533



-
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Shared-Memory Multiprocessors
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ABSTRACT

There has been great progress from the traditional allocation algorithms designed for
small memories to more modern algorithms exemplified by McKusick’s and Karel’s
allocator{7]. Nonetheless, none of these algorithms have been designed to meet the needs of
UNIX kemnels supporting commercial data-processing applications in a shared-memory
multiprocessor environment.

On a shared-memory multiprocessor, memory is a global resource. Therefore, allocator

performance depends on synchronization primitives and manipulation of shared data as well
as on raw CPU speed.

Synchronization primitives and access to shared data depend on system bus interactions.
The speed of system busses has not kept pace with that of CPUs, as witnessed by the ever-
larger caches found on recent systems. Thus, the performance of synchronization primitives
and of memory allocators that use them have not received the full benefit of increased CPU
performance.

This situation calls for a new approach to global memory allocation that is not so
dependent on synchronization primitives and manipulation of shared data. This paper
presents such an approach, which exhibits near-linear speedup on multiprocessora as well as
fifteen times the performance of the traditional algorithm when rum on a single CPU.
Nonetheless, this allocator presents an interface identical to the standard System V UNIX
allocator and performs the efficient online coalescing required by many commercial data-

processing environments.
Introduction

Parallel implementations of UNIX have been
quite successful at meeting the the needs of online
transaction-processing (OLTP) applications.
Nonetheless, one weakness of previous implementa-
tions has been the general-purpose kermmel memory
allocator.

The old version of the allocator is a straightfor-
ward global allocator whose critical sections are pro-
tected by spinlocks. Although this worked quite
well on older platforms, this allocator’s performance
iz less than optimal on newer platforms, primarily
because the speed of synchronization primitives
(such as spinlocks) has not increased as rapidly as
the speed of other instructions.

There has also been great progress in the area
of multiprocessor synchronization primitives (see
Herlihy [1] for an overview and references). How-
ever, synchronization requires global processing.
Global processing is8 very costly in comparison to
local processing and can be expected to become
even more expensive as technology advances [2, 10}
We therefore decided to abandon the search for
ever-more sophisticated syachronization primitives in

_favor of a search for an algorithm that does not
depend so heavily on synchronization. This search
bore fruit in the form of an algorithm that runs

fifteen times as fast as the old allocator on a single
processor and that exhibits linear speedup on
shared-memory multiprocessors, resulting in more
than a three-orders-of-magnitude increase in perfor-
mance, while adding online coalescing.

The next Section analyzes the behavior of the

old algorithm. Subsequent sections present the new
algorithm and its evaluation.

Analysis

Our investigation into kernel-memory-allocation
performance began when we found that the
STREAMS[9] buffer allocator was running four to
five times more slowly than predicted by instruction
counts. We quickly realized that the general-purpose
kernel-memory allocator suffered from the same
problem, which motivated us to develop the algo-
rithm described in this paper.

The remainder of this ‘section presents the
results of the investigation, describing the initial
behavior of alloch (the STREAMS buffer allocator)
and freeb (the STREAMS buffer deallocator) and
showing how the current allocation algorithm’s
interaction with the shared-memory multiprocessor
environment leads to this behavior. All measure-
ments presented in this section were taken on a
Sequent S2000/200 with a pair of 25 MHz 80486
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CPUs running DYNIX/ptx, a parallel variant of
UNIX.

Behavior of alloch

The alloch function returns a pointer to a mes-
sage, which consists of a message block, data block,
and STREAMS buffer. To do this, it must find a
buffer capable of holding the specified number of
bytes, allocate a message block and data block, and
initialize them so that the message block points to
the data block that points to the STREAMS buffer.
The caller may then link several messages together
to form a segmented message, add the message to a
queue, allocate a mew message block to form a
second reference to some data (for example, in order
to retain the data for possible later retransmission),
or free up the message.

When sufficient memory is available, alloch
exccutes a pearly fixed code se that would
require 12.5 microseconds in the sbsence of cache
misses. However, measured times ranged from 28 to
198 microseconds, with the average at 64.2
microseconds. We captured a 64.76 microsecond
trace on a logic analyzer and found that the worst 19
of the 304 off-chip accesses (6.3%) accounted for
57.6% of the elapsed time and that the worst 31
(10.2%) accounted for 68.4% of the elapsed time.

