554

Scalability of the Directory Entry Cache

Hanna Linder
IBM Linuz Technology Center
hannal@us.ibm.com http://www.ibm.com/linux
Dipankar Sarma,

IBM Linuz Technology Center
dipankar@in.ibm.com http://www.ibm.com/linux
Maneesh Soni
IBM Linuz Technology Center
maneesh@in.ibm.com http://www.ibm.com/linux

Abstract

This paper presents work that we have done to
improve scalability of the directory entry cache
(dcache). We investigated scalability problems
resulting from many cache lookups, global lock
contention, .a possibly non-optimal eviction policy,
and cacheline bouncing due to global reference
counters. This paper provides an overview of
solutions we tried, such as fast path walking,
utilizing the read-copy update mutual exclusion
mechanism[McKenney], and lazy LRU updates.
We conclude with performance results showing
scalability improvements.

1 Introduction

Every file and directory has a path. The path must
be followed to do a lookup in the dcache to get
the correct inode number of the dentry. A path
such as /fetc/passwd contains three dentries: ’/?
‘etc’, and ’passwd’. Each dentry in a lookup path
has a reference counter called d.count, which is
atomically incremented and decremented as the
dcache is being checked. This keeps the dentry
from being put on the least recently used (LRU) list.

Currently, the dcache is protected by a single global
lock, dcache_ lock. This lock is held during lookup
of dentries (dlookup) as well as all manipulations

of the dentry cache and the assorted lists that
maintain hierarchies, aliases and LRU entries. The
global dcachelock seems to be an issue as the
number of CPUs increase. We experimented with
various ways to improve scaling the dentry cache.

2 Workload and Measures

We have used- three main workloads for mea-
suring scaling of the dentry cache: dbench{Pool]
(with settings to avoid I/0O) , httperffMosberger],
profiles[Hawkes] of Linux(R) kernel compiles, and
lockmeter[Hawkes]. The system used is an 8way
Pentium(R)-1IT Xeon(TM) with 1MB L2 cache and
2 GB of RAM (unless otherwise noted).

2.1 Summary of Baseline Measure-
ments

The baseline measurements show that dcache_lock
suffers from an increasing level of contention for
some benchmarks. Although other locks such as
the Big Kernel Lock (kernel flag) and Iru listlock
are much higher in the total contention numbers,
once those are dealt with; dcache lock will move up
the list.

The following work focuses on ways to increase
scalability of the dcache. While looking at the

dbench contention

18
16 |
14 b
12 |- -
10 - -

T T T T T T
dbench cortention results —+—

dcache_lock contention in %

O N & O @
T
1

#0iCPUs
Figure 1: Baseline contention with dbench

distribution of lock acquisitions for these workloads,
it becomes obvious that d_lookup() is the routine
to optimize since it is the routine where the global
lock is acquired most often.

2.2 Dbench Results of Baseline

The dbench results from our initial investigations
[Sarma) show that lock utilization and contention
grow steadily with an increasing number of CPUs.
On an 8-way system running 2.4.16 kernel, dbench
results show 5.3% utilization with 16.5% contention
on this lock (see Figure 1).

One significant observation with the lockmeter
output is that for this workload dlookup() is the
most common operation.

This snippet of lockmeter output for an 8-way
shows that 84% of the time dcachelock was ac-
quired by d_lookup(). Out of about fifteen million
holds of the dcache.lock, d.Jookup() comprised
twelve million of them. The simple explanation
for this is that dlookup is the main point into
the dcache. It does the looping search to find the
parent in the hash, then atomically increments the
d_count reference of the dentry before returning it,

