- 561



SOLARIS

PORTING GUIDE

SunSoft nge_loper Engineering ”%:;%S T/WlSOﬂ




© 1995 Sun Microsystems, Inc. — Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This book is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this book may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of the products described in this book may be derived from the UNIX®and Berkeley 4.3 BSD systems, licensed
from UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California,
respectively. Third-party font software in this product is protected by copyright and licensed from Sun’s font suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States government is subject to
restrictions as set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The products described in this book may be protected by one or more U.S. patents, foreign patents, or pending
applications.

TRADEMARKS— Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, Solaris Sunburst Design, OpenWindows, ONC,
ONC+, SunOS, DeskSet, ToolTalk, NFS, PC-NFS, NeWS, X11/NeWS, XView, OpenFonts, ProWorks/iMPact and
SPARCworks/iMPact, XGL and XIL are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX is a
registered trademark in the United States and other countries exclusively licensed through X/Open Company, Ltd.
OPEN LOOK® s a registered trademark of Novell, Inc. Adobe, PostScript, and Display PostScript are registered
trademarks of Adobe Systems Incorporated. FrameMaker is a registered trademark of Frame Technology
Corporation.Motif and OSF /Motif are registered trademarks of the Open Software Foundation. Pentium is a trademark
and Intel is a registered trademark of Intel Corporation. X Window System is a trademark of X Consortium, Inc. Netscape
is a trademark of Netscape Communications Corporation. All other product names mentioned herein are the trademarks
of their respective owners.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC
International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or
graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical
User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with
Sun’s written license agreements.

Code Examples 5-2 and 5-3 are taken from The Programmer’s Supplement for Release 5 of the X Window System, Version 11, by
David Flanagan (O'Reilly & Associates, Inc., 1991), and are used by permission. The Code Examples copyright © 1991
O'Reilly & Associates, Inc.

Material from X11 Release 5 documentation is reproduced with permission. X11 Release 5 documentation is copyright by
the Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment Corporation, Maynard,
Massachusetts.

The publisher offers discounts on this book when ordered in bulk quantities. For more information, contact:
Corporate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458, Phone: 800-382-3419 or
201-236-7156, Fax: 201-236-7141, email: corpsales@prenhall.com

Cover designer: Anthony Gemmellaro

Manufacturing manager: Alexis R. Heydt

Acquisitions editor: Gregory G. Doench

Editorial production and supervision: Camille Trentacoste

0987654321

ISBN 0-13-443672-5

SunSoft Press
A Prentice Hall Title

Forewora

~ Preface. .

Acknowli

Part1: I

Introduct




= 15

Table 15-4 lists the valid values for cmd, their meanings and the type of arg:

Table 15-4 Valid priocntl.h cmd Values

cmd arg Type Function

PC_GETCID pcinfo_t get class ID and attributes
PC_GETCLINFO pcinfo_t get class name and attributes
PC_SETPARMS pcparms_t set class and scheduling parameters
PC_GETPARMS pcparms_t get class and scheduling parameters

On success, priocntl (2) returns the folowing values:

PC_GETCID returns the number of configured classes.

PC_GETCLINFO returns the number of configured classes.

PC_SETPARMS returns 0.

PC_GETPARMS returns the PID of the process whose scheduler properties it is returning.

On failure, priocntl (2) returns -1 and sets errno to indicate the reason for the failure. See
the man page for priocntl(2) for the complete list of error conditions.

The PC_GETCID and PC_GETCLINFO Commands

The PC_GETCID and PC_GETCLINFO commands retrieve scheduler parameters for a
particular class based on the class ID or class name. Both commands use the following pcinfo
structure to send arguments and receive return values:

typedef struct pcinfo {

id_t pc_cid; /* class id */

char pc_clname[PC_CLNMSZ]; /* class name */
long pc_clinfo[PC_CLINFOSZ]; /* class information */
} pcinfo_t;

The PC_GETCID command, given the class name, retrieves scheduler class ID and associated
parameters. Some of the other priocntl (2)commands use the class ID to specify a scheduler
class. The valid class names are TS for time-sharing and RT for realtime.