Behavior of freeb

The freeb function typically executes a fixed
code sequence that would require 8.8 microseconds
in the absence of cache misses. Measured times
ranged from 16 to 176 microseconds, with the aver-
age at 48.7 microscconds. We captured a 102.8
microsecond trace on a logic analyzer representing a
back-to-back pair of freebs invoked from freemsg,
and found that the worst 28 of the 322 off-chip
accesses (8.6%) accounted for 50.6% of the elapsed
time, while the worst 74 (23.0%) accounted for
80.3% of the elapsed time.

In both alloch and freeb the worst accesses
were cache misses, either to main memory, to the
other processor’s cache, or to uncacheable device
registers. Note that this behavior is not peculiar to
alloch or freeb; any allocator that comsisted of a
traditional allocator protected by a simple mutual-
exclusion scheme (such as the general-purpose ker-
nel memory allocator) would suffer from the same
problem. Other investigators{12] have indepen-
dently demonstrated some of the difficulties with use
of simple mutual exclusion to protect data structures
used by traditional algorithms.

An improved version of alloch is presented in
[6]). This paper describes an improved version of the
general-purpose kernel memory allocator.

"There is a small loop that selects the proper freelist
given the block size, but the maximum execution time for
this loop is only a few percent of the total runtime. There
are also variations in the number of TLB misses.
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Memory Allocator Design

This section presents the design goals that we
set out for the new memory allocator, followed by
the design itself.

Design Goals
The design goals for the new allocator are:
1) to implement full System V semantics,
2) to support high allocation/deallocation rates,
3) to scale well with increasing processor speeds,
4) to exhibit linear speedup on shared-memory
multiprocessors,
5) to be capable of allocating all available
buffers to any or all CPUs, and
6) to be capable of coalescing blocks so as to
reallocate the memory to different-sized
requests.
Implementing full System V semantics adds some
overhead. A more cfficient interface would allow
the caller to request that a given block size be
encoded into a ‘“‘magic cookic’® for use in subse-
quent allocation requests for that size, greatly reduc-
ing the number of translations from block size to
freelist address. In addition, it is permissible to take
the address of the System V allocation (kmem_alloc)
and deallocation (kmem_free) functions. A more
cfficient interface would also provide C preprocessor
macros to perform these functions, thereby avoiding
function-call overhead. This paper reports the per-
formance of both the standard version and an optim-
ized version. .

An important goal is to exceed the performance
of simple global mutual-exclusion. An allocator that
mects this goal is faster than any possible ad-hoc
allocator based on mutual exclusion; thus, it almost
entirely eliminates any motivation to create such ad-
hoc allocators. One situation in which ad-hoc allo~
cators are still beneficial is when the structures being
allocated are subject to some complex but reusable
initialization. The STREAMS buffer allocator
described earlier provides an example of this situa-
tion. Three different structures (the message block,
data block, and data buffer) must be linked together
and allocated as a umit. However, the memory
allocator’s code may be reused for special-purpose
allocators such as the STREAMS buffer allocator.
This reuse occurs at the binary level,? so that a prol-
iferation of special-purpose allocators can be accom-
modated, if need be, without undue kernel bloat.

A good allocator will scale with the processor
speeds as opposed to interconnect latencies. This
requires that the allocator exhibit good locality of
reference in order to avoid cache-thrashing and that
it avoid use of instructions such as read-modify-write

2y other words, special-purpose allocators such as
alloch invoke the same functions as does the gencral-
purpose kmem_alloc allocator.
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operations and branches that can result in CPU pipe-
line stalls,

Read-modify-write instructions can result in
pipeline stalls because they are required to be exe-
cuted as if they are atomic. Modern microproce:
operate in a pipelined fashion, overlapping the exe-
cution of several instructions. The execution of
atomic operations may be overlapped with that of
other instructions only under very restricted condi-
tions. Further advances in the art of CPU design
might well ease these restrictions. However, super-
scalar techniques (execution of several parailel pipe-
lines within a single CPU) will increase the penalty
associated with stalling for atomic operations.

