536

Aol

Evolution

of storage
facilities in AlX

by A. Chang
M. F. Mergen
R. K. Rader
J. A. Roberts
S. L. Porter

Version 3 for RISC

System/6000
processors

The AIX* Version 3 storage facilities include
features not found in other implementations of
the UNIX' operating system. Maximum virtual
memory is more than 1000 terabytes and is used
pervasively to access all files and the meta-data
of the file systems. Each separate file system
(subtree) of the file name hierarchy occupies a
logical disk volume, composed of space from
possibly several disks. Database memory (a
variant of virtual memory) and other database
techniques are used to manage file system
meta-data. These features provide the capacity
to address large applications and many users,
simplified program access to file data, efficient
file buffering in memory, flexible management of
disk space, and reliable file systems with short
restart times.

Introduction -

AIX* Version 3 for the IBM RISC System/6000 processor
continues the evolution of storage facilities within the
framework of the UNIX" operating system that began with
AIX Version 1 [1). There are various motivations for this
evolution, such as the following:

* AlX is a trademark of International Busi Machines Corp

©Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royaity
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 34 NO. ! JANUARY 1950

o Support for larger applications and more users.

¢ Direct access to file data by ordinary program
statements.

* More efficient file buffering than that provided by a
fixed-size buffer pool.

e More flexible units of disk space management than
provided by fixed-size disks.

¢ A file subsystem that can recover from crashes and that
has a shorter restart time.

The important concepts used in this evolution include
very large virtual memory, integration of the file
subsystem with logical volumes and virtual memory, and
the innovation of database memory. The first two
concepts come from earlier systems such as Multics [2]
and the IBM System/38 [3]. Database memory was
developed in the 801 minicomputer project at the IBM
Thomas J. Watson Research Center, where all three
concepts were combined in a prototype called CPR
running on the IBM RT System [4].

This paper first explains how very large virtual memory
is achieved while preserving the AIX program interface,
based on architecture extensions described elsewhere
[4, 51. It then discusses the structure of UNIX-based file
systems and how they benefit from the flexibility of logical
volumes and from simplified buffering in virtual
memory. Finally, the use of database techniques to
implement a reliable file subsystem is described.

Very large virtual memory

The IBM POWER (Performance Optimization With
Enhanced RISC) architecture with the AIX Version 3
operating system offers 2 maximum virtual memory

 UNIX is a registered trademark of AT&T. 105

A. CHANG ET AL

106

0
I~
~
h S~ ~o
\ -~
\ ey
N\, Ny
N ~y Kemel 0
___,_\.\. —————— Exe¢ program |1
\ APrivate Read Write] 2
Segment \ 7 [Currently R
Ds N addressable Segment
A files and othes registers
_____ 27N | scaments
77 77| Shared libraries | 13
s Kermel 14
v VO devices 15
L
32-bit address space
Xl of one process
System-wide

virtual memory space

Figure . o o

Process view of system-wide virtual memory.

space of more than 1000 terabytes. The addressing
capacity is greatly increased over that of previous
versions of AIX, without affecting programs outside the
AIX kernel. This results from the inherently extensible
virtual-memory architecture of the IBM RISC
System/6000* (RS/6000) processor [4, 5], which is
summarized as follows.

Memory-access instructions generate an address of 32
bits. Four bits select a segment register and 28 bits give
an offset within the segment, providing access to 16
segments of up to 256 megabytes each. Each segment
register contains a segment ID that becomes a prefix to
the 28-bit offset, forming the virtual-memory address.
The segment ID is 24 bits in the RS/6000, for a total of
up to 16 million segments. The 52-bit virtual address
refers to a single, large, system-wide virtual memory
space, as shown in Figure 1.

The AIX process space is 2 32-bit address space; in
other words, programs use 32-bit pointers. Each process
or interrupt handler is able to address only a portion of
the system-wide virtual memory space—those segments
whose segment IDs are in the segment registers, If
desired, segment registers may be changed rapidly,
allowing a process to access many more than 16
segments. However, only the AIX kernel can load a
segment register, which enables the kernel to enforce
access permissions for objects in virtual memory.

