559

HP-UX Reference

Release 10.0
Volume 3 (of 4)

Legal Notices
The information in this document is subject to change without notice.

Hewlett- Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be held liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty. A copy of the specific warranty terms appliéable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1) (ii)
of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for
other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this
pack is restricted to this product only. Additional copies of the programs may
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright Notices. (Ocopyright 1983-95 Hewlett-Packard Company, all rights

reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright laws.

(©copyright 1979, 1980, 1983, 1985-93 Regents of the University of California

This software is based in part on the Fourth Berkeley Software Distribution
under license from the Regents of the University of California.

(©copyright 1980, 1984, 1986 Novell, Inc.

(©copyright 1986-1992 Sun Microsystems, Inc.

(©copyright 1985-86, 1988 Massachusetts Institute of Technology.
(©copyright 1989-93 The Open Software Foundation, Inc.
(©copyright 1986 Digital Equipment Corporation.

(©copyright 1990 Motorola, Inc.

(©Ocopyright 1990, 1991, 1992 Cornell University

(©copyright 1989-1991 The University of Maryland

(©copyright 1988 Carnegie Mellon University

Trademark Notices UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the U.S.
and other countries.

s

mount(2)

NAME
mount() - mount a file system

SYNOPSIS
#include <sys/mount.h>

int mount (const char *fs, const char *path, int mflag);

int mount (const char *fs,
const char *path,
int mflag,
const char *fstype,
const char *dataptr,
int datalen);

DESCRIPTION
The mount () system call requests that a file system identified by fs be mounted on the file identified b
path.
mflag contains a bit-mask of flags (described below). Note that the MS_DATA flag must be set for the six
argument version of the call.

fstype is the file system type name. It is the same name that sysfs(2) uses.

The last two arguments together describe a block of file-system-specific data at address dataptr of length -

datalen. This is interpreted by file-system-specific code within the operating system and its format depends
upon the file system type. A particular file system type may not require this data, in which case dataptr
and datalen should both be zero. The mounting of some file system types may be restricted to a user with
appropriate privileges.

mount {) can be invoked only by a user who has appropriate privileges.

Upon successful completion, references to the file path will refer to the root directory of the mounted file
system.

mflag contains a bit-mask of flag values, which includes the following defined in <sys/mount .h>:

MS_DATA This is ordinarily required. It indicates the presence of the fstype, dataptr, and
datalen arguments.

(For backward compatibility, if this flag is not set, the fstype is assumed to be that of
the root file system, and dataptr and datalen are assumed to be zero.)

MS_RDONLY This is used to control write permission on the mounted file system. If not set, writ-
ing is permitted according to individual file accessibility.
MS_NOSUID This flag disables set-user-ID and set-group-ID behavior on this file system.
MS_QUOTA This causes quotas to be enabled if the file system supports quotas.
If fstype is specified as:

MNTTYPE_HFS
Mount a local HFS file system. dataptr points to a structure of the following format, if
the options described below need to be specified for the mount:

struct ufs_args {
char *fspec;
int flags;
Yi
fspec points to the name of the block special file that is to be mounted. This is identi-
cal in use and function to the first argument, fs, of the system call.

flags points to a bit map that sets options. "The following values of the bits are defined
in <sys/mount.h>:

MS_DELAY Writes to disks are to be delayed until the buffer needs to be
reused. This is the default on Series 800 systems, as it was prior
to release 10.0.

Section 2-114 -1- HP-UX Release 10.0: June 1995

URN VALU
~mount () r
0 S
-1 F

ORS
Ifmount ()}
[EACC

[EBUS

[(EBUS
[(EBUS
[EFAT

(EINV.
[ELOC
[ENAD

(ENOI
[ENOT
[ENOZ
[ENO1
[ENOT
[ENO1
[ENXI
[EPER

[EROF

WARNINGS
If mount ()
the table
/etc/mnt

SEE ALSO
mount(1M),

HP-UX Release 1

SRR

A%

mount(2)

HE'TURN VALUE

mount(2)

MS_BEHIND Writes to disks are to be done asynchronously, where possible,
without waiting for completion. This is the default on Series 700
systems, as it was prior to release 10.0.

MS_BEHIND and MS_DELAY are mutually exclusive.

MS_NO_FSASYNC Rigorous posting of file system metadata is to be used. This is
the default.

MS_FSASYNC Relaxed posting of file system metadata is to be used. This may
lead to better performance for certain applications; but there is
increased potential for data loss in case of a crash.

MS_FSASYNC and MS_NO_FSASYNC are mutually exclusive.

mount () returns the following values:

0 Successful cornpletion.
-1 Failure. errno is set to indicate the error.

RRORS

Ifmount () fails, errno is set to one of the following values.

[EACCES] A component of the path prefix denies search permission.
[EBUSY] ﬁath is currently mounted on, is someone’s current working directory, or is otherwise
usy.

[EBUSY] The file system associated with fs is currently mounted.

[EBUSY] The system cannot allocate the necessary resources for this mount.

[EFAULT] fs, path or dataptr points outside the allocated address space of the process. The reli-
able detection of this error is implementation dependent.

[EINVAL] An argument to the system call is invalid, or a sanity check failed.

[ELOOP] Too many symbolic links were encountered in translating a path name argument.

[ENAMETOOLONG]
The length of a path name exceeds PATH_MAX, or a path name component is longer
than NAME_MAX while _POSIX_ NO_TRUNC is in effect.

|ENODEV] fstype is a file system that is not becn configured into the kernel.

[ENOENT] A named file does not exist.

[ENOENT] fs or path is null.

[ENOTBLK] /s is not a block special device and the file system type requires it to be.

[ENOTDIR] A component of a path prefix is not a directory.

[ENOTDIR} path is not a directory.

{ENXIO] The device associated with /s does not exist and the file system Lype requires it to be.

{EPERM] "I;hc process does not have the appropriate privilege and the file system type requires
it.

[EROFS] The requested file system is write protected and mflag requests write permission.

WARNINGS

If mount () is called from the program level (i.c., not called with the mount command (see mount(1IM)),
the table of mounted devices contained in /etc/mnttab is not updated. The wupdating of
/etc/mnttab is performed by the mount and syncer commands (sce mount(1M) and syncer(1M)).

SEE ALSO

mount(1M), syncer(1M), sysfs(2), umount(2).

HP-UX Release 10.0: June 1995 -2- Section 2-115

B

times(2)

NAME

times - get process and child process times te, ftrunca

SYNOPSIS
##include <sys/times.h>

clock_t times(struct tms *buffer);

DESCRIPTION
times () fills the structure pointed to by buffer with tlme-accountmg information. The structure de
in <gyg/times.h> is as follows:

struct tms {

clock_t tms_utime; /* user time */

clock_t tms_stime; /* system time */"

clock_t tms_cutime; /* user time, children */ VAL
clock_t tms_cstime; /* system time, children */ VALUES

}: . .
This information comes from the calling process and each of its terminated child processes for which it 0 Succes
executed a walt (), wait3 (), or waitpid(). The times are in umits of 1/CLK_TCK seconds, wh -1 Failure

CLK_TCK is processor dependent The value of CLK_TCK can be queried using the sysconf () fun b
(see sysconf(2)).

tms_utime is the CPU time used while executing instructions in the us_er space of the calling procegs.
tms_stime is the CPU time used by the system on behalf of the calling process. '

- [EACCES]

[EACCES]
tms_cutime is the sum of the tms_ut imes and tms_cutimes of the child processes. [EDQUOT]
tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes. [EFAULT)

RETURN VALUE.
Upon successful completlon, times () returns the elapsed real time, in' units of1/CLK_TCK of a secon (EINVAL
since an arbitrary point in the past (such as system start-up time). This point does not change from osng 1
invocation of times () to another. If times() fails, -1 is returned and errno is set to indicate ths [EISDIR]
error. : [ELOOP}
ERRORS
[EFAULT] times () fails if buffer points to an illegal address. The reliable detection of this error (ENAMETOO
implementation dependent.
SEE ALSO
time(1), gettimeofday(2), exec(2), fork(2), sysconf(2), time(2), wait(2). [ENOENT)
WARNINGS [ENOTDIR]
Not all CPU time expended by system processes on behalf of a user process is counted in the system CP{ [EROFS]
time for that process. [ETXTBSY]
STANDARDS CONFORMANCE If ££ €
times () : AES, SVID2, SVIDS, XPG2, XPG3, XPG4, FIPS 151-2, POSIX.1 runcate()
[EBADF}
[EDQUOT]

[EINVAL]

truncate() wse
SEE ALSO
open(2).

STANDARDS CONF(
truncate(): A

ftruncate():.

Section 2-272" -1- HP-UX Release 10.0: June 1995 HP-UX Release 10.0: Ju

vismount(2) vismount(2)

MS_BEHIND and MS_DELAY are mutually exclusive.

MS_NO_FSASYNC Specify that rigorous posting of file system metadata is to be
used. This is the default.

MS__FSASYNC Specify that relaxed posting of file system metadata is to be
- used. This may lead to better performance for certain applica-
tions; but there is increased potentlal for data loss in case of a

crash.

MS_FSASYNC and MS_NO_FSASYNC are mutually exclusivg.

NETWORKING FEATURES
NFAJS; additional value for the type argument is supported.
' MOUNT_NFS
Mount an NFS file system. data points to a structure of the followmg format
#include . <nfs/nfs.h>
#include <netinet/in.h>

struct nfs_args {)
struct sockaddr_in *addr;

fhandle t . . _ *fh;
int ~ flags;
int T wslze;
int ralze;
int timeo;
int ' retrans;y
char: *hostname; . -
int ‘acregmin;- -
int acregmax;
int acdirmin;
int acdirmax;
}; o .
Elements in the structure as as follows: " -
addr Points to a local socket address structire (see met(’T)), Wh:ch is used by the sys-
. tem to communicate with the remote file server. .. -
fh Points to a structure containing a file handle, an abstract data type that is used
by the remote file server when serving an NF'S request.
flags Bit map that sets options and indicates which of the followmg fields contain valid " -
) : information.: The following values.of the bits are defined in <nfs /nfs.h>:
NFSMNT_SOFT:. - Specify whethér the mount is 'a soft mount.or a hard
mount, If set, the mount is soft and will cause requests to -

be, retried retrans number of times. Otherwise, thé
v mount is hard and requests will be tried forever.

NFSMNT WSIZE Set the write size.
NFSMNT_RSIZE - Set the read size.-
NFSMNT_TIMEO ~ Set the initial timeout value.
NFSMNT RETRANS '

Set the number of request retnes

NFSMNT HOSTNAMB
Set a host name.

N]?SMNT_INT ~ Set the option to have interruptible /O to the mounted file .- :
System., L3
acreg

Section 2-286 -2~ HP-UX Release 10.0: June 1995 HP-UX Reloqs
. - ease 10.0: J

vismount (%

exclusive.

1 metadata is to

|\ metadata is to
: for certain app
ata loss in case of

h is used by the sys:
ata type that is used:

(g fields contain val
tnfs/nfs.h>: ¢

t mount or a hard
vill cause requests t4
1es. Otherwise, the
d forever.

) to the mounted file

lease 10.0: June 199

wsize

rslze

timeo

retrans

hostname

acregmin

acdirmin

acregmax

#P.UX Release 10.0: June 1995

vismount(2)

NFSMNT_NODEVS Set the option to deny access to local devices via NFS dev-
ice files. By default, access to local devices via NFS device

files is allowed.
NFSMNT_IGNORE Mark the file system type as ignore in /etc/mnttab.

NFSMNT_NOAC Turn off attribute caching. By default, NFS caches attri-
butes of files and directories to speed up operations on NFS
files by not always getting the attributes from the server.
Names are also cached to speed up path name lookup.
However it does allow modifications to files on the server to
not be immediately detectable on the clients. Setting
NFSMNT_NOAC turns off attribute caching and name
lookup caching. NFS caches attributes for a length of time
proportional to how much time has elapsed since the last
modification. The time length is subject to acregmin,

"acregmax, acdirmin, and acdirmax,. described
below.

NFSMNT_NOCTO Cached attributes are flushed when a NFS file is opened
unless this option is specified. This option is useful where

it is known that the files will not be changing as is the case
for a CD-ROM drive. .

NFSMNT_ACREGMIN
Use the acregmin value. See acregmin below.

NFSMNT_ACDIRMIN .]
Use the acdirmin value. See acdirmin below.

NFSMNT_ACREGMAX
‘Use the acregmax value. See acregmax below.
NFSMNT_ACDIRMAX
: '~ Usethe acdirmax value. See acdirmax below.

Can be used to advise the system about the maximum number of data bytes to
use for a single outgoing protocol (such as UDP) message. This value must be

greater than 0. The default is 8192.

Can be used to advise the system about (;.he maximum number of data bytes to
use for a single incoming protocol (such as UDP) message. This value must be
greater than 0. The default is 8192,

Can be used to advise the system on the time to wait between NFS request
retries. This is in units of 0.1 seconds. This value must be greater than 0. The
default is 7.