Branches can result in pipeline stalls because it

- is not always possible to determine the branch’s out-

come carly enough to do sufficient instruction pre-
fetching. Therefore, the pipeline can stall, waiting
for instructions to be fetched from memory or from
cache. This effect can be clearly seea in logic-
analyzer ftraces; instruction prefetch will continue
along the wrong path when the outcome of 2 branch
is not correctly predicted. The exact magnitude of
this effect varies with architecture and with the exact
circumstances of the mispredicted branch. However,
the amount of effort that has been expended to cause
compilers to more accurately predict branches gives
some hint of the importance of this effect. Further
advances in the ans of compiler and CPU design
may make this issue less important, but algorithms
such as fully-inlined binary search will likely remain
problematic when presented with random input.

Near-linear speedups are needed in order to
support configurations with large numbers of proces-
sors and communications interfaces. To achieve this
goal, the allocator must avoid operations that require
coordination between CPUs. An analogy drawn
from traffic engincering may be belpful. Within
cities, cars must frequently cross cach other’s paths,
Drivers must coordinate their actions (with varying
degrees of aggression) in order to avoid collision,
and the speed limits are set low to allow for this
coordination. In contrast, on rural freeways cars
rarely cross each other’s paths, and a much lower
degree of coordination is required, thereby allowing
speed limits to be set higher. Likewise, multiproces-
sor allocators that avoid the need for coordination
avoid inconveniently-low speed limits.

It is clearly important that any given CPU be
able to allocate the last remaining buffer, although
the allocator is permitted to incur more overhead in
this hopefully infrequent low-memory situation.

It is not uncommon for machines in commer-
cial environments to be presented a cyclic workload.
For example, the machine might be used for data
entry and queries as part of a distributed database
during the day, and for backups and database reor-
ganization at night. These different activities often

Efficient Kernel Memory Allocation on Shared-Memory Multiprocessors

require different sizes of memory allocations, e.g.,
the data entries and queries might require huge
numbers of small blocks of memory to track data-
base locking while the backups and database reor-
ganization might require massive amounts of
memory dedicated to user processes.

Consequently, the allocator must be able to
coalesce adjacent free blocks of memory into larger
blocks, allowing memory to be used to satisfy
requests of different sizes or to be retumed to the
system for use by user processes. Allocators must
recover from problems such as overallocation of
memory to a given blocksize without a reboot.
Coalescing should not interfere with normal system
operation, since a onc-minutc pause caused by an
offline coalescing algorithm can be just as disruptive
as a reboot.

Rosads Not Taken

We considered a number of possible allocation
schemes.

Although the McKusick-Karels (MK) algorithm
[7] is extremely efficient on uniprocessors when
presenied with requests whose sizes can be deter-
mined at compile-time, it does not meet goals 3 and
4 on multiprocessors. In particular, its fully-inlined
binary scarch results in pipeline stalls because no
reasonable instruction prefetch strategy can correctly
predict all of the branches. As presented, the MK
algorithm also fails to meet goal 6, but could be
modified 10 do the required coalescing. Nonetheless,
the large number of algorithms that are directly and
indirectly derived from the MK algorithm (including
the one presented in this paper) form an impressive
testament to its strengths.

Ope such algorithm is the watermark-based
lazy buddy system[S], which attempts to combine
high-speed allocation with high-quality coalescing.
However, it requires global synchronization on each
operation and fails to maintain good locality of refer-
ence (since each block is sent singly to be coalesced,
rather than being sent in large groups), thereby fail-
ing to meet goals 3 and 4 on multiprocessors.

Another MK-derived algorithm is Rogue
Wave’s C++ memory allocator [8]. This allocator
also attempts to combine high-speed allocation with
high-quality coalescing, but intentionally degrades its
ability to coalesce in favor of decreasing the resident
set size of the program. This is a laudable goal
within a user process, but is largely irrelevant within
the kernel. Furthermore, the algorithm is not
designed for use on multiprocessors and so does not
meet goals 3 and 4 in this environment.