For the RT class, pc_clinfo contains an rtinfo structure which holds rt_maxpri, the
maximum valid realtime priority; this value is configurable. In the default configuration, this is
the highest priority any process can have. The minimum valid realtime priority is zero.

typedef struct rtinfo {
short rt_maxpri;
} rtinfo_t;

/* maximum realtime priority */

462 Solaris Porting Guide

- For the TS class
{ maximum time

sharing end-use

typedef stri
short ts
} tsinfo_t;

The following ¢
RT scheduler cl,

Code Example 15-1

/*
* Get schec
*/

#include <sy
#include <sy
#include <sy
#include <sy
#include <st
#include <st
#include <st
#include <ex

main ()

{
pcinfo_t
tsinfo_t
rtinfo_t
short

/* times
(voic
if (3
E
€

}
tsini
maxts
(voic
E

/* realt.

(voic




' returning.

1e failure. See

for a
Ning pcinfo

associated
a scheduler

ri, the
ition, this is
zero.

For the TS class, pc_clinfo contains a tsinfo structure which holds ts_maxupri, the

maximum time-sharing end-user priority; this value is also configurable. The minimum time-

sharing end-user priority is negative ts_maxupri.

typedef struct tsinfo {
short ts_maxupri; /* limits of user priority range */
} tsinfo_t;

The following program, getcid.c, gets and prints the rangevof valid priorities for the TS and

RT scheduler classes.

Code Example 15-1 getcid.c Program

/-k
* Get scheduler class IDs and priority ranges.
*/

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>
#include <stdio.h>

#include <string.h>
#include <stdlib.h>
#include <errno.h>

main ()
{
pcinfo_t pcinfo;
tsinfo_t *tsinfop;
rtinfo_t* rtinfop;
short maxtsupri, maxrtpri;

/* timesharing */
(void) strcpy (pcinfo.pc_clname, "TS");

if (priocntl (0L, 0L, PC_GETCID, &pcinfo) == -1L)} {
perror ("PC_GETCID failed for timesharing class");
exit (1);

}

tsinfop = (struct tsinfo *) pcinfo.pc_clinfo;

maxtsupri = tsinfop->ts_maxupri;
pcinfo.pc_cid, maxtsupri, maxtsupri);

/* realtime */
(void) strcpy(pcinfo.pc_clname, "RT");:

(void) printf("Timesharing: ID %14, priority range -%d through %d\n",

Realtime Processing

463



= 15

Code Example 15-3 Program to Get Class Name Given Process ID (Continued)

exit (3);
}

(void) printf("process ID %d, class %s\n", pid,
pcinfo.pc_clname) ;

The PC_GETPARMS and PC_SETPARMS Commands

The PC_GETPARMS command retrieves and the PC_SETPARMS command sets scheduler
parameters for processes. Both commands use the following pcparms structure to send
arguments or receive return values:

typedef struct pcparms {
id_t pc_cid; /* process class */
long pc_clparms [PC_CLPARMSZ]; /* class-specific */
} pcparms_t;

The following function, used in an earlier program example, uses PC_GETPARMS to obtain the

scheduler class ID of a process:

/*
* Return scheduler class ID of process with ID pid.
*/

getclassID (pid)
id_t pid;

pcparms_t pcparms;

pcparms .pc_cid = PC_CLNULL;
if (priocntl (P_PID, pid, PC_GETPARMS, &pcparms) == -1){
return (-1);

}

return (pcparms.pc_cid);

For the RT class, pc_clparms contains an rtparms structure. The rtparms structure holds

scheduler parameters specific to the RT class.

typedef struct rtparms {

short rt_pri; /* realtime priority */
ulong rt_tgsecs; /* seconds in time quantum */
long rt_tgnsecs; /* additional nsecs in quantum */

} rtparms_t;

