535

AIX usability enhancements
and human factors

As microcomputers become capable of running in-
creasingly large and complex operating systems, the
question of the usabillty of those operating sysiems
becomes critical. Most microcomputer users neither
are nor want to be systems programmers, yet most of
the existing large operating systems assume the exis-
tence of a dedicated systems programming organiza-
tion to install and maintain system sofiware. This pa-
per describes the process by which a large existing
operating system was modified to allow it to be in-
stalled, configured, maintained, and used by individ-
uals with minimal ming knowledge. We de-
scribe the aspects that had to be changed, the kinds
of modifications that were required, the reasoning be-
hind those modifications, and the priorities that con-
strained our activity. We also describe the development
process by which potential usabliiity problems were
identified and corrections were defined, implemented,
and validated.

¢ Ri1SC Technology Personal Computer (RT Per-

sonal Computer)™ is relatively new to the 1BM
product line, having been announced in January
1986. (RT Personal Computer is a trademark of
International Business Machines Corporation.) The
RT Personal Computer combines a processor archi-
tecture that is known as Reduced Instruction Set
Computer (RI1SC) with an operating system known as
the Advanced Interactive Executive (AIx)™.' (AIX is
a trademark of International Business Machines Cor-
poration.) The core of AIX is a modified version of
the UNIX®? System V operating system, selected to
allow a number of strategic applications to be mi-
grated to the RT Personal Computer with minimal
reprogramming. (UNIX is developed and licensed by
AT&T, and is a registered trademark of AT&T in the
U.S.A. and other countries.) AIx is not simply a UNIX
variant, however. The designers disciplined them-
selves to maintain compatibility with the unix Ap-
plication Program Interface (Ap1) and to provide high
quality, usability, and performance. The designers

1BM SYSTEMS JOURNAL. VOL 26, NO 4, 1887

F.C. H. Waters
R. G. Bias
P. L. Smith-Kerker

by

made substantial changes within the UNIX compo-
nent, added function above the ApI level, and pro-
vided a virtual resource manager under the UNIX
kemnel to provide a coherent virtual machine inter-
face that had no logical home within the kernel
proper. Figure 1 shows the overall structure of AIX,
in which the section [abeled “services” contains most
of the components that interact directly with the
user. The service labeled “command processing” is
the UNIx shell. '

The human factors challenge

Any designer of a human-computer interface en-
counters a conflict between the objectives of the
novice and the expert user. A novice needs clear
direction, tutorial guides to operations, logical con-
sistency in the human-computer interface, and a
minimal short-term individual memory require-
ment. On the other hand, an expert is impatient with
mechanical requirements that increase the number
of keystrokes or processing delays. Also, experience
teaches that today’s novice often becomes tomor-
row’s expert. One of our main objectives has been
to design for a smooth transition from novice to
expert.

In the case of alx, the fact that we could change
neither the command language itself nor the appli-
cations that would be ported to Aix from other UNIx-

© Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republfish any other
portion of this paper must be obtained from the Editor.

WATERS. BIAS, AND SMITHKERKER 383

Figure 1 Overall structure of the AIX operating system

COMMUNICATIONS

DATA MANAGEMENT

ENHANCED TERMINAL SUPPORT

.| USABILITY SERVICES

SQL/AT DATABASE

. | commanp processing

ENHANCED:
VIRTUAL STORAGE
FILE SYSTEM
CONFIGURATION
.

MANAGER

like operating systems caused us to concentrate in
other areas. We concentrated our design and imple-
mentation resources on those tasks that very few
users do often enough to become experts at—instal-
lation, configuration, and system management—
which we considered the weakest points of the UNIX
human-computer interface. Thus we could indulge
in highly tutorial interfaces without too much con-
cern for the impatience of experts.