Algorithms designed specifically to promote
high-quality coalescing [3] are quite slow [4] and
thus fail W0 meet goal 2. It is quite difficult to
exceed the performance of removing the first ele-
ment from a simple, singly-linked, linear list.
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Allocator Design
The requirements for high speed and for
coalescing conflict to a large degree. Very litde
coalescing can be performed within the 9-VAX-
instruction budget of the McKusick-Karels allocator.
It is nevertheless possible to do both high-speed allo-
cation and high-quality, online coalescing by intro-
ducing the concept of layering to the allocator.
The allocator consists of four layers:
1) a per-CPU caching layer,
2) a global layer,
3) a coglesce-to-page layer, and
4) a coalesce-to-*‘vmblk”’ layer.
The lower-numbered layers are optimized for speed,
while the the hxghu-numbmd Iayers are optimized
for coalescing, as illustrated in Figure 1.
1&

.p."d
Figure 1: Allocator Layering

The following sections describe cach of these
layers in turn. A final section describes how *‘cook-
ies>* are used to efficiently encapsulate request-size
information.

Per-CPU Caching Layer

The only purpose of the per-CPU caching layer
is to support high-speed allocation and deallocation
in the common case. Each CPU maintains a local
cache of buffers for cach of a small fixed set of
buffer sizes, much as the McKusick-Karels algorithm
does. Consequently, there is one instance of a per-
CPU cache for cach possible CPU-buffer-size combi-
nation. For cxample, a2 four-CPU system that
managed the default set of nine power-of-two block
sizes (16, 32, 64, 128, 254, 512, 1024, 2048, and
4096 bytes) would have 36 per-CPU caches.

The lomem_alloc function first attempts to
satisfy a request for a given size of block from the
appropriate cache on the current CPU. For example,
an interrupt routine running on CPU 2 needing a
50-byte block would first check CPU 2’s cache of
64-byte blocks. CPUs are prohibited from accessing

[y
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other CPUs’ per-CPU caches, thus removing the
need for any synchronization primitives (other than
the disabling of interrupts) gnarding the per-CPU

When 8 per-CPU cache is exhausted, it is
replenished from the global layer; when it becomes
too full (as determined by a kernel psrameter named
target), the excess is put back into the global layer,
Blocks are moved in target-sized groups, preventing
unnecessary linked-list operations. This is accom-
plisbed by maintaining a split freelist in the per-CPU

cache as shown in Figure 2.
Main | Auxiliary] Target
Freelist | Freelist | Value=3
% 2
1 L ]

Figure 2: Per-CPU Data Structures

The maximum size of each half of the per-CPU
freelist is target, so that the total number of blocks
in a per-CPU freelist may range up to twice target.
Blocks are normally allocated from and freed to the
main list. If adding another block would causc the
main list 10 exceed target, main is moved to aux. If
aux is not empty, its contents are first returned to the
global layer. Thus, as shown in Figure 2, up to two
additional blocks may be freed onto main. Frecing a
third block would cause the contents of aux 0 be
returned to the global pool, the contents of main to
be moved to aux, and the newly-freed block to be
added to main. At this point, the configuration
would again be as shown in Figure 2.

If main is cmpty upon allocation, the contents
of aux, if any, are moved to main. If aux is also
empty, main is instead replenished from the global
layer. In the situation shown in Figure 2, one more
block may be allocated from main, at which point
main will be empty. A second allocation will result
in the contents of aux being moved to main and one
of the blocks being used to satisfy the allocation
request. At this point, main will contain two more
blocks and qux will be empty, allowing two addi-
tional allocations 10 be made from main.
The next allocation would find both main and aux
empty, causing main to be refilled from the global
layer.

Note that the global layer will be accessed at
most one time per targer-number of accesses. This

- means that the per-allocation overhead incurred in

the global layer may be reduced to any desired level
simply by increasing the value of targer. The only
penalty for increasing target is the increased amount
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of memory that will reside in the per-CPU caches.
In practice, there is no motivation to increase target
beyond the point at which the global-layer overhead
becomes an insignificant portion of the per-allocation
overhead.

Global Layer

The only purpose of the global layer is to sup-
port reasonable performance in cases when one CPU
allocates buffers of a given size, which are then
passed to other CPUs that free them. The global
layer allows the freed buffers to move back to the
allocating CPU without incurring the overhead of
coalescing.