Can be used to advise the system about the number of times the system will
resend a request. This value must be 0 or greater. The default is 4.

A name for the file server that can be used when any messages are given con-
cerning the server. The string can contain 0 to 82 characters.

Can be used to advise the system of the minimum number of seconds to cache
attributes for a nondirectory file. If this number is less than 0, it means to use
the system-defined maximum of 3600 seconds. The number specified can not be
0. If the number is greater than 3600, 3600 will be used. The default is 3.
acregmiln is ignered if NFSMNT_NOAC is specified.

Can be used to advise the system of the minimum number of seconds to cache
attributes for a directory. If this number is less than 0, it means to use the
system-defined maximum of 3600 seconds. The number specified can not be 0.
If the number is greater than 3600, 3600 will be used. The default is 30.
acdirmin isignored if NFSMNT_NOAC is specified.

Can be used to advise the system of the maximum number of seconds to cache
attributes for a nondirectory file. If this number is less than 0, it means to use

- Section 2-287

v

vfsmount(2) - vismount(2) . yfsmount (2)

the system defined maximum of 36000 seconds. The number specified cannot be
0. If the number is greater than 36000, 36000 is used. The default is 60.
acregmax is ignored if NFSMNT_NOAC is specified.

acdirmax can be used to advise the system of the maximum number of seconds to cache
attributes for a directory. If this number is less than 0, it means to use the sys-
tem defined maximum of 36000 seconds. The number specified cannot be 0. If
the number is greater than 36000, 36000 is used. The default is 60. acdir-
max is ignored if NFSMNT_NOAC is specified. : vEsmount (

RETURN VALUE ’ SEE ALSO
vEsmount () returns the following values: mount(1M), n

See mountd(

mounting op
/ete/mntt.

0 Successful completion.
-1 Failure. No file system is mounted. errno is set to indicate the error.

ERRORS

If vEsmount () fails, errno is set to one of the following values.

[EBUSY] dir is not a directory, or another process currently holds a reference to it.

[EBUSY] No space remains in the mount table.

{EBUSY] The. superblock for the ﬁ]e system had a bad magic number or an out-of-range block size.

[EBUSY] ?ot enough memory was available to read the cylmder group information for the file sys-
em.

[EFAULT} data or dir points outside the-allocated address space of the process.

[EINVAL} type is not MOUNT_UFS, MOUNT_NFS, or MOUNT_CDFS.

[EIO] An 1/O error occurred while reading from or wrltmg to the file system.

{EIO]} An attempt was made to mount a physxca]ly write protected or magnetic tape file system as
read-write.

[ELOOP] Too many symbolic links were encountered while translating the path name of file system
referred to by date or dir.)

[ENAMETOOLONG]

The patﬁ name of the file system “referred to by data or dir is longer than PATH_MAX
bytes, or the length of a component of the path name exceeds NAME_MAX bytes while
_POSIX NO_TRUNC is in-effect. -

{ENOENT] The file system referred to by data or dir does not exist.
[ENOENT] The file system referred to by dafa does ‘not exist.
(ENOTBLK] The file systém reférred to by data is not a block device. This message can occur only dur-

ing a local mount.
. [ENOTDIR] A component of the path prefix in dir is not a directory: :
{ENOTDIR] A component of the path prefix of the ﬁle system referred to by data or dir is not a du‘ec-
v tory. -
[ENXIO] The major device number of the file system referred to by date is out of range (indicating

that no device driver exists for the associated hardware).
[EPERM] The caller does not have appropriate privileges..

DEPENDENCIES
NFS

If vEsmount () fails, errno can also be set to one of the followmg values,
[EFAULT] A pointer in the data structure points outside the process’s allocated address space.
[EINVAL] A value in a field of data is out of proper range.

[EREMOTE] An attempt was made to remotely mount a file system that was already mounted from
another remote node.

Section 2-288 -4~ HP-UX Release 10.0: June 1995 HP-UX Release 10.0:

wount(2)

1 cannot be
ault is 60.

Is to cache
se the sys-
ot be 0. If
. acdir-

ek size.

he file sys-

. system as

file system

‘ATH_MAX
ytes while

r only dur

ot a dires:

(indicating

3 space

inted fre

Juns

vismount(2) vismount(2)

See mountd(1M), getfh(2), and inet(7) for more information.

WARNINGS

The mount command (see mount(1M)) is preferred over vEsmount () because mount supports all
mounting options that are available from vfsmount () directly, plus mount also maintains the
/etc/mnttab file which lists what file systems are mounted.

AUTHOR

vEsmount () was developed by HP and Sun Microsystemé, Inc.

REE ALSO

mount(1M), mount(2), umount(2).

X Release 10.0: June 1995 -5 Section 2289

blmode (3C) blmode(3C)

waits until a terminator character is seen, or until a time interval specified by the system has passed that is
. longer than necessary for the number of characters specified.

The data-block-terminator character is included in the data returned to the user, and is included in the byte
count. If the number of bytes transferred by the terminal in a block-mode transfer exceeds the number of

b bytes requested by the user, the read returns the requested pumber of bytes and the remaining bytes are
discarded. The user can determine if data was discarded by checking the last character of the returned
data. If the last character is not the terminator character, then more data was received than was
requested and data was discarded.

The EIO error can be caused by several events, including errors in transm_\ssmn frammg, panty, break, and
overrun, or if the internal timer expires. The internal timer starts when the second trigger character is
sent by the computer, and ends when the terminating character is received by the computer. The length of
this timer is determined by the number of bytes requested in the read and the current baud rate, plus an
additional ten seconds.

User Control of Handshakmg‘)
If desired, the application program can provide its own handshake mechanism in response to the alert char-
acter by selecting the OWNTERM mode (see CB_OWNTERM below). With this mode selected, the driver
completes a read request when the alert character is received. No data is discarded before the alert, and
the alert is returned in the data read. The alert character may be escaped w1th a backslash (\) character.
The second ¢rigger is sent when the application issues the next read

blmode Control Calls -
First, the standard open () call t.o a tty device must be made to obtain a file descnptor for the subsequent
block-mode control calls (an open() is done automatically by the system for stdin on the termmal)

int bfdes;

bfdes = blopen (int fildes)
A callto blopen () must be made before any block-mode access is allowed on the speclﬁed file
descriptor. blopen() initializes the block-mode parameters as described below. The return
value from blopenf() is a block-mode ﬁle descnptor that must be passed to all subsequent

block-mode control calls.

int blclose (int bfdes)
A call to blclose() must be issued before the standard close () to ensure proper closure
of the device (see close(2)). Otherwise unpredictable results can ‘occur. The argument bfdes is
the file descriptor returned from a previous blopen () system call. . .

int blread (int bfdes, char *buf, size t nbyte)

The blread() routine has the same parameters as the read() sy'bem call (see read(z)) At
the beginning of a read, the cb_triglc character (if defined) is sent to.the device. If
CB. BMTRANS is not set,-and no ¢b: alertc character is-received,.the read data is processed
according to fermio(7). If CB_BMTRANS is set, or.if a non-escaped cb_alertc character is
recelved, echo is turned. off for the duration of the transfer, and no further special character pro-
cessing is done other than that reqmred for the termination character. The argument bfdes is
the file descriptor returned from a previous blopen() system call.. L

int blget (int bfdes, struct blmodeio *arg).
A call to blget () returns the current values of the blmodelo structure (see. below) The
argument bfdes is the file descriptor returned from a previous. blopen() system call

int blset (int bfdes, const ‘struct blmodeio *arg)
A callto blset() sets the block-mode values from the structure whose address is arg. The
argument bfdes is the file descriptor returned from a previous blopen() system call.

bhnode Structure
The two block-mode control calls, blget() and blset(), use the fo]lowmg structure, defined in

<s8ys8/blmodelo.h>:

#define NBREPLY 64

struct blmodeio {
unsigned long cb_flags:; /* Modes */
unsigned char cb_triglé; /* First trigger */
unsigned char cb_trig2c; ' /* Second trigger */

Section 3-26 -2~ HP-UX Release 10.0: June 1995

blmode(38C.

};
The cb_f

CB_B

CB_Q0
If CB_BM
handshake

handshake
issued witk

If cB_BM
stream, the
cb_trig:i
escaped by
If cB_ow
buffer flust
code to per
normal blo
The initial
There are ¢

ters and t.
undefined 1

cb_trigil
cb_trig2

cb_alert

cb_termc

The cb_r
cb_reply
The cb_x:
second frig
number of
cb_reply

RETURNS
If an error
detected, k
pletion.
During a re
in the user
library calls

blopen()
[ENOT

blclose(}
[ENOT

HP-UX Release 1

10de(3C)

assed that is

d in the byte
e number of
ng bytes are
he returned
d than was

' break, and
character is
‘he length of
tate, plus an

e alert char-
1, the driver
1e alert, and
\) character.

3 subsequent
srminal).

épeciﬁed file
The return
| subsequent

‘oper closure
nent bfdes is

read(2)). At
e device. If
is processed
character is
naracter pro-

nent bfdes is

below). The
all.

is arg. The
all.

, defined in
/

*/

.0: June 1995

blmode (3C)

blmode (3C)
unsigned char cb_alertc; /* Alert character */
- unsigned char cb_termc; : -~ /* Terminating char */

unsigned char cb_replen; /* cb_reply length */
char ¢b_reply (NBREPLY]; . /* optiodal reply */

) ’ ’)

The ¢b_flags field controls the basxc block-mode protocol
CB_BMTRANS ° .0000001 Enable mandatory block-mode transmission.
CB_OWNTERM 0000002 - "Enable user control of handshake. -

If CB_BMTRANS is set, all transmissions are processed as block-mode transmissions. The block-mode
handshake is not required #nd data read is processed as block-mode transfer data. - The block-mode
handshake can still be invoked by receipt of an alert character as the first character seen. A blread()
issued with the CB _BMTRANS bit set causes any existing input buffer data to be flushed.

If CB_BMTRANS is not set, and if the alert character is defined and is detected anywhere in the input
streamm, the input buffer is flushed and the block-mode handshake is invoked. The system then sends the
cb_trig2c character to the bermmal and a block-mode transfer follows The alert characber can be

' “;escaped by precedmg it with a backslash (\)

' If CB_OWNTERM is set, ‘reads are terminated upon recelpt ‘of a non-eseaped alert character. No input
... buffer fushing is performed and the alert character is returped in the ‘data read. This allows application
code to perform its own block-mode handshaking. If the bit is clear, a non-escaped alert character causes

‘normal block-mode handshaking to'be used.
The initial cb_f£lags value is all-bits-cleared.

There are several special characters (both input and output) that are used with block mode. These charac-
ters and the initial values for these characters are described below. -Any of these characters can be
undefined by setting its value to 0377.

cb_triglc (default DC1) is the initial trigger character sent to the terminal at the beginning of a read
request.

cb_trig2c (default DC1) is the secondary trigger character sent to the terminal after the alert charac-
ter has been seen.

cb_alertc (default DC2) is the alert character sent by the terminal in response to the first frigger char-
acter. It signifies that the terminal is ready to send the data block. The alert character can
be escaped by preceding it with a backslash ("\").

cb_termc (default RS) is sent by the terminal after the block-mode transfer has completed. It signifies
the end of the data block to the computer.

The cb_replen field specifies the length in bytes of the cb_reply field. If set to zero, the
cb_reply string is not used. The cb_replen field is initially set to zero.

The cb_reply array contains a string to be sent out after receipt of the alert character, but before the
second trigger character is sent by the computer. Any character can be included in the reply string. The
number of characters sent is specified by cb_replen. The initial value of all characters in the
cb_reply array is NULL.

RETURNS

If an error occurs, all calls return a value of —1 and errno is set to indicate the error. If no error is
detected, blread () returns the number of characters read. All other calls return 0 upon successful com-
pletion.

During a read, it is possible for the user’s buffer to be altered, even if an error value is returned. The data
in the user’s buffer should be ignored as it is not complete. The following errors can be returned by the
library calls indicated:

blopen()

[ENOTTY] The file descriptor specified is not related to a terminal device.
blclose()

[ENOTTY] No previous blopen has been issued for the specified file descriptor.