The choice of a UNIX base was particularly challeng-
ing from a human-factors point of view. The unix
operating system was originally designed as a pow-
erful and flexible tool for computer science experi-
mentation.® To users for whom a computer is a
means and not an end, however, the UNIX command
language can seem complex and unpredictable. The
very open-endedness that has allowed continuing
expansion of the UNIX functional power over the
years has resulted in a wide variety of syntaxes and

© 384 WATERS. BIAS. AND SMITHHKERKER

semantic characteristics. The need to make a com-
mand useful both in Shell scripts (i.e., the uUNIX
equivalent of vM EXECs) and when issued from the
terminal has resulted in responses that often seem
erratic to unsophisticated terminal users. For exam-
ple, the default output device for the pr (print files)
command is not a printer but Standard Out (i.e., the
display or the input end of a pipe). This is due to the
fact that the pr command is really a formatting, not
a printing, command. Thus, a user who wants a file
printed must pipe the output of the pr command
into a command that actually prints it. For example,
the command print enqueues files on the printer
queue. However, if the user says print only, the file
is printed but without formatting or pagination.

The UNIX user interface was originally designed for
typewriter-like terminals connected to a minicom-
puter via low-speed lines, Many of the characteristics
that limit the UNIx usability today—such as extreme

1BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

terseness of command language—resulted from de-
sign decisions intended to improve the performance
of the early UNIX systems.

The process of installing and customizing a UNIX
system is also quite complex, requiring an under-
standing of UNIX internal structures and processing.
Adding a new device to the configuration, for ex-

We believed it to be essential to
simplify the process of installation
and configuration for the majority of
our users.

ample, requires the user to edit a number of config-
uration files to define the new device. This configu-
ration interface is another vestige of the use of the
UNIX system primarily by system programmers.
Early users of the UNIX system needed and were
competent to use complete access to all of its internal
files. We believed it to be essential to simplify the
process of installation and configuration for the ma-
jority of our users, who might or might not be
professionally capable of installing a UNIX system,
but who in any case had more urgent objectives than
learning the uNix structures merely to install a
printer. At the same time, we wanted to preserve the
UNIX openness for the user who really needs its
flexibility. Our guiding principle was that standard
things should be easy; complex things should be

possible.

Our user interface design was subject to a number
of constraints, some architectural and some practi-
cal. The following are some of the guidelines we
observed:

» Those who use the rRT Personal Computer primar-
ily to run one specific application need an interface
that enables them to install and configure the
system and application, manage files, and perform
routine system functions without requiring the
complexities of the full command language.

o Except for the installation interface, all of the
system user interfaces are to be available in sub-

BM SYSTEMS JOURNAL. VOL 26, NO 4, 1987

stantially the same form on all of the rRT Personal
Computer console displays (including the pc
monochrome, character-oriented display) and on
attached Asynchronous terminals. Applications
operate only on those terminals and/or displays
capable of satisfying the functional requirements
of the particular application.

¢ The user must be able to switch into and exploit
the full command language when necessary.

* The ability of the RT Personal Computer system
to run multiple, concurrent, interactive sessions is
an inherent part of the user interface.

The design process

One of the earliest and most significant decisions in
the design of the usability improvements to AIX was
the inclusion of human factors professionals as mem-
bers of the design team. Two of the authors (Bias
and Smith-Kerker) took offices in the development
area and participated in the day-to-day design deci-
sions. This placing of human factors professionals in
the development mainstream is in contrast to the
more common approach of having a human factors
group act as detached observers and consultants.

Having human factors professionals organizationally
part of a separate department, but working and
having offices among the developers guards against
three potential (and sometimes actual) problems.
This way, human factors people are likely to be
perceived as committed team members by the de-
velopers. Thus, the day-to-day human factors work
is done among the developers and is visible to them.
Also, these professionals are not likely to become
uncritically sympathetic to the development con-
straints because they continue to interact with their
human-factors peers and management. Third, the
immediacy of interaction allows the detection and
correction of potential usability problems in the first
release.

Early in the development of the RT Personal Com-
puter, most of the human factors effort was directed
at providing input to the department responsible for
the development of the user interface. This group,
of which one author (Waters) was a member, was
responsible for developing a user interface specifica-
tion. The specification consisted of detailed infor-
mation on how the user interface was to function,
including presentation of displayed information,
methods by which users interacted with the system,
error message content, and help-panel content.
Everyone developing user interfaces for the RT Per-

WATERS, BUS; A0 sMTHierker 385

sonal Computer was to adhere to this user interface
speciiication.

