540

E SEﬂUEnT
DYNIX/ptx®

STREAMS Application
Programming Guide

1003-48616-01

DYNIX/ptx is a registered trademark of Sequent Computer Systems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc, a subsidiary of Novell, Inc..

Copyright © 1989, 1994 by Sequent Computer Systems, Inc. All rights reserved. This
document may not be copied or reproduced in any form without permission from Sequent
Computer Systems, Inc. Information in this document is subject to change without notice.

Printed in the United States of America.

An important difference between STREAMS drivers and modules is
illustrated here:

e Drivers are accessed through a node or nodes in the
filesystem and can be opened just like any other device.

¢ Modules do not occupy a filesystem node. Instead, they are
identified through a separate naming convention, and are
inserted into a stream using the I_PUSH ioctl command.

The name of a module is defined by the module developer, and is
typically included on the man page describing the module. (Man
pages describing STREAMS drivers and modules are found online
and in Section 7 of the DYNIX/ptx Reference Manual)

Modules are always pushed onto a stream immediately below the
stream head. Therefore, if a second module is pushed onto this
stream, it is inserted between the stream head and the
case-converter module.

Module and Driver Control

The next step in this example is to pass the input string and
output string to the case-converter module. This is accomplished
by issuing ioctl calls to the case-converter module.

ioctl requests are issued to drivers and modules indirectly, using
the I STR ioctl command (refer to streamio(7)). The argument to
the I_STR ioctl command must be a pointer to a strioctl
structure that specifies the request to be made to a module or
driver. This structure is defined in <stropts.h> and has the
following format:

struct strioctl {
int ic_cmd; /* ioctl request */
int ic_timout; /* ACK/NAK timeout */
int ic_len; /* length of data argument */
char *ic_dp; /* ptr to data argument */

Chapter 1 1-7
Stream Fundamentals

Chapter 2
Message Handling

The putmsg system call enables a user to create messages and
send them downstream. The user supplies the contents of the
control and data portions of the message in two separate buffers.
The getmsg system call retrieves such messages from a stream
and places the contents into two user buffers.

The syntax of putmsg is as follows:

int putmsg (fd, ctlptr, dataptr, flags)
int £4;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

These are the putmsg parameters:

Sfd Identifies the stream to which the message is
passed

ctlptr and dataptr Pointers to the control and data portions of
the message

Slags Used to specify whether a priority message should
be sent

The strbuf structure describes the control and data portions of a
message. It has the following format:

struct strbuf {
int maxlen; /* maximum buffer length */
int len; /* length of data */
char *buf; /* pointer to buffer */

}

These are the fields of strbuf:

maxlen Specifies the maximum number of bytes the
designated buffer can hold; meaningful only when
getmsg retrieves information into the buffer

len Specifies the number of bytes of data in the buffer

buf Points to a buffer containing the data

2-5

The getnsg system call retrieves messages available at the stream
head. It has the following syntax:

int getmsg (£4, ctlptr, dataptr, flags)
int f4;
struct strbuf *ctlptr;
stxruct strbuf *dataptr;
int *flags;

The parameters to getmsg are the same as those for putmsg.

putpmsg () and getpmsg() support multiple bands of data flow.
They are analogous to the system calls putmsg and getmsg. The
extra parameter is the priority band of the message.

putpmsg () has the following interface:

int putpmsg(
int fd,
struct strbuf *ctlptr,
struct strbuf *dataptr,
int band,
int flags);

The parameter band is the priority band of the message to put
downstream. The valid values for flags are MSG_HIPRI and
MSG_BAND. MSG_BAND and MSG_HIPRI are mutually exclusive.
MSG_HIPRI generates a high priority message (M_PCPROTO) and
band is ignored. MSG_BAND causes an M_PROTO or M_DATA
message to be generated and sent down the priority band specified
by band. The valid range for band is from 0 to 255 inclusive.

The call
putpmsg (fd, ctlptr, dataptr, 0 MSG_BAND);
is equivalent to the system call

putmsg(fd, ctlptr, dataptr, 0);

2-6 DYNIX/ptx STREAMS Application Programming Guide
1003-48616-01

The driver declares the variable pol1£fds as an array of pollfd
structures. This structure is defined in <poll. h> and has the
following format:

struct pollfd {
int f£d; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

}

For each entry in the array, fd specifies the file descriptor to be
polled, and events is a bitmask that contains the bitwise inclusive
OR of events to be polled for the file descriptor. On return, the
revents bitmask indicates which of the requested events occurred.

The following code opens two separate minor devices of the
communications driver and initializes the pol1£ds entry for each.
poll is used to process incoming data.

/* set events to poll for incoming data */
pollfds[0] .events POLLIN;
pollfds[1].events POLLIN;

while (1) {
/* poll and use -1 timeout */
/* (infinite) */
if (poll(pollfds, NPOLL, -1) < 0) {
perror ("poll failed”);
exit (3);
}
for (i = 0; 1 <« NPOLL; i++) {
switch (pollfds[i].revents) {
default: /* default error case */
perror (“erroxr event”);
exit(4);
case 0: /* no events */
break;
case POLLIN:
/* echo incoming data on ”“other” stream */
while ((count = read(pollfds(i}.fd, buf, 1024))
> 0)
/*
* the write loses data if flow control
* prevents the transmit at this time.
*/

if (write(

Chapter 3 3-3
Advanced Operations

Setting Up Autopush for a STREAMS Module

A STREAMS driver can establish a list of modules that the streams

subsystem will automatically push on the stream whenever any of
its minor devices is first opened.

A STREAMS module can also be bound to another such that
anytime the module is pushed on a stream, the other module is
automatically pushed after it (a compound module).

The operating system provides a routine, str_ap_add(), for
setting up autopush of a streams module on the first open of a
streams driver. During system initialization, this routine
dynamically allocates and adds entries to the static autopush
table. Following is a description of this routine:

void *

str_ap_add(char *driver_name, /* drivexr name or "" */
unsigned int lminor, /* lowest minor to autopush on */
unsigned int hminor, /* highest minor to autopush on */
char *module name, /* module name to be autopushed */
void *next_ap) /* ptr to next module to be autopushed*/

Add an Entry to the Global str_ap Autopush Table

STREAMS drivers call the str_ap_add{() function from their init
routines to establish a list of modules to be autopushed on first
open of any minor device matching the 1lminor-hminor criteria.
Any module in the list can be limited to a specific range of minor
devices (via the 1minor-hminor range specification).

Example 1: Simple List Of Modules

A driver drv specifies two modules, mod1 and mod2, to be
autopushed whenever any of its minor devices is first opened.
mod1 will be pushed first; mod2 will be pushed last. Both
modules will be pushed for all minor devices of driver drv.

3-8 DYNIXptx STREAMS Application Programming Guide
1003-48616-01