all while the dcache_lock is held.
SPINLECXS BOLD VAIT
oriL cow MEANC MAX) MERAM(MAX (X CPU) TOTAL SPIN MAME
6.3% 16.5L 0. ns) 6.0nw(3094us) (0.85%) 16.5% dcache_lock
0.01% 10.8% 0.208{ 7.5us) E.3us(116us)(0.00%) 119448 10.9% d alloc+(xi28
0.04X 14.2% 0.8%us(42us) 6.3us(925us) (0.02) 233290 14.2% d_dalets+0x10
0.00% 3.5 0.2us(3.1ms) G5.8us(41us)(0.00%) 5050 3.5% d_delete+sOxt4
0.04% 0.9 0.2us(8.2us) 6.3us(1260us)(0.01X) 952739 10.8% d_ instanviatesOric
4.8% 17.2% 0.7os(13827us) 4.8us(2692us)(0.76€%) 12726262 17.2% d_lookup+ixEc
©0.02% 11.0% 0.sus{ 2208) 5.4us(1910us)(0.00%) 45800 11.0%
0.01% E.1% 0.2ns(37us) 4.3us(84us)(0.00X) 119438 B.1% d_redashiOx40
0.00% 2.6% 0.2us(3.ins) 5.6us(45us)(0.00%) 1680 2.5% d&_onbashtOx34
0.31% 15.0% O.4us(64us) 6.2us(3094us) (0.05%) 1384623 15.0% dpot+0x30
0.00% 0.62% 0.4na(4.2us) 6.4us(6.4us)(0.00%) 122 0,828 1ink_path_walk+0x2a$
0.00% 0% t.7us(1.8uvsx) ous 2 0% 1link_patb.wxiXxs0x618

0.00% 6.4% 1.9us(332us) 5.0ns{ 49n2)(0.00%)
0.04% 9.4% 1.008{3382us) 4.Tus(14808)(0.00X)
0.04% 4.2% 11ua(378Tus) 3.8us(24us)(0.00%)

3630 6.4% prune.dcache+Oxi4
T0974 ©.4% prune.dcaches0xiss
6505 4.2% select_parent+0x20

2.3 Httperf Results of Baseline

The httperf results from our initial investigation
show a moderate utilization of 6.2% with 4.3%
contention in an 8 CPU environment.

A snippet of lockmeter output showing the distri-
bution of acquisition of dcache Jock follows:

SPINLOCKS BoLy VATT
UTIL CON MEAM(MAX) MRANC EAX)(X CPO) TOTAL SPIX NAME
6.2% 4.3% 0.8us(350us) 2.7ua(579us)(0.12%) 20243026 4.3% dcacka_ lock
0.02% 6.5% O.Bus(4Sus) 2.Tus(281us) (0.00%) 100081 6.5% d_alloce0xizs
0.01% 4.9% 0.2us(4.6us) 2.9us(SBua)(0.00X) 100032 4.9 d_instantiate+Oxic
5.0% 4.5% 0.Sus(38Tus) 2.8uel 5Tvus)(0.09%) 4.5% 4
0.02% 6.8% 0.6us(3dus) 3.1ns(45us)(0.00X) 100031 6.8% d_rehask+ox4o
0.19% 8.8% 0.5us(206ns) 2.8us(315us) (0.01%) 933218 6.8% dput+0x30
0.89% 2.3% o.6us(390us) 2.5us(309us)(0.02X) 4000584 2.5% link patk walx+0x2a%

This shows that 74% of the time the global lock
is acquired from d_lookup(). Again, out of about
twenty million acquisitions of the dcachelock,
dlookup took fifteen million of them.

3 Avoiding Global Lock in

d lookup()

In the paper by Paul E. McKenuey, Dipankar
Sarma, and Orran Krieger [McKenney] they de-
scribed the Read Copy Update mutual exclusion
mechanism (RCU). To summarize, RCU provides
support for reading an item without holding a
lock and a special callback method to update all
references to the data when it is written.

The dcache_lock is held while traversing the d_hash
list and while updating the Least Recently Used
(LRU) list if the dentry found by d.lookup has a
zero reference count. By using RCU we can avoid
dcache lock while reading d hash list [1].

In this, we were able to do a d_hash lookup lock free
but had to take the dcache lock while updating the
LRU list. The patch does provide some decrease in
lock hold time and contention level. Following are
lockmeter statistics for 2.4.16 without any patches

while running dbench:

SPINLOCKS HOLD

I
U7IL can MEANC MAX) MEAN(MAX)(X CPD) TOTAL SPIN JANR

6.3% 0.2 0.40s(16580s) 3.4us(1848ua)(1.3%) 23182304 9.2% dcache_lock

0.01% 10.1% 0.2us(7.6me) 2.9usC 45us) (0.01%) 96849 10.1% d.alloctOx124
0.08% 11.0X 0.2us{ 70us) 2.Sus(918us)(0.01X) 184650 11.0f d deletesxi0
0.04X 8.8% 0.2us(96us) 2.7us(176ua)(0.03X} 281340 8.8% d_instantiatedOxic
3.8% 12.74 0.5us(123ue) 3.4us(1648usx) (0.80%) 12,7% a1