* RISC System/6000 is a trademark of ional Business Machines C

P

A. CHANG ET AL

The system call to load a segment register (shmat) does
not specify the segment ID to be loaded, but rather a
software capability for some object that the process is
expected to address. Access permissions are checked prior
to this, during system calls that open a file or get a virtual
memory segment. If access is allowed, the kernel assigns
a segment ID (of interest only to the kernel) and gives the
process a capability (file descriptor or shared memory
identifier) for access to the segment, used later in the
shmat system call.

This 32-bit addressing and indirection through access
capabilities give each process an interface that does not
depend on the actual size of the system-wide virtual
memory space. The maximum segment ID (16 million in
the RS/6000 processor) must be large enough to
accommodate the sum of all segments of all processes,
and this maximum affects only programs inside the kernel.

Some segments are shared by all processes, some are
shared by a subset of processes, and some are accessible
to only one process. Sharing is achieved by simply
allowing two or more processes to load the same
segment ID,

The AIX Version 3 kernel loads a few segment
registers in a conventional way in all processes, implicitly
providing the memory addressability needed by most
processes, as shown in Figure 1. There are two kernel
segments, a shared-library segment and an 1/O device
segment, that are shared by all processes and whose
contents are hidden (or read-only) to non-kernel
programs. There is a segment for the current main
program (exec system call) of the process, shared on a
read-only basis with other processes executing the same
program. There is a read-write segment that is private to
the process. The remaining segment registers can be
loaded (using the shmat system call) to provide more
memory or memory access to files (described later),
shared or private, read-only or read-write, according to
access permissions.

The approach to implementing large virtual memory
in AIX systems has been described elsewhere [1, 4]. An
inverted page table, with one entry for each real page,
limits the real memory required for virtual-address
translation to a size related to real rather than virtual
memory size. The external page tables, which contain the
disk location of each virtual page, arc themselves kept in
pageable virtual memory, since they may be quite large.
Disk-allocation maps, which record the allocation state of
disk blocks, are treated similarly. The kernel page-fault
handler uses techniques called careful update and
backtracking [1, 4] to deal with page faults in its own
data structures.

The AIX Version 3 virtual-memory implementation
retains the preceding features and generalizes them, with
two motivations: to efficiently represent sparsely used

1BM J. RES. DEVELOP. VOL. 34 NO. 1 JANUARY 1990

memory and to accommodate the very large addressing
capacity of the architecture. External page tables and
other structures that contain disk locations of pages (file
system “meta-data,” described later) are organized as a
tree for each segment or file, with nodes present only
where needed for data actually stored. These and other
virtual-memory structures are allocated in several
segments, separate from the kernel segments mentioned
previously. The page-fault handler must find the segment
that contains the tree for the segment or file in which a2
page fault has occurred, and then load a segment register
to address it. These tree-containing segments also contain
an external page table for themselves, with a small
portion pinned in real memory to terminate recursion
during page-fault handling.

Another useful consequence of very large virtval
memory is that it somewhat simplifies memory allocation
within the kernel itself. Tables whose required size
depends on system load or on the number of users,
processes, or segments, can be allocated in virtual
memory at the size of the maximum design point.
Unused portions of these tables and the corresponding
external page-table tree nodes consume no real memory
or disk space. These resources are assigned only after a
page fault in a previously unused area,

Files in logical volumes and virtual memory

A file in the UNIX-based operating system is an unstructured
byte string stored in a set of not necessarily adjacent disk
blocks. File system mera-data (i-nodes, indirect blocks,
and directories) are used to find and access the files. An
i-node is a small block that contains information such as
file owner, access permissions, file size, and the locations
of a few data blocks for a small file. Larger files have a
tree of indirect blocks, rooted in the i-node, which
contain the data-block locations. A directory is a file that
contains pairs of the form (file name, i-node location)
organized for searching by file name. Directories can
contain names of other directories, thereby forming a
hierarchy or tree. A file is named by a variable-length
sequence of names that gives a directory search path,
starting from the root directory, to the directory that
contains the location of the file i-node.

As in most UNIX-based implementations, AIX Versions 1
and 2 separate total disk space into partitions, such as
one disk or a contiguous portion of one disk, sometimes
called a minidisk. Each partition contains a file system
with its own directory tree, i-nodes, indirect blocks, and
files. These separate file systems are formed into a single
naming tree by making the root directory of each file
system, except one, become a directory in the tree of
another file system (using the mount system call).