One of the earliest human factors efforts for the RT
Personal Computer was the development of a sim-
ulat:on model of the user interface, as described by
the aser interface specification. This model proved
to ! e an excellent tool for validating the user inter-

One of the earliest human factors
efforts for the RT Personal Computer
was the development of a simulation

model of the user interface.

face specification and revealing and resolving mis-
matches between the specification and actual expe-
rience.

Although the user interface specification was quite
detailed, most people still had difficulty developing
an accurate mental picture of what the user interface
would look like and how it would function. The
model allowed people in the development organiza-
tion to actually see the user interface and use it to a
limited extent. The model also made it much easier
to understand the complex interactions among the
user interface elements. Finally, the user interface
model allowed us to discover problems with the
interface that were not obvious from reading the
specification.

In addition to employing the user interface model to
review and augment the written specification, the
model was used to make design decisions. In some
cases, possible interface designs were programmed,
and the resulting interfaces were informally evalu-
ated (in the form of an expert review) in order to
select the best design. In an expert review, possible
designs were shown to human-factors and user-in-
terface experts to help eliminate obvious flaws and
thus narrow the scope of naive-user testing. How-
ever, it was not always clear which alternative was
the most usable. In these cases, reviews of the design
alternatives were supplemented by user testing,

386 waters. Bus, AND SMTHKERKER

User testing involved having test subjects execute
tasks on the different versions of the model. After
reading some instructional material and practicing
briefly, each subject completed specific tasks that
used the elements being evaluated. As the subjects
completed the tasks, performance data were col-
lected in the form of length of time to complete each
task and number and type of user errors. Subjects
also completed questionnaires soliciting their subjec-
tive evaluations of the user interface,

Some of the model-based tests were preceded by
paper-and-pencil tests to allow us to narrow the
variations to be modeled. The main result of these
tests was to make us much more wary of paper-and-
pencil methods in general, because their results were
frequently at odds with those of the subsequent
model-based user tests.

The main design alternative studies were the follow-
ing six: (1) which symbols to use for the various
functions; (2) different methods for selecting user
interface elements from the screen; (3) various input
devices for the selection of user interface elements;
(4) the performance of users with several different
mouse input devices; (5) subjective preference for
the size and shape of mouse input devices; and (6)
symbols to use for indicating a user’s relative location
in a document while scrolling.

As the project proceeded into the detailed specifica-
tion stage, a software usability work group was cre-
ated, This work group included permanent members
from the following other groups: user interface de-
sign, development human factors, systems assurance
human factors, and information development and
design. Software developers attended those meetings
that concerned their own components. The members
of the work group developed and walked through a
series of scenarios of critical points in the use of the
operating system.

The clearest accomplishment of the software usabil-
ity work group was that many problems were iden-
tified, and the solutions recommended by the group
were accepted and implemented. However, there
were also more subtle outcomes from the work of
this group. Primarily, the group provided an excel-
lent basis for developing good working relationships
among the people responsible for usability and the
individual software developers. Specifications of the
software had not been completed during the time in
which the scenarios were being documented. Con-
sequently, members of the group worked with indi-

BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

vidual developers a great deal in order to understand
and document details of the software user interface.
This interaction provided an excellent arena for es-
tablishing a cooperative, helpful relationship. The
developers came to understand that the purpose of
the software usability work group was to help pro-
duce a better product, not to find fault with individ-
ual efforts. They also became aware that the com-
ments from the group were based on systematic
analysis and were not merely differences of taste.

As the system implementation proceeded, the hu-
man factors professionals on the project turned
much of their attention to system usability testing.
They adopted what has been referred to as a find-
and-fix methodology. That is, while the product did
have measurable usability criteria against which it
would eventually be tested (e.g., number of minutes
to install the operating system), the human factors
concern at this stage was less with criteria and de-
scriptive statistics than with particular errors made
by test subjects.

System usability testing involved placing represen-
tative users (as specified in product planning audi-
ence descriptions) in representative environments
and asking them to perform representative tasks.
The human factors professionals did collect times to
complete and error rates on all the tasks, as well as
satisfaction data from questionnaires, However, the
data of importance were the particular errors made
and the groupings of these errors. That is, if a certain
interface screen was giving users trouble, human
- factors and development team members devised an
improved presentation. An important aspect of this
testing was the immediate reporting of the results to
the responsible developers. Because the human fac-
tors professionals were part of the team, they did not
have to wait until the end of the project to make
their study and write a report, and then try to per-
suade the developers to implement their findings in
some later system release. Instead, problems and
recommendations for correction were reported to
developers as soon as they were identified. This
minimized wasted developer effort, ensured devel-
oper participation in the design of the solution, and
maximized the number of identified problems that
were corrected in the first release.

