563

ing

¥ o)
= N
S 8
S S
S
~
T 0
g .S
S
s S
s
S
SN
. WV
S A

Performance Tun

The following terms are trademarks of the IBM Corporation in the United States, other countries, or both:
AIX, IBM, RS/6000, and InfoExplorer are registered trademarks of International Business Machines Cor-
poration; UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or pro-
grams contained herein.

The publisher offers discounts of this book when ordered in quantity for special sales. For more informa-
tion, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales @pearsontechgroup.com

Library of Congress Cataloging-in-Publication Data

Chukran, Rudy, 1952~
Accelerating AIX : performance tuning for programmers and system
administrators / Rudy Chukran.
p. cm.
Includes bibliographical references and index.
ISBN 0-201-63382-5
1. AIX (Computer file) 2. Operating systems (Computers)
I. Title.
QA76.76.063C495 1998
005.4'469—dc21 97-46800
CIP

Copyright © 1998 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher. Printed in the United States of America. Published simultaneously
in Canada.

Text printed on recycled paper

ISBN 0-201-63382-5

45678 9—CRE—0706050403
Fourth Printing, April 2005

e A T AT YRS

AIX System Design

In this chapter you will learn basic design points about the AIX that affect system perfor-
mance. The topics you will study are virtual memory, the program loader, the filesystem,
process scheduler, and the network subsystem. After reading this chapter, you will under-
stand why simply adding real memory can drastically speed up both program execution
and program 1/0 efficiency. You will understand why programs linked with shared
libraries can save lots of virtual memory in some cases yet not save any virtual memory in
others. You will also learn how processes are chosen for dispatching and why your favorite
application processes may not be so favored as far as the system scheduler is concerned.

Before you can begin to adapt and optimize a computer system to perform at its
fullest advantage, it is helpful to learn how the system is put together. You don’t need to
know minute details as well as the developer who wrote the code, but the more you
know, the more effective you will be at tuning your system. I will use an analogy that
compares cars to computers.

The computer system user is like a passenger in an automobile. It requires very little
understanding of how the car is designed in order to be a passenger. If you know how the
door works and how the seat belt buckles, you have the passenger skills licked. If you
want to be the chauffeur or a system administrator, you need more design knowledge.
The chauffeur needs to understand how to steer and accelerate. Some basic engine and
braking design must be understood so that the brake and accelerator are not depressed at
the same time. Likewise, the system administrator must not attempt to configure the sys-
tem to perform conflicting tasks. However, if you want to be a mechanic to fix problems
with a sputtering engine, you will need a much more complete understanding of the
design of the car. The better you understand the overall engine design, the more effective
mechanic you will be. And the beiter you understand the design of AIX, the better you
will be at being an AIX performance mechanic.

AIX System Design

2.1

First, I'll assume that you already have a basic background on how a generic
computer system works. That is, you have already taken Introduction to Computers 101,
and you already know what binary arithmetic is about. I will also assume you are famil-
iar with UNIX in general and know some of the basic design concepts. For example,
you should know what virtual memory is and why it is useful, what UNIX filesystems
are, and what the basic commands are that UNIX users must know to manipulate the
system.

In order to understand the finer points of the AIX design, we will describe some sce-
narios that you know and show a little bit of what is going on behind the scenes. To do
this, we will take a tour of the guts of the AIX operating system when you execute a com-
mand. We will see the interesting things that happen until the program you want to run
receives control at its first statement in the main subroutine. Once our sample program
gets control and begins executing, we will follow its execution path, that is, the system
subroutines.

General AIX Design Goals

The AIX operating system kernel was one of the first UNIX kernels to be designed with
modularity and extendibility in mind. Several design factors contribute to these goals:

Loadable device drivers
 Pageable kernels
Dynamically growing kernel tables

Device driver support is not built into the core kernel. Instead, kernel device drivers
are dyna.n‘uca]ly loaded and unloaded at runtime. This technique contrasts with the old
way of needing to relink the kernel whenever new device support is required. AIX han-
dles this by packaging the device driver with installation methods that load the driver
and all the con.ﬁgura’aon data. This means that adding a new device driver for an existing
device does not require a reboot.

The AIX kernel is mostly pageable. Except for device mterrupt handlers that must be
pinned into memory, most of the kernel is pageable. This allows the kernel to take a much
smaller real memory footprint than it would if it were not pageable. .

As a result of the kernel being pageable, kernel tables are able to grow on demand.
Tables such as the process table are memory mapped; then entire large tables are assigned
a virtual address range. The virtual entries are assigned to real memory as they are refer-
enced. When a new entry of the process table is referenced, a page fault occurs, and a new
virtual page is allocated. All of the kernel tables are allocated this way. They are mapped
into virtual memory with a very large size and paged in as needed. For example, the
process table is allocated with 131,071 (217-1) entries. Neither virtual memory nor real
memory is used until the entry is really needed. The end result of this dynamic table allo-
cation is that the AIX kernel does not need to be recompiled to make tables larger as is the
case with other UNIX kernels.

la
in
cu
ar
is

pi

Vi
s€
o1

Fi
p!
as
be
as
cc

st
as
si
di

cl

Feopram Loading i

2.2

Program Loading

The first order of business is to examine how programs are loaded in a virtual memory
space and how control is given to the first executable statement. You start the whole
process by typing a command at the shell prompt. The shell forks a child process, which
then passes the string as an argument to the exec system call. The exec system call
switches to the kernel system call handler that ends up calling the kernel loader. The
loader is responsible for loading programs into virtual memory and resolving the various
symbolic references into virtual addresses. This symbol resolution is done at the time the
program is being loaded and will be finished by the time the exec system call is complete.
This concept of resolving symbols at the time of the exec system call (which I call exec
time for short) is called dynamic loading.