HP-UX Release 10.0: June 1995 -8~ Section 3-27

blmode (3C) blmode (3C) ’ bsearch (3¢

biread() NAME
[EDEADLK] A resource deadlock would occur as a result of this operation (see lockf(2)). bsearch()
l [EFAULT] buf points outside the allocated address space. The reliable detection of this error is SYNOPSIS
implementation dependent. ; #incluc
b" ‘[EINTR] A signal was caught during the read system call. void *1
[EIO) An /O error occured during block-mode data transmissions. : con
[ENOTTY] No previous blopen has been issued for the specified file descriptor. :g:
blget(} . : siz
[ENOTTY] No previous blopen has been issued for the specified file descriptor. : int
blset() ’ N ')z
{EINVAL) An illegal value was specified in the structure passed to the system. DESgRIPTIO
' {ENOTTY] No previous blopen has been issued for the specified file descriptor. inifzr;li
WARNINGS order acer
Once blopen has been called with a file descriptor and returned successfully, that file descriptor should ' table. ba:
not subsequently be used as a parameter to the following system calls: close(), dup(), dup2(), is the size
fcentl (), foctl (), read(), or select () untila blclose is called with the same file descriptor as with two :
its parameter. Addltmnally, scanf (), £scanf (), getc(); getchar(), fgetc(), and £getw() than, equ
should not be called for a stream assocxated with a file descriptor that has been used in a blopen () call to, or gres
but has not been used in a blclose() call. These functions call read(y, and callmg these routines NOTES
results in unpredictable behavior, . o The point;
AUTHOR . cast to tyy
blopen(), blclose() blread(), blget(), andblset () were developed byHP The comp:
SEE ALSO in additios
termio(7). :) Although
RETURN VAL
A NULL pe
EXAMPLES
The exam:
table is or
This code
its length,
#inc
#dey
st
stn
{
Section 3-28 ' -4- HP-UX Release 10.0: June 1995 * HP.UX Release

fopen(3S)

fpclassify (3M) fpclassify (3M)

NAME
. Tpclassify(), fpclassifyf() - floating-point operand classification functions
SYNOPSIS i o i v
#include <math.h>
int fpclassify(double x);
exists and the int fpclassifyf(float x);

& permission is DESCRIPTION ‘ : : ' :
fpclassify() and £pclassifyf () return a non-negative integer value that specifies the IEEE
operand class to which the argument x belongs. The value returned is one of the following macros, which

are defined in amath.h>: o . v :

#define FP_PLUS_NORM

0 /* Positive normalized */ ' f
#define FP_MINUS_NORM 1 /* Negative normalized */
#define FP_PLUS_ZERO 2 /* Positive zero %/
. : #define FP_MINUS_ZERO 3 /* Negative zero */)
»onent is longer #define FP_PLUS INF 4 /* Positive infinity */
#define FP_MINUS_INF 5 /* Negative infinity */
#idefine FP_PLUS_DENORM 6 /* Positive denormalized */
strin #define FP_MINUS_ DENORM 7 /* Negative denormalized */
SUring. #define FP_SNAN 8 /* Signalling NaN */
»anded, the file #define FP_QNAN 9 /* Quiet NaN */

Every possible argument value falls into one of these ten categories, so these functions never result in an

iciated with the error. o , ‘
. fpclassifyf () isa £loat version of fpclassify () ; it takes a float argument. To use this func-
tion, compile either with the -Ae option or with the -Aa and -D_HPUX_SOURCE options. Otherwise, the

ess. compiler promotes the £1oat argument to double, and the function returns incorrect results,

() and freo- These functions are not specified by any standard. However, they’ implement the class () function sug-
gested in the "Recommended Functions and Predicates" appendix of the IEEE-754 floating-point standard.
Also, fpclassifyf () is pamed in accordance with the conventions specified in the "Future Library

r and xb are Directions” section of the ANSI C standard. ,
. To use these functions, link in the math library by specifying -1m or -1M on the compiler or linker com-
_mand line. ' :
ERRORS
. No errors are defined.
SEE ALSO
_ finite(3M), isinf(3M), isnan(3M).

10.0: June 1995 HP-UX Release 10.0: June 1995 -1- Section 3-175

getbootpent(3X) getbootpent(3X) getbootpent(3:
NAME) : getbootpen
getbootpent(), putbootpent(), = sethootpent(), endbootpent(), parse_bp_htype(), parse_bp_haddr(,
parse_bp_iaddr() - get or put bootptab entry .
SYNOPSIS S
#include <bootpent h>
int getbootpent (struct bootpent **bootpent) ;
int setbootpent (const char *path) i
- lnt endbootpent (void);
void putbootpent (
const struct bootpent *bootpent,
const int numfields, . .
FILE * bootpfile
Yi . .
int parse_bp_htype (comst char *source);
int parse_bp_haddr (
char **source,
int htype, . setbootpen
unslgned char *result, '
unsigned int *bytes
Y
int parse_bp_laddr (
char **gource,
unsigned long *result
Y o
Remarks endbootpen
These functions resxde in hbdc a, and are hnked using the -1dc optlon to the 1d or cc command.
DESCRIPTION putbootpen
These functions help a program read or modify a hootptab (bootpd control) file one entry at a tima,
getbootpent () locates an entry in the /etc/bootptab file, or an alternate file specified to set«
bootpent () , and returns a pointer to an array of objects of type struct bootpent that breaks the
entry into separate data fields with preceding, or embedded, comment (text) lines.
The bootpent structure is defined in <bootpent .h> and includes the following members: »
int - bp_type;. - /* BP_DATA, BP_COMMENT, BP_BLANK */ parse_bp h:
char *bp_text;: /* one field or one comment line */ ST T
The file also defines the following data type and constants: parse bp_h
typedef struct bootpent *bpp t;
#define BP_NULLP = ((bpp_t) 0)
#define BP_SIZE (sizeocf (atruct bootpent))
#define MAXHADDRLEN 6
#qlgf?ng HTYPE___UNKNOWN 0 /* 0 bytes */ parse_bp 1
#define HTYPE ETHRRNET 1 /* 6 bytes */
$#define HTYPE_EXP ETHERNET 2 /* 1 byte */
#define HTYPE_AX2S 3 /* 0 bytes */
#define HTYPE_PRONET 4 /* 1byte */
#define HTYPE_CHAOS 5 /* 0 bytes */ o
#define HTYPE_IEEE802 6 /* 6 bytes */ Field Definition
#define HTYPE_ARCNET 7 [/* 0 bytes */ If bootpent
. - name field or o)
#define MAXHTYPES 7 : : If bootpent
The fields are described in the “Field Definitions” section below. The purpose of each function is as fa . h‘ne from the fi
lows. _ ;. tinued with a b
~1- HP-UX Release 10.0: Jiine 1! Release 10.0:

Section 3-186:

parse_bp_haddr()

: specified to set -
at that breaks the

nbers: ,

fanction is as fo)

se 10.0: June 1994

getbootpent(3X)

getbootpent ()

setbootpent ()

endbootpent ()

putbootpent ()

parse_bp_htype()

parse_bp_haddr ()

parse_bp_laddr ()

Field Definitions

P.UX Release 10.0: June 1995

getbootpent(3X)

When first called, getbootpent () returns a pointer to, and the number of
elements in, an array of bootpent structures. The array holds the first entry
in the /etc/bootptab file (or from an alternate file specified by a call to
setbootpent ()), including leading, or embedded, comment lines. Each sub-
sequent call returns a pointer to the next entry in the file so that successive calls
can be used to search the entire ﬁle

If no fle is currently in ‘memory, getbootpent() reads the
/etc/bootptab file prior to doing its work. -

The returned array exists in static space (malloc’d memory) overwritten by the
next call (so previously returned pointers become invalid). However, each array
element’s bp_text pointer points to text in an in-memory copy of the file.
This text is not altered by the next call (nor by changes to the file itself). Hence,

‘it is possible to copy an entrys array in order to save it, as illustrated in EXAM-

PLES below. The data remains vahd until the pext call of sethootpent () or
endbootpent ().

-If there are comments after the last entry, they are returned as @ separate entry

with no data parts.

Opens the specified file for reading by getbootpent (), reads a copy into
memory, and closes the file (which asa si‘de-e‘ﬁ_ect releases any locks on the file;
see lockf(2)). If the given path is a null pointer or a null string; setboot -

pent () opens and reads /etc/bootptab.

If the last file' opened by setbootpent () (or nnphcltly by getboot—
pent ()) was /etc/bootptab, a subsequent call to setbootpent () for
the same file rewinds the file to the beginning, making visible any recent
changes to the file, w1thout, first requiring a call to endbootpent Q0.

PFrees the i m-memory copy of the last file opened by setbootpent 0O, or get-
bootpent () .

Wntes (to the current locatmn in the stream spec1ﬁed by bootpﬁle) the ASCII

“equivalent of the specified array of bootpent structures containing one file

entry, and its leading, or embedded, comments (a total of numfields array ele-

" - ments). Entries are written in canonical form, meaning the éntry name and

each data field are on separate lines, data fields are preceded by one tab each,
and each line except the last ends with “:\”. If numﬁelds is less than or equal to
zero, nothing is written.

Converts a host address type from strmg to numeric format (HTY‘PE *) in the
same manner as bootpd.

Converts a host (hardware, link level) address from string to binary format in
the same manner as bootpd given a host address type (HRTYPE_*). The cal-
ling program’s result, which must be an array containing at least MAXHADDRLEN
elements, is modified to hold the host address binary value, ahd bytes is
modified to indicate the length in bytes of the resulting address. This can be
used to compare two host addresses, independent of string representations.
source is modified to point to the first char after the parsed address. -

Converts an internet address from string to binary format in the same manner
as bootpd. This can be used to compare two internet addresses, independent
of string representations. The calling program’s result is modified to hold the
internet address binary value. source is modified to point to the first char after
the parsed address.

If bootpent .bp_type is BP_DATA, the associated text is one field from the current entry, either the
name field or one of the tag fields. Null tag fields (two colons in a row) are ignored, not returned.

If bootpent .bp_type is BP_COMMENT or BP_BLANK, the associated text is one comment line or blank
line from the file, either preceding the current entry or embedded in it following a data line that was con-
tinued with a backslash. The text is exactly as it appears in the file, including any whitespace appearing on

—9.- Section 3-187

getbootpent(3X) getbootpent(3X) getbootpen

a blank line, and there is no trailing newline.
The returned array elements are in the same order as data fields and comment lines appear in the file.
Entry field strings are of the form:

tag{@}[="value"]

with surrounding whitespace, if any, removed (see bootpd(1M) for the full description). Double quotes, and
backslashes, can appear anywhere in the field strings.

Template entries (those referred to by other entries using tc fields) are not special. They can be managed }
like other entries. It is the calling program’s responsibility to correctly manage the order of fields, tc
fields, and “@” fields that override earlier field va]ues.,_v if
RETURN VALUE {
getbootpent () returns the number of valid array elements (one or more) upon successful completion.)
At.the end of the input file it returns zero. If it cannot open or close the file it returns -1. If it encounters a
g memory allocation or map error, or a read error, it returns -2. iE |
setbootpent () returns zero if successful opening and reading the specified or default file. If it cannot {
open or close the file it returns -1. If it encounters a memory allocation or map error or a read error it
returns -2. }
endbootpent () returns zero, if successful freeing the memory for the current open file. If there is no if
current file it returns -1. If it cannot free the memory for the current file it returns -2. (‘
putbootpent () returns zero if successful writing an entry to the specified file, with the ferror ()
indication clear (see ferror(3S)). Otherwise it returns non-zero with ferror () set. R
In all cases above, if a failure is due to a failed system call, the errno value from the system is valid on The follow
return from the called functlon #inc
parse_bp_] htype() returns H’I‘YPE UNKNOWN if the hardware type string is unrecognized. #inc
parse_bp_haddr() returns zero if successful, otherwise non-zero in case of parsing error, invalid #inc
htype, or a host address type for which the address length is unknown; source is modified to point to the b
first illegal char (a NUL 1f the string is too short). .The callel’s bytes value is unmodified, but result might be ui E ’
) cha.uged. :
parse_] bp iaddr() returns zero if sucoessfu] othermse non-zero, and source is modified to point to the size
first illegal char (a NUL if the stnng is null) :
EXAMPLES " e if !
The followmg code fragment copies all data and comments from /etc/bootptab to a temporary copy of
the file.” It converts data entries to. canonical form as a side effect; and prints to standard output the first }
field of each entry copied (should be the field name, assuming the entry doesn’t start with a continuation
line). . : : . . - . (vos
#include <bootpent h> . . WARNINGS
PILR. *newfilep; /* to w.r:u:o temp file */ ‘ : These fun
bpp_t bpx .- /* read from file */. . . Calling- s
int field; /* current field number */
int f£ields; : /* total in array for omne entry */ AUTI,I%}ZI:e fun
if ((newfilep = fopen ("/tmp/bootptab®, "w")) == (PILE *) NULL) - FILES
oo T ' S /ete/be
(handle error) i o) SEE ALSO
} : bootpd(1ly
while ((flelds = getbootpent (&bp)) > 0)
{ ’

. for (field = 0; field <, fields; ++field)
{ ,
if ((bplfield].bp_type) == BP_DATA)
¢ .
(void) puts (bp{field].bp_text);

Section 3-188" -3- HP-UX Release 10.0: June 1995: HP-UX Release

otpent(3X)

in the file.

ble quotes, and

an be managed
r of fields, te

ful completion.
it encounters a

le. If it cannot
& read error it

If there is no
e ferror()
em is valid on
d.
error, invalid

0 point to the
esult might be

to point to the

porary copy of
utput the first
1 continuation

.0: June 1995 :

WARNINGS

getbootpent(3X)

break;
}

if (putbootpent (bp, fields, newfilep))
{

(handle error)
}
}
if (fields < 0) /* error reading file */
{
(handle error)
}

if (endbootpent())

{
(handle error)
}

if (fclose (mewfilep))

{
(handle error)
The following ¢

#inclu&é <malloc.h>

_#include <string.h>

#include <bootpent.h>

bpp_t bpnew;
unsigned size;

size = fields *Bp_sIZR;

if ((bpnew = (bpp_t) malloc (size)) == BP_NULLP)
« oW =

(handle error)
} .