Toward the end of the development cycle, the hu-
man factors professionals conducted another itera-
tive series of tests. This series tested the customer
installation process, from unboxing and cabling the
hardware to installing and configuring the software.

1BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Again, the users and their environments and tasks
were representative of those projected for the product
in the field. Problems were reported, and fixes were
designed immediately.

Thus, the human factors professionals participated
intimately in the design, implementation, and final
shipment of the operating system. Their real-time
involvement improved the quality of many decisions
that would have been almost impossible to take back
later. Human factors involvement helped to avoid
the frustration of unimplementable changes based

We chose to build installation
dialogs that perform the mechanics
of installation via programming.

on after-the-fact assessments. At the same time, their
continuity in a human factors organization of their
professional peers kept these professionals from
being too ready to compromise in the name of
expediency. ’

Resulting user interfaces

In the process of transforming the UNIX operating
system into AIX, usability enhancements were made
in the following three main areas: installation, con-
figuration, and activity management. Whereas in-
stallation and configuration may be self-explanatory,
activity management is defined as the method by
which the A1x ability to run multiple concurrent
interactive sessions is controlled and used.

Installation. The installation of most UNIX systems
is rather complex, requiring the user to have an
understanding of the internal structure and logic of
the operating system. If we had perpetuated this
approach, the installation of A1x would have been
even more complex because of the presence of the
Virtual Resource Manager (vRM). We chose instead
to build installation dialogs that perform all of the
mechanics of installation via programming,

WATERS, BAS, AND SMTHKERKER 387

Figure2 A typical installation
panel

INSTALL AND CUSTOMIZE AIX

Item

Install AIX with current choices
Show current and recommended choices
Change current choices and install

To CANCEL and go back to the SYSTEM MANAGEMENT menu
press F3. ;

To SELECT an item, type its ID number and
press ENTER: 1

Figure3 A typical DEVICES
command screen

The following device classgses are available

Device class Description

printer Printer or plotter

ttydev Asynchronous termimal
floating Floating point accelerator
ptydev Asynchronous pseudo-terminal

To CANCEL and return to the list of commands,
press F3.,

To CHOOSE from the list, type the device class
and press ENTER.

388 waTERS. BAS. AND SMITHKERKER B0 SYSTEMS JOURNAL, VOL 26, NO 4, 1967

AlX is installed in two main stages: Virtual Resource
Manager (VRM) installation and Base (UNIX) instal-
lation. This separation is required by the fact that
the vRM is available as a separate, licensed program
product. The two installation dialogs were imple-
mented by two different development organizations
(one within and one outside 1BM), and the specific
focal point for user interface consistency-—the soft-
ware usability work group—prevented them from
diverging. The installation dialogs present the user
with a series of prompts for making choices and
mounting diskettes containing the operating system.
A typical screen is shown in Figure 2.

Configuration, Configuring a UNIX system consists of
defining the users of the system and the 1/0 devices
that are available to them. In addition, the Virtual
Resource Manager component of AIX implements
the concept of virtual minidisks. Therefore, the A1x
user must also be able to define and manipulate
minidisks. To simplify these tasks, we defined USERS,
DEVICES, and MINIDISKS commands. These com-
mands initiate interactive dialogs with the user, de-
termining the specific operation the user wants to
perform, soliciting parameters for that operation,
obtaining confirmation that the parameters have

Figure4 A Windows window

been received correctly, and then performing all of
the necessary UNIX or VRM changes to ensure that
the user’s request is done correctly. A typical DEVICES
command screen is shown in Figure 3.

The Usability Package. Since AIX is capable of run-
ning a number of independent processes simulta-
neously, we had to give the user a means of managing
those processes. We also had to give the comparative
novice a means of managing files and performing
utility operations without resorting to the UNIx Shell,
We achieved these objectives by implementing vir-
tual terminals in the vRM and by adding to the UNIX
component a Usability Package containing an Ac-
tivity Manager and Tools and Files programs.

