresses (i.e., physical sector
numbers) are derived by the logical volume manager during disk I/O. The array
of eight direct block pointers, called _di_ rdaddr{NDADDRY], is defined within
the dinode structure of the /usr/include/jfs/ino.h header file. NDADDR is
defined by AIX 3.2 as eight. Each pointer holds the logical block number for a
4-kilobyte data block. This scheme, as shown in Fig. 6.16, supports a file size of
32 kb. Since support for larger files is required, a file with a size of >32 kb must

|
. 4kb

Data

'\. Blocks

=7

_di_raddr[NDADDR]

ARANAR
11

I 11

L

Inode

Figure 6.16 Direct data block accessing scheme.

The Journaled File System 169

di_vindirect | 7]
di_rindirect [~

.indirect Segment

)Z] 1024 - 4kb Data Blocks

EEEEEE
EEEEEE
Page Mapping EREEEN
EREEEN

4kb Indirect

figure 6.17 Single-indirect data block accessing scheme.

resort to another storage scheme. Figure 6.17 shows how the JFS implements
single indirect access. Each inode contains a field named. _di_rindirect. This
field holds the logical disk address of the file’s indirect block. An indirect block
is a 4-kilobyte data block that has been converted, by the JFS, to hold up to
1024 4-byte logical disk addresses for data blocks. This allows a file to access
up to 4 megabytes of space.

To speed up access to files that use indirect addressing, the JFS works with
the VMM to map the indirect block into a page of a VMM segment called .indi-
rect. There is a single .indirect virtual file created for each mounted file system.
Each page of the .indirect segment can hold an indirect block from disk. All files
larger than 32 kb within the same file system share the use of the .indirect file.

Each inode that has an indirect block uses a field named _di_vindirect to
indicate the page number of the memory mapped indirect block within the
.ndirect segment. For files larger than 4 Mb, the JFS uses a third scheme,
known as the double indirect block. In this case, the inode’s _di_rindirect field
contains the logical disk address of a double indirect block. A double indirect
block is a 4-kilobyte data block that has been converted to hold up to 512 8-byte
values, each of which consists of two 4-byte pointers. One of the 4-byte point-
ers from each 8-byte pair holds the logical disk address of an indirect block. The
other 4-byte pointer from each 8-byte pair holds the page number of where its
corresponding indirect block has been mapped in the .indirect segment. This
scheme allows the double indirect block to access up to 512 indirect blocks, each
of which can access up to 1024 4-kb data blocks. This provides a maximum
access size of 2 gigabytes (512 * 1024 * 4096). Since 2 gigabytes is the largest
supported file system in ATX 3.2, this scheme works perfectly. Figure 6.18
shows how a very large file (>4 Mb) might be accessed by the JFS.

170 Chapter Six

Andirect Segment

1024 (per IB)
4kb Data Blocks

_di_vindirect n
_di_rindirect E——-

4kb Double 512 - 4kb Indirect
Inode Block Blocks

Figure 6.18 Double-indirect data block accessing scheme.

w Author’s Note: One might be tempted to think that the address scheme described

above is the reason that AIX 3.2 has a file size limit of 2 Gb. Actually, the reason for
the 2-Gb file size limit is more historical than technical. The field called di_size in
the dinode structure defined in /usy/include/jfs/ino.h is a typedef of off_t. The off t
is defined in /usr/include/sys/types.h as a signed long, which means that one of the
32 bits is used to show the sign of the number, leaving 31 bits to hold the number
itself; 31 bits can access up to 2 Gb. Your next questions might be “Why is the off_t
a signed long? When would I have a negative file size?” The off_t is also used to
define the read/write offset within a file (see the manual page for the Iseek() sub-
routine). Since it is possible to seek backward through a file, negative values had to
be supported. At the time this strategy was created, no one could implement 2-Gb
file sizes because the hardware didn’t support it. (Remember, it wasn’t that long ago
that we were all paying big bucks for 10 Mb hard drives!) Therefore, a maximum
file size of 2 Gb seemed more than adequate. Most open system vendors have imple-
mented or are considering schemes that extend the maximum file size beyond 2 Gb.
AIX Version 4.2 will support 64-Gb maximum file and file system sizes.

The actual layout of the .indirect segment is not as simple as the example
given above. The .indirect segmentis described through comments found in the
/uasr/include/jfs/ino.h header file.

6.6 How the JFS Log Works

As mentioned previously, the goal of the journaled file system is to provide a
more robust file system by logging changes made to its own structures and
lists. This includes changes made to the file system super block, the inodes,
directories, indirect blocks, and free lists of inodes and data blocks.

Author’s Note: The term “free list” is used figuratively here. Recall that the JFS
uses bit maps to track free and allocated inodes and data blocks.

Compor

AJFS e

The Journaled File System 171

Whenever a JFS is mounted, the AIX kernel verifies its consistency by examin-
ing the log records of that file system. The log records show transactions that
were completed (committed), as well as, in the case of a file system crash, incom-
plete transactions. The JF'S reconstructs the committed transactions, bringing
the file system structures up to date. Incomplete transactions are discarded,
since they would leave the file system structures in a “half-baked” state.