{void) menmicpy ((void *)bpnew, (void *)bp, size);

These functions are unsafe in multi-thread applications.
Calling setbootpent () releases any locks on the file it opens.

AUTHOR

These functions were developed by HP.

FILES

/etc/bootptab control file for bootpd

SEE ALSO

bootpd(1M), errno(2), lockf(2), ferror(3S), fopen(3S), malloc(3C).

HP-UX Release 10.0: June 1995 -4 -

getbootpent(8X)

ode fragment saves a copy of a bootptab entry returned by getbootpent ().

Section 3-189

getdate(3C)

te the error.

ach call. Thus,
should be used

0.0: June 1995

getdiskbyname (3C) getdiskbyname(3C)

NAME
getdiskbyname(), getdiskbyname_r() - get disk description by its name

SYNOPSIS
#include <disktab.h>

struct disktab *getdiskbyname (const char *name);

int getdiskbyname_r(
const char *name,
struct disktab *result,
char *buffer,
int buflen);

DESCRIPTION _
getdiskbyname () takes a disk name (such as hp7959B) and returns a pointer to a structurée that
describes its geometry information and the standard disk partition tables. All information is obtained from
the disktab database file (see dzsktab(4))

The contents of the structure disktab include the following members Note that there is not necessarily
any correlation between the placement in this list and the‘ozzder in the structure.

char *d name; /* drive name */

char *d_type; i /* drive type */

int d_secsize; /* sector s8lze in bytes */
int d_ntracks; /* # tracks/cylinder */
int d nsectors; /* # sectors/track */

int d_ncylinders; /* # cylinders */]

int d_rpm; /* revolutions/minute */

struct partition {(

int p_size; /* #sectors in partition */
short p_bsize; /* block size in bytes */
short p_£fsize; /* frag size in bytes */

} d_partitions[NSECTIONS];
The constant NSECTIONS is defined in <disktab.h>.

Reentrant Interfaces
getdiskbyname_r () expects to be passed three extra parameters

1. The address ofa struct disktab where the result will be stored.
2. A buffer to store character strings to which fields in the struct disktab will point.
8. The length of the user-supplied buffer.

A buffer length of 100 is recommended. The struct disktab is defined in the file <disktab.h>. A
-1 will be returned if the end-of-file or an error is encountered, or if the supplied buffer is of insufficient
length. If the operation is successful, 0 is returned.

DIAGNOSTICS
A NULL pointer is returned in case of an error, or if name is not found in the disktab database file.

WARNINGS
The return value for getdiskbyname {) points to static data whose content is overwritten by each call.
Thus, getdiskbyname () is unsafe in multi-thread applications. getdiskbyname_xr () is MT-Safe
and should be used instead.

AUTHOR
getdiskbyname () was developed by HP and the University of California, Berkeley.

SEE ALSO
disktab(4).

HP-UX Release 10.0: June 1995 -1- Section 3-197

getenv(3C) getfsent(3X) getfsent(3X)

NAME
getfsent(), getfsspec(), getfsfile(), getfstype(), setfsent(), endfsent() - get file system descnptor file entry

SYNOPSIS
#include <checklist.h>

struct checklist *getfsent(void);

struct checklist *getfsspec(const char *spec);
struct checklist *getfsfile(const char *file);
struct checklist *getfstype(const char *type);
int setfsent (void);

int endfsent (void);

Remarks:
These routmes are included only for compatibility with 4.2 BSD. For maximum portability and
improved functionality, new applications should use the getmntent(3X) library routines.

DESCRIPTION
getfsent (), getfsspec(), getfafile(), and” getfstype() each retirns a poinfer to an
object with the following structure containing the broken-out fields of a line in the / etc /fstab file. The
structure is declared in the <checklist .h> header file:

. struct checklist ({

—value, and returns .
wise a NULL pointer.
'alue in, which case

Is.

le- and/or multi-byte

char *fs sgpec; /* special file name */
char *fs_bspec; /* block special file name */
 ANSI C char *fa dir; /* file sys directory name */
' . char *fg_type; /* type: ro, rw, sw, xx */
int fs_passno; /* f£sck pass number */
int £fs_freq; /* backup frequency */

};:
The fields have meanings described in fstab(4). If the block special file name, the file system directory
name, and the type are not all defined on the associated line in /etc/fstab, these routines return
pointers to NULL in the £8_bspec, £s8_dir, and £s_type fields. If the pass number or the backup
frequency field are not present on the line, these routines return -1 in the corresponding structure
member. £8_freq is reserved for future use.

‘getfsent () Reads the next lihe of the file, opening the file if necessary.
setfsent () Opens and rewinds the file.
endfsent () Closes the file.’

getfsspec() Sequentially searches from begmmng of file until a. matchmg spec1al file name is
found, or until EOF is encountered.

getfsfile() Sequ‘e’ntia]]y searches from the beginning of the file until a matching file system file
name is found, or until EOF is encountered. getfstype() Sequenna]ly searches
from the beginning of the file until a matching ﬁle system type field is found, or until
EOF is encountered.

DIAGNOSTICS
A null pointer is returned on EOF, invalid entry, or error.

WARNINGS : :
Since all information is contained in a static area, it must be copied to be saved.

fstab(4).

se 10.0: June 1885 HP-UX Release 10.0: June 1995 -1- Section 3-201

w

:tlogin (3C) getmntent(3X)

NAME

getmntent (3X)

getmntent(), getmntent r(), setmntent(), addmntent(), endmntent() hasmntopt() get file system descrip-

tor file entry
SYNOPSIS

#include <mntent.h>
FILE *setmntent(comst char *path,

char *type):

struct mntent ¥getmntent (FILE *stream);

int getmntent_r(. RO SR
FILE *stream, . S
struct mntent *result :
char *buffer, .
int buflen);

int addmntent’(FILE _*stream,

char *hasmntopt(struct mntent *mnt,

‘struct mntent *mnt);

const char *opt); '

int endmntent(FILB }*stream),

DESCRIPTION

These routines replace the obso]ete getfsent () routines (see getfsent(3X)) for accessing the file system
description file /etc/fstab. They are also used to access the mounted ﬁ]e system descnptlon file

/etc/mnttab.
setmntent ()

getmntent ()

" getmntent_r()

addmntent ()
hasmntopt ()

endmntent ()

Opens a file system descrlptxon file and returns afile pomter which can then be used
with getmntent (), addmntent (), or endmntent() The type argument is
the same as in fopen(3C)
Reads the next line from stream and returns a pointer to an object with the following
structure containing the broken-out fields of a line in the file-system descnptlon file,
<mntent .h>. The fields have meanings described in fstab(4). -

struct mntent { .
file system name */

*/

char *mnt_fsname;

char *mnt_dir; /* £ile system path prefix */

char *mnt_type; /* hfs, nfs, swap, or xx */

char *mnt_opts; /* ro, suld, etc. */

int mnt_freq; /* dump frequency, 1in days */

int mnt_passno; /* pass number on parallel fsck */

long mnt_time; /* When file system was mounted;
/* see mnttabi{4).

(0 for _N_FS)Q..’,’/..
}; - o

Uses three extra parameters to’ pr0v1de restlts equivalent to those produced by

getmntent (). The extra parameters are:
1. The address of a struct mntent where the result will be stored.
2. A buffer to store character strings to thch fields in the struct mntent will

' pomt

. The length of the user-supplied buffer. A buﬁ'er length of 1025 is recommended

Adds the mntent structure mnt to the end of the open file stream. Note that stream
must be opened for writing.

Scans the mnt_opts field of the mntent structure mnt for a substring that
matches opf. It returns the address of the substring if a match is found; 0 otherwise.

Closes the file.

The following definitions are provided in <mntent .h>:

#define MNT CHECKLIST
#define MNT MNTTAB

0: June 1995

HP-UX Release 10.0: June 1995

“/etc/Estab®
"/etc/mnttab®

-1- Section 3211

getmntent(3X) getmntent (3X) getmntel

#define MNTMAXSTR 128 /* Max size string in mntent */ WARNING:!
#define MNTTYPE_HFS "hfg" /* HFS file system */ ggz;g
#define MNTTYPE_CDFS “hfs" /* CD-ROM file system */ instead
#define MNTTYPE_NFS "nfa" /* Network fille system */

#define MNTTYPE_SWAP "gwap" /* Swap device */ AUTHOR
#define MNTTYPE_SWAPFS “swapfs"™ /* File system swap */ addmn
#define MNTTYPE_IGNORE "ignore" /* Ignore this entry */ develog

FI
#define MNTOPT_DEFAULTS "defaults" /* Use all default options */ LE/Setc/
#define MNTOPT_RO "ro" /* Read only */ /etc/
: #define MNTOPT_RW trw" /* Read/wrlte */

#define MNTOPT_SUID "guid" /* Set uid allowed */° SEE ALSO
#define MNTOPT_NOSUID "nosuid" /* No set uid allowed */ : fstab(4.
#define MNTOPT_QUOTA Mquota” /* Enable disk quotas */

#define MNTOPT_NOQUOTA ‘"noguota® /* Disable disk quotas */
The following definition is provided for device swap in <mntent .h>: '

#define MNTOPT_END “end"” /* swap after end of fille system,
Series 300/400/700 only */ :

The followmg deﬁmtwns are provided for file system swap in <content .h>: 4 .
#define MNTOPT_ MIN "min" /* minimum file system swap */

ugQ

#idefine MNTOPT_LIM *1im" /* maximum file system swap */ -
#define MNTOPT_RES. "res" /* reserve space for file system */
#define MNTOPT PRI "pri® /* file system swap prlority */

NETWORKING FEATURES

NFS
The following deﬁmtmns are prowded in content .h>: _

#define MNTOPT BG "bg" /* Retry mount. in background */
#define MNTOPT FG . "E£g" . /* Retry mount in foreground */
#define MNTOPT_RETRY “retry" /* Number of retries allowed */
#define MNTOPT_RSIZE "rsize" /* Read buffer size in bytes */
#idefine MNTOPT WSIZE ‘"wsize" /* Write buffer size in bytes*/
#define MNTOPT_TIMEO "timeo" /* Timeout in 1/10 seconds */
#define MNTOPT RETRANS ‘"retrans" /* Number of retransmissions */
#defline MNTOPT PORT . "port™ /* Server’s. IP NFS port */
#define MNTOPT SOFT “soft" /* Soft mount */
#define MNTOPT HARD . "hard" /* Hard mount */
#define MNTOPT INTR "intr" /* Interruptable hard mounts */
#define MNTOPT_NOINTR "nointr" /* Uninterruptable hard mounts*/
#define MNTOPT_ DEVS “devs® /* Device file access allowed */
#define MNTOPT_NODEVS “nodevs". /* No device file access allowed */

RETIHUWVAIJHE ’ : ;

setmntent () Returns anull pointer ¢ on erroT.

getmntent () Returns a null pointer on error or EOF. Otherw1se, getmntent () returns a
. pointer to, a mntent, structure. Some of the fields comprising a mntent structure are
optmnal in /etc/fstab and /etc/mnttab. In the supplied structure, such
missing character pointer fields are set to NULL and missing integer fields are set to
-1.
getmntent_r() Returnsa -1 on error or EQF, or if the supplied buffer is of insufficient length. If the
’ - operation is successful, 0 is returned.

addmntent () Returns 1 on error.
endmntent () Returns 1.

Section 3-212 -2- HP-UX Release 10.0: June 1995 . HP.UX Reles

nntent(3X)

itent */

ms */

rstem */

unts */
mounts*/
.lowed */

i allowed */

:() returns a
it structure are
structure, such
fields are set to

t length. If the

10.0: June 1995

getmntent(3X)

getmntent(3X)

WARNINGS ,)
The return value for getmntent () points to static information that is overwritten in each call. Thus,

getmntent () is unsafe for multi-thread applications. getmntent_x () is MT-Safe and should be used
instead.

AUTHOR - 3
addmntent (), endmntent (), getmntent(), hasmntopt (), and ‘getmntent () were
Inc., and HP.

developed by The University of California, Berkeley, Sun Microsystems,

FILES
/etc/fstab
fetc/mnttab

SEE ALSO)
fstab(4), getfsent(3X), mntiab(4).