466 : Solaris Porting Guide

In this structut
rt_tgnsecs i
multiple of the
nanoseconds is
gives another j

For the TS clas
parameter spec

typedef str
short
short

} tsparms_t

In this structur
priority, and t
set for itself wi

The PC_GETP?
The return vab
returned in the
arguments to ¢
PC_CLNULL or

Table 15-5 Retur

Number
Processes Se
by idtype ¢

1

More than 1

If idtype and
process, prioc
than one proce
specific criterie

® idtype anc
® jdtype anc
® idtype anc




15

In this structure, rt_pri is the realtime priority, rt_tgsecs is the number of seconds, and
rt_tgnsecs is the number of additional nanoseconds in a time slice rounded up to the next
multiple of the system clock’s resolution. The sum of rt_tgsecs seconds and rt_tgnsecs
nanoseconds is the interval a process can use the CPU without sleeping before the scheduler
gives another process a chance at the CPU.

For the TS class, pc_clparms contains a tsparms structure which holds the scheduler
parameter specific to the timesharing class.

2

ts scheduler typedef struct tsparms {
ture to send short ts_uprilim; /* user priority limit */
short ts_upri; /* user priority */

} tsparms_t;

In this structure, ts_upri is the user priority, the user-controlled component of a time-sharing
priority, and ts_uprilim is the user priority limit, the maximum user priority a process can
set for itself without being super-user.

The PC_GETPARMS command retrieves the scheduler class and parameters of a single process.
The return value of priocntl (2) is the process ID of the process whose parameters are
returned in the pcparms structure. The process chosen depends on the idtype and id
arguments to priocntl (2) and on the value of pcparms.pc_cid, which contains
PC_CLNULL or a class ID returned by PC_GETCID.

\RMS to obtain the

Table 15-5 Return Values for PC_GETPARMS

Number of
Processes Selected
by idtype and id

pc_cid
TS class ID

RT class ID PC_CLNULL

1 RT parameters of
process selected

TS parameters of
process selected

class and parameters
of process selected

More than 1 RT parameters of

TS parameters of

(error)

highest priority RT
process

process with highest
user priority

If idtype and id select a single process and pc_cid does not conflict with the class of that
process, priocntl(2) returns the scheduler parameters of the process. If they select more
than one process in a single scheduler class, priocntl (2) returns parameters using class-
specific criteria as shown inTable 15-5. priocnt1 (2) returns an error in the following cases:

structure holds

* idtype and id select one or more processes and none is in the class specified by pc_cid.
® idtype and id select more than one process and pc_cid is PC_CLNULL.
® idtype and id select no processes.

Realtime Processing 467




*/

’ARMS on
iese values are

15 =

RT_TQINF specifies an infinite time slice. RT_TQDEF specifies the default time slice configured
for the realtime priority being set with the PC_SETPARMS call. RT_NOCHANGE specifies no
change from the current time slice; this value is useful, for example, when you change process
priority but do not want to change the time slice. You can also use RT_NOCHANGE in the

rt_pri field to change a time slice without changing the priority.

The priocentlset (2) Function

The priocntlset(2) function changes scheduler parameters of a set of processes, just like
priocntl(2). The priocntlset (2) function also has the same command set as
priocntl (2); the cmd and arg input arguments are the same. But, while priocntl (2)
applies to a set of processes specified by a single idtype/id pair, priocntlset (2) applies
to a set of processes that results from a logical combination of two idtype/id pairs. The
following is the format of the procntlset (2) function:

#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset (procset_t *psp, int cmd, /* arg *);

The input argument psp points to a procset structure that specifies the two idtype/id pairs
and the logical operation to perform. This structure is defined in procset.h.

typedef struct procset {
idop_t p_op; /* operator connecting */
/* left and right sets */

/* left set: */
idtype_t p_lidtype; /* left ID type */
id_t p_lid; /* left ID */

/* right set: */
idtype_t p_ridtype; /* right ID type */
id_t p_rid; /* right ID */

} procset_t; :

The p_lidtype and p_1id parameters specify the ID type and ID of one (“left”) set of
processes; p_ridtype and p_rid specify the ID type and ID of a second (“right”) set of
processes. p_op specifies the operation to perform on the two sets of processes to get the set of
processes priocntlset (2) will act upon.

Realtime Processing 471