JFS logging is similar to the way many data base programs log transactions.
It’s important to remember, however, that the JF'S does not log the user data
bound for the file system data blocks. In other words, when a system crash
occurs or someone shuts off the power to the computer without properly bring-
ing down the operating system, data in memory which have not yet been writ-
ten to disk are lost. The JFS log will make it possible to recover the file system
control data, but the user data are not recoverable.

Components of the JFS

The JFS uses a physical disk partition (usually 4 megabytes in size) as a log
device. Each volume group (see Chap. 2 for a discussion of volume groups and
the logical volume manager) must have a JFS log device. The rootvg’s log
device is /dev/hd8. A JFS’s log device can be specified at the time the file sys-
tem is created.

The JFS also maintains a log segment (a 256-megabyte segment) in virtual
memory for each log device. Pages of this segment are written to the disk log
device at regular intervals. The JFS also maintains an inode manager and a
lock manager to ensure that in-core inodes are locked while they are updated.
(In-core inodes are detailed in Chap. 7.)

A JFS exampie

To illustrate how the JFS logs changes made to the file system structures, an
example of the mkdir command is used. The following list includes just a few
of the events that take place in the JF'S when a new directory is created by a
user:

Séé An inode is allocated for the new directory. The .inodemap segment is updat-

ed by setting the bit that represents the inode.

_An entry is made for the new directory in the parent directory’s data block.
The new directory’s inode number is associz Wwith the new directory’s
name. This operation may involve adding a new directory block to the direc-
tory.

A data block is'_gllgcgtgd to the new directory. The .diskmap segment is
updated. " S —
The” and “.” file names are added to the new directory.

The link count is incremented for the parent directory’s inode (due to the “..”

file name in the new directory).

172 Chapter Six

/dev/kmem

mkdir ...
TID | Transaction
Al | Allocate new Inode
A2 | Aliocate Data Block to new Directory
A3 |Update Parent Dir's Data Block
A4 | Update Parent Dir's Inode (link count)

—

Ny
JES D2 - Other on-going
Disk Copy
[p]

operations
Log

(/dev/hds) :

Figure 6.19 A JFS logging example.

TID JFS /dev/kmem
In-Memory
S s L 0 g
yac
Last sync() _x> Al
! Bl
| A2
| D1
41 A3
! 21 c2
1 gl Ad Operation A is replayed
5 | E;"I CommitA |——| IR MEMOry
gl | B3
IFS E v CommitB _————————[Operation B is replayed
Disk Copy End of Log D2 1n memory
Log Transactions for operations
(/dev/hd8) C and D are discarded

Figure 6.20 The JF'S log redo.

The Journaied File System 173

The link count is incremented in the new directory’s inode (due to the “.” file
name it now contains).

Author’s Note: That’s quite a bit of activity, isn’t it? On most UNIX-based systems,
if the system crashed while in the middle of performing these tasks, the file system
would end up in a corrupted state. The JFS attempts to assure that these activities
are performed atomically.

It’s important to understand that the events listed above happen in memory
and are then written to disk some time later. Generally, user data and file sys-
tem control data are written to disk whenever a sync occurs. The JFS is able to
confirm that this has happened by writing a sync record to the log.

Author’s Note: Many UNIX-based systems use a sync daemon, which writes all
modified file pages and file system data to disk every 30 seconds. The AIX 3.2 syncd
process performs a sync once every 60 seconds, by default. The sync time can be
changed. The syncd daemon is launched from the /sbin/rc.boot shell script at sys-
tem start-up. A system administrator can change the parameter to the syncd pro-
gram from within this script.

As the new directory is being created, the JFS logs each transaction (each
event from the list above) in the log segment, as the activity takes place in
memory. Once all transactions have been completed in memory and recorded to
the log segment, the JFS writes a commit record to the log segment. As men-
tioned earlier, the log segment pages are written to the disk-based log device at
regular intervals. Figure 6.19 illustrates the example so far.

When a file system is mounted, the JF'S checks the log entries for the file sys-
tem. If the log does not end with a sync record, the JFS concludes that the file
system was not unmounted cleanly. The JFS performs a log redo, searching
back through the log for the previous sync record. The JF'S does not care about
any transaction above this sync record since the sync caused all changes to be
written to disk.

The JFS then performs all transactions for which commit records exist. Any
transactions that do not have a commit record are discarded. This should bring
the file system structures to a complete and known state. Figure 6.20 illus-
trates the log redo procedure.

Author’s Note: While the JFS is not foolproof, I can attest to the improved file sys-
tem reliability. I have tried, on occasion, to corrupt a JFS file system by doing
things like powering down in the middle of copying a large file. While I have expe-
rienced a loss of user data, I have not corrupted a file system. I am not advocating,
however, that you try this on your system!