Dynamic loading is important because it enables you to write programs that can use
less memory as compared with programs that do not use this facility. (We will get into
more detail on symbol resolution in Chapter 6 when we talk about writing programs to
take advantage of dynamic symbol resolution.) The loader locates the instruction portion
of the executable and maps it to the text segment. The act of mapping is just a way of asso-
ciating a part of a disk file to a portion of virtual memory; no copying of the executable
text portion is done.

The text portion is not read into storage by the loader. This feature is useful for very
large programs because the time is not wasted waiting for the whole program to be read
in. As the pages in the address range are referenced, the corresponding page of the exe-
cutable file is paged in. This technique is referred to as demand paging. If sections of code
are never executed, then the time to read this code into virtual memory is not wasted, nor
is the real memory used to hold this code wasted.

The most obvious mapping assignment that the loader needs to make is the text map-
ping. For AIX, text is mapped into a hardware segment. AIX implementations on Power
and PowerPC rely on the fact that these architectures are segmented in which the 32-bit
virtual address space is divided into 16 segments of 256 megabytes each. Each of these
segments can be assigned its own protection domain. Text is mapped into its own read-
only segment.

However, there are other segment assignments that the loader needs to make. See
Figure 2.1. Segment 0 is always mapped to the kernel instructions and data. While the
process is running in the user mode, as opposed to the kernel mode, the kernel segment is
assigned read-only protection. User code actually requires the ability to read the kernel
because user programs can execute code in the kernel while in user mode. Segment 1 is
assigned the process main text segment. This is the part of a program that is executed and
contains a main statement. Segment 2 is assigned to the private data segment. This seg-
ment is subdivided into program initialized data, program uninitialized data, program
stack, and kernel stack. Segment 13 is assigned to shared library text; segment 15 is
assigned to shared library data. This leaves several segments unassigned. The unas-
signed segments, 3 through 12, are available for use as auxiliary data segments, shared
data segments between processes, or segments in which to map files.

At this point, the loader has mapped text and data into the proper portions of the exe-
cutable file. The symbol resolution occurs after the text and data segments have been

10 AIX System Design Virtual Men
Segment Start Address End Address 23 Vi
0 00000000 - . Kernel Segment . - . : : O FFFFFFF W
. - . . nme
1 10000000 - Progrram Text Segm_ent , o 1 FFFFFFF sy
2 20000000~ Program Data/Stack Segment ~ 2FFFFFFF @
3-C- - }-30000000 - Avallable as. Shared Memory Segments -~ CFFFFFF L.
, - » _ s e O e S
: Extended Program Data Segments F m
. w
Co v _ L) ' . ~ = . fe
D . | DO000000 Shared Library Text Segment. . . - ... DFFFFFFF bl
E ~ E0000000 ' EFFFFFFF he
F | FOO00000 - - Shared Library Data Segment - D FFFFFFFF .
e :
P
mapped. Symbol resolution assigns to each symbol in a program an address in the virtual p
- address space of the process that is about to execute: The loader reads a portion of the exe- if
cutable called the loader section. This portion isa list of all of the symbols that must be W
assigned addresses. Once this address assignment is complete, the program is ready to a
run. All that is necessary is to initialize the program counter to point to.the first instruc-
tion in the program. Program counter initialization is accomplished in quite a sneaky -t
. way. When the exec system call returns; it returns to the new program at the first instruc- e
tion rather than return to the point of invocation, as most other system calls do. The -6
loader’s job is done once the new. program counter is lmtlahzed and thlS 51gmf1es com- P
. pletion of the exec system call. . P
It is interesting to review wh1ch parts of the execumble have actually been cop1ed
from the image on disk to the image in memory. These are only the executable header and » g

the symbol dictionary. The header is a kind of road map that tells the loader where the
various parts of the executable are located, and the symbol dictionary maps symbols into
addresses. Once these two parts have been read and their use is complete, they are dis-
carded. The actual code that is about to run has not been touched at all..

kLD A ®

Virtual Memory Overview 11

2.3

Virtual Memory Overview

When the first address is first touched, a page fault occurs. Page faults drive the virtual
memory system to perform on demand. It is probably a good time to examine the virtual
memory manager (VMM) at this point, because that will prepare us for the read and write
system calls that most programs perform. A simple way to describe the effect of the vir-
tual memory manager is to say that as the data is needed, it is fetched on demand. This
concept is called demand paging.

2.3.1 Page Faults

Let’s look at this concept of fetching data from disk on demand, the basis of how virtual
memory is managed on AIX. First, let’s review some terminology. Data is organized in
units of pages that are 4096 bytes in size for the Power and PowerPC architectures. All
fetching is done in units of pages. When these pages reside in real memory, they are capa-
ble of being addressed by the CPU. These pages can also reside on disk but are obviously
not addressable by the CPU when they are there. We said that a page fault causes data to
be fetched into memory. More specifically, a page fault is a detection, accomplished by a
hardware interrupt, that a virtual page cannot be addressed. This means that the page is
not in real memory, and the virtual memory address cannot be translated into a real-
memory address.

. When this interrupt occurs, the VMM looks to see if there is any room in real memory
in which to copy the data from the disk. In a moment, we will investigate how the VMM
page stealer creates room in real memory, but for now, let’s assume that there is enough
room. The VMM examines the page to see if it has ever existed in the context of this
process. If not, this is called an initial page fault for that page. An initial fault causes the
VMM to allocate two different pages. One page is the real address in RAM where the
page is to reside; the other page is the backing page on disk where the page will be saved
if the page ever has to be removed temporarily from RAM. The concept of allocating only
when the virtual page is first referenced is called late page space allocation. Later, we will
contrast this with early page space allocation.