There is s separate instance of the global layer
for cach block size. Each instance maintains free
blocks in lists of target-sized lists, as shown in Fig-
ure 3.

gbifree | bucket target
list list

ghltarget

value=3 | value=12

Lt -t |

Figure 3: Global Layer Data Structures

This technique allows ftarget-sized blocks of
dnutobepassedtoand&omthcpet-CPUhym
with a minimum number of linked-list operations.
Odd-sized lists of blocks may be passed into the glo-
bal layer during low-memory operation or during
per-CPU cache flushes. These lists are added to the
bucket list, which is used to group the blocks back
into target-sized lists.

When the global layer becomes too full, the
excess buffers are sent up to the coalesce-to-page
layer. When the global layer is empty, it is replen-
ished from the coalesce-to-page layer. The number
of blocks in the global layer ranges up to twice a
parameter named gbltarget. There is no reason to
maintain a split freelist at the global layer, since
each block must be individually examined by the
coalesce-to-page layer (described in the following
section) in order to determine which page’s freclist it
belongs on.

Efficlent Kernel Memory Allocation on Shared-Memory Multiprocessors

CPUO ptr
CPU1
i Per-CPU
CPU2prr Caches
CPU3 ptr
Size 0 cache
Size 1 cache
Size 2 cache
Size 3 cache
Size 4 cache
] Size 5 cache
4 Global Caches
Size 0
Global Pool

Figure 4: Per-CPU and Global Layers

A schematic view of the data structures imple-
menting the per-CPU and global layers is shown in
4, Each CP Uhulpommtommyofm

caches, and ¢ach per-CPU cache maintains
to the global pool serving its blocksize.
Reqmmmmeonvemdmmdexammtbeamy
of caches through use of a table indexed by size.
Coalesce-to-Page Layer

The coalesce-to-page layer gathers blocks of a
pvcnmmdeoaksmthcmmtopagu This layer
maintains an data structure for each page,
which contains the per-page freelist and a count of
the number of blocks in the page that are currently
free (this per-page data structure is described in
more detail in the discussion of the coalesce-to-
vmblk layer below).. When the count equals the
total number of blocks in the page, the entire page
may be given back to the system; in other words, the
coalesce-to-page layer can immediately determine
when all of the blocks in s given page have been
freed up. This ecliminates the need for a
computationally-expensive mark-and-sweep algo-
rithm or an offline sorting algorithm. Pages that
have some blocks in use are placed on a radix-sorted
freelist so that pages with the fewest free blocks will
be allocated from most frequently, as shown in Fig-
ure 5.

.w
ESE
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Size 0 Coalesce
Global Pool to page

0 PD 4 PD2

n-2 D

n-1

PD1 PDO

_ Figure 5: Coalesce-to-Page Layer

This sorting has the benefit of allowing pages
that have only 2 few in-use blocks more time to
gather them. In tum, this allows the page to be used
for allocations of other sizes and for user processes.

Once all of the blocks in a page have been
freed, the physical memory is returned to the system.
The virtual memory is retained and passed up to the
coalesce-to-vroblk layer. This process illustrates a
key difference between kemel- and user-level
memory allocators. Kemel-level allocators must
manage . the virtual address space and physical
memory explicitly and separately. In contrast, user-
level allocators need not and typically cannot easily
distinguigh between virtual and physical memory.
Coalesce-to-vmblk Layer

This layer manages large vmblks of virtual
memory (4 megabytes in size for the current imple-

-mentation). Pages of virtual-address space are allo-

cated from vmbiks as needed and are mapped onto
physical memory. Requests for blocks of memory
larger than one page bypass layers 1 through 3 and
are handled directly by the coalesce-to-vmbik layer.
Adjacent spans of free pages in a vmblk are
coalesced as they are freed; a boundary-tag-like
scheme uses per-page auxiliary data structures
(called page descriptors) to track the sizes and loca-
tions of free spans of virtual memory.