AIX Version 3 retains this model but generalizes the
concept of disk space. Each file system occupies a logical

1BM J. RES. DEVELOP. VOL. 34 NO. I JANUARY 1990

Directory
/ L3
B /
Logical volume M
N\ 7 .
S ’
N\] i-nodes
-
@ =~ Tndirect biocks
/ \\
/ \\ N
/ \) Disk-aliocation map
Partitions Files %\
Disks Y Datafile
.
L]
System-wide
virtual memory space

i File system in a logical volume and virtual memory.

volume of disk space composed of one or more disk
partitions rather than one disk partition. A partition is
contiguous on one physical disk, but a logical volume
may have partitions on more than one disk in a group of
related disks, as shown in Figure 2. All partitions in the
disk group are of one size, but logical volumes may differ
in the number of partitions they contain. Each disk
contains a description of the group it is part of, ¢.g., what
logical volumes are in the group and what partitions
belong to each volume.

This generalization of disk space has two important
results. First, the space available to a file system can be
expanded by adding a partition to the logical volume,
without stopping the system or moving any other
partition. If necessary, a disk can be added to the group
to supply more free partitions. The size of a file system is
not limited by the size of a physical disk. Second, a
logical volume can be mirrored to enhance data
availability. Each partition of such a volume has one or
two other partitions allocated on different disks to hold
identical copies of the data.

The file systems and virtual-memory pager do not use
the physical disks directly, but instead consider each
logical volume as a device and call a logical-volume
device driver. This component translates a logical-volume
disk-block location into a physical-block location or

A. CHANG ET AL

107

108

mirrored locations. If mirroring, the driver reads the
fastest copy or writes all copies identically. If a
permanent disk error occurs, the driver can assign a new
location for the block and, if mirrored, read a good copy
and write the data into the new location.

Previous versions of AIX have two possible places to
buffer the disk blocks of a file in memory. The default is
the kernej buffer cache. In addition, the shmat system call
can be used to map an entire file into a virtual-memory
segment in the caller’s space, where it is addressable by
ordinary memory-access instructions. The virtual-memory
pager is responsible for the disk 1/0 for that file, when
triggered by events such as page fault or request for a free
real page. The read and write system calls can access the
data in a file in either place.

File buffering is simplified in AIX Version 3 by not
using the kernel buffer cache. Files are always mapped
into virtual-memory segments when first opened and
there is a separate virtual-memory segment for the
different meta-data of each file system, that is, one for
i-nodes, one for indirect blocks, one for the disk-block
allocation map, and one for each directory, as shown in
Figure 2. The kernel addresses these segments by loading
their segment IDs as needed. For example, during read
and write system calls, the kernel loads the file segment
ID to move data between the file and the caller’s area.
The shmat system call simply makes file segments
addressable by non-kernel programs, as shown in Figure
1. Ordinary program statements may then be used to
access any byte in such a file, without further system
calls, which may simplify some programs considerably.

The mapping of files into virtual-memory segments is
also simplified. Rather than copying disk-block locations
from the file system into external page tables for virtual
memory, AIX Version 3 simply makes the file system
meta-data (i-nodes and indirect blocks) available to the
virtual-memory pager. The page-fault handler accesses
the file meta-data directly, to find a disk-block location
needed for page-in or to save a newly allocated disk-block
location for eventual page-out.

The virtual-memory pager uses all real memory as a
common buffer pool for the most recently referenced
pages of all virtual segments, including those used to
address all opened files. The availability of a large portion
of real memory as a buffer may significantly improve
file-access performance for some applications, compared
to the usual fixed-size buffer cache.

Database memory

Other UNIX operating systems invoke a utility program,
fsck, to detect possible file system damage after a crash.
The fsck program reads all the meta-data (i-nodes,
indirect blocks, and directories) and recommends and
performs repairs (such as putting orphan files in the /ost

A. CHANG ET AL

and found directory and deleting very damaged files) if
needed to restore a consistent state. A consistent state has
properties such as the following: The number (0 or more)
of directory entries that point to an i-node exactly equals
a link count in the i-node; each disk block belongs to, at
most, one file (one pointer in an i-node or indirect
block). Repair by the fsck program may sometimes be
impossible.