If the page has previously existed, that is, if it has an image of it somewhere on disk,
the event is called a repage fault. The VMM looks up the disk address of this page in the
external page table, finds its disk address, and schedules I/O for that page to be read
{from page space into RAM. The act of resolving a repage fault by copying the page from
page space into RAM is called page in. The process that is blocked while waiting for a
page in to complete is said to be in page wait state.

Now let’s talk about that most larcenous of AIX system components—the page
~tealer. The job of the page stealer is to ensure that there is a small supply of free RAM
pages available when an initial page fault occurs. When the number of free RAM pages
+11ps below a certain value, the page stealer goes into action and attempts to steal pages to
add to the free-page list. The page stealer stops when the number of free pages exceeds a
Jitferent value. The certain value that spurs the page stealer into action is the minimum
tree-page number. The value that causes the page stealer to stop stealing is the maximum
trew-page number.

12

AIX System Design

The page stealer really gets a bad rap. It should more properly be called a page bor-
rower. The RAM pages are borrowed, or replaced, by selecting the stalest, or the least
recently used (LRU), pages and somehow getting rid of them temporarily. One possibility
is that a page is copied to page space if the page in RAM has been modified since it was
last paged in. In that case, the page is called dirty and is paged out to page space. The other
possibility is that the page is clean, which means that the copy in RAM matches exactly
the copy in page space. A clean page does not need to be paged out and is simply purged.

I mentioned stealing pages to page space as the target backing store because page
space is what is first associated with paging. Backing store is where dirty pages go when
pages are stolen. There are two types of backing store: page space is backing store for
working, or nonpersistent, pages, and a file system is backing store for persistent, or file,
pages. To put it more simply, files page to and from ﬁlesystems, and everythmg else pages
to page space.

Just to make sure you understand the performance bu.rden of pagmg, 1et me summa-
rize. Page faults do not necessarily cause disk I/O. Only repage faults cause page-in I/O.
Page-out I/O occurs only when there is a shortage of free RAM pages and the page des-
tined to be replaced is dirty. Thus we might consider that page-out I/O is the most direct
measure of how constrained real memory is at a particular moment. Page-in I/O is a
valid but less direct measure of constrained memory. Also note that a low amount of free
memory is not an indication that memory is constrained. The system could quite happily
run with free memory hovering just above the minimum free-page value. In fact, the sys-
tem could be experiencing some initial page faults that could be resolved by stealing
pages that are stale but clean, thus resulting in memory allocation activity with no accom-
panying I/O. In summary, nonzero paging rates are not good, but low (almost zero) free
RAM is not necessarily bad. Later I will discuss the VMM role in filesystem I/O and will
explain why free RAM pages tend to hover around a few hundred (this is what I mean by
“almost” zero).

2.3.2 Late Page'SpaCe'Al'iecat'ion)

Late allocation of the backing page is a unique feature of AIX. Let’s contrast early and late
page space allocation in order to understand the advantages of each. Let’s say you wrote
a program that dynamically allocated a very large array in storage and accessed elements
of that array in a random fashion. Let’s also assume that the data the program encoun-
tered today caused only 1% of the elements to be used. Early allocation would allocate
100% of the array on backing store, even though the program needed only. 1% of that
today. Late allocation would allocate only the 1% of the array on backing store as each
page is needed. This might be compared to the old saying: Eat all you want, but take only
what you can eat. That way there are no wasted ”bytes”——elther on your plate or on page

" space.

There is a trade—off to late allocanon It is p0551ble that when it is tune to allocate a
backing page there is none to be had. AIX does a pretty ugly deed when there is a short-

‘age of page space. It kills processes in an attempt to free up page space so that the system

can continue to run. This is the “sacrifice of the few for the good of the many” approach,
which is not always fair or wise. When page space first begins running low, a warning is

Virtual Memc

issw
con(
pagt
decl
scan
for {
encc
is tt
proc
proc
is to
page
prox

Ior.
ior.

mer
call

com
ded]
past

fixe:
prex
acti
this

¥irtual Memory Overview ' 13

issued two ways. First, a message is posted to the system error log warning that a low
condition has been reached. Then a message is posted to the system console warning that
page space is low and processes should be terminated. If free-page space continues to
decline, a kernel process is dispatched to conduct a “which” hunt. This kernel process
scans the kernel process table looking for which process could be the best one to dispose of
for the good of the system. The process that is chosen is not always the first process to
encounter shortages, nor is it necessarily the process using the most storage. The victim
is the youngest process. The chosen process is first sent a SIGDANGER signal. If this
process did not take steps to catch SIGDANGER, then the process dies immediately. If the
process does catch SIGDANGER, then the process can take remedial action. The best action
is to save work and exit. If page space consumption continues beyond a level called the
page space kill value, the hunter kernel process will issue a SIGKILL signal to the victim
process. SIGKILL cannot be caught, and the victim process meets a grisly death.

Your first reaction to this severe action to page space shortage might be to gag in hor-
ror. How crude of AIX to kill processes indiscriminately. That isn’t standard UNIX behav-
ior. You would be partially right. The POSIX 1003.1 standard implies that malloc
memory allocation system call should guarantee that storage be committed if themalloc
call returns successfully. And, indeed, customers complained that this behavior did not
comply with the standard. The POSIX standards body agreed with the customers and
declared that AIX did not conform with the intent of the standard, even though AIX
passed all the compliance tests.

In order to make AIX POSIX compliant to customers’ satisfaction, the AIX developers
fixed the behavior of the page space shortage algorithm. First, the default behavior is as
previously described. If you want different behavior, you have to take explicit action. The
action you take is to set the PSALLOC environment variable. Using Bourne shell syntax,
this would look like

PSALLOC=early

If the variable is set to early, the process behavior is different. Most important, early page
space allocation will occur for that process. The malloc call will return success and will
have committed all the page space pages before returning to the caller. Furthermore, the
process will be immune to the SIGDANGER and SIGKILL signals, so it cannot be killed
for its page space usage sins.