HP-UX Release 10.0: June 1995 ~3-

i
g

getpass(3C)

the standard error
sturned to a null-
inter is returned.
: reburning.

pected, the size of

se 10.0: June 1995

getprdfent(3) getprdfent(3)

NAME

getprdfent, getprdfnam, setprd.fent endprdfent, putprdfnam mampulate system default database entry
for a trusted system

SYNOPSIS

#inciude <sys/types h>
#include <hpsecurity.h>
#include <prot.h>

struct pr_default ‘*gevtprdfent(void);

struct pr_ default *getprdfnam(const char #*name);

vold setprdfent (vold):;

voild endprdfent (void);

int putprdfnam(const char *name, struct pr_default *pr);

DESCRIPTION

getprdfent and getprdfnam each ret:urns a pointer to an object with the following structure containing the
broken-out fields of a line in the system default database. Each line in the database contains a pr default
structure, declared in the <prot.h> header file:

~struct system,_ default fields {
time_t “fd_jnactivity_timeout ;
char - fd_boot_authenticate ;

}s
struct system_default_flags {
unsigned short

fg_inactivity_timeout:1,
fg_boot_suthenticate:1,

)
struct pr_default {

char dd_name[20] ;
char dg_name ;
struct pr_field prd ;

struct pr_flag Prg;

struct t_field ted ;

struct t_flag teg;

struct dev_field devd ;
struct dev_flag devg ;

struct system_default_fields sfld ;
struct system_default_flags sflg;
};
Currently there is only one entry in the system default database, referenced by name default.

The System Default database contains default values for all parameters in the Protected Password, Termi-
nal Control, and Device Assignment databases, as well as configurable system-wide parameters. The fields
from the other databases are described in the corresponding manual entries. fd_inactivity_timeout is the
number of seconds until a session is terminated on trusted systems.

fd_boot_authenticate is a boolean flag that indicates whether an authorized user must authenticate before
the system begins operation.

getprdfent returns a pointer to the first pr_default structure in the database when first called. Thereafter,
it returns a pointer to the next pr_default structure in the database, so that successive calls can be used to
search the database (not currently supported).

getprdfnam searches from the beginning of the file until a default entry matching name is found, and
returns a pointer to the particular structure in which it was found. If an end-of-file or an error is encoun-
tered on reading, these functions return a NULL pointer. Currently, all programs access the default data-
base by calling getprdfnam ("default”).

HP-UX Release 10.0: June 1995 -1- Section 3-221

getprdfent(3) getprdfent(3) getprotoer
A call to setprdfent has the effect of rewinding the default control file to allow repeated searches. endprd- NAME
fent can be called to close the database when processing is complete. getprotoe
putprdfnam puts a new or replaced default control entry pr with key name into the database. If the getprotob
prg.fd_name field is 0, the requested entry is deleted from the system default database. puiprdfnam locks
the database for all update operations, and performs an endprdfent after the update or failed at,tempt SYNOPSIS
RETURN VALUE #incluc
getprdfent and getprdfnam return NULL pointers on EOF or error. pufprdfnam returns 0 if it cannot add or struct
update the entry.
int ge:
WARNINGS
Do not delete the system default entry. .
struct
AUTHOR . :
SecureWare Inc. int ge
. FILES
g /tcb/filles/auth/system/default System Defaults database st ruct
SEE ALSO’ ' 1 ,
authcap(4), default(4), getprpwent(3), getprtcent(3), getdvagent(3). ntv ge
NOTES . ,
The value returned by getprdfent and getprdfnam refers to a structure that is overwritten by calls to these 1 .
routines. To retrieve an entry, modify it, and replace it in the database, copy the entry using structure ot se
assignment and supply the modified buffer to putprdfnam. int se
Programs using these routines must be compiled with -Isec. int ent
int ent
DESCRIPTI(
The get
pointer t
base, /et
The mem
p_T
p_a
p_T
Functions
get
set
end
. get
: get
Iftk
get
ypfil
Reentrant
getprof
the addre
paramete
store dat:
file descri

Section 3-222 -2- HP-UX Release 10.0: June 1995 % HP-UX Releas:

otoent(3N)

junction .with
rameter. If the
atabase key. If
nds the file.
v allocated data

:protoent ()
1ame_x () and

+ it is passed to
should: not be
accessed.

1 pointer (0) on

successful or, in
returned other-

2a so it must be

oent (), and
~otoent_xr(),
rQ), and

3 10.0: June 1995

getprpwent(3)

NAME

getprpwent(3)

getprpwent, getprpwuid, getprpwnam, setprpwent, endprpwent, putprpwnam - manipulate protected pass-

word database entry (for trusted systems only)

SYNOPSIS
#include <sys/types.h>
#include <hpsecurity.h>
#include <prot.h>

struct pr_passwd sgetprpwent(void);

struct pr_passwd sgetprpwuid(int uid);

struct pr_passwd *getprpwnam(const char *hatﬁe);

struct pr_passwd sgetprpwaid(aid_t aid) »

void setprpwent(void); -

void endprpwent(void);

int putprpwnam(const char *name, struct pr_passwd *pr);
DESCRIPTION :

getprpwent (), getprpwuid(), getprpwaid(), and gétprpwnam() each returns a pointer to a
pr_passwd structure containing the broken-out fields of aline in the protected password database. Each
line in the database contains a pr_passwd structure, declared in the <prot .h> header file:

struct pr_field {
/* Identity: +/

char fd_name[9]; /% uses 8 character maximum(and NULL) from utmp */

ushort fd_uid; /% uid associated with name ahove */
char fd_encrypt{xxx]; /* encrypted password */

char fd_owner{9]; /* if a pseudo-user, the user accountable */
char fd_boot_auth; /* boot authorization %/

mask_t fd_auditentl; /* reserved */

mask_t audit_reservel; /* reserved */

mask_t fd_auditdisp; /* reserved */

mask_t audit_reserve2; /* reserved */

aid_t fd_pw_audid; /* auditID »/

int fd_pw_auditflg; /* audit flag +/

/* Password maintenance parameters: */
time_t fd_min;
int fd_maxlen; /* maximum length of password */

time_t fd_expire; /* expiration time duration in secs.*/

time_t fd_lifetime; /* account death duration in seconds */

time_t fd_schange; /* last successful change in secs past 1/1/70 %/
time_t fd_uchange; /* last unsuccessful change */

time_t fd_acct_expire; /+ absolute account lifetime in seconds */
time_t fd_max_llogin; /* max time allowed between logins */

time_t fd_pw_expire_warning; /* password expiration warning */
ushort fd_pswduser; /+ who can change this user’s password */

char fd_pick_pwd; /* can user pick his own passwords? /

char fd_gen pwd; /* can user get passwords generated for him? */
char fd_restrict; /+ should generated passwords be restricted? »/
char fd_nullpw; /# is user allowed to have a NULL password? */
uid_t fd_pwchanger; /+ who last changed user’s password */

long fd_pw_admin_num;/* password generation verifier */

char fd_gen_chars; /* éan have password of random ASCII? */

char fd_gen_letters; /* can have password of random letters? */

char fd_todlAUTH_TOD_SIZE]; /* times when user may login */

/% Login parameters: */
time_t fd_slogin; /% last successful login */

HP.UX Release 10.0: June 1995 -1-

/% minimum time between password changes */

Section 3-225

getprpwent(3)) getprpwent(3)

time_t fd_ulogin; /* last unsuccessful login */
char fd_suctty[14]; /* tty of last successful login */
short fd_nlogins; /* consecutive unsuccessful logins */
char fd_unsuctty[14];/* tty of last unsuccessful login */
short fd_max_tries; /* maximum unsue login tries allowed */
char fd_lock; /% Unconditionally lock account? */
I

struct pr_flag {

unsigned short
/* Identity: */
fg_name:1, /+ Is fd_name set? */
fg_uid:1, /% Is fd_uid set? */
fg_encrypt:1, /% Is fd_encrypt set? */
fg_owner:l, /* Is fd_owner set? »/
fg_boot_auth:1, /* Is fd_boot_auth set? =/
fg_pw_audid:1, /x Is fd_auditentl set? +/

fg_pw_auditflg:1, /+ Is fd_auditdisp set? +/
/+ Password maintenance parameters: */

fg_min:1, /% Is fd_min set? »/
fg_maxlen:1,. /+ Is fd_maxlen set? «/
fg_expire:1, /+ Is fd_expire set? +/

fg lifetime:1, /*Is fd lifetime set? +/

fg_schange:1, /% Is fd_schange set? */
fg_uchange:1, /+ Is fd_fchange set? */
fg_acct_expire:1, /% Is fd_acet_expire set? +/

fg max_llogin:1, /* Is fd_max_llogin set? */
fg_pw_expire_warning:1, /* Is fd_pw_expire_warning set? %/
fg_pswduser:1, - /+ Is fd_pswduser set? */
fg_pick_pwd:1, 1+ Is fd_pick_pwd set? »/ -
fg_gen_pwd:1, /% Is fd_gen_pwd set? %/
fg_restrict:1, /* Is fd_restrict set? */

fg_nuallpw:1, /% Is fd_nullpw set? */
fg_pwchanger:1, /* Is fd_pwchanger set? */
fgz_pw_admin_num:1, /*Is fd_pw_admin_num set? */
fg_gen_chars:1, /% Is fd_gen_chars set? */
fg_gen_letters:1, /« 1s fd_gen_letters set? #/

fg_tod:1, . /+ Is fd_tod set? «/

/+ Login parameters: +/

fg_slogin:1, /xIs fdslogin set? */
fg_suctty: 1, /% is fd_suctty set ? %/
fg_unsuctty: 1, /* is fd_unsuctty set ? +/
fg_ulogin:1, ~ /¥ 1s fd_ulogin set? */ °
fg_nlogins:1, © 7 /+ Is'fd_nlogins set? */
fg_max_tries:1,’ /* Is fd_max_tries set? */ -
fg_lock:1; /% Is fd_lock set? */

|5
struct pr_passwd {
struct pr_field ufld; /* user specific fields */
struct pr_flag uflg; /* user specific flags +/
struct pr_field sfid; /* system wide fields */ . :
struct pr_flag sflg; /* system wide flags */
I : - . -
The protected password database stores user authentication profiles. The pr_passwd structure in the
user-specific entry refers to parameters specific to a user. The pr_passwd structure in the system
default database sets parameters that are used when there is no user-specific override.

Section 3-226 -2- HP-UX Release 10.0: June 1995

getprpwen

The user-
entry for
encryptec
multiple «

fd_owner
default fi
authentic

fd_min is
maximun
password
account is

fd_schany

The fd_ac
absolute «
different :
with each
fd_max_li
becomes '
warns th
change pt

The next
password
. use of th
fd_gen_le
ters and :
user to j
(fd_gen_p
fd_pwcha
the accou
been chos
dictionan

The fd_to
ing whict
The next
fd_slogin
and fd_ur
last login

fd_nlogin
after a §
sidered lc

fd_lock ix
(locked) i:
1.ifthe ¢
2.ifthen
3.ifthe a
4. if the a
5.if the't

When ge
database;
sive calle
/ete/p:

getprpy
found an
like gety

HP-UX Releas

prpwent(3)

G

tructure in the
in the system

10.0: June 1995

- fd_schange and fd_uchange record-the last successful and unsuocessful password change times.

getprpwent(3) getprpwent(3)

- The user-specific entry is keyed on the fd_rame field, which is a cross reference to the /etc/passwd

entry for the user. The fd_uid field must match the UID in that file as well. The fd_encrypt field is the
encrypted password. The password is encrypted in eight character segments, so the sizeof this field is a
multiple of the number of characters in an encrypted segment (AUTH_CIPHERTEXT SIZE macro).

fd_owner. is the.user name accoimtab‘l_e for the account. The fd_boot_auth field is used when the system
default file specifies boot authorization is required. init(1M) prompts for a user name and password. If the
authentication suceeds, a value in this ﬁeld allows the user to continue the system boot process. ..

fd_min is the time; in seconds, that must elapse before the user can change passwords fd_ maxlen is the

‘maximum password length (in characters) for the user. fd_expire is the time, in seconds, until the user’s

password expires. " fd_lifetime is the number of seconds that must elapse before the password dies. The
accoumnt is considered locked if the password is dead. i

The 7d_acct. expzre field specxﬁes the absolute peraod of time in: seconds that the ‘account can be used. An
absolute expiration date may be spécified, which is then ¢onverted into seconds stored in this field. This is

- different from fd.expire in that fd_ acct exptre speclﬁes an absolute explratlon date, whlle fd exptre is reset
- ‘with'each password cha.nge) .

fd_max_llogin specifies the maxinum. tn:ue in seconds al]owad sincé the last login 'before the account

becomes locked. fd_pw_expire_warning is the time in seconds before the end of fd_expire that the system
warns the user the password is about to expire. fd_pswduser stores the user ID of the user allowed to
change passwords for the account, Typically, this is the account owper.