Each virtual terminal runs an independent process,
with a separate address space and UNIX environment.
A virtual terminal running a program constitutes a
window onto the output of that program. Our user
interface currently provides six kinds of windows,
each running its own specialized user interface pro-
gram. The six types of windows are the following:

* The Windows window, shown in Figure 4, is the
operator’s control panel. It is the first thing dis-

after three other
windows have been
created el il
,_;! >SWITCR D>ENVIRONMENT >LOGOF y
% WINDOWS -
7._:.
v Window types.
. YAPPLICATIONS Run programs for specific jobs
3 >FILES Work with your files
E >TOOLS Select commands :
s DAIX Type AIX commands ;
| >DOS Type DOS conmands :
Open windows
= | sarx]
8 >CONSOLE Hidden ;
>} DFILRS /u/waters
. { >TOOLS /u/waters K
. | >WINDOWS /u/waters

$Ta L s

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

WATERS, BAS, AND SMTHKERER 389

Figure5 Aring of windows

played when the user starts the activity manager
(either explicitly or implicitly at log-on), and it is
the base from which all new windows are created.
The top portion of the Windows window contains
a list of the kinds of windows that can be created,
and the bottom portion displays a list of the win-
dows that already exist. This particular Windows
window shows a situation in which the user had
already created one AIx Shell window, one Files
window, and one Tools window.

¢ The Console window is the target for messages
such as system errors that are not specific to any
given virtual terminal. The Console window is
normally hidden and is not displayed when the
user successively displays members of a ring of win-
dows, an example of which is shown in Figure 5.

¢ A Files window is a full-screen display of a direc-
tory in the user’s file system. Selecting a file causes
the user to be presented with the set of actions
that can validly be performed on that file. The
Files program was added to implement an Object-
Action user interface (i.e., choose an object, then
specify the action to be applied to it). This reduces
the user’s need to remember the exact names and
types of files and directories, and the commands
that apply to them. An example Object-Action
screen is shown in Figure 6.

* A Tools window is a hierarchically arranged list
of commands and application programs that can
be invoked via a panel rather than a command-
language interface. The Tools program imple-

300 WATERS, BIAS, AND SMITHXERKER

ments an Action-Object user interface [i.e., choose
an action, then identify the object(s) to which it is
to be applied]. This reduces the user’s need to
remember the exact syntax (and occasional se-
mantic peculiarities) of commands. It also pro-
vides a panel interface to commands that deal
with entities that are only metaphorically objects,
such as free space in the file system. A typical
Action-Object screen is shown in Figure 7.

¢ An AIx Shell window is the equivalent of a single
instance of the A1x Shell running on an Asynchro-
nous terminal.

¢ A pos Shell window is identical to an A1x Shell
window, except that it has been preconditioned to
submit commands to the pc DOS compatibility
interface of AIX.

After log-on, the user can determine which interfaces
are most appropriate to the tasks to be performed
and then create several windows of suitable types.
The windows form a ring,

The user can move around the ring of windows with
the key combinations Alt-Action (forward) and
Shift-Action (backward). A user who has created a
large number of windows (up to the maximum of
28) can go directly to the Windows window with the
Ctrl-Action key combination. The user then moves
directly to the desired window by selecting it in the
Windows window and selecting the ACTIVATE com-
mand, which appears on the Command Bar (the top
line of the screen) when a window is selected.

Files windows. The Files program presents the user
with a list of the files in the current directory. Al-
though there are options to limit the set of files
presented, to sort the list, or to select other segments
of the directory tree for display, the primary operator
action is to select the file to be acted on. When a
selection has been made, the operator is presented
with a choice of actions that apply to the chosen file.
The determination of what actions are valid for a
particular file is based on its file type and is controlled
by a file-type description that resides in a shared data
area outside the Files program.

For each file type there may be a special print pro-
gram, compiler, editor, interpreter, etc. For any of
these entries, the specification either may be empty,
indicating that the option is not valid for that file
type, or may contain the name of the program that
provides the support for the function. For example,
for most files the editor specified is e, whereas for
object programs no editor is specified.

1BM SYSTEMS JOURNAL, VOL 26, NO 4. 1887

R 0. .