0.02% 9.9% 0.8ua(24us) 2.8us(Bbus)(0.00K) 37050 9.9% dimove+Ox34

0.01% 3.6X 0.2vs(32us) 3.4us(E8us) (0.00%) 96639 3.6% d_rehashé0x3c
0.00% 4.28 0.20s(i.5ua) 2.7ux(©.4us)(0.00%) 1330 4.2X d_unhashe0x34
2.3% 6.4% O.3us(120us) 3.3us(1379um)(0.48%) 12336769 6.4% dputs0x18

0.00% 5.2% 2.0vs(832us) 3.9uw(BOus)(0.00%) 3008 65.2% pruse.dcacha+0ri0
0.02% 4.8% 6.1us(836us) 3.2us(23ue) (0.00%) 5280 4.8% select_parent+0x18

Following is the same dbench run with this first
RCU patch applied:

SPINLOCKS HOLD WAIT
UTIL coN MEAN(MAX) MEANC MAX) (X CPU} TOTAL SPIN NAME

4.0 7.5% 0.3us(1436us) 3.0us{12220s)(0.88%) 23103201 7.B% deache lock

0.01% 6.6X 0.2us(18us) 2.5us(54us)(0.00%) 104404 E.52 4 alloceOxis
0.03% 8.1% 0.2us(20us) 2.4ua(322us)(0.01%) 184690 8.1% d_delete+Ox1d
0.04% 6.9% O0.2us(30us) 2.2ua(79ma)(0.01X) 289085 6.8% d_instantiatewdxic
2.1% 10.6% 0.3us(491us) 3.0us(1222us)(0.54%) 9981665 10.8% A lookup+Oxas
0.024 T.4% O.Tus(4.2us) 2.3us(209us)(0.00%) 37060 T.AL A movesOx34
0.017 3.4% 0.2us(4-8up) 3.0us(430s3(0.00X) 104304 3.4% d_rehasheOxdc
0.00f 2.5% 0.2us(1.3us) 2.9ue(8.6us)(0.00%) 1330 2.6% d_unhashe0xs4
2.0% 5.1% O.2us(08us) 3.0us(1080us)(0.32%) 12342240 5.1% dputeox1s

0.04% 3.2% 0.9us(1438ne) 3.3us(74us)(0.00%) 65770 3.2%

0.02% 4.3X 6.6us(926us) 2.7us(8.3ue)(0.00%) 6276 4.1% aslect_parant+0zi8

Spinning on the dcachelock via dlookup went
from 12.7% to 10.6%. This demonstrated that
simply doing the lock-free lookup of the d.hash
was not enough because d.lookup() also acquired
the dcachelock to update the LRU list if the
newly found dentry previously had a zero reference
count. This often was the case with the dbench
workload, hence we ended up acquiring the lock
after almost every lock-free lookup of the hash
table in d_lookup().

From there we decided we needed to avoid acquiring
dcache lock so often. Therefore, we tried different
algorithms to get rid of this lock from dlookup(),
such as a separate lock for the LRU list.

4 Separate Lock for the LRU List

The motivation behind having a separate lock for
the dlru list was that as d_lookup() only updates
the LRU list, we could relax contention on the
dcache.lock by introducing a separate lock for
LRU lists. This resulted in most of the load being
transferred to the LRU list lock. Many routines
held the dcachelock as well, such as prune.dcache,
select_parent, d_prune_aliases, because they read or
write other lists apart from the LRU list [2].

SPINLOCKS BOLD warr
OTIL CON NEAW(MAXY) MEAN(MAX)(Y CPU) TOTAL SPIN NiME

3.7% 5.7% 0.3us(1476us) 3.0us(1661us)(0.63%) 22434972 5.7% d_lru_lock

2.7% T.0% 0.3us(S0us) 3.1ns(1430vs)(0.35X) 9956382 T.9% d_lockuptdxcd
2.0% 3.9% O0.2us(144us) 3.0ms(1651us)(0.23X) 12346145 3.9X dput+oxis

0,041 2.8% O0.6us(22us) S.6ue(Tous)(0.00X) 127045 2.8% prune_dcachs+0x160
0.03% 3.6X 9.2us(1475us) 3.1us{ 112us)(0.00%)
0,261 0.14% 0.2us(1474ws) 1.7us(204us) (0.00%)