The next flag fields control password generation. - fd_pick_pwd,; if set, allows the user to plck his or her own

. . password. fd_nullpw, if set, allows the account to be used w1thout a password. fd_gen_pwd enables the
;. use of the random pronou.nceable password generator for passwords for this account. fd_gen_chars and
" fd_gen_letters allow the password generator to generate passwords. composed of random printable charac-

ters and random letters, peither of which is easy to remember. The password change software allows the
user to pick from whichever options are available for his or her account One of these three fields

(fd_gen_pwd, fd_gen_chars, or fd_gen_i letlers) must be set:

fd_pwchanger is the user ID of the user who last changed the password on the user’s account, if it was not
the account owner. fd_restrict, if set, causes triviality checks to be made after the account password has
been chosen to avoid palindromes, user name and machine name permutations, and words appearing in the
dictionary. :

The fd_tod specifier is a string, formatted hke the UUCP Systems ﬁle which specifies time mtervals dur-
ing which the user can log in.

The next fields are used to protect against’ logm spooﬁng, hstlng the time and location of]ast login.
fd_slogin and fd_ulogin are time stamps of the last successful and unsuccessful login attempts. fd_suctty
and fd_unsuctty are the terminal device or (if support.ed) host names of the terminal or-host from which the
last login attempt occurred.

fd_nlogins is the number of unsuccessful login attempts since the last successful login. It is reset to zero
after a successful login. fd_max_tries is the number of unsuccessful attempts until the account is con-
sidered Jocked.

fd_lock indicates whether the administrative lock on the account is set. The account is considered disabled
(locked) if one or more of these activities has occurred:

1. if the password is dead,

2. if the maximum number of unsuccessful attempts has been exceeded,

3. if the administrative lock is set,

4. if the account expiration is reached, or

5. if the time since last login is exceeded.

When getprpwent () is first called, it returns a pointer to the first user pr_passwd structure in the

database; thereafter, it returns a pointer to the next pr_ passwd structure in the database so that succes-
sive calls can be used to search the database. Note that entries without a corresponding entry in
/etc/passwd are skipped. The entries are scanned in the order they appear in /etc/passwd.

getprpwuld() searches from the beginning of the database until a numerical user ID matching uid is
found and returns a pointer to the particular structure in which it was found. getprpwaid() functions
like getprpwuid() only it uses the audit ID instead of the uid.

HP-UX Release 10.0: June 1995 -8- Section 3-227

g

getprpwent(3) getprpwent(3)

getprpwnam() searches from the beginning of the database until a login name matching name is found,
and returns a pointer to the particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setprpwent O has the effect of rewinding the protected password database to allow repeated
searches. endprpwent () can be called to close the protected password database when processing is com-
plete.

putprpwnam() puts a new or replaced protected password entry pr with key nanie into the database. If
the uflg.fg_name field is 0, the requested entry is deleted from the protected password database.
putprpwnam() locks the database for all update operations, and performs a endprpwent () after the
update or failed attempt.

Notes
The value returned by getprpwent O and getprpwnam() refers to a structure that is overwritten by
calls to these routines. To retrieve an entry, modify it, and replace it in the database, copy the entry using
structure assignment and supply the modified buffer to putprpwnam(.

On systems supporting network connections, the fd_suctty and fd_unsuctty fields can be the ASCII
representation of the network address of the host from which the last successful or unsuccessful remote
login to the account occurred. Use getdvagnam(3) to investigate the type of device to determine whether a
host or a terminal was used for the last successful or unsuocessful login.

Programs using these routines must be compl]ed with -1sec..

getprpwent () assumes one name per UID and one UID per name. The sequential scan loops between
the first two instances of a multiple UID.. .

" getprpwent () uses getpwent(3) routines to sequentially scan databases. User program references to
password entries obtained using gefpwent(3) routmes will not be valid after using any routines described
here (ie., the prp* routmes)

RETURN VALUE

getprpwent), getprpwuid(), and getprpwnam() return NULL pointers on EOF or' error.
putprpwnam(returns 0 if it cannot add or update the entry.

AUTHOR

FILES

SecureWare Inec.
fete/passwd oo System Password file : -
ftcb/files/auth/s/* Protected Password database

ftcb/files/auth/systern/default System Defau.lts database

SEE ALSO

authcap(4), getpwent(3) getprdfent(&‘), prpwd(4)

Section 3228 -4~ HP-UX Release 10.0: June 1995

getprtcent:

NAME:
getprtcent
for a trust

SYNOPSIS
#includ
#includ
#includ

struct
struct
void se
void er
int. put

DESCRIPTIO
getpricent
broken-ou
pr_term st

struc
cht
us!
tin
us]
tin
usi
us)
tin
ch:
us!
[

struc

~e-k-..-..»-o.»-o.-..-«g

I;

struc
str
str
stx
str

};
The syste;
login (fd_
fd_nlogin:
fieldisa]
also be aj
that the :
seconds fr

HP-UX Release

pwent(3)

tme is found,
T an error is

low repeated
ssing is com-

database. If
rd database.
t O after the

erwritten by
2 entry using

: the ASCII
issful remote
1e whether a

iops between
‘eferences to

ies described

F or error.

): June 1995 °

getprtcent(3)

getprtcent, getprtcnam, setprtcent, endprtcent, putprtcnam - manipulate terminal control database entry

for a trusted system

SYNOPSIS
#include <sya/types h>
#include <hpsecurity.h>

#include <prot h>

getprtcent(3)

struct pr_term *getprtcent(void),

struct pr_i ‘term *getprtcnam(const char *name) ;

vold setprtcent (void);
void endprtcent (void):
Ant putprtcnam(const char *name, struct pr_term *pr); R
DESCRIPTION :

IS

getpricent and gefpricnam éach returns a pomter to an ob_]ect with the fo]lowmg structure containing the
broken-out fields of an entry in the terminal control database. Each entry in the database contains a

pr_term structure, declared in the <prot.h> header file:

struct t_field {

- char fd_devname[14];
ushort fd_uid;
time_t fd_slogin;
ushort fd_uuid;
time_t fd_ulogin;
ushort fd_nlogins;
ushort fd_max_tries;
time_t fd_logdelay;
char fd_lock;

5
struct t_flag { .

. .unsigned short .
fg_devname:1,
fg_uid:1,

fg_slogin:1,
“fg_uuid:1,
fg_ulogin:1,
fg_nlogins:1,
fg_max_tries:1,
fg logdelay:1,
fg_lock:1,
fg_login_timeout:1
k
struct pr_term {
struct t_field ufid;
struct t_flag uflg;
struct t_field sfld;
struct t_flag sfig;
B

ushort fd_login_timeout ;

/* Terminal (or host) name */

/* uid of last successful login */

/* time stamp of successful login */
/* uid of last unsuccessful login */

- /* time stamp of unsuccessful login */

/* consecutive failed attempts */

/* maximum unsuc login tries allowed */
/* delay between login tries #/

/* terminal locked? */

/* login timeout in seconds */

/* Is fd_devname set? */
7* 1s fd_uid set? */

/% Is fd_stime set? */
- /* Is fd_uuid set? */

/* Is fd_ftime set? */

/* Is fd_nlogins set? */

/* Is fd_max_tries set? */

/* Is fd_logdelay set? */

/* Is fd_lock set? */

/* is fd_login_timeout valid? */

The system stores the user ID and time of the last successful login (fd_uid and fd_slogin) and unsuccessful
login (fd_uuid and fd_ulogin) in the appropriate Terminal Control database entry. The system increments
fd_ nlogms with each unsuccessful login, and resets the field to 0 on a successful login. The fd_max_tries
field is a limit on the number of unsuccessful logins until the account is locked. An administrative lock can
also be applied, indicated by a non-zero fd_lock field. fd_logdelay stores the amount of time (in seconds)
that the system waits between unsuccessful login attempts, and fd_login_timeout stores the number of
seconds from the beginning of an authentication attempt until the login attempt is terminated.

P.UX Release 10.0: June 1995

-1- Section 3-229

o

getprtcent(3)

Section 3-230 -2-

getprtcent(3)

Note that ufld and uflg refer to user specific entries, and sfld and sflg refer to the system default va.lues (see
authcap(4)).

The value returned by getpricent or getpricnam refers to a structure that is overwritten by calls to these
routines. To retrieve an entry, modify it, and replace it in the database, copy the entry using structure
assignment and supply the modified buffer to putpricnam.

getprtcent returns a pointer to the first terminal pr_term structure in the database when first called.
Thereafter, it returns a pointer to the next pr_ferm structure in the database, so successive calls can be
used to search the database. gefpricnam searches from the beginning of the database until a terminal
name matching name is found, and returns a pointer to the particular structure in which it was found. If
an end-of-file or an error is encountered on reading, these functions return a NULL pointer.

A call to sefpricent has the effect of rewinding the Terminal Control database to allow repeated searches.
endprtcent can be called to close the Terminal Control database when processing is complete.

putpricnam puts a new or replaced terminal control entry pr with key name into the database. If the
fg_devname field is 0, the requested entry is deleted from the Terminal Control database. putprtcnam. locks
the database for all update operations, and performs an endprtcent after the update or failed attemth

RETURN VALUE

getprtcent and getpricnam return NULL pointers on EOF or error. pufprtcnam returns 0 if it cannot add or
update the entry. .

AUTHOR

SecureWare Inc.

FILES

/tcb/flles/ttys Terminal Control database
/tcb/files/auth/system/default System Defaults database

SEE ALSO

getprdfent(3), authcap(4), ttys(4).

NOTES

The fd_devname field, on systems supportlng connections, may refer to the ASCII representatlon of a host
name. This can be determined by using getdvagnam(3) to interrogate the Device Assignment database as
to the type of the device, passing in the fd_devname field of the Terminal Control structure as an argument.
This allows lockout by machine, instead of the device (typically pseudo tty) on whick the session originated.

Programs using these routines must be compiled with -Isec.

The sfld and sflg structures are filled from corresponding fields in the system default database. Thus, a
program can easily extract the user-specific or system-wide parameters for each database field (see get-
prpwent and getdvagent).

HP-UX Release 10.0: June 1995

getpw(3C)

NAME
getpw() -

SYNOPSIS
#includ
int get

DESCRIPTIO
getpw()
file in whi
uid canno
This routi
for routine

This routi
Informatic

RETURN VAL
getpw()
WARNINGS
The above
programs
AUTHOR
getpw()
FILES
letc/passw

SEE ALSO
getpwent(

STANDARDS
getpw()

HP-UX Release

t(3C)

value to

O were

vé_nt(S_C),

June 1995

getrpcent(3C) : geérpcent(SC)

NAME
getrpeent(), getrpcbyname(), getrpcbynumber() - get rpe entry

SYNOPSIS
#include <netdb.h>

struct rpcent *getrpcent();

struct rpcent *getrpcbyname(char *name);
struct rpcent *getrpcbynumber (int number);
int setrpcent(int stayopen);

int endrpcent(); -

‘getrpcent (), getrpcbyname (), and getrpcbynumber () each return a pointer to an object with i
the following structure containing the broken-out fields of a line in the rpc program number data base,
/etc/rpe. v ’ : . g
igtruct rpeent ‘{ : '

‘char *r_name; /* name of server for this rpc program */

char **r aliases; /* NULL terminated 1list of allases */

int r_ number; /* rpc program number for this service */ -

Functions
getrpcent () " Read the next line of the file, opening the file if necessary.
setrpcent () Open and rewind the file. If the stayopen flag is non-zero, the rpc database is
. not closed after each call to getrpcent () (either directly or indirectly
through one of the other getrpe* () calls). ’

endrpcent () Close the file.
getrpcbyname () . Sequentially search from the beginning of the file until a matching rpe program

name is found, or until EOF is encountered. _
getrpcbynumber () Sequentially search from the beginning of the file until a matching rpc program
number is found, or until EOF is encountered.
RETURN VALUE

getrpcent (), getrpcbyname(), and getrpcbynumber () return a null pointer (0) on EOF or

when unable to access the information in /etc/rpe either directly or through a Network Information
Service database.

WARNINGS

All information is contained in a static area so it must be copied if it is to be saved.
AUTHOR

getrpcent () was developed by Sun Microsystems, Inc.
FILES

/etc/rpe

SEE ALSO
rpcinfo(1M), rpc(4).

HP-UX Release 10.0: June 1995 -1- Section 3235

ent(3C) getspwent(3X) getspwent(3X)

: NAME . . .