Figure6 Files program uses Object-Action

SUPDATE D>SWITCH D>ENVIRONMENT

>CREATE >SORT D>PICK >CLO

Last UPDATE at 16:02

FILES

Current directory is /u/waters

. >(root) >u Dwaters

Name File type

Changed Size (bytes)

Jaccept Untyped
>desktop Directory
>download Shell proc
Jenkeys.o Object file

11/11/86 1862
11/13/86 96
11/10/86 36
11/21/86 2224

The description of a file type is carried outside the
Files program. This provides a mechanism to modify
file types without modification of the Files program
itself. New file types can be added to the system
simply by adding a description for the new file type.
(An interactive program makes this addition easy.)
The main Files program does not require modifica-
tion unless new classes of actions are added (in
addition to print, edit, compile, etc.).

Tools windows. The Tools program presents the
operator with lists of actions that can be invoked.
Lists of actions available are grouped into sets of
related actions. The first list presented is the list of
available groups. After the selection of a group, the

BM SYSTEMS JOURNAL, VOL 26, NO 4, 1967

commands/actions that are part of that group are
presented. Selection of a particular action generally
results in a request for additional information to
allow the operator to specify the object to be acted
on.

The lists of commands are described in files that are
stored on disk, outside the object code of the Tools
program. The name of the commands or command
groups, the descriptive information presented to the
user, and the names of other files associated with the
commands are stored in these files. With this infor-
mation stored outside the object program, additional
commands and command groups can easily be
added by simply changing the files, rather than by
modifying the Tools program itself.

WATERS, BIAS, AND SMTHKERKER 301

Figure 7 Tools application uses Action-Object

>SWITCH D>ENVIRONMENT

TOOLS

Tool groups

>APPLICATIONS

>FILE HANDLING
>STATUS

>FILE SYSTEM BANDLING
>PROGRAM DEVELOPMENT
>COMMUNICATIONS

>CUSTOMIZATION

>PROBLEM INVESTIGATION

Run programs for specific jobs.
Work with individual files.

Show or change system status.,
Work with disks, diskettes, or tape.
Compile and test programs.

Define and control communication
activities.

Work with user, group, and device
descriptions.

Diagnose hardware and software
problems.

Assessing key constraints and decisions

In retrospect, our design for a Usability interface and
for Installation/Configuration interfaces was pro-
foundly affected by several early assumptions. Some
of these assumptions were made without a great deal
of analysis, because their impact on other areas of
the design was not fully understood until after the
project was complete.

Packaging. During the development of AIX, a major
objective was 10 ensure that the operating system did
not delay the hardware. To minimize the risk of any
one A1X component’s delaying the entire system, the
components were managed as separate projects, with

392 warters. Bus, AND SMITHKERKER

the intention of shipping only those that were ready
when the hardware was ready. (In the actual event,
all the components were ready when the hardware
was ready.) Unfortunately, many of these compo-
nents were not only managed independently, but
they were also thought of as ultimately becoming
separate Licensed Program Products (LPps). Thus
most of them had to be designed to operate inde-
pendently of the other Lpps—cross-dependencies
were not allowed. In particular, the Usability com-
ponent (which includes Activity Management, the
Files and Tools programs, and the dialog manage-
ment subroutines that they use) was not considered
part of the Base Operating System. Therefore, its
interfaces could not be exploited by Installation,

BM SYSTEMS JOURNAL. VOL 26, NO 4, 1967

Configuration, or other components that interacted
with the user. This meant that Usability became yet
another variant on the user interface, rather than the
overall AIX interface, with the consequent reduction
in transfer of user training from one task to another.

Supporting diverse configurations. The RT Personal

Computer is a very versatile machine, capable of

The designers took on the objective
of building a single interface that
could be used from any displays and
terminals.

supporting a single-user workstation environment, a
low-cost multi-user application, or both. Console
displays range from the PC monochrome character-
mode display to a family of megapel APA displays.
The multi-user configurations can include both 1BM
and non-iBM Asynchronous terminals. The Usability
interface designers took on the objective of building
a single interface that could be used from any of
these displays and terminals, with their diverse dis-
play capabilities and keyboards, and with and with-
out a mouse. As a result, the Usability interface had
a target lowest-common-denominator configuration
that was very limited indeed. All mouse operations
had to have a keyboard equivalent. Graphics icons
were not possible because some of the displays were
of the character-only type. The Usability interface
was thus constrained to be an assistant for users of
any of the configurations, at the possible cost of
being a more powerful tool for users of the most
sophisticated configurations.