§300 3.61 aslect_parents0ris
1918750 0.14% deache_lock

0.01% 0.51% O.1us(1.0ws) 1.8us(2040s)(0.00%) 109702 0.52% d.sllacs0xi24
0.02X 0.461 0.20s(6.3us) 2.6os(160us)(0.00%) 184650 0.35% d_deleta+Oxi0
0.03% 0.16% O.1uw(1ius) 1.Gus(57us)(0.00%) 294303 0.16% d_instantiatesixic
0.02% 0.42% 0.Tus(27us} 1.3us(5.5us)(0.00%) 87060 0.12% d_movasix34

0.01X 0.12X 0.fus{ 6ips) 1.7us(3.5us)(0.00%) 109692 0.12% d_rehash+ix3c
0.00% 0.23% O.jus(1.6us) 1.1ua(1.7u) (0.00%) 1336 0.23% d_unhash+Ox34
0.14% 0.05% 0.20s(3Bus) 1.5us(141us)(0.00%) 1096848 0.05% dputeOxdc

0.01% 0.26% 0.Zus{ 1Sus) 1.4us{ 5.5us)(0.00%) 86655 0.26X prune_dcachesOx7c
0.03% 0.26% 8.7us(1474vs) 1.2us(2.6us) (0.00%) £200 0.26% malect_parent+0x24

5 Lazy Updating of the LRU List

Given that lock-free traversal of hash chains did not
significantly decrease dcache.lock acquisitions, we
looked at the possibility of removing dcachelock
acquisitions completely from dlookup(). After
using RCU based lock-free hash lookup, the only
remaining use of the dcache lock in d.lookup() was
to update the LRU list.

Our next approach was to relax the rules of an LRU
list by allowing dentries with non-zero reference
counts to remain in the list for a short delay before
being removed in the update [3]. The beneficial
side-effect was that multiple dentries could be
processed during the update. Previously, the global
dcache lock was held then dropped for every single
entry as each dentry was removed from the list
during the update.

To implement this new functionality, we introduced
another flag (DCACHE.DEFERRED_FREE) and
a per-dentry lock (dlock) in struct dentry to
maintain consistency between the flag and the
reference counter (d_count). For all other lists in
struct dentry, the reference counter continued to
provide mutual exclusion.

Allowing additional dentries to remain in the
Iru list could lead to an unusually large number of
dentries, causing a lengthy deletion process during
updates. We proposed two different approaches to
circumvent this problem:

1. Use a timer to kick off periodic updates.

2. Periodically update the d.lru list while already

traversing it.

5.1 Timer Based Lazy Updating

A timer was used to remove the referenced
dentries from the dlru list so that it would be
kept manageable. To take the dcachelock from
the timer handler we had to use spinlock bh()
and spin_unlock bh() for dcachelock. This cre-
ated problems with cyclic dependencies in dcache.h.

This approach did not prove to be any better
than the non-timer approach. However, the patch
is worth looking at as proper tuning of timer
frequency may give better results [4].

5.2 Periodic Updates During Traversal

The dlru list is made up to date through se-
lect_parent, prune.dcache and dput. ‘While
traversing the d_lru list in these routines, the den-
tries with non-zero reference counts are removed.
This is the solution we chose to include in the lazy
LRU patches due to its simplicity.

5.3 Notes on Lazy LRU Implementa-
tion

Per dentry lock(dlock) is needed to protect the
d_vfs_flags and d_count in d.lookup. There is very
little contention on the per dentry lock, so this
will not lead to a bottleneck. With this patch the
DCACHE REFERENCED flag does more work.
It is being used to indicate the dentries which are
not supposed to be on the d.lru list. Right now
apart from dlookup, the per dentry lock (d.lock)
is used whereever d_count or d_vfs_flags are read or
modified. It is probably possible to tune the code
more and relax the locking in some cases.

We have created a new function in-
clude/linux/dcache.h: d_unhash() that sets the
DCACHE DEFERRED _FREE bit in d_vfs_flags,
which marks the dentry for deferred freeing. Also,
before unlinking the dentry from the d_hash list
we have to update the d_nexthash pointer. We
changed the name for fs/namei.c: d_unhash() to

dbench contention

base ——
18 - lazy by —x—

- e
N
T

i 1 L

T
1

dcache_lock contertion in %
3
T

=2 T &l 1 A

1 2 3 4 5 -} 7 8
of CPUs

Figure 2: Lazy LRU contention from dbench

fs/namei.c: d_vfs_unhash().