»d systems) getspwent(), getspwent_r(), getspwuid(), getspwuid r(), getspwaid(), getspwaid r(), getspwnam(),
getspwnam_r(), setspwent(), setspwent_r(), endspwent(), endspwent_r(), fgetspwent(), fgetspwent_r() -
get secure password file entry, on trusted systems)

SYNOPSIS . o
#include <pwd.h>

struct s_passwd *getspwent (void);

int <getspwent_xr(struct s_passwd *result, char *buffer, int buflen,
" FILE **pwfp);

ﬁtry. Each struct s_pas_swd *getspwuld(uid_t uid);

int getspwuid_r(uid_t uid, struct s_passwd *result,
_cha;: *buffer, 1int buflen);

struct 8_passwd *getspwaid(ald t aid);

int getspwald_r(ald_t aid, struct s_passwd *result,
char *buffer, int buflen);

struct s_passwd *getspwnam{const char *name);

int getspwnam_r(char *name, struct s_passwd *result,
; char *buffer, int buflen);

eque_zi_t calls vold setspwent (vold);
y search all vold
ntries from

setspwent_r (FILE **pwfp);

" void ‘endspwent (void) ;

xpire, or . _void epdspwent_r(FILE **pwfp);

>untered in struct s_passwd *fgetspwent(FILE *stream);

crno is set ‘

int fgetspwent r (FILE *f, struct s_passwd *result,
£0 i char *buffer, int buflen);

spent () is .

:cfxanism is DESCRIPTION

sed to indi- These privileged routines provide access to the protected password database in a manner similar to the way
getpwent(3C) routines handle the regular password file, (/etc/passwd).
These routines are particularly useful in situations where it is not necessary to get information from the

. regular password file. getspwent(3X) can be used on a trusted system to return the password, audit ID, and

’%S‘f’f%t 0, audit flag information. Programs using these routines must be linked with the security library, 11bsec.

rd database ' T

any way by -Note that get spwent O routines are provided for backward compatibility. New applications accessing the
protected password database on trusted systems should use the getprpwent() routines. See get-

onverted to prpwent(s). :

tprpwent(3) getspwent (), getspwuid(), getspwaid(), and getspwnam() each returns a pointer to an object of

8_passwd structure. The s_passwd structure is maintained for compatibility with existing software
 and consists of five fields as follows:

struct s_passwd {

char *pw_name; /* login name */

char *pw_passwd; /* encrypted password */
char *pw_age; /* password age */

int pw_audid; /* audit ID */

int pw_audflg; /* audit flag 1l=on, O0=o0ff */
}: .

Since the 8_passwd structure is declared in the <pwd. h> header file, it is unnecessary to redeclare it.

To access other fields in the protected password database that are not included in the s_passwd struc-
ture, use getprpwent (). See getprpwent(3) for more information.

getspwent () When first called, getspwent () returns a pointer to each s_passwd structure
obtained from the protected password database - for each user in sequence.

): June 1995 HP-UX Release 10.0: June 1995 -1~ Section 3-241

getspwent (3X) getspwent (3X) getspwel
Subsequent calls can be used to search the entire database. EXAMPLE
getspwuid(Searches for an entry that matches the specified uid. It then returns a pointer to the The fol
particular structure in which uid is found. IR
getspwald() Similarly searches for a numerical audit ID matching aid and returns a pointer to the. 8
particular structure in which aid is found (see spasswd(4) for details on this field). ;
getspwnam() Searches for an entry that matches the specified name. Returns a pointer to the par-
ticular structure in which name is found. 8
setspwent() Resets the protected password database pointer to the beginning of the file to allow wi
repeated searches.
e:
endspwent () Should be called to close the protected password database file when processmg is com-
: plete. AUTHOR
gets
fget spwent (0 Is no longer supported. It is prowded for those apphcatlons that did not use P
g / .secure/etc/passwd. m/st b/
c
Reentrant Interfaces
getspwuld_r(), getspwaid r(), getspwnam r(), and £getspwent_r () expect to be passed three SEE ALSO
extra parameters: ypeat(1

1. The address of a 8_passwd structure where the result will be stored;.

2. A buffer to store character strings (such as the password) to which fields in the s _passwd structure
will point;

3. The length of the user-supplied buffer.

In addition to the above three parameters, getspwent_r () requires a pointer to a (FILE *) vanable
setspwent_r () and endspwent_r () are to be used only in conjunction with get spwent__r () and take
the same pointer to a (FILE *) variable as a parameter. setspwent_xr() can be used to rewind or open
the protected password database. endspwent_r () should be called when done to close the file.

The /.secure/etc/passwad file is no longer supported and these routines provide an interface to the
protected password database.

fgetspwent_r() is no longer supported, but is included for those users that did not use the
/ .secure/etc/passwd file.

Note that the (FILE *) variable must be initialized to NULL before it is passed to getspwent rO or
setspwent_r 0 for the first time. Thereafter it should not be modified in any way.

A buffer lenghh of 1024 is recommended.

RETURN VALUE -
getspwent () returns a NULL pointer if any of its routines encounters an end-of-file or error while search-
ing, or if the effective user ID of the calling process is not zero.

getspwent_r () returns a -1 if any of its routines encounters an end-of-file or error, or if the supplied
buffer has insufficient length. If the operation is successfiil, 0 is returned.

WARNINGS
The above routines use <stdio.h>, which causes them to increase the size of programs by more than
might otherwise be expected.

Since ali information for getspwent(), getspwuid(), getspwaid(), getspwnam(),
setspwent (), endspwent (), and fgetspwent () is contained in a static area, it must be copied to
be saved.

getspwent (), getspwuld(), getspwald(), getspwnam(), setspwent (), endspwent(),
and fgetspwent () are unsafe in multi-thread applications. getspwent_r (), getspwuid_r(),
getspwald _r(), getspwnam_r(), setspwent_r (), endspwent_r(), and fgetspwent_xr ()
are MT-Safe and should be used instead.

Network Information Service is not supported on trusted systems.

Section 3-242 -2- HP-UX Release 10.0: June 1995 'j HP-UX Reles

pwent(3X)

L poihter to the
L ﬁoiﬁter, to the
this field).

iter to_the par-
€ file to allow
::essmgls com-

. did not wuse
e passed three
;ﬁ structure

E %) 'variable.
_r() and take
wind er open
le.

terface to the
not use the

went_r() or

while search-

the supplied

'y more than

-spwnam() ,
; be copied to

spwent (),
wuld_r (),
>went_xr()

0: June 1995

getspwent (3X) getspwent(3X)

EXAMPLE
The following code excerpt counts the number of entries in the protected password database:

int count = 0;

struct s_passwd pwbuf;
char buffer[1024];
FILE *pwf = NULL;

setspwent_r (&pwf) ; .o) -
while (getspwent r(&pwbuf, buffer, :1024, &pwf) != -1)

. count++; ;L T v
'endspwent_r_ (&pwf) F)

AUTHOR ' :
getspwent () was developed by HP

FILES
/tcb/files/auth/*/* Protected Password database

SEE ALSO
ypeat(1), getgrent(3C) getlogm(3C) getpwent(3C) getprpwent(3) putspwent(3X) passwd(4)

g

HP-UX Release 10.0: June 1995 -3- Section 3-243

_lock(3I)

file.

Ensur-

June 1995

io_on_interrupt(3I) Series 800 Only io_on_interrupt(3I)

NAME

io_on_interrupt() - device interrupt (fault) control

SYNOPSIS

#include <dvio.h>

int (*io_on_interrupt (

int eid,

struct interrupt_struct *causevec,

int (*handler) (int, struct interrupt_struct ¥)
)) (int, struct interrupt_struct ¥*);

DESCRIPTION .

eid is an entity identifier of an open HP 1B raw bus, Centromcs-compatlhle para]lel interface, or GPIO device
file, obtained from an open (), dup(), fcntl(), or creat () call.

causevec is a pointer to a structure of the form:

struct interrupt_struct {
integer cause;
integer mask;

}i .

‘The interrupt struct structm‘e is deﬁ.ned in the file Avio.h.

cause is a bit vector specifying which of the mterrupt or fault events can cause the handler routine to be
invoked. The interrupt causes are often specific to the type of interface being considered. Also, certain
exception (error) conditions can be handled using the io_on_interrupt() capabﬂlty Speclfymg a
zero valued cause vector effectively turns off the interrupt for that eid.

The mask parameter is used when an HP-IB parallel poll interrupt is being defined. mask is an integer that

- "’ specifies which parallel poll response lines are of interest. The value of mask is viewed as an 8-bit binary

number where the least significant bit corresponds to line DIO1; the most significant bit to line DIO8. For
exa.mple, to activate an interrupt handler when a response occurs on lines 2 or 6, the correct binary number
is 00100010. Thus a hexadecimal value of 22 is the correct argument value for mask

When an enabled interrupt condition on the. specified eid occurs, the receiving process executes the
interrupt-handler function pointed to by handler. The entity identifier eid and the interrupt condition
cause are returned as the first and second parameters, respectively.

When an interrupt that is to be caught occurs during a read (), write(), open(), or loctl() sys-
tem call on a slow device such as a terminal (but not a file), during a pause() system call, a s8ig-
pause () system call, or awalt () system call that does not return 1mmed1ate]y due to the existence of a
previously stopped or zomble process, the interrupt handling function is executed and the interrupted sys-

_tem call returns -1 to the calling process with errno set to EINTR.

Interrupt handlers are not inherited across a fork (). eids for the same device file produced by dup()
share the same handler.

An interrupt for a given eid is implicitly disabled after the occurrence of the event. The interrupt condition
can be re-enabled by using 10_interrupt_ctl () (see io_interrupt_ctl(3l)).

When an event specified by cause occurs, the receiving process executes the interrupt handler function
pointed to by handler. When the handler returns, the user process resumes at the execution point where
the event occurred.

Two parameters are passed to handler: the eid associated with the event, and a pointer to a causevec
structure. The cause of the interrupt can be determined by the value returned in the cause field of the
causevec structure (more than 1 bit can be set, indicating that more than 1 interrupting condition has
occurred). If the interrupt handler was invoked due to a parallel poll interrupt, the mask field of the
causevec structure contains the parallel poll response byte.

HP-IB Interrupts

This section describes interrupt causes specific to an HP.IB device. For an HP-IB device, the cause is a bit
vector which is used as follows. To enable a given event, the appropriate bit (in cause), shown below, must
be set to 1:

HP-UX Release 10.0: June 1995 -1- Section 3-297

io_on_interrupt(3I) Series 800 Only io_on_interrupt(3I) io_reset(.

SRQ SRQ and active controller ; : NAME
TLK Talker addressed io_resel
LTN Listener addressed :
TCT Controller in charge SYN?#I:E:;SI
IFC IFC has been asserted -
REN Remote enable : int 1
DCL Device clear
GET Group execution trigger) : : DESSEH;E
PPOLL Parallel poll) pheral]
GPIO Interrupts HP.IB, !
This section describes interrupt causes spec1ﬁc to a GPIO device. For a GPIO device, cause is a bit vector fentl
which is uséd as follows. To enable a given event, the appropriate bit (in cause), shown below, must be set io re:
to 1: interfac
o EIR External interrupt : : RETURN
} SIEO0 . Statusline 0 . ; io ij
l_. SIEl Status line 1 . . ERROR;
Parallel Interrupts : io re:
. This section describes interrupt causes speciﬁc to a Centronics—compatible parallel device. For a cated:
1 Centronics-compatible parallel device, cause is.a bit vector which is used as follows. To enable a given i
event, the appropnate bit (in cause), shown below, must be set to 1:) ‘ [E}
NERROR Nerror interrupt -, L B - [El
SELECT Select interrupt - - o . . . (E1
PE Paper error interrupt R : :
RETURN VALUE. et
_lo_on interrupt () returns a pomter to the prev10us handler 1f the new handler is successfully
installed; otherwise it returns a —1 and sets errno to indicate the error. - AUTHOR
ERRORS .) o o io_res
io_on interrupt () fails for any of the following reasons and sets errrno to the value indicated:
[EACCES] © = The interface associated with thls eid is locked by another process and O- NDELAY is
- set for this eid (see iolock(3I)). .
[EBADFl = eid does not refer to an open file.
[ENOTTY] eid does not refer toa GPIO, Centromcs—compatlble paralle], or a raw HP-IB dev1ce file.
[EFAULT] handler points to an illegal address The reliable detection of this error is unplemen-
' tation dependent.
[EFAULT} ~ causevec pomts to an illegal address The rehable detectlon of thls error is lmplemen-
o tation dependent.
DEPENDENCIES
" For the HP 27114 AF1 mterface, only the EIR interrupt is avallable
AUTHOR
io_on interrupt () was developed by HP.
SEE ALSO

dup(2), creaﬁ(2), fentl(2), open(2), pause(z), sigpause(2), io_in_terrupt_qtl(SI).