AIX Version 3 uses database memory to achieve a
more reliable file subsystem. Specifically, the kernel
implements database memory for the segments that
contain directories, i-nodes, and indirect blocks. Also,
changes to disk-block allocation maps are recorded in the
same log file used to implement database memory. The
result is that these file system meta-data are consistent or
can be made consistent after a crash simply by
application of recent records from the log file. Recovery
time with this database approach is much faster than
with the fsck program, since it is related only to the
amount of log data produced by recent file system
activity, rather than to total file system size as with fsck.

Database memory, as described in {4], is files in virtual
memory with the additional implicit properties of access
serializability and atomic update, similar to those of
database transaction systems. Database memory can be
shared and accessed concurrently by many processes
executing different transactions. The processes use
ordinary memory-access instructions to read and write
the contents of database memory, and they indicate the
end of each transaction by a call to the kernel. They need
do nothing else to coordinate with each other. The
system is designed to ensure that the permanent results in
database memory are as if the transactions execute one
after another in some order rather than concurrently and,
in the case of failures, as if each transaction executes
completely or not at all.

To implement database memory, the kernel must
detect and control the memory accesses of each process.
The RT and RS/6000 systems have a data-locking
hardware assist [4] to provide this function in a virtual-
memory segment if required. Each real page-table entry
contains a transaction ID field and lock-bits to control
access to each memory line (128 bytes in the RS/6000) of
the 4-Kbyte page. A register contains the transaction ID
of the process currently executing. Hardware prevents
access and interrupts the process if the locks in the page-
table entry belong to another transaction or if they
disallow the attempted load or store operation. In the
RS/6000 architecture, the hardware also grants and sets
locks in the page-table entry without interrupt, when only
one transaction is accessing a page or when all accesses in
a page are read accesses [5].

Lock interrupts call a lock manager in the kernel. It
searches a lock table for locks of other transactions in the

1BM J. RES. DEVELOP. VOL, 34 NO. ! JANUARY 1990

same page. If conflicting locks exist, the current process
must wait until they are released. Otherwise, the lock is
granted in the lock table and in the page table, and the
current process can continue.

Selected standard database techniques are used to
make updates atomic. Updated pages are not permitted
to page out to permanent-file disk space unless the
updating transaction has ended. When a transaction
ends, its updates are recorded in a log. The write locks
held by the transaction determine which memory lines
are copied to the log file. An end-transaction record is
logged, and then the transaction’s locks are released, If
failures occur, pages updated by uncompleted
transactions are discarded from real memory or
temporary disk space. Recent Jog records (those from
pages possibly not paged out to permanent file
space) of completed transactions (those with
end-transaction records in the log) are used to update
permanent-file disk blocks and thereby complete the
transactions.

The AIX Version 3 file system meta-data reside in
database memory segments. Each transformation of the
meta-data by the kernel from one consistent state to
another is treated as a transaction: for example, create a
file, close a file after writing into new data blocks, or
remove a file, In each of these examples, changes to
several areas of meta-data are made into an atomic unit
by the logging and recovery operations previously
described.

As in any system where lock requests may occur in any
order, the use of database memory may cause deadlock—
that is, two or more processes waiting forever for the
other(s) to release locks. Deadlock detection and recovery
are well understood, but the required undoing and
redoing of lost work would be complicated inside the file
subsystem of the kernel. Instead, deadlock involving file
system meta-data is avoided by a combination of
techniques which differ somewhat from those used with
pure database memory. Reading is allowed freely and
does not conflict with write locks. Conventional software
locking for some operations provides the proper
serialization. Hardware locking is applied to indirect
blocks only during end-transaction processing, when all
modified locations are again updated in a standard order.
Finally, if a transaction modifies several i-nodes, it does
so in a standard order.

Conclusions

The architecture extensions of the IBM RISC
System/6000 processor and the more general AIX
Version 3 implementation provide a total virtual space of
more than 1000 terabytes and a storage interface
consistent with previous versions of AIX. File data may
be addressed directly in virtual memory with ordinary

IBM J. RES. DEVELOP. VOL. 34 NO. ! JANUARY 1990

program statements, Logical volumes and file buffering in
virtual memory allow file systems to grow to very large
configurations with very little space management and
tuning effort. File-space mirroring and database memory
are designed to improve file system availability, reliability,
and recovery time.