As we do lockless lookup, rmb() is used in d_lookup
to avoid out of order reads for d.nexthash and
wmb() is used in d.unhash to make sure that
d_vfs flags and d_nexthash() are updated before
unlinking the dentry from the d_hash chain.

Every dget() marks the dentry as referenced by set-
ting DCACHE_REFERENCED bit in d_vfsflags.
This forced us to hold the per dentry lock in dget.
Therefore, dget_locked is not needed.

5.4 Lazy LRU Patch Results

Contention for the dcache lock reduced in all rou-
tines. However, the routines: prune_dcache and se-
lect_parent take more time because the d Iru list is
longer. This is acceptable as both routines are not
in the critical path.

We ran dbench and httperf to measure the effect
of lazy dcache and the results were very good. By
doing a lock-free d lookup(), we were able to sub-
stantially cut down on the number of dcache lock
acquisitions. This resulted in substantially de-
creased contention as well as lock utilizations.

SPINLOCKS ROLD VAIT

UTIL CON MEAN(NAX) MEAN(MAX) (X CPU)
0.89% 0.95% 0.6us(6516us) 1Pus(s4tius) (0.03%)
0.02% 1.7% O.2us{ 20us) 17us(2019us) (0.00%)
0.03% 0.42% O.zus(4vus) 35us(6033us}(0.00%)

TOTAL SPIN NAXE

2330127 0.95% dcacka dock
116150 3.7% d_allocH0xidd
233290 0.42% <& _deletesOrx10o

dbench contention

deache_lock contention in %

1
3

4 5 8 7 8
#0i CPUs

Figure 3: Lazy LRU dcachelock utilization from
dbench

0.00% 0.14% 0.Bus(12us) 3.4ns(8.508)(0.00%) 5060 0.141 d_delate+0x88
0.03% 0.40% O.lux{ 3Zus) 34us(5251us){0.00%) 340441 0.40% d_inatantiatesdixic
0.05% 0.30% 1.7us(44us) 22ua(1770us)(0.00%) 46800 0.30% d_moves0x38

0.01% 0.16% O.fus(2ius) 4.Gus(334us)(0.00X) 118140 0.16% A rebash+0x40
0.00% 0.65% 0.7us(S.7us) 8.4us(B7un)(0.00%) 1680 0.65% d_vfs_unbash+0xi4
0.56% 1.1% O.7us(S4us) 18ua(6411us)(0.020) 1363869 1.1 dputs0x30

0.00% 0.88% 0.4us(2.3us) 31.3us(1.3us)(0.00%) 134 0.88% 1ink path walke0x2d8
0.011 4.4% 4.3us(6516us) 4.8us(32ua)(0.00%) 3568 4.4% prune_dcacherOxid
0.07% 2.3% 1.8un(6289us) 4.4ux(718us)(0.00%) 67691 2.3% prune_dcache+0x160
0.11% 0.78% 28ua(4992us) 2Bus(111€us)(0.00%) 6444 0.79% selact_parent+(x24

5.5 Dbench Results of Lazy LRU

dbench results showed that lock utilization and
contention levels remain flat with lazy dcache as
opposed to steadily increasing with the baseline
kernel. So for 8 processors, contention level is 0.95%
as opposed to 16.5% for the baseline (2.4.16) kernel.

One significant observation is that maximum lock
hold time for prune.dcache() and select.parent()
are high for this algorithm. However, these are not
frequent operations for this workload.

A comparison of baseline (2.4.16) kernel and lazy
dcache contention and utilization while running
dbench can be seen in Figures 2 and 3.

The throughput results show marginal differences
(statistically insignificant) for up to four CPUs, of
1% (statistically significant) on eight CPUs. There
is no performance regression in the lower end and
the gains are small in the higher end.

hitperf contention

dcache_lock contention in %
N @
T !
L i

[1 L L I I i
1 2 3 4] 8 7 8
#0f CPUs

Figure 4: Lazy LRU contention from httperf

hitpert contention

QO <« N W & 00 O N O

deache_lock contention in %

#01CPUs

Figure 5: Lazy LRU dcache lock utilization from
httperf

5.6 Hittperf Results of Lazy LRU

The httperf results showed a similar decrease in
lock contention and lock utilization. With 8 CPUs,
it showed significantly less contention.

