542

AT891-0206 RMC
D. H. Steves and K, C, Witte

{]
=252 Technical Disclosure Bulletin Vol. 34 No. 8 January 1992

J2AE68059

AUDITING OBJECTS BY NAME IN AIX

Disclosed is a mechanism for auditing operating system objects by name
in a UNIX*-based operating system, such as AIX**, This mechanism
provides either greater specificity or more efficiency than other
existing mechanisms, and also provides the non-circumventability prop-
erty of a reference monitor.

Auditing is one of the two basic mechanisms used to implement
security in operating systems. Auditing provides detective security
based on user accountability. All auditing systems define the event
types which may be recorded in the audit trail on a per-user basis.
The granularity with which event types are defined is crucial to the
effectiveness of an auditing system, since this definition determines
for which actions a user may be held accountable.

The following types of actions are generally considered to be
auditable:

- use of the system authentication mechanism

~ access to objects

- administrative actioms

- production of printed material

- security-relevant events, such as failed log-ins and object
accesses

0f these, the second is the most common type of event and the
most important, since it is directly related to the principal function
of most computer systems - that is, to store and transform informa-
tion. But auditing access to objects is also the most difficult in a
UNIX-based system, due to two factors. First, file accesses (files are
the predominant type of object in a UNIX system) - normally read and
write - are made via file descriptors and not by name. Processes can
perform several operations on file descriptors, including bequeathing
them to a child process or sending them to an unrelated process, and
these operations can be used to mask the real 'perpetrator' of an
access. Second, auditing characteristics are not file system informa~
tion and so could not be stored in the file itself. Instead, it would
be considered as meta~information and this information is stored in
inodes separate from the actual file, and these inodes exist only when
the file itself exists. If the file is transitory or if the file is
updated by replacement and not in place, then the inode used for a
file will constantly change and the auditing characteristics would be
lost.

© IBM Corp. 1992

163

164

AUDITING OBJECTS BY NAME IN AIX - Continued

There are several methods that have been used In the past to
audit objects. The most common method is to require that all file-
system events be recorded in the audit trail, and this information is
then pieced together afterwards to determine object accesses. This
method will work, but it is extremely inefficient, both in writing the
audit trail and in processing the audit trail. This method requires
that every file creation, file open, file read, file write, file de-~
scriptor control and file close operation be audited. In addition,
each process creation must be audited. Moreover, in a system which
supports sockets for inter-process communication, it is possible to
transfer descriptors directly from one process to another, and so all
socket creation and descriptor transfer operations must also be audit-
ed. Since most files on a system are not interesting, this is extreme-
ly inefficient to the point of being ineffective. Further, the costs
of processing this information to perform the actual auditing are also
quite high, since it is possible that each file would have to be track-
ed across several processes. Lastly, note that this is not extensible
to objects which are not in the filesystem name space.

A second method is to put the auditing characteristics for a file
in the inode for that file, but, as was noted above, this information
can be lost if an application updates the file by replacement, which
is quite common in UNIX applications, and cannot be used for nonper-
sistent objects. This method also is not extensible to objects that
are not in the filesystem name space.

A third method is to store the auditing characteristics in the
directory entry for the file. This method works for both non-per-
sistent files and for files which are updated by replacement, but it
requires substantial modifications to directories and the system
utiliries which access them, since directory entries can exist for
nonexistent files. Another shortcoming is that the parent object must
exist for the file to be audited. Also, this method is not extensible
to non-filesystem objects.

The last method for auditing objects by name is to do the audit-
ing on a per-directory basis. Each access to a file in an audited
directory will generate an audit event. This method has the same
advantages and disadvantages of the third method, but, in additiom,
suffers from a lack of granularity. Directories are not generally
considered units of auditing, and so files in a directory will not, in
general, be in the same auditing classes. For instance, the /ete di-
rectory contains the passwd file, which is used to store security
information and it contains the filesystems file, which is used to
store information about mounted filesystems.

The disclosed mechanism has been designed to address the above
issues, and works as follows. The system auditor defines all objects
in the system which are to be audited by name, giving the object name
and type and the events which are to be generated for each type of

Vol. 34 No. 8 January 1992 IBM Technical Disclosure Bulletin

"oea0mMetIVIERY N suea0Et e

seeneer o inwy s

AEEEY Y TR Y X R

cCAnmeTIney

BT R I RPN

vesesacey

AUDITING OBJECTS BY NAME IN AIX -~ Continued

access. During system initialization, this information is used by the
system audit event logger in the kernel to build hash tables for each
directory which contains objects to be audited. These hash tables
define name to event mappings. During pathname lookup for each direc-~
tory component, these hash lists are used to determine if the object
is to be audited. If so, a structure in the vnode created for that
object is set to the events for that name. When the object is accessed
and there is an event defined for that mode of access, the audit log-
ger is notified and an audit record is generated for that event if it
is in one of the event classes to be audited for the current process.
The logging of events is noted in the vnode record, so that duplicate
accesses are not logged.

This mechanism addresses each of the problems for the other
methods described above. The mechanism is highly specific, since it
not only allows auditing of objects by name, but even allows dis-
tinguishing between different access modes. And since the auditing
characteristics are not stored in filesystem structures, this mech-
anism will correctly audit accesses to non-persistent files and files
which are updated with replacement. Last, the mechanism is easily
extensible to different types of objects because of the method of
storing the auditing characteristics and because each object to be
audited is typed and this typing can be used to define new name
spaces.

More importantly, this mechanism can be implemented efficiently
as well. For directories with no audited objects, there is no overhead
in the lookup of the pathname component. For directories with audited
objects, the overhead will be proportional to the number of audited
objects and, since the names of audited objects are maintained in a
hashed data structure, this is likely to be far less than the overhead
of the component lookup, which is done with sequential search.

* Trademark of UNIX System Laboratories, Inc.
** Trademark of IBM Corp.

Vol. 34 No. 8 January 1992 IBM Technical Disclosure Bulletin

165