You may be tempted to have the entire system use the POSIX behavior by setting
PSALLOC in the /etc/environment file. Or you might set it in your shell .profile so that
just your process hierarchy uses this behavior. I strongly recommend that you do not do
this. There are many programs that greedily allocate much more storage than they actu-
ally use. The AIX X Window server is a good example of a program that allocates a
256-megabyte segment, but it typically uses 1% to 10% of that. Thus if you set PSALLOC in
your .profile file, X Window would refuse to run; it could not satisfy its memory alloca-
tion because the free-page space was too small.

Even though paging space configuration is an important issue, tuning the amount of
page space is never a performance issue. Stated another way, choosing too much or too
little page space will not make your program run either faster or slower. However, too lit-
tle page space may prevent your program from running at all.

14

AIX System Design

2.3.3 Filesystem Caching

I mentioned earlier that the VMM plays a major part in the operation of the AIX file-
system. Since the VMM manages all virtual memory, the VMM also manages memory on
behalf of the filesystem. All of RAM is shared among file pages and nonfile pages and the
VMM decides which pages occupy RAM at any given time.

Recall that the page stealer replaces pages in RAM based on an LRU algorithm. Until
now we had been considering pages without regard to type of pages; however, it is useful
to know that virtual pages are classified into three types, based on the location of backmg
store of the page. See Figure 2.2 for an illustration of this concept.

Pages are collected into a virtual segment that can be of one of three types persistent,
working, or client. Persistent segments represent a file in a filesystem and, therefore, can
be backed by a filesystem. In other words, the pages are paged in and out of the file-
system. Working segments are backed by page space. Client segments represent a file in a
mounted NFS filesystem and are, therefore; backed by a filesystem on an NFS server
somewhere across the network. Since persistent segments and client segments are both a
kind of filesystem-backed segment, it is also useful to think of segments as members of
two broader categories: file segments and nonfile segments.

The VMM page stealer treats all three types of pages equally when things are qulet on
the page-stealing front. I'll call this quiet condition the normal LRU page replacement sit-
uation, but increased paging activity causes the page stealer to treat file pages differently
than nonfile pages. There are two situations involving nonquiet paging conditions: I'll
call the louder case the “file'pages only” LRU page replacement. In this case, file pages
exceed a value called the maxperm threshold. (AIX uses this unfortunately inconsistent
term to mean maximum file page limit. I suppose maxperm is short for maximum per-
manent.) When the number of occupied file pages exceeds this value, the page stealer
chooses only file pages as replacement victims. This bias toward selecting file page vic-
tims is an attempt to limit the number of file pages. Note that this threshold is not a hard
limit because it is possible for the number of file pages to drift beyond the threshold
before the page stealer can be called into action..

The second nonquiet situation is when the number of file pages is below the maxperm
value but above the minperm (minimum number of file pages) value. In this case the
page stealer chooses which kind of page to steal by examining two other statistics. The
VMM keeps count of repage rates for both file and nonfile pages: The page stealer will
chose file pages if the file repage rate is greater than the nonfile repage rate. Otherwise the
page stealer will treat file and nonfile pages equally.:

- The reason for all these decisions is that'a system that expenences a lot of ﬁle I/0
may tend to push out nonfile pages such as program text and data images. Program text
images are persistént segments but are treated as nonfile segments for LRU purposes. It
might sometimes improve overall system performance by limiting the amount of RAM
that file pages occupy, thus keeping room for executable images. Otherwise the file page’s
greediness for memory could induce excessive page-in activity when the executable
images are needed. In Chapter 4 T will dlSCl.lSS how you can change the minperm and
maxperm values.. .

i Memory Overview

15

usr

_/ Persistent segment backed by file in filesystem

N N

RAM

\D

Paging logical volume \/E:l‘:I

//D
/</D

S

Working segment backed by paging volume

X\J\

server:/exportfs

\M—/
Client segment backed by filesystem on NFS server

Figure 2.2 Virtual segment types

16

AIX System Design

24

1/0 Overview
. Volume
A unique AIX feature contributing to AIX as an industrial-strength operating system is
the Journal Filesystem (JFS). AIX was probably the first UNIX operating system to pos-
sess this feature, and others have recently followed. Let’s discuss how the filesystem itself
intertwines with the VMM and other system components.

2.4.1 Layers for File I/O
hdisk0
It is useful to view file I/O as four distinct layers. See Figure 2.3. It is useful to understand
these layers because one of the performance statistics gathering tools that we will learn
about in Chapter 3 tells how these layers are performing. The first layer is the logical file.
Each read system call your program does is a logical read. However, each logical read
does not necessarily result in a physical read. If the data desired is already contained in
the VMM file cache, the VMM has no need to fetch the data from the disk, thus avoiding a
physical read. The VMM manages the virtual segment layer. The next layer is managed
by the logical volume manager (LVM), the genie of UNIX system administrators that
responds to: I wish it was easy to partition disks for filesystems. LVM allows filesystems
to span multiple disks and is responsible for translating file I/O requests into individual
disk requests. The last layer is the physical volume layer, or device layer. This layer is
managed by the disk device driver.