SPINLOCKS BOLD VATT

UTIL CON MEAMC MAX) NRANC MAX) (X CPU) TOTAL SPIF NAMZ

1.4% 0.92% 0.72s(E77us) 2.72us(61702) (0.00%) 4821866 0.92% dcache_lock

0.02¢ 2.2% O.6us(S0us) 1.9us(7.Bus)(0.00L) 100031 2.21 d_alloc+Ox144
0.01% 1.7% OG.2us(12ws) 2.2us(9.2us)(C.00) 100032 1.7% d_instantiate+Oric
0.03% 1.5% O.7us(9.2us) 2.3us(10us)(0.00K) 100091 1.5% d_rebashsOxd0
0.24% 2.1% 1.2ue(E77ms) 1.Sus(28%4s)(0.00X3 621329 2.1% dput+0xN0

1.1% 0.70% 0.7ua(356us) 2.4us(617us)(0.00X} 4000443 0.70% link path_walk+0x2d8

A comparison of the baseline (2.4.16) kernel and
lazy dcache contention and utilization while running
dbench can be seen in Figures 4 and 5.

The results of hitperf (replies/sec for fixed con-
nection rate) showed statisticially insignificant

differences between base 2.4.16 and lazy dcache
kernels. .

6 Avoiding Cacheline Bouncing of
d_count

6.1 fast_walk()

On SMP systems and even moreso on some NUMA
architectures, repeated operations on the same
global variable can cause excessive cacheline bounc-
ing. This is due to the entire cacheline being read
into each CPU’s hardware cache while it is being
used. For some common directories found in many
paths such as ’/’ or ’usr’, this exessive cacheline
bouncing will be triggered.

Alexander Viro recommended a possible solution
that we implemented. He proposed not incre-
menting and decrementing the reference counter
for dentries that are alveady in the dentry cache.
Instead, hold the dcachelock to keep them from-
being deleted.

We used the pathlookup function to implement
this change [5]:

Before:
read_lock(kcurrent->fs->lock);
nd->mnt = mntget(current->fs->pwdmnt);
nd->dentry = dget{current->fs->pwd);
read_unlock(¤t->fs->lock);
3
return (path_walk(name, nd));
After:

read_lock(kcurrent->fs->lock);
spin_lock(&dcache_lock);
nd->mnt = current->fs->pwdmnt;
nd->dentry = current->fs->pud;
read_unlock(¤t->fs->lock);
}
nd->flags |= LDOKUP_LOCKED;
return (path_valk(name, nd));

The atomic increment of d_count is all that dget
and mntget do.

The rest of the changes were in path_walk (imple-
mented by link path walk). While the dentry is
found in the cache, just keep walking the path.
I a dentry is not in the cache, then increment
the d_count to keep it synchronized and drop the
decache lock, and then simply continue. For coding
simplicity, the dcache lock is always dropped in the
path_walk code instead of returned to path_lookup
to be dropped. This patch has been accepted by
Linus Torvalds starting with the 2.5.11 kernel.

6.2 path_lookup()

We started with a simple cleanup of replicated code
involving path_init, path_walk, and __user_walk[6].
There were sixteen occurrences of the following:

if(path_init(x))

error = path_walk(x)
WVhich changed to one call:

error = path_lookup(x)
In addition there were six occurances
of the following:

a = getname(b)

if (exrror)

return

path_lookup(a)

putname (a)
which changed to an existing call:

error = __user_walk(b)

This patch has been accepted by Alan Cox starting
in 2.4.19-preb-ac2. Marcelo has not merged this
patch into mainline 2.4 as of this writing.

6.3 Fast Path Walking Results
6.4 16-way NUMA Results of Fast Walk

Previously, we mentioned dlookup was the main
user of dcache_lock. This is especially noticeable on
a 16-way NUMA system. Martin Bligh, in attempt-
ing to get the fastest kernel compile, applied this
patch on top of a few others [Bligh]. Not only did
it reduce time spent spinning on the dcache lock, it
decreased total kernel compile time by 2.5%.