McKenney & Slingwine
Dope Vector vmblks
0
Header
1
i
3 Data
4
5
6
7 Header
vmblk
free
| Data
0 Descriptors "1[‘
1
[ 2 Header
[ 3
4
5
| 0 Datapages _%
1
2
3 Data
4
5

X
Figure 6: Sparse Array of Page Descriptors

The system must be able to locate the page
descriptor corresponding to a particular block given
only that block’s address. This is accomplished with
a two-level scheme using a sparse array as shown in
Figure 6. In the first level the upper bits of the
block’s address are used to index into a dope vector,
which contains the address of the vmblk containing
that block. The vmblk consists of a group of page
descriptors  followed by the coresponding data
pages. In the second level, the index of the block’s
page descriptor within the vmblk is obtained by sub-
tracting the vmblk’s address from the block’s
address, shifting off the lower bits to get the page
index within the vmblk, and finally subtracting the
number of pages occupied by the page descriptors.

This two-level scheme allows overhead infor-
mation to be kept only for those pages controlled by
the allocator. Other pages (such as those used by
processes) require no such overhead. The perfor-
mance penalty associated with this two-level scheme
is incurred only at the coalesce-fo-page and
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coalesce-to-vmblk layers, and therefore has a
minimal effect on overall system performance.

Page descriptors nding to pages that
have been split into blocks contain the block size, a
freelist pointer, and the number of free blocks. Page
descriptors  corresponding to spans contain the
boundary-tag information and free-list pointers
needed to allocate and coalesce large blocks.
Cookies

As noted earlier, there is significant overhead
asgociated with inlined binary searches given
widely-varying inputs that defeat branch-prediction
schemes. Hence, the inline binary search used by
the MK algorithm is most effective when the size is
known at compile time. Otherwise, a subroutine call
combined with a2 table lookup can be just as
efficient.

Explicitly requiring that the request size be
known at compile time allows the overhead of free-
ing to be further reduced (cases where the request
size is not known at compile time may be handled
by the standard function interface). The caller
invokes kmem_alloc_get cookie to translate a
request size into an opaque “‘cookie’’ that is passed
to subscquent expansions of the macros named
KMEM_ALLOC_COOKIE and KMEM_FREE_COOKIE.
The cookie contains pointers to the proper per-CPU
pools, removing the need for the free operation to
determine the block size given only its address.

The use of cookies allows the common case of
the free operation to consume only thirteen 80x86
instructions, as compared to the 16 VAX instructions
consumed by the MK algorithm.

Messurements

The following sections present instruction
counts for the allocator, measurements on a simple
benchmark that exhibits best-case performance,
measurements on another simple benchmark that

exhibits worst-case performance, and finally meas- .

urements taken from a more sophisticated benchmark
that makes more typical use of the allocator.

All measurements were taken on a Symmetry
2000 system with SOMHz 80486 processors.

Instruction Counts

The efficient “‘cookie’’ version of the allocator
executes thirteen 80x86 instructions cach for the
allocation and free operations. Allocation overhead
is comparable to that of MK when differences
between the VAX and BOx86 instruction set are
taken into account (in particular, the 80x86 lacks a
memory-to-memory move instruction). A single
additional memory reference is required in order to
handle multiple processors. The overhead of freeing
is somewhat less than that of MK even without con-
sidering instruction-set differences. The difference is
due to the use of the cookie-based scheme. MK

Efficient Kernel Memory Allocation on Shared-Memory Multiprocessors

must Jook up the block’s size and use this informa-
tion to index into the list of freelist, while the cookie
allows direct access to the proper per-CPU cache.

Note that the efficient version is nonstandard
and is useful only when the size of the request is
kmown at compile-time.

The less efficient but standard interface exe-
cutes 3§ instructions for allocation and 32 instruc-
tions for freeing, assuming that the cach of the
actual arguments can be cvaluated and stored with a
single instruction. The additional overhead is caused
by the function call and by the need to map from the
request size to the proper per-CPU cache. Currently,
all variable-sized structures have large initialization
overheads that overwhelm the performance differ-
ence between the standard and cookie-based inter-
faces.3 Therefore, there is currently little motivation
to provide a third interface that provides speedier
allocation of variable-length structures.