24.2 JFSlLog

hdisk1

In a nutshell, JFS employs a journaling technique similar to a database in order to ensure
consistency of the data making up the structure of the filesystem. This technique involves
duplicating the meta-data transactions to the filesystem logical volume and to the jour-
nal. Filesystem meta-data is the data that makes up the structure of the filesystem itself,
namely superblock, directories, inodes, and indirect data pointers. The journal, some-
times called the log, is another logical volume separate from the filesystem logical vol-
ume. It is used as a circular list in which to store the duplicate transactions. The journal is
written to the disk before the filesystem meta-data is; thus the journal can be used to
reconstruct the meta-data transactions if some of the transactions fail to complete. Fre-
quent meta-data corruption would cause filesystems to become unusable in the days
before journaled filesystems. This frequent corruption gave UNIX filesystems the reputa-
tion for lacking industrial strength.

Let’s use an example to see in detail how the journal works on the JES so you will
appreciate what value it adds. Assume you wanted to create a new file.

hdisk2

After

ps -ef >> ps.out £

— 2 el

The system actions are

Thes
by w
ps writes one new block at the end of the file that

shell closes ps.out file beer

shell opens ps.out file

- O Overview 17

Physical Logical Segment s File
Volume Volume

accounts

Segment ID
1A7
Segment ID
490 ?

i
: /etc/hosts
Segment ID :

AA5
; . Segment ID :
paging 98 :

Figure 2.3 [/Osystem layers

After this command executes, the following meta-data is changed:

Current directory data is changed to add new entry for ps.out file.
Inode for current directory is changed to update modified time.
New inode created for file.

Free list changed to contain one less block.

These filesystem changes are performed twice. First the changes are recorded in the log
by writing them in memory. The real data is recorded in the various memory structures
that represent the disk meta-data. Figure 2.4 represents the state of the log after it has
been written to disk. The state of the filesystem meta-data is shown after it was modified

18

AIX System Design

in memory but before it was written to disk. By using AIX kernel lock synchronization,
log data is guaranteed to be written to disk before the filesystem meta-data. This data is
written in one atomic chunk in a compact contiguous spot on the disk; the filesystem
meta-data is written in several chunks across the disk. When the meta-data is confirmed
to bé completely written, a pointer residing in the log header is updated to point after the
end of the corresponding log data. Figure 2.5 represents the state of the journal and meta-
data after the meta-data is written to disk. Note that the sync point has moved to signify
that the meta-data has been committed to disk and that the corresponding portion of the
log can be forgotten and is available to be written over. '

Journal header

sync ptr last 'data written

inode . directory

free list super block

Filesystem meta-data
pending to disk

Journal logical volume , Filesystem logical volume

Figure 2.4 Journal before commit

$/0 Overviev

CWOrView 19

Journal header

syhc ptr last data written

Sync pointer and
last data coincide

Filesystem meta-data
written to disk

Journal logical volume Filesystem logical volume

Figure 2.5 Journal after commit

If the system crashes between the times represented in Figures 2.4 and 2.5, the filesystem
can be restored to a consistent state. When the system reboots, a program called logredo is
run. It replays the journals to reconstruct the various corrupt filesystems. The logredo is
run before the filesystems are mounted and takes the place of the archaic fsck. program.

The point of describing the journal mechanisimn is not to have you understand how
the recovery works, but rather to show that extra disk I/0O is being done to the journal.
Usually this extra I/O is not noticed due to the low frequency. Note that the journal is not
written if a file is read because the filesystem is not changing. Note, too, that the journal is
not written if a file is being updated without appending new data.

20

AIX System Design’

2.4.3 Sequential Read-Ahead and Write-Behind

Programs that read files in a sequential manner can achieve greater throughput com-
pared with performing the same amount of I/O in a random manner. This is due to a
VMM feature called read-ahead. The VMM notices that a program has read two pages con-
secutively and anticipates that the program will continue to read consecutive pages. The
anticipation results in VMM reading the pages befote the program asks for them. When
the program does read the pages, they will already be in RAM, and the program does not
need to wait, thus reading more data more quickly. '

The VMM performs this anticipation of sequential reading with the help of two
thresholds—a starting read-ahead value (minpgahead) and an ending read-ahead value
(maxpgahead). Upon detecting that two pages were read consecutively, the VMM will

start by reading an additional number of pages specified by the minpgahead value. If -

the program continues to read sequentially, the VMM will keep doubling the read-ahead
amount until the maxpgahead value limits the read-ahead size. If the program performs
an Iseek to the file to cause pages to be skipped, then read-ahead mode is canceled. Future
detection of read-ahéad mode on the same file would start from scratch. The defaults for
minpgahead and maxpgahead are 2 and 8, respectively.

Where there is sequential reading going on, there is probably writing going on as
well, and sequential writing throughput can be improved by some spec1al processing.
When a program writes data to a file, the modified pages will tend to sit in memory until

~ async call by the sync daemon flushes the pages to the filesystem. However, if sequential

writing is detected, flushing the dirty pages will happen early. This action is called write-
behind. This detection is more primitive than that of read-ahead detection. When a pro-
gram modifies all four pages of a 16K chunk and then proceeds to modify the next page,
the previous four pages will be flushed to disk.

In Chapter 4 you will learn how to use thune to tune read ahead and write-behind.

2 4.4 Loglcal Volume Manager

ATX has'a umque feature of allowing filesystems to be managed dynarmcally without
requiring the filesystem to be taken off-line. The ATX component that accomplishes this is
called the Logical Volume Manager (LVM); it allows you to assign filesystems to chunks
of disk called logical volumes: The LVM is implemented as a device layer between the
VMM and the disk device driver. See Figure 2.6 for a conceptual plcture of how the LVM
fits into AIX.