Although most of the ideas described in this paper are
not new, their combination in an industry-compatible
workstation product may be new. Database memory is a
new approach to storage concurrency and recovery,
previously studied only in a research setting and
employed in AIX Version 3 only for the file system meta-
data. Other uses for it may be discovered within the
kernel, based on experience with AIX Version 3. Also,
database memory might be useful for non-kernel
programs, as an option at the system call interface.

References

1. J. C. O’Quin, J. T. O°Quin, M. D. Rogers, and T. A. Smith,
“Design of the IBM RT PC Virtual Memory Manager,” IBM RT
Personal Computer Technology, Order No. SA23-1057, pp. 126
130, 1986; available through IBM branch offices.

2. A. Bensoussan, C. T. Clingen, and R. C. Daley, “The Multics
Virtual Memory: Concepts and Design,” Commun. ACM 15,
308-318 (May 1972).

3. IBM System(38 Technical Developments, Order No. G580-0237,
1978; available through IBM branch offices.

4. A. Chang and M. F. Mergen, “801 Storage: Architecture and
Programming,” ACM Trans. Computer Syst. 6, 28--50 (February
1988).

5. R. R. Oehler and R. D. Groves “IBM RISC System/6000
Processor Architecture,” IBM J. Res. Develop. 34, 23-36 (1990,
this issue).

Received July 21, 1989; accepted for publication February
19, 1990

A. CHANG ET AL

109

110

Albert Chang /BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorkiown Heights, New York 10598.
Dr. Chang is a Research Staff Member in the Computer Sciences
Department of the IBM Research Division in Yorktown Heights. He
recently completed a temporary assignment at the Austin laboratory
as a programmer working primarily on the virtual memory and file
system components of the AIX Version 3 kernel. He holds the B.S.
and Ph.D. degrees in electrical engineering from the the University
of California at Berkeley.

Mark F. Mergen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
Dr. Mergen is Manager of Systems Architecture in the Advanced
RISC Systems Department at the Thomas J. Watson Research
Center. After working in FORTRAN compiler development at RCA
in Cherry Hill, New Jersey, he joined IBM in 1967 as a systems
engineer working with university customers, In 1970, he joined the
1BM Data Processing Division in Gaithersburg, Maryland, in a
group which produced job management subsystems (HASP and
JES2) for the OS/360 and MVS operating systems. Later work
included a prototype virtuat memory version of 0S/360 and a
prototype high-performance transaction system for System/370, with
databases in virtual memory. Since joining the Research Division in
1980, Dr. Mergen has worked on the integration of database
transaction concepts with virtual memory; he shares a patent fora
hardware-focking mechanism invented in this work. His continuing
interests are in computer architecture and operating systems. He has
B.S. (mathematics) and M.D. degrees from the University of
Wisconsin,

Robert K. Rader IBM Advanced Workstations Division, 11400
Burnet Road, Austin, Texas 78758 and IBM Research Division,
Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598. Dr. Rader received a B.S. in physics from
Stanford University in 1961 and a Ph.D. in physics from the
University of California at Berkeley in 1970, From 1970 to 1972 he
was a research physicist in elementary particle physics at the Centre
des Etudes Nucléaires, Saclay, France. He left the field of physics to
work on a largg interactive system for computer-based education at
the University of Illinois in 1972. Dr. Rader joined IBM in 1982 as a
Research Staff Member at the Thomas J. Watson Research Center,
as a member of the Systems Organization group. He has worked on
advanced 1/O architecture, fault-tolerant computers, and system
measurement and performance. Since 1986 he has been on
assignment to the Advanced Workstations Division in Austin, Texas,
where he joined the work on AIX Version 3 virtual memory
management as a member of the AIX Base Kernel Architecture
Department.

Jeffrey A. Roberts IBM Advanced Workstations Divisios. : 1400
Burnet Road, Austin, Texas 78758.

Scott L. Porter IBM Advanced Workstations Division, 11400
Burnet Road, Austin, Texas 78758. Mr. Porter joined IBM in 1984
after receiving a B.S. degree in computer and information science
from the University of Florida. He is a Senior Associate Programmer
in AIX kernel development and is involved with the implementation
of the AIX Version 3 virtual memory manager.

A. CHANG ET AL

IBM J. RES. DEVELOP. VOL. 34 NO. | JANUARY 1990