Best-Case Benchmark

We measured best-case performance by con-
structing a system call containing a loop that is run
for a user-specified length of time. Each pass
through the loop invokes kmem_alloc to allocate a
buffer, then invokes kmem_free to immediately deal-
locate this same buffer. When the specified length
of time has passed, the system call returns the
number of kmem_alloc/kmem_free pairs that were
executed. Thus, the measurements include the over-
head of the loop which invokes kmem_alloc and
kmem_free ; this overhead amounts to as much as
40% for the faster algorithms, This system call is
invoked from a user program, which is forced to run
on a specified CPU. Multiple-CPU data is collected
by running multiple instances of the program, each
on its own CPU. :

The performance was highly linear as shown in
Figure 7. The x-axis shows the number of CPUs
and the y-axis shows the number of pairs of alloca-
tion and freeing accomplished per second. The top
trace shows the performance of the non-standard
cookie-based macro, the next trace shows the perfor-
mance of the standard functional interface, and the
bottom two traces show the performance of naive
parallelizations of the MK algorithm and of the
“oldkma”* algorithm, which resembles ‘‘Fast Fits™
[11] (algorithm “‘S”’ in Korn’s and Vo’s survey [4]).

Figure 8 displays the same data on a semilog
plot so that the traces for the two slower algorithms
may be more easily distinguished from the x-axis.
The irregularities in the trace of the naive paralleli-
zation of the MK algorithm are due to second-order
effects resulting from the extreme lock contention
exhibited by this algorithm. These effects are

The only exception to this rule is the communications
subsystem, for which a special-purpose allocator (alloch
and freeb) already exists.
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largely masked by the greater overhead of the slower
“‘oldkma’’ algorithm.

The cookie-based allocator ranges from 15
ﬁm” m p ﬁ lﬂﬁln:! Ofﬂﬂ "oldhlﬂ" aﬂcﬂﬂm’ on
a single CPU to more than 1,000 times the perfor-
msnce on 25 CPUs‘ The standard interface is
roughly baif as fast as the cookie-based allocator,
but note that this dramatic-seeming difference in

4Although the machine we were using had 26 CPUs, we
cannot reliably messure the of all 26 CPUs
simultaneously because the script that coordinates the tests
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performance amounts to only about 20 instructions
per operation.

In contrast, the other two schemes simply did
ot scale with increasing numbers of CPUs. In fact,
in both cases, the best performance was observed
when running on a single CPU.

Hardware monitors indicate that the common
case of the two fast algorithms are free from the
cache-thrashing that accounted for so much of the
original algorithm’s execution time. We therefore
expect that the allocator will continue to scale well

must use one of the CPUs. ith increasing processoe speeds.
a4} T T T T

*cookie” ——
"newkma" -~
g R

'E oldkma® ——

8 1.5e+07 f e

2

]

]

2

n

- le+07 |

a

2

hed

ey

§ 5e+06 |

)

o 1 N IS i

10
Number of CPUa

135 20 25.
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Worst-Case Benchmark

The best-case benchmark exercises only the
per-CPU caching layer. The worst-case benchmark
exercises not only all the layers, but takes care to
exercise the upper layers to the greatest extent possi-
ble, thereby incurring the worst possible per-
allocation overbead. This is sccomplished by allo-
cating blocks of a given size untili memory is
exhausted, frecing them all, then repeating the pro-
cess with the next-larger size,

The benchmark is implemented as a shell seript
which uses a set of special-purpose system calls
which allow the user to explicitly specify sequences
of allocation and free operations. A syscall_kma()
systemuﬂmmothesystzmtoaﬂmnspeciﬁed
number of blocks of s given size, them on s
linked list in the kernel. A companion syscall_kmfR)

system call causes the system to free a specified
pumber of blocks from the linked list,

Note that an allocator that does no coalescing
would fail to complete this benchmark, having per-
manently fragmented all available memory into the
smallest possible blocks. It would be necessary to
reboot the system between runs of each block size.
An allocator that does periodic offline coalescing
would require that appropriate sleep commands be
placed in the script in order to cnsure that the
newly-freed blocks of the previous size were fully
coalesced before advancing to the next size. The
fact that our allocator required neither reboots nor
delays of any sort demonstrates the effectiveness of
the coalescing scheme.