Section 3-298° -2~ HP-UX Release 10.0¢ June 1995 HP-UX Releas

cale(3C)
ng’usage is
next call to
subsequent
.is not port-
to getlo-~
- call.

e_r() and

ster set to
the addition
e by LANG.
IESSAGES.
‘ariables are

:atalogs for

:ale() has

urce>

f the compile
ired libraries

ped by OSF

Janginfo(3C),
), strtod(3C),
X), wstol(3X),

1.0: June 1995

shl_load (3X) shl_load (3X)

NAME : -
shl_load(), shl_definesym(), shl_findsym(), shl_gethandle(), shl_getsymbols(), shl_unload(), shl_get(),
shl_gethandle_r(), shl_get_r() - explicit load of shared libraries

SYNOPSIS
#include <dl.h>

shl t shl_load(const char *path, int flags, long address);

int shl_findsym(
shl_t *handle,
const char *sym,
short type,
void *value

int shl_definesym(
const char *sym,
short type,
long value,
int flags

int shl_getsymbols(
shl_t handle,
short type,
int flags,
vold *(*memory) (),
struct shl_symbol **symbols,
);
int shl_unload(shl_t handle);
int shl_get(int index, struct shl_descriptor **desc);
int shl_gethandle{shl_t handle, struct shl_descriptor **desc);
int shl_get_r(int index, struct shl_descriptor *desc);
int shl_gethandle_r(shl_t handle, struct shl_descriptor *desc);

DESCRIPTION _
These routines can be used to programmatically load and unload shared libraries, and to obtain information
about the libraries (such as the addresses of symbols defined within them). The routines themselves are
accessed by specifying the -1d1d option on the command line with the cc or 14 command (see cc(1) and
1d(1)). In addition, the -E option to the 14 command can be used to ensure that all symbols defined in S
the program are available to the loaded libraries. '

Shared libraries are created by compiling source files with the +z or +Z (position-independent code)
options, and linking the resultant object files with the ~b (create shared library) option.

shl_load() Attaches the shared library named by path or the shared library name that is con-
structed by using the path part of path plus the shared library basename followed by
the suffix .0 (e.g. /usr/lib/libname.0) to the process, along with all its
dependent libraries. A .0 version is looked for first for those shared libraries that do
not have internal names. See Id(1)). The library is mapped at the specified address.
If address is OL, the system chooses an appropriate address for the library. This is
the recommended practice because the system has the most complete knowledge of
the address space; currently, the address field is ignored, and assumed to be OL. The
flags argument is made up of several fields. One of the following must be specified:

BIND_IMMEDIATE Resolve symbol references when the library is loaded.
BIND_DEFERRED Delay code symbol resolution until actual reference.
Zero or more of the following can be specified by doing a bitwise OR operation:

BIND_FIRST Place the library at the head of the symbol search order.
In default mode, the library and its dependent libraries

HP-UX Release 10.0: June 1995 -1- Section 3-505

shl_load (3X) shl_load (3X] shl_loadi

are bound independently of each other (ses ;
BIND_TOGETHER).

BIND_NONFATAL Default BIND_IMMEDIATE behavior is to treat all
unsatisfied symbols as fatal. This flag allows binding of
unsatisfied code symbols to be deferred until use.:

BIND_NOSTART Do not call the initializers for the shared library when
the library is loaded, nor on a future call to
shl_unload(); by default, all the initializers
registered with the specified libraiy are invoked upon
loading.

BIND_VERBOSE Print verbose messages concerning possible unsatisfied
symbols.

BIND_RESTRICTED Restrict symbols visible to the library to those present at
the time the library is loaded.

DYNAMIC PATH Allow the loader to dynamically search for the library
specified by the path argument. The directories to be
searched are determined by the +s and +b options of
the 1d command used when the program was linked.

BIND_TOGETHER When used with BIND FIRST, the library being
mapped and its dependent libraries will be bound
together. This is the default' behavior for all
shl_load() requests not using BIND_FIRST.

If successful, shl_load () returns a handle which can be used in- suBsequent calls
to shl_findsym(), shl unload(), shl_gethandle(), or
shl_gethandle_r (); otherwise NULL lsretu.rned

shl_findsym() Obtains the address of an exported symbol sym from a shared library. The handle

argument should be & pointer to the handle of a loaded shared library that was

returned from a previous call to shl: load() or shl_get (). If a pointer to

NULL is passed for this argument, shl_findsym() searches all currently loaded

shared libraries and the program to find the symbol; otherwise shl_findsym()

searches only the specified shared library. The return value of handle will be NULL if

the symbol found was generated via shl_definesym(). Otherwise the handle of

- . the library where the symbol was found is returned. The special handle

shl_g

PROG_HANDLE can be used to refer to the program itself, so that symbols exported
from the program can also be accessed dynamically. The fype argument specifies the
] expected type for the symbol, and should be oné of the defined constants
S TYPE PROCEDURE TYPE_DATA, TYPE_STORAGE, or TYPE _UNDEFINED. The
latter value suppresses type checklng The address of the ‘symbol is returned in the
variable pointed to by value. If a shared library contains multiple versions of the
requested symbol, the latest -version is returned. This routine returns:0 if successful;
otherwise -1 is returned.

shl_definesym()
Adds a symbol to the shnred library symbol table for the current process making it the
most visible definition. If the value fallsin the range of a currently loaded library, an
association will be made-and the symbol is undefined once the associated library is
unloaded. The defined symbol can be overridden by a subsequent call to this routine
or by loading a more visible library that provides a definition. Symbols overridden in
this manner may become visible agam if the overndmg deﬁmtlon is removed.

Possible symbol types include:
) TYPE PROCEDURE Symbol is a function.
TYPE_DATA Symbol is dat.a

Possible flag values include: None defined at the present time. Zero should be passed '
in to prevent conflicts with future uses of this flag. ;

Section 3-506 -2~ HP-UX Release 10.0: June 1995 3 HP-UX Relea

shl_load(8X)

ach other (see

r is to treat all

1 allows’binding of

until use.

ared library when

. future call to
the ' initializers

are invoked upon

ossible unsatisfied
to those present at

<h for the library
3 directories to be
and ¥b options of
‘am was linked.

‘he library being
3s will be bound
behavior for all

D_FIRST.
in subsequent calls
1andle(), or

brary. The handle
d library that was
). If a pointer to
il currently loaded
shl_findsym()
adie will be NULL if
rwise the handle of
he special handle
£ symbols exported
ument specifies the
defined constants
UNDEFINED. The
L is returned in the
iple versions of the
arns 0 if successful;

'ocess making it the
y loaded library, an
ssociated library is
i call to this routine
mbols overridden in
s removed.

iro should be passed

2ase 10.0: June 1995

shl_load (3X)

shl_load (3X)

shl getsymbols()

Provides an array of symbol records, allocated using the supplied memory allocator,
that are associated with the library specified by handle. ‘If the handle argument is a
pointer to NULL, symbols defined using shl_definesym() are returned. If multi-
ple versions of the same symbol have been defined within a library or with
shl_definesym(), only the version from th_e speciﬁed symbo] information source

_that would be considered for symbol binding is returned. ' The fype argument is used

to restrict the return information to a specific type. Values of TYPE_PROCEDURE,
TYPE_DATA, and TYPE_STORAGE can be used to limit the returned symbols to be

either code, data, or storage respectively; the TYPE_DATA value causes both data

and storage symbols to be returned. The constant TYPE_UNDEFINED can be used
to return all symbols, regardless of type. The flags argument must have one of the

" following values:

IMDORT SYHBGLS .
. Return symbols found on the).mport list.

EXPORT_SYMBOLS
"Return symbols found on the export list. All symbols defined by
shl definesym() are export symbo]s .

INITIALIZERS i
Return symbols that are speclﬁed as the initializers of the

. hhrary
Zero or more of the following can be speclﬁed by domg a bitwise OR operation:

NO_VALUES Only makes sense when combined with EXPORT_SYMBOLS or
INITIALIZERS. Do not calculate the value field in the return
structure to avoid symbol binding by the loader to resolve symbol
dependencies. If only :a few symbol values are needed,
shl_findsym() can be used to find the values of interesting

. symbols. Not to be used w1th GLOBAL_ VALUES.

GLOBAL VALUES :

Only makes sense when combined w1th EXPORT_SYMBOLS or
INITIALIZERS. Use the name and type information of each
return symbol and find the most visible occurrence using all sym-
bol information sources. The value and handle fields in the sym-
bol return structure reflect where the most visible occurrence
was found. Not to be used with NO_VALUES.

The memory argument should point to a function with the same interface as mal-
loc () (see malloc(3C)).

The return information consists of an array of the followmg records (defined in
<dl.h>):

struct shl_symbol {
char *name,
short type,
void ‘*value,
shl_t handle,

Yi ~

The type field in the return structure can have the values TYPE_PROCEDURE,

TYPE_DATA, or TYPE_STORAGE, where TYPE_STORAGE is a subset of

TYPE_DATA. The value and handle fields are only valid if export symbols are

requested and the NO_VALUES flag is not specified. The value field contains the

address of the symbol, while the handle field is the handle of the library that defined

the symbol, or NULL for symbols defined via the shl_definesym() routine and is

useful in conjunction with the GLOBAL_VALUES flag.

If successful, shl_getaymbols () returns the number of symbols found; other-
wise it returns —1.

HP-UX Release 10.0: June 1995 -3~ Section 3-507

shl_load (3X)

shl_unload()

shl_get ()

shl_load (3X)

Can be used to detach a shared library from the process. The handle argument
should be the handle returned from' a previous call to shl_load().
shl_unload() returns 0 if successful; otherwise -1 is returned. Any initializers
registered with the library are called before detachment. All explicitly loaded libraries
are detached automatically on process termination

Returns information about currently loaded hbranes including those loaded lmphcltly
at startup time. The index argument is the ordinal position of the shared library in
the shared library search list for the process. A subsequent call to shl_unload()
decrements the index valies of all libraries having &n index greater than the unloaded

_ library. The index value =1 refefs to the dynamic loader. The desc argument is used

to return a pointer to a statically allocated buffer’ containing a descriptor for the
shared Kbrary. The format of the descriptor is implementation dependent; to examine
its format, look at the contents of file /usr/include/dl.h. Information common
to all implementations includes th¢: library handle, pathname, and the range of
addresses the library occupies: The buffer for the descriptor used by shl_get () is
static; the contents should be copied elsewhere before a subsequent call to the routine.
The routme returns 0: normally, or —1 if an invalid index is given.

shl _gethandle ().

shl get_r() - ‘

Returns mformatmn about the hbrary specified by the handle argument. The special
handle PROG_HANDLE can be used to refer to the program itself. The descriptor
returned is the samée as the one returned by the shl_get () routine. The buffer for
the descriptor used by shl_gethandle () is static; the contents should be copied,
elsewhere before a suhsequent call to the routine. The routine returns 0 normally, or

—lon error.,

Thisisa reentrant version of shl qet (). The desc ergument must point to a buffer
of enough: user-defined storage to be filled with the library descriptor described in
/usr/ include/ dI h. Its semantlcs are otherwise identical to shl_get ().

shl _gethandle r()

DIAGNOSTICS T

This is & reentrant Version of shl gethandle (). The desc argument must point
to a buffer of enough user-defined: storage to'be filled with the library descriptor
described: in /usr/ include/dl h Its semantics are otherwise identical to
shl gethandle() M :

If a library cannot be loaded, shl load() returns NULL and sets errno to indicate the error. All
other functions return. —1lonefror and set errfo. .

If shl_findsym() cannot find the decated symbol errno is.set to zero. If shl_findsym() ﬁnds
the indicated symbol but cannot resolve all the symbols it depends on, errno is set to ENOSYM.

ERRORS

" Possible values for errno include:

[ENOEXEC]

[ENOSYM)
[EINVAL]}

[ENOMEM]
[ENOENTI ™

[EACCES]

WARNINGS -

The specified file is not a shared hbrary, ora format enor was detected.
Some symbol required by the shared hbrary could not be found.

The specified handle or index is not Valld or an attempt‘. was made to load a hbmry at
an invalid address. .

There is insufficient room in the address space to load the hbrary
The specified hbrs.ry does not ex:st
Read or execute permlssmn is demed for the spec1ﬁed hbrary

shl unload() detaches the hbrary from the prooess and ﬁ'ees the memory allocabed for it, but does not
break existing symbolic lmkages into the library. In this respect an unleaded shared library is much like a
block of memory deallocated via: £ree () (see free(83C))5:- . ; -

Some implementations may not; by default, export all symbols defined by a program (instead exporting only
those symbols that are imported by a shared library seen at link time). Therefore the -E option to ld(1)
should be used when using these routines if the loaded libraries are to refer to program symbols.

Section 3-508

-4~ . HP-UX Release 10.0: June 1995

shl_load(

All sym
the ass:

AUTHOR
shi_loa

SEE ALSO
System 1
(1)
Miscella:
dld.sl(5

Texts an(
Prograr.

HP-UX Relea

shl_load (3X)

the associated library is unloaded by shl_unload() .
AUTHOR

shl_load(3X) and related functions were developed by HP.
SEE ALSO

System Tools:

ld(1) invoke the link editor
Miscellaneous:

did.sl(5) dynamic loader
Texts and Tutorials

Programming on HP-UX

HP-UX Release 10.0: June 1995 -5~

shl_load (3X)

All symbol information returned by shl_getsymbols (), including the name field, become invalid once

Section 3-509