Concluding remarks

Through our experience on the Aix part of the RT
Personal Computer project, we have learned a num-
ber of lessons, and the experience has confirmed
previous understandings in other cases. For one,
system design can be strongly influenced by business
decisions, such as the choice of applications, pack-
aging, and supported configurations. Similarly, an

1BM SYSTEMS JOURNAL, VOL 26, NO 4, 1967

accurate audience description is critical. A user in-
terface perfectly designed for the wrong user audi-
ence is the wrong interface. Like programming bugs,
usability problems must also be found and eradicated
at the earliest possible stage of development. Prob-
lems that survive into the testing stages result in
excessive development cost ot reduced product usa-
bility. Early and intensive involvement of the human
factors community in the design process results in
substantially reduced breakage and a better final
product. The human factors professionals are most
effective when they are housed with the developers
and architects during the design phase of a product
development project. Collaborative problem resolu-
tion between human factors professionals and devel-
opers results in better fixes to more problems. Man-
agement support and commitment to incorporating
human factors considerations in the design is imper-
ative. Paper and pencil tests or intuitive judgments,
even by professionals, are often misleading. A model
of the user interface that can be tested with real
subjects is essential to informed decision-making.
Finally, we must always bear in mind that there is
no detail too small to distract or frustrate a user.
Thus, there is no detail too trivial to be assessed in
human factors design. We believe that the develop-
ment process we used has resulted in a superior
interface for installation, configuration, and use of
the AIX system. It successfully protects the novice
from the UNIX complexities without limiting the
UNIX expert.

Cited references

1. R.G. Bias and P. L. Smith-Kerker, “The mainstreamed human
factors professional in the development of the IBM RT PC,”
Proceedings of the 1986 IEEE International Conference on
Systems, Man, and Cybernetics, New York (1986), pp. 153-
158,

2. D. A. Norman, “The Trouble with UNIX,” Datamation 27,
No. 12, 139-150 (1981).

3. D. M. Ritchie and K. Thompson, “The UNIX time-sharing
system,” Bell System Technical Journal 87, No. 6, Part 2 (July~
August 1978).

Frank Waters IBM Entry Systems Division, 11400 Burnet Road,
Austin, Texas 78758. Mr. Waters is an advisory programmer. He
has worked as a technical writer, programmer, and programming
manager on projects such as the IBM 7040/7044, OS/360 Release
I, TERMTEXT, OS/VSI1 and VS2, VSAM, 3850 Mass Storage
System, 8100 Data Base and Transaction Management System,
AIX user interface design, and RT PC product planning. He is
currently engaged in advanced technology projects directed by
IBM Fellow Glenn Henry.

Randolph G. Bias IBM Entry Systems Division, 11400 Burret
Road, Austin, Texas 78758. Dr. Bias is a staff human factors
engineer. He received his Ph.D. in human experimental psychol-

WATERS, BUS, AND sMmerRieR 393

ogy from the University of Texas at Austin in 1978. Prior to
coming to IBM he taught at that university and served as a member
of the technical staff at Bell Laboratories. In his three years with
1BM he has supported the development of RT PC system software,
AIX, and DisplayWrite 4. Dr. Bias is currently supporting the
development of Operating System/2, Extended Edition. This sup-
port has taken the form of early usability testing and other efforts
promoting software usability.

Penny Smith-Kerker /BM Entry Systems Division, 11400 Burnet
Road, Austin, Texas, 78758. Ms. Smith-Kerker is a staff human
factors engineer/psychologist. She has provided human factors
support on projects such as keyboard design, training materials
design, the IBM Displaywriter, AIX user interface design, customer
surveys, and advanced technology projects directed by IBM Fellow
Glenn Henry.

Reprint Order No. G321-5303.

394 WATERS, BIAS, AND SMITHKERKER BM SYSTEMS JOURNAL. VOL 26, NO 4, 1987

