548



arsesei

 AT887-0356

e ac

DRaPeE

A method of changing the AIX* operating system is described which will
allow AIX to support any method of debugging a program that is already
running or the child of a program that is in debug mode. It will also
support any method of debugging a program that performs an exec (over-
lays itself with a new program).

Since AIX supports debuggers only when the program being debugged
is a child of the debugger, in order to provide debuggers that can
debug a program that is already running, or programs that are not a
child process of the debugger, changes are made to AIX operating system
by the new method.

The method provides the following new system functions and
changes. ’

proc.h: Add new fields.

a. p_dpid - Debugger process id. The debugger process id may or
may not be the parent of the program being debugged. A new
ptrace(a) call will be made to set the p_dpid. This field
will be used by the kernel to know that an attached debugger
is running and allows a non-parent to be a program debugger.
A parent may still be the debugger.

b. p_dext - Debug extension flag. A new ptrace() call will turn
this flag on and off. This flag will indicate to the kernel
that multi-process debugging functions, such as fork() and
exec...,() require special action. When the flag is set, then
the debugger expects to debug the forked or execed program.

ptrace - Letters represent new ptrace calls. Numbers will be
assigned later.

a. ptrace(a): Add function that debugger is attached. This
function is similar to ptrace(0) except an external program
makes the ptrace(a) call as the program debugger.

b. ptrace(b): Add function that debugger is to detach from a
process.

c. ptrace(c): Add a function to get the program name. Used when
attaching a debugger to a program or when an exec has
occurred.

© 1BM Corp. 1990

276



277

METHOD TO PROVIDE CHANGES TO THE AIX OPERATING SYSTEM KERNEL FOR
MULTI-PROCESS DEBUGGING - Continued

d. ptrace(d): Add request for new debugger to attach (re-at-
tach). Used to switch debugger. Normally used when a program
forks and a different debugger is to be attached.

e. ptrace(e): Add call to set multi-process debugging active or

not active. This function sets flag p_dext (debug extended)
in proc.h. May require two calls (set & clear).

f. ptrace(0): Clear p_dpid and p_dext.

issig():

a. When stopping for the debugger to process a signal, send
SIGCHLD to the process associated with p_dpid instead of
always sending to the parent process.

fork():

a. If multi-task debugger is set, then
1. Set most proc.h information for child like parent.

2. Put both parent and child process to sleep.
3. Wake up debugger (p_dpid). At this time the parent and

child should have the same debugger process id. See
"wait" for details.

stop():

a. If program has a attached debugger (p_dpid), then wake up
their debugger as well as parent.

exit():

a. If program has a attached debugger (p_dpid), then wakeup() the
debugger and parent.

exec...():

a. 1If program has multi-process debugging set, then,
1. Put the process to sleep.
2. Send SIGTRAP to the new process.
3. wakeup() the debugger (p_dpid).

wait():

a. Change return status (stat_loc) for trace mode.

If program has the multi-process debugging set, then: '

Vol. 33 No. 2 July 1990 IBM Technical Disclosure Bulletin



METHOD TO PROVIDE CHANGES TO THE AIX OPERATING SYSTEM KERNEL FOR
MULTI-~PROCESS DEBUGGING - Continued

1. The low order 8 bits of stat_loc will be set as follows:

Ox7F = normal trace mode
Ox7E = Program forked. Child pid will be returned.
Ox7D = Program execed. ’

With the described changes, debuggers can be written that may
start debugging processes that are already running. This helps in
debugging a program that is looping, or a program that remains resi-
dent.

In addition, the debugger can be coded to provide the user with
the option of debugging all processes that an application forks and/or
execs. The user would know that his application has a child and could
debug the child as well as the parent, without losing the original
parent-child relationship.

* Trademark of IBM Corp.

Vol. 33 No. 2 July 1990 1IBM Technical Disclosure Bulletin 278