The LVM itself does not affect disk I /O performance to any large extent. In fact, the
extra layer probably adds a bit of overhead that is imperceptible in the overall scheme of

- things. However, to the system administrator seeking to optimize the system, the power

of the LVM is in the flexibility and ease with which you can assign your data. On most
UNIX systems, moving data from one disk to another or to another place on the same
disk entails many houts of backing up, taking the system down to move disk partitions,
rebooting, and copying backups to their new locations. On AIX, similar tasks involve

- changing some disk conﬁgurahon pa.rameters and tellmg the system to move the data

for you.

plat
cont

that
calk
PV

nall
eral
size
ent

wit
spe
wh
vol
the
five

ST . 21

l_"l r—] Disk drives

disk drivers

I

LVM

VMM

|

JFS

Figure 2.6 LVM hierarchy

I'll review some LVM terminology that is important to understand optimum data
placement on disk. In Chapter 4, I'll discuss how to apply these concepts to learn how to
control where your data goes.

See Figure 2.7 for a picture of the hierarchy of disk management objects. A disk (one
that you could hold in your hand, if you knew how to extract it from your system) is
called a physical volume (PV). A volume group (VG) is a collection of one or more PVs. A
PV is divided into contiguous chunks called a physical partition (PP); each PP is nomi-
nally 4 megabytes but can vary from 1 to 256 megabytes. A VG can be grouped into sev-
eral logical volumes (LV) that are divided into logical partitions (LP) that are the same
size as the PPs. Logical volumes can span physical volumes, but they cannot span differ-
ent volume groups.

When you create a logical volume (if you are creating a filesystem, a logical volume
with sufficient size to contain the filesystem you specify is created for you), you must
specify the volume group in which to place the logical volume. This specification limits
which physical volumes the files can be on. Furthermore, you can specify that the logical
volume be allocated in one of five bands on the disk. See Figure 2.8 for a picture of how
these bands are laid out on a physical disk. The total number of cylinders is divided into
five equal-sized bands of 20% each. From the center axle, the bands are called inner edge,

22 AIX System Design

PHYSICAL PHYSICAL
VOLUMES PARTITIONS

oono
0 000 LOGICAL VOLUME X
oon
ood
LOGICAL VOLUME Y
aoa
1 0oo
000
0ano
LOGICAL VOLUME Z
aoo
2 a0oa
0ooo :
0o VOLUME GROUP A ical
allc
000
3 —— UNALLOCATED pat
oo as1
boo ady
Figure 2.7 LVM object terminology san
pa
inner middle, center, outer middle, and outer edge. The band of optimum seek time is the cen- for
ter. A file residing on the center cylinder will have an average seek distance of one-half the The
total number of cylinders. All other file positions will have average seek distances greater to]
than one-half. ple
: dis
wi
outer edge
outer middle
center
inner middle
inner edge

Figure 2.8 Disk allocation bands

(verview 23

Physical volume 1 Physical volume 2 Physical volume 3

Logical partitions of logical volume

Figure 2.9 Minimum volume allocation for multivolume group

Since a logical volume can exist in a volume group that contains more than one phys-
ical volume, there is an LVM rule that decides how many physical volumes to use when
allocating the partitions for the logical volume. The default is minimum, which tries to use
the least number of volumes. Figure 2.9 shows how this would look for an LV with nine
partitions. The alternative allocation, maximum, is to spread the logical partitions across
as many physical volumes as possible. This arrangement, shown in Figure 2.10, might be
advantageous on a system where there are many independent processes accessing the
same filesystem. Since different physical disks can be executing their seek operations in
parallel, there is more opportunity for parallel I/O operations with maximum. However,
for a single process accessing a filesystem, maximum and minimum are about the same.
The single process would block if one of the disks needed to be read with no opportunity
to put the other physical volumes to work. With an ordinary JFS filesystem, it takes multi-
ple processes to put multiple disks to work. However, a single process can put multiple
disks to work concurrently if it is performing sequential I/O on a striped filesystem. We
will investigate striped filesystems in Chapter 4.

Physical volume 1 Physical volume 2 Physical volume 3

Logical partitions of logical volume

Figure 2.10 Maximum volume allocation

24

AIX System Design Scheduling

2.5

 threads, which is different from a process in thata child thread doés not get a new copy of

~ meaning will be the same:

‘component burdened with this tas
uler chooses the thread froni a list of ehglble threads that wait in the runi queiie. The run
- quéue is sorted in priority order, and' the top pnonty runnable threads get to use the

CPU Scheduling Overview

Effective use of the hardware CPUs (remember that a system may have one or more CPUs)
is a job for the AIX scheduler. There are two situations to understand: The first is normal
thread schedulmg which governs how work is handled in most situations; the second is
when memory usage is abnormally high and the system is virtual memory thrashmg

25.1 Schedulmg Threads

Before I d1scuss how the CPU (or CPUs in the case of mulhprocessor hardware) is man-
aged by the AIX kernel, I had better define a'thread, which is the scheduling entity for AIX
Version 4. For AIX Version 3, the scheduling entity is the process which the fork system
call creates. After a fork, parent and child processes share a copy of the program-
executable text, but they receive their own copy of the program data. Therefore parent
and child cannot communicate by modifying variables in the data segment but must
resort to some interprocess communication means. New to Version 4 is the concept of

the data and therefore can communicate with the parent thread by modlfymg program
variables. There are other subtle differences between threads and processes, but I won’t
discuss them here. I suggést you consult Pthreads Progmmmzng by Bradford NlChOlS and
others for more information about threads.