Following is a profile of kernel during make -j32
bzImage on a 16-way NUMA system. This shows

300

250 +

200

150 -

throughput in MB/sec

100

0 2 4 6 8 10 12
of dbench Clients

Figure 6: FastWalk increases dbench throughput

an almost 50% reduction in time spinning on the
dcache_lock.

Kernel compile time is now 23.6 seconds.

Here are the top 10 elements of profile before and after your
patch (left hand column is the number of ticks spent in each
function).

Betore:

22086 total 0.0236
9953 defaunlt_idle 191.4038
2874 _text_lock_swap 53.2222
1616 _text_lock_dcache 4.6304

748 lru_cache_add 8.1304
605 d_lookup 2.1920
576 do_anonymous_page 1.7349
511 do_generic.file_ read 0.4595
484 lru_cache_del 22.0000
449 __free_pages_ok 0.8569
307 atomic_dec_and lock 4.2639
After:

21439 total 0.0228
9112 defaunlt_idle 175.2308
3364 _text_lock_swap 62.2963

790 lru_cacke_add 8.5870
750 _text_lock_namei 0.7184
687 do_anonymous_page 1.7681
572 1lru_cache_del 26.0000
569 do_generic_file_read 0.6117
510 __free_pages_ok 0.9733
421 _text_lock_dec_and lock 17.5417
318 _text_lock_read_write 2.8949
129 _text_lock_dcache 0.3696

7 Conclusions

This paper has demonstrated performance improve-
ments of the dcache via the fast path walking
patches and the lazy updating of the LRU patches.
We are working with the VFS and kernel maintain-

ers to get these patches accepted.

Although the dcache continues to scale, there is
more work to be done, much of it happening as this
is being written.

8 Availability of Referenced Patches

As of now, all patches have been tested on ext2,
ext3, JFS, and /proc filesystem. Our goal was to
experiment with dcache, extending it for use with
other filesystems, this is in the pipleline.

dcache patches can be found on SourceForge.net un-
der the Linux Scalability Effort project page.

[1] lockfree read of d_hash
http://prdownloads.sf.net/lse/dcache.rcu-2.4.10-
01.patch

[2] separate lock for the lru list
http:/ /prdownloads.sf.net /1se/dcache_rcu-lru lock-
2.4.16-02.patch

[3] Lazy LRU
http:/ /prdownloads.sf.net /Ise/dcache rcu-lazy Jru-
2.4.17-06.patch

[4] Lazy LRU updating via timer
http:/ /prdownloads.sf.net/1se/dcache rcu-lazy Iru-
timer-2.4.16-04.patch

[5] Fast Path Walking
http:/ /prdownloads.sf.net/1se/fast_walkA1-
2.5.10.patch

[6] Path walking code cleanup
http:/ /prdownloads.sf.net /1se/path JookupA1-
2.4.17.patch

9 Acknowledgments

Mr. Alexander Viro has been a tremendous help to
us and we thank him for his input and all hig hard
work.

SourceForge.net for supporting Open Source devel-
opment.

Paul Menage for helping to debug.

Martin Bligh for running the NUMA tests.
Hans-Joachim Tannenberger, our manager.
International Business Machines Inc. and the Linux
Technology Center.

References
[Sarma)] Dipankar Sarma, Maneesh
Soni Scaling the dentry cache

http:/ /Ise.sf.net/locking/dcache/dcache.html

[McKenney] Paul E. McKenney, Dipankar Sarma,
and Orran Krieger, Read-Copy Update

[Mosberger] David Mosberger, Tai Lin, htiperf:
A tool for measuring web server perfor-
mance. Hewlett-Packard Inc. Research Labs.

Other company, product or service names may be
trademarks or service marks of others.

http:/ /www.hpl.hp.com/personal/David_Mosberger/httperf.htmi

[Hawkes] John Hawkes kernprof Silicon Graphics
Inc. http://oss.sgi.com/projects /kernprof

(Hawkes] John Hawkes lockmeter Silicon Graphics
Inc. http://oss.sgi.com/projects/lockmeter

[Pool] Martin Pool dbench Samba.org

[Bligh] Martin J. Bligh’s 28 second kernel com-
pile (aka which patches help scalibility on
NUMA), linux-kernel@vger kernel.org, March
8, 2002. http://marc.theaimsgroup.com/?l=linux-
kernel&m=101565828617899&w=2.

10 Tradmarks

IBM is a registered trademark of International
Business Machines Corporation in the United
States, other countries, or both.