The results are shown on Figure 9. Note that
the x-axis is in units of block size rather than

Efficient Kernel Memory Allocation on Shared-Memory Multiprocessors

number of CPUs. Large blocks showed decreased
performance because they require physical memory
to be allocated from the virtual-memory system
more frequently, and the target value is set by a
beuristic that limits the amount of memory that is
ticd up in per-CPU caches. This value ranges from
10 for 16-byte blocks to just 2 for 4096-byte blocks.
Although this beuristic may be overridden to
increase performance, there is usually little reason
to. The overbead of initializing large blocks of
memory typically overshadows the virtual-memory
system’s overhead.

Freeing small blocks is more expensive than
allocating them because of the overhead of mapping
from the block’s address to its per-page freelist.
Normally, this overhead would be infrequently
incurred, but the worst-case benchmark forces it to
occur on each and every free.

Distributed Lock Manager Benchmark

The best-case benchmark is effectively measur-
ing only the performance of the per-CPU layer,
while the worst-case benchmark overstates the over-
head of the upper layers. Realistically evaluating
the overall performance requires measuring an appli-
cation that makes more sophisticated use of the
memory allocator than did the simple benchmarks
presented in the previous sections. The application
we selected was a distributed lock manager, which
makes heavy use of kmem_alloc in order to build
data structures needed to track lock requests and
ownership. This lock manager is used by OLTP
applications 10 maintain a consistent view of data

' among & cooperating cluster of machines.
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1993 Winter USENIX ~ January 25-29, 1993 - San Diego, CA 303




Efficient Kernel Memory Allocation on Shared-Memory Multiprocessors

Unfortunately, it is not possible to directly
measure the kmem_alloc overhead in this bench-
mark. The microsecond counters used to measure
the overhead for the two simple benchmarks do not
have enough resolution to accurately measure an iso-
lated invocation of these allocators. However, the
degree by which the upper layers will degrade per-
formance can be expressed in terms of miss rates.
We define the miss rate at a given layer as the frac-
tion of accesses to that layer that require the services
of a higher layer. For the value of 10 used for tar-
get for small blocks, at most one of every ten alloca-
tions will require the services of the global layer.
Hence, the maximum miss rate from the per-CPU
caching layer is 10%. The value of 15 used for
ghitarget for small blocks results in a maximum
miss rate of 6.7% from the global layer to the
coalescing layer. The maximum combined miss rate
from the per-CPU and global layers is 0.67%. In
other words, at most one out of every 150 alloca-
tions will require service from the coalescing layer.
Real applications will fall somewhere between the
best- and worst-case benchmarks. Measuring a par-
ticular application’s miss rates allows us to estimate
that application’s allocation overhead without the
need for special-purpose hardware.

The miss rate from the per-CPU layer into the
global layer ranged from 2.1% (for frees of 256-byte
blocks) to 7.8% (for allocations of 512-byte blocks).
Note that the 7.8% figure is fairly close to the
worst-case figure of 10%. Again, if need be, the
value of rarget can be increased to reduce both the
worst-case and the real-world miss rates.

The miss rate from the global layer to the
coalesce-to-page layer ranged from 1.2% (for frees
of 256-byte blocks) to 3.0% (for allocations of 512-
byte blocks). Both these figures compare favorably
to the worst-case figure of 6.7%.

The combined miss rate of the per-CPU and
global layers to the coalesce-to-page layer ranged
from 0.02% (frees of 256-byte blocks) to 0.14%
(allocations of 512-byte blocks), both of which com-
pare favorably to the worst case of 0.67%. These
combined miss rates ensure that coalescing overhead
is diluted by a factor ranging from 700 to 5000, thus
maintaining an acceptable per-block overhead.

Conclusions

The new kmem_glloc and kanem_free functions
mect their design goals. Thesc goals are achieved
by avoiding synchronization, by taking advantage of
cache locality (rather than through use of sophisti-
cated synchronization schemes), and by maintaining
low miss rates at the per-CPU and global layers so
as to dilute the overhead inherent in coalescing.

These functions are more than capable of meet-
ing the challenge of commercial data processing.
They also clearly demonstrate that the problem of

McKenney & Slingwine

efficient resource allocation on a shared-memory
multiprocessor is quite tractable.
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