] you are using an AIX Versmn 3 system, you can subshtute process for thread and the

Since there are many more threads than there are CPUs to run them on, the operating
system decides which thread at- any moment can use the CPU. The AIX' scheduler is the
“$0 many threads and so little CPU time. The sched-

CPUs. You may not be accustomed to thmkmg of more than one CPU but a multlple CPU
configuration is the most general case. : second
Figure 2.11 illustrates one run queue serving mulnple CPUs. A process is placed on . ing for
the run queue at the Ievel that corresponds to the thread priority, once the thread is awak- oB
ened from sleeping on an event. Unlike the grocery checkout queue, where breaking into - Sl
the middle of the queue is met with looks that would melt the offender’s ice cream carton, - CPUne
breaking into the middle of the queue on AIX is normal and quite civilized. The new run old CP
queue entrant thread jumps to its rightful place in line, using its priority number like a - says th
__special pass. Every thread has a priority number, ranging from 0 to 127. The best priority reachex
is 0, while the worst is 127. Becauise the adjectives “high” and:“low” get confusmg, I will the ma
consistently use “better” and “worse” to describe priority goodness. +On
Thread priorities can be either fixed forever or changed as a function of tlme spent penalty
using the CPU. Most user processes have changmg priorities, while most system kernel e
processes have fixed priorities. Threads that use the CPU are penalized by changing their S
priority to be worse; threads that are waiting to use the CPU are rewarded by changing D is ths
their priority to be better. Let’s examiirie exactly how this happens in detail, because i in i penalty
Chapter 4 you will learn how to affect the pnonty calculation. seven s

Hing Overview 25

Priority | Priority Priority
3 Level 60
0
1
3 A
i

60 < _
61 - <4— Next thread to be run

126
127

Figure 2.11 Single run queue serving multiple CPUs

The threads that are running on the CPU get a new priority calculation 100 times per
second, based on the system 100 Hz clock interrupt. This can be expressed in the follow-
ing formula:

CPUnew = min (CPU old +1, 120)

CPUnew is the new value of the CPU penalty value that is calculated by adding 1 to the
old CPU penalty. The CPU penalty cannot exceed 120. Loosely interpreted, this formula
says that the running thread has its CPU penalty increase until the maximum of 120 is
reached. If the penalty is zero, it would take 1.2 seconds until the CPU penalty reached
the maximum.

Once every second, all threads, including those that are asleep, have their CPU
penalty calculated with the following formula:

CPUnew = CPUold*D/32 where D=16 by default

D is the CPU penalty decay factor. If we use the default value of 16 for D, then the CPU

penalty value will be halved every second. If the penalty value were 120, it would take
seven seconds for the value to be degraded to zero.

26

AIX System Design

The priority that the scheduler uses is calculated with the following formula:
P =40 + N + (CPUnew * R)/32 where R=16 by default

P is the priority value; N is the nice value. It is set typically to 20 and can be changed with
the nice command. C will eventually grow to the maximum value of 120; R is a weighting
factor and is defaulted to 16.

Let me summarize these formulas. While a thread executes, its CPU penalty increases;
therefore its priority increases or becomes worse. The thread is penalized for running.
While a thread sleeps, its CPU penalty decreases; therefore its priority decreases or
becomes better. A thread is rewarded for sleeping. When the sleeping thread wakes up, it
is put on the run queue with the same priority that was computed while it was sleeping,

Competing threads on the run queue get a fair opportunity to run because the prior-
ity of a running thread increases while the priority of a runnable, but not running, thread
decreases. Every T ticks. Where T is typically one, the scheduler compares priorities of the
running threads against those in the run queue and preempts them if a waiting runnable
thread has a priority greater than that of the running thread.

Preemptive dispatching could be compared to a car repair shop with one mechanic,
the owner. You bring your car (process) into the garage for a valve job. This takes a very
long time to complete. The mechanic works on the car for an hour or so; another customer
comes in for an oil change and wants to wait. The mechanic considers this job a high pri-
ority task (interactive job). He suspends the valve job and begins work on the oil change,
completing it in 30 minutes. After the customer w1th the oil change leaves, the mechanic
returns to the valve job. :

2.5. 2 Memory Overcommltment

The AIX scheduler gets called into achon once again when processes are using too much
virtual memory. This overcommitment of virtual memory is measured by the amount of

- paging that occurs. When paging exceéds a certain threshold; processes:are suspended in

an‘attempt to throttle back the memory load. (I know I said earlier that thireads are equiv-
alent to processes, but in this case I mean processes and all the threads contained therein.)
While processes are suspended, no new forks can occur. When the paging situation re-
turns to normal, suspended processes are reactivated. Once reactlvated a process is ex-
empt from being suspended for a short time. Certain other processes such as kernel
processes and fixed priority processes are always exempt from suspension.

Please understand that if there is no paging activity there is no prob‘lemv If thereisa
lot of paging, programs niear and dear to youmay stop execuh.ng.)

Let’s examine just what I mean by “a lot of paging.” Imagine a page gettmg paged out
by the page stealer and immediately being needed by some process. Imagine this happen-
ing with every page that gets paged out. If paging was ever thisbad, the VMM would spend
all the CPU time trying to resolve page faults of pages just paged out. The system going over
the edge of sanity and spending more time paging than doing anything else is called thrash-
ing: Let’s come up with a formula that quantifies how much thrashing is tolerable..

I said earlier that page stealing does not always result in a page out. With luck, the
page is not dirty, and stealing it means simply reusing the page. With no luck at all, every

D e S S e e oy Sy S ran o e cene R e oy

rec
col

2.6

1 1le about Disk Hardware 27

page would be dirty, and every page steal would result in a page out. Let’s now define a
thrashing severity ratio

T = 0/S

where S is the number of page steals in the last second and O is the number of page outs
to page space in the last second. T cannot be larger than 1, and 0 is ideal. However, a value
of 1 would mean a useless system. There is a value of T that when T > H, the AIX sched-
uler blows the whistle and considers putting processes into the penalty box. In this case
the penalty box is a thrashing suspension queue. You can tune the value of H, which has
been empirically set to 1/6 by default. You can adjust H to suit your opinion of when
thrashing is bad enough to suspend processes.

