517

US005754763A

United States Patent 9 (1] Patent Number: 5,754,763
Bereiter 5] Date of Patent: May 19, 1998
[54] SOFTWARE AUDITING MECHANISM FORA ~ WOS0I550 /1992 WIPO eooscesmsmsncnn. HOAL 9/00
DISTRIBUTED COMPUTER ENTERPRISE
ENVIRONMENT OTHER PUBLICATIONS

[75] Inventor: Thomas William Bereiter, Austin, Tex. ~ IBM Technical Disclosure Bulletin “Legally Operating and
Tracking Software in 2 LAN Eavironment”, vol. 33 No. 10A

[73]1 Assignee: International Business Machines Mar. 1991.
Corponation, Armonk, N.Y. - IBM Technical Disclosure Bulletin “Software Serial Num-
ber”, vol. 26, No. 7B Dec. 1983.
[21] Appl. No.: 724,659 IBM Technical Disclosure Bulletin “Counting Users of an
(22] Filed: Oct. 1, 1996 Operating System,” vol. 38, No. 03, Mar. 1995.
: IBM Technical Disciosure Bulletin “Remote Subscription
[51] Int. CLS HOAL 9W® goryices ” vol. 37 No. 0GB, Jun. 1994,
[52] US.CL : 395/187.61; 380/4
[58] Field of Search ncerensmnsaeen 395/186, 187.01, Primaty Examiner—Albert Dﬁcldy .
395/112; 38003, 4, 23,25 Aomey, Agens, or Firm—Jeffrey . LaBaw; David H.
(561 References Cited Judson .
U.S. PATENT DOCUMENTS 571 ABSTRACT
A large distributed entesprise includes computing resources
:,32374::76; 51990 Hegshey etal. e 395/187.01 that are into one o ed regions, cach
5,023,907 region being managed by a management server servicing
5,138,712 one¢ or more gateway machines, with each gateway machine
5,204,897 servicing a phurality of endpoint machines. A method of
5260,999 11/1993 WM ceewerermsesrrssssemessssansns 380/4 anditing software usage in the environment begins by deriv-
5315206 12/1954 Huntet et al oo 395712 ing a count of 2 number of simnitancous method invocations
5390297 2/1995 Barber etal oo 38044 of one or mare application programs that occur in response
el Fa—— T T e TS
5 ’5-,9:,_” 1171996 Bains etal .o 3057712 deml:'nm.lc whether an au:hmzed number of copics of each
5671412 9/1997 ClaiStano womr—w—wo. 395/615 3pplication program within the managed regiom has been
5673315 971997 Wolf 380/4 exceeded. This protocol obwiates a dedicated licensing
server.
FOREIGN PATENT DOCUMENTS =
613073 8/1994 European Pat Off. GO6F 1/100 20 Claims, 5 Drawing Sheets

100~ ORGANIZE
LOGICAL HIERARCHY

)

102~] INITIATE SYSTEM

MANAGEMENT TASK
¥

104~ COUNT NUMBER OF
METHOD INVOCATIONS

COUNT EXCEED A
NUMBER OF PERMITTED

{SSUE WARNING

t

TAKE REMEDIAL
ACTION 110

™-~108

U.S. Patent May 19, 1998 Sheet 1 of 5 5,754,763

(' 20
\‘ TME SERVER 14

TN MANAGER

MANAGED
NODE (LARGE)

rMR

U.S. Patent May 19, 1998 Sheet 2 of 5 5,754,763

FIG. 2
GATEWAY
| et et |
16 | ” SERVER !
| ORB i
| t e
U 2N aUTHoRIZER e '
i i | THREADS
H 951 LOCATOR LIBRARY_J™-29 ! 17
: i s | ;=
i 9.1 BOA |
i 2 N
e i
ENDPOINT o ~ ENDPOINT
CLIENT CLIENT
LCF ° ° ° LCF
24 34
FIG. 2A
| [oor] [Fpmee

24A 2\43

U.S. Patent May 19, 1998 Sheet 3 of 5 5,754,763

TME SERVER

TERMINAL NODES (TNs)

U.S. Patent May 19,1998 - Sheet 4 of 5 5,754,763

APPLICATION l:l

DIALOGS

| . FIG. 5
7N cuewts) ((OBJECT IMPLEMENTATION (SERVER))72
75 83 Ts |, 81 . 27
Y N 3) /
DYNAMIC | DIRECT SERVER

mvocation | | CENT ