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Kernel Korner - Using RCU in the Linux 2.5 Kernel
By Paul McKenney on Wed, 2003-10-01 01:00. Software
Read-copy update, a synchronization technique optimized for read-

mostly data structures, is new with the 2.5/2.6 kernel and promises
better SMP scalability.

The Linux hacker's toolbox already contains numerous symmetric
multiprocessing (SMP) tools, so why bother with read-copy update
(RCU)? Figure 1 answers this question, presenting hash-lookup
performance with per-bucket locks on a four-CPU, 700MHz Pentium
IIT system. Your mileage will vary with different workloads and on
different hardware. For an excellent write-up on the use of other
SMP techniques, see Robert Love's article in the August 2002 issue
of Linux Journal [available at
www.linuxjournal.com/article/5833].
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Figure 1. Hash-lookup performance scales
poorly with number of CPUs.
All accesses are read-only, so one might expect rwlock to work as
well as this system. However, one would be mistaken; rwiock
actually scales negatively from one to two CPUs, partly because this
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variant of rwlock avoids starvation, thus incurring greater overhead.
A much larger critical section is required for rwlock to be helpful.
Although rwlock beats refcnt (a spinlock and reference counter) for
small numbers of CPUs, even refcnt beats rwlock at four CPUs. In
both cases, the scaling is atrocious; refcnt at four CPUs achieves
only 54% of the ideal four-CPU performance, and rwlock achieves
only 39%.

Simple spinlock incurs less overhead than either rwlock or refcnt,
and it also scales somewhat better at 57%. But this scaling is stiil
quite poor. Although some spinning occurs, due to CPUs attempting
to access the same hash chain, such spinning accounts for less than
one-quarter of the 43% degradation at four CPUs.

Only brlock scales linearly. However, brlock's single-CPU
performance is subpar, requiring more than 300 nanoseconds to
search a single-element hash chain with simple integer comparison.
This process should not take much more than 100ns to complete.

Not Your Parents’ Microprocessor

Figure 2 illustrates the past quarter century's progress in hardware
performance. The features that make the new kids (brats) so proud,
however, are double-edged swords in SMP systems.
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Figure 2. New, fast "brat"” processors

change the OS design rules.

Unfortunately, many algorithms fail to take advantage of the brat's
strengths, because they were developed back when the old man
was in his prime. Unless you like slow, stately computing, you need
to work with the brat.
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Practic
The increase in CPU clock frequency has been astounding-where the
old man might have been able to interfere with AM radio signals, FindB_
the young brat might be able to synthesize them digitally. But TotalVi
memory speeds have not increased nearly as fast as CPU clock for thre
rates, so a single DRAM access can cost the brat up to a thousand Get an
instructions. Although the brat compensates for DRAM latency with
large caches, these caches cannot help data bounced among CPUs. Lookin
For example, when a given CPU acquires a lock, the lock has a 75% System
chance of being in another CPU's cache. The acquiring CPU stalis IQﬂl;llil;I?

until the lock reaches its cache.

Cacheline bouncing explains much of the scaling shortfall in Figure
1, but it does not explain poor single-CPU performance. When there
is only one CPU, no other caches are present in which the locks
might hide. This is where the brat's 20-stage pipeline shows its dark
side. SMP code must ensure that no critical section's instructions or
memory operations bieed out into surrounding code. After all, the
whole point of a lock is to prevent multiple CPUs from concurrently
executing any of the critical section's operations.

Memory barriers prevent such bleeding. These memory barriers are
included implicitly in atomic instructions on x86 CPUs, but they are
separate instructions on most other CPUs. In either case, locking
primitives must include memory barriers. But these barriers cause
pipeline flushes and stalis, the overhead of which increases with
pipeline length. This overhead is responsible for the single-CPU
slowness shown in Figure 1.

Table 1 outlines the costs of basic operations on 700MHz Intel
Pentium III machines, which can retire two integer instructions per
clock. The atomic operation timings assume the data already
resides in the CPU's cache. All of these timings can vary, depending
on the cache state, bus loading and the exact sequence of
operations.

Table 1. Time Required for Common Operations on a 700MHz
Pentium IIX

Operation Cost (ns)
Instruction 0.7
Clock cycle 1.4
L2 cache hit 12.9
Atomic increment 58.2
cmpxchg atomic increment 107.3
Main memory 162.4
CPU-local lock 163.7
Cache transfer 170.4-360.9
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The overheads increase relative to instruction execution overhead.
For example, on a 1.8GHz Pentium 4, atomic increment costs about
75ns-slower than the 700MHz Pentium III, despite having a more
than twice as fast clock.

These overheads also explain rwlock's poor performance. The read-
side critical section must contain hundreds of instructions for it to
continue executing once some other CPU read acquires the lock, as
illustrated in Figure 3. In this figure, the vertical arrows represent
time passing on two pairs of CPUs, one pair using rwlock and the
other using spinlock. The diagonal arrows represent data moving
between the CPUs' caches. The rwlock critical sections do not
overlap at all; the overhead of moving the lock from one CPU to the
other rivals that of the critical section.
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Figure 3. Timelines for rwlock and Spinlock
on Two-CPU Systems

Lesson: Avoid Expensive Operations

If you care about performance, you want to avoid these expensive
operations. Avoiding them is precisely what RCU does, at least for
read-only accesses to read-mostly data structures, although the
DEC Alpha still requires some read-side memory barriers. As seen in
Figure 4, RCU scales well and has good singie-CPU performance for
the hash-table-search benchmarklet.
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Figure 4. RCU Read Performance by
Number of Processors
Of course, updates do slow down RCU, as shown in Figure 5. This
graph illustrates the relative performance of these synchronization
primitives as the workload varies from read-only (left-hand side) to
write-only (right-hand side). RCU is better than brlock across the
board. In fact, RCU has replaced brlock in the 2.5 kernel, thanks to
Steve Hemminger of OSDL and a number of Linux's networking
luminaries. RCU is the best option overall as long as fewer than
about one-third of the accesses are updates. Again, your mileage
will vary depending on your workload and hardware. In particular,
workloads with greater per-element local processing-for example,
more complex comparisons-would scale better. As always, use the
right tool for the job.
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Figure 5. RCU Performance by Fraction of
Accesses That Are Updates

How Does RCU Work?

If reading CPUs never make their presence known, how can
updating CPUs avoid messing up readers? With locks, the updating
CPU examines the lock state to determine when it is safe to carry
out the update. With RCU, the updating CPU must make this
determination indirectly.

http://www.linuxjournal.com/article/6993 9/22/2006
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The trick is RCUs reading CPUs are not permitted to block while
traversing the data structure, the same as when CPUs holding a
spinlock or rwlock are not permitted to block. This means that once
an element is unlinked from a list, any CPU that subsequently
performs a context switch cannot possibly gain a reference to this
element. Context switch is a quiescent state: CPUs undergoing
context switches cannot hold references to RCU-protected data
structures. Any time period during which all CPUs pass through a
quiescent state is a grace period. A CPU may therefore free up an
element after a grace period has elapsed from the time that it
unlinked the element from the list.

Thus, a simple, though inefficient, RCU-based deletion algorithm
could perform the following steps in a non-preemptive Linux kernel:

e Unlink element B from the list, but do not free it-the state of the list
as shown in Step 2 of Figure 6.

e Run on each CPU in turn. At this point, each CPU has performed one
context switch after element B has been unlinked. Thus, there
cannot be any more references to element B, as shown in Step 3
(Figure 6).

e Free up element B, as shown in Step 4 (Figure 6).

Wl A e M r
i 1 I

Figure 6. Steps of a Simple RCU-Based

Deletion Algorithm

Andrea Arcangeli created a more efficient algorithm that boasts
extremely short grace periods, which was the first Linux RCU
implementation shipped. Dipankar Sarma coded up an even more
efficient RCU implementation that maintains callback cache locality
and permits a grace period to service any number of concurrent
updates. Dipankar's algorithm is included in the 2.5 kernel and was
described in detail at the Ottawa Linux Symposium in 2002.

RCU API

Listing 1 shows the external API for RCU. The synchronize_kernel()
function blocks for a full grace period. This is an easy-to-use
function, but it incurs expensive context-switch overhead. It also
cannot be called with locks held or from interrupt context. However,
it does allow concurrent callers to share a grace period.

Listing 1. The RCU API

http://www .linuxjournal.com/article/6993 9/22/2006
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void synchronize kernel (void) ;
void call_rcu(struct rcu_head *head,
void (*func) (void *arg),
void *arg) ;
struct rcu_head {
struct list_head list;
void (*func) (void *obj);
void *arg;
}i
void rcu_read lock(void);
void rcu_read_unlock(void) ;

In contrast, call_rcu() schedules a callback function func(arg) after
a full grace period. Because call_rcu() never sleeps, it may be called
with locks held and from interrupt context. The call_rcu() function
uses its struct rcu_head argument to remember its callback function
and argument during the grace period. An rcu_head is often placed
within the structure being protected by RCU, eliminating the need to
allocate it separately.

The primitives rcu_read_lock() and rcu_read_unlock() demark a
read-side RCU critical section but generate no code in non-
preemptive kernels. In preemptive kernels, they disable
preemption, thereby preventing preemption from prematurely
ending a grace period. RCU-like mechanisms also may be used in
preemptive kernels without suppressing preemption, as
demonstrated by the K42 research 0S.

Most modern microprocessors feature weak memory-consistency
models, which require special memory-barrier instructions.
However, these instructions are difficult to understand and even
more difficult to test, so the Linux list-manipulation API is extended
to include memory barriers, as suggested by Manfred Spraul and as
shown in Listing 2. The hlist primitives recently were added by Andi
Kleen in order to reduce memory requirements for large hash
tables.

Listing 2. RCU Extensions to the Linux List-Manipulation API

list_add_rcu(struct list_head *new,
struct list_head *head);
list_add_rcu_tail (struct list_head *new,
struct list_head *head);
list_del_rcu(struct list_head *entry);
list_for_each_rcu(struct list_head *pos,
struct list_head *head);
list_for each_safe rcu(struct list_head *pos,
struct list_head *n,
struct list_head *head);
list_for each entry rcu(struct list_head *pos,
struct list_head *n,
struct list_head *head);
list_for_each continue_ rcu(struct list_head *pos,
struct list_head *head);
hlist_del rcu(struct hlist node *n);

void hlist_del_init(struct hlist_node *n);

http://www.linuxjournal.com/article/6993
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hlist_add_head rcu(struct hlist_node *n,
struct hlist_head *h);

When RCU is applied to data structures other than lists, memory-
barrier instructions must be specified explicitly. For an example, see
Mingming Cao's RCU-based modifications to System V IPC.

How to Use RCU

Although RCU has been used in many interesting and surprising
ways, one of the most straightforward uses is as a replacement for
reader-writer locking. In fact, RCU may be thought of as the next
step in a progression. The rwlock primitives allow readers to run in
parallel with each other, but not in parallel with updaters. RCU, on
the other hand, allows readers to run in parallel both with each
other and with updaters.

This section presents the analogy between rwlock and RCU,
protecting the simple doubly linked list data structure shown in
Listing 3 with reader-writer locks and then with RCU. This structure
has a struct list_head, a search key, a single integer for data and a
struct rcu_head.

Listing 3. A Data Structure Protected by RCU

struct el {
struct list_head list;
long key;
long data;
struct rcu_head my rcu_head;

The reader-writer-lock/RCU analogy substitutes primitives as shown
in Table 2. The asterisked primitives are no-ops in non-preemptible
kernels; in preemptible kernels, they suppress preemption, which is
an extremely cheap operation on the local task structure. Because
rcu_read_lock() does not block interrupt contexts, it is necessary to
add primitives for this purpose where needed. For example,
read_lock_irgsave must become rcu_read_lock(), followed by
local_irq_save().

Table 2. Reader-Writer Lock and RCU Primitives

Reader-Writer Lock :Read-Copy Update
rwilock_t spiniock_t
read_lock() rcu_read_lock() *
read_unlock() rcu_read_unlock() *
write_lock() spin_lock()
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write_unlock() spin_unlock()
list_add() list_add_rcu()

list_add_tail() list_add_tail_rcu()
list_del() list_del_rcu()

list_for_each() list_for_each_rcu()

Table 3 illustrates this transformation for some simple linked-list
operations. Notice that line 10 of the rwlock delete() function is
replaced with a call_rcu() that delays the invocation of my_free()
until the end of a grace period. The rest of the functions are
transformed in a straightforward fashion, as indicated in Table 2.
Garrick making table 3.

Although this analogy can be quite compelling and useful-in
Dipankar Sarma's and Maneesh Soni's use of RCU in dcache, for
example-there are some caveats:

. o Read-side critical sections may see stale data that has been
removed from the list but not yet freed. There are some situations
where this is not a problem, such as routing tables for best-effort
protocols. In other situations, such stale data may be detected and
ignored, as happens in the 2.5 kernel's System V IPC
implementation.

e Read-side critical sections may run concurrently with write-side
critical sections.

o The grace period delays the freeing of memory, which means the
memory footprint is somewhat larger when using RCU than it is
when using reader-writer locking.

¢ When changing to RCU, write-side reader-writer locking code that
modifies list elements in place often must be restructured to
prevent read-side RCU code from seeing the data in an inconsistent
state. In many cases, this restructuring is quite straightforward; for
example, you could create a new list element with the desired state,
then replace the old element with the new one.

Where it applies, this analogy can deliver full parallelism with hardly
any increase in complexity.

RCU Synchronizing with NMis

Retrofitting existing code with RCU as shown above can produce
significant performance gains. The best results, of course, are
obtained by designing RCU into the algorithms and code from the
start.

The i386 oprofile code contains an excellent example of designed-in
RCU. This code can use NMIs (nonmaskable interrupts) to handle
profiling independently of the normal clock interrupt, which permits
profiling of the clock interrupt handier. Synchronizing with NMIs
traditionally has been difficult; by definition, no way exists to block
an NMI. Straightforward locking designs therefore are subject to

http://www.linuxjournal.com/article/6993 9/22/2006
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deadlock, where the CPU holding the lock receives an NMI, and the
NMI handler spins forever on this same lock. Another approach is to
mask NMIs in software using things like spin_trylock(). This
method, however, produces cache bouncing and memory-barrier
overhead, and the NMIs thus masked are lost. The solution in
nmi_timer_int.c is as shown in Listing 4.

Listing 4. Using RCU in nmi_timer_int.c

static void timer_stop(void)

{
enable_timer_nmi_watchdog() ;
unset_nmi_callback() ;
synchronize_kernel() ;

}

static struct oprofile operations nmi_timer_ops = {

.start = timer_start,
.stop = timer_ stop,
.cpu_type = "timer"

The synchronize_kernel() ensures that any NMI handlers executing
the old NMI callback upon entry to timer_stop() have completed
before timer_stop() returns. The code for oprofile_stop() and
oprofile_shutdown() shown in Listing 5 illustrates why this is
important. Notice that oprofile_ops->stop() invokes timer_stop().
Therefore, if oprofile_stop() and oprofile_shutdown() were called in
quick succession, the newly freed CPU buffers could be accessed by
an ongoing NMI. This action could surprise any code quickly
reallocating this memory.

Listing 5. More Code from nmi_timer_int.c

void oprofile stop(void)
{
down (&start_sem) ;
if (loprofile started)
goto out;
oprofile ops->stop();
oprofile started = 0;
/* wake up the daemon to read remainder */
wake up_buffer waiter();
out:

}

void oprofile shutdown(void)

{

up (&start_sem) ;

down (&start_sem) ;

sync_stop () ;

if (oprofile ops->shutdown)
oprofile_ops->shutdown() ;

is_setup = 0;

free_event buffer();

free_cpu_buffers() ;

up (&start_sem) ;
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Use of RCU eliminates this race naturally, without incurring any
locking or memory-barrier overhead.

Incremental Use of RCU

Garrick, please kern the double underscores in the list below. Using
RCU is not an all-or-nothing affair. It may be applied incrementally
to particular code paths as needed. A good example of this is a
patch coded by Dipankar Sarma that prevents Is /proc from blocking
fork(). The changes are as follows:

1. The read_lock() and read_unlock() of tasklist_lock in get_pid_list()
are replaced by rcu_read_lock() and rcu_read_unlock(),
respectively.

2. A struct rcu_head is added to task_struct in order to track the task
structures waiting for a grace period to expire.

3. The put_task_struct() macro invokes __ put_task_struct() via
call_rcu() rather than directly. This ensures that all concurrently
executing get_pid_list() invocations complete before any task
structures that they might have been referencing are freed.

4. The SET_LINKS() and REMOVE_LINKS() macros use the _rcu form
of the list-manipulation primitives.

5. The for_each_process() macro gets a read_barrier_depends() to
make this code safe for the DEC Alpha.

The problem is get_pid_list() traverses the entire tasklist in order to
build the PID list needed by Is /proc. It read-holds tasklist_lock
during this traversal and blocks updates to the tasklist, such as
those performed by fork(). On machines with large numbers of
tasks, this can cause severe difficulties, particularly given multiple
instances of certain performance-monitoring tools.

Dipankar's modifications are shown in Table 4, changing only two
files, adding 13 lines and deleting seven for a six-line net addition to
the kernel. This patch does delete a pair of tasklist_lock uses, but
none of the other 249 uses of tasklist_lock are modified. This
example demonstrates use of RCU for a late-in-cycle optimization.

Garrick making Table 4.

Where Do We Go from Here?

RCU will become more important as CPU architecture continues to
evolve. Nonetheless, other primitives always will be needed. It is
quite likely that Rusty Russell's implementation of RCU (the call_rcu
() and synchronize_kernel() primitives themselves) can be modified
to be entirely free of locks, memory barriers and atomic
instructions. This implementation might run faster than the current
2.5 kernel implementation.

Numerous people are looking at new uses of RCU in the VFS layer,
VM code, filesystems and networking code. I look forward to
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continuing to learn about RCU and its uses and am grateful to the
many people who have tried it out.

Paul E. McKenney has worked on SMP and NUMA algorithms for
ionger than he cares to admit. Prior to that, he worked on packet-
radio and Internet protocols (but long before the Internet became
popular). His hobbies include running and the usual house-wife-
and-kids habit. This work represents the view of the author and
does not necessarily represent the view of IBM. 6993aa.jpg
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Can you explain a little more about smp wmb?

Submitted by Anonymous on Mon, 2004-02-23 02:00.

It seems that smp memory barrier is tightly linked with RCU.
Codes taking advantage of RCU also use smp_wmb to deal with
weak memory-consistency processes, for example, in the routing
cache. So, I think understanding this thing is key to the
"USEING" of RCU. Thanks.
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Re: Can you explain a little more about smp_wmb?

Submitted by Anonymous on Tue, 2004-04-06 01:00.

When you are using the linux/list.h _rcu macros along with
normal locking to protect against concurrent updates, the
memory barriers are taken care of for you. Many of the places
where one can use RCU do involve linked lists, so this works
much of the time. However, if you are in a situation where
you cannnot use these macros, then you are quite right that
an understanding of memory barriers is required.

Modern CPUs are within their rights to reorder operations
unless explicitly told not to. Therefore, locking primitives on
many CPUs contain memory barriers that prevent (for
example) the contents of the critical section from "bleeding
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out" into the surrounding code. Any such "bleeding" would
mean that part of the critical section was no longer protected
by the lock, which would result in failure. Hence the memory
barriers in locking primitives.

This situation means that lock-free operations require explicit
memory barriers. A full explanation is beyond the scope of
this comment, but the LKML thread starting with this
message and this web page are a place to start. If you want
a full treatment, Gharachorloo's Ph.D. thesis is a place to
finish.
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