Now that we know when thrashing occurs, we need to know which processes are
chosen as suspension victims. If a process appears to be the main cause of all this paging,
it should be suspended. Every process has statistics recording how many page faults it
incurred in the last second, and of those faults, how many were repage faults. In the AIX
justice system, suspicion of wrongdoing is grounds for conviction. Consider the ratio

X = R/F

where R is repage faults by a certain process in the past second, and F is the total faults in
the last second. When X > P, that process is sentenced for some time in the penalty queue.
P has a default value of 1/4. :

Once processes are suspended, the time during which the thrashing severity must
return to normal is the value w, which has the default value of 1. The default value of m
is 2. If there are less than m processes, suspension will not occur. Once a process is reacti-
vated, it will be given a grace period in which it is exempt from suspension. This grace
period, e, has a default value of two seconds.

In Chapter 4 you will learn to tune values of p and h, reciprocals of P and H, respec-
tively, and e, m, and w.

Facts of Life about Disk Hardware

In order to understand how to maximize general system I/O performance, it is necessary
to understand the limitations of random access SCSI hard disk technology. The disks of
today are made of pizza-like platters spinning at 3000 to 8000 rpm. The data is read from
a magnetic device on the end of a set of mechanical arms that move from outside edge to
inside edge of the platter. These disks can deliver data to RAM in a typical time of 10 to 50
milliseconds. On the other hand, the CPU can access data in RAM in an average time of
20 to 70 nanoseconds. To put it another way, disks are 1000 times slower than RAM. There
are things that can be done to reduce the access time of the disk to 10 milliseconds.

There are four components of this access time. The largest component is the time
required to move the mechanical arm from where it is to where the desired data is. This
component is called seek latency. Seek latency for modern disk technology is somewhere
between 10 ms and 100 ms. Once the arm has moved to the desired spot, the next largest
time component comes into play. Rotational latency is the time required for the desired

28

AIX System Design

2.7

data to pass under the mechanical arm. A typical disk spins at the rate of 7600 rpm. Thus
a worst-case rotational latency would be 60/7600, or about 8 ms. Once the data passes
under the magnetic head, it must be copied from the bits on the magnetic platter onto the
wires attaching the disk to the SCSI controller card, which in turn attaches to the system
I/0 bus. This is expressed as the disk transfer rate. Disk transfer rates are between 1 and
10 MB per second. For a typical disk transfer of 4K on a disk with a transfer rate of 4 MB
per second, the transfer latency would be 1 ms. After the data gets on the disk cable, it is
transferred through the SCSI adapter through the system bus into RAM. This component
is called the SCSI controller transfer rate: The rate for SCSI-2 is on the order of 10 MB per
second; for SCSI Fast-and-Wide adapters, this rate is about 20 MB per second.

It is important to note that mechanical latency components are serial in nature. This
means that seek latency cannot be overlapped with rotational latency: Nor can either of
these be overlapped with disk transfer latency. While the disk is seeking to the next spot,
that same disk obviously cannot be transferring any data. Since the disk platter spins at
constant speed, the disk mechanism cannot even begin to wait for the platter to be posi-
tioned at the correct spot until the arm is done moving. Thus all the mechanical latencies
are additive on the same disk. The SCSI controller transfer and the disk transfer can be
overlapped up to the point where the SCSI transfer rate (more properly called band-
width, but for our purposes I will declare them synonyms) is being exceeded. For exam-
ple, it works fine to hook up two disks; each having a transfer rate of 3 MB per second, to
an SCSI controller that has a transfer rate of 10 MB per second. However, connecting four
such disks to the same controller is likely to induce a bottleneck, especially if the disks are
actually approaching their maximum transfer rate for extended periods.

~ For some modern disks; the outer tracks have more sectors (a sector. is the: smallest
unit of data that can be réad: from the disk) per track than the inner sectors. This is just a
geometric fact that is exploited to increase the capacity of the disk. To us performance
analysts, this is interesting because the more sectors per unit area, potentially the more
bytes per second flying past the read head. And, empirical measurements show that the
outer tracks on a variable density disk have a 15% to 30% lmproved transfer rate under
optimum conditions.

The way to minimize the latency for one disk is to. try to minimize each component.
The only components that can be minimized are seek latency, rotational latency, and disk
transfer latency, which is accomplished by judicious or lucky placement of your data on
the disk. The SCSI controller transfer rates are fixed and cannot be changed. However,
you can add additional SCSI controllers to boost total SCSI bandwidth to match the total
bandwidth of the disks you have. We will revisit latency and transfer rates in Chapter 4
when we discuss how to optlm1ze data placement .

Summary:

The following are the most important points covered in this chapter:

- 1. The AIX kernel tables do not need to be tuned by recompiling the kernel. The ker-
nel dynamically allocates internal kernel data structures that require no tuning.

" Summary

29

The AIX program loader gets a program started by resolving symbolic addresses,
mapping the portions of the program into its virtual memory space, and transfer-
ring control to the program. A knowledge of the program loader wiil enable you
to understand how to optimize virtual memory usage.

The AIX VMM maps a program’s virtual memory in the system’s real memory. It
handles page in and page out of files, program data, and program code. A work-
ing knowledge of the VMM will enable you to optimize disk I/O performance
and virtual memory usage.

The AIX Journal Filesystem (JFS) is the subsystem that interacts closely with the
VMM in performing file I/O. Knowledge of the inner secrets of the filesystem
operation will enable you to optimize disk I/O performance.

The AIX CPU scheduler controls which threads run on the various CPUs of the
system. Understanding of the scheduling rules will enable you to optimize
thread contention for the CPU in CPU-bound situations.

Understanding the realities of current magnetic disk technology will enable you
to place data on disks to optimize performance and to make configuration
choices that perform efficiently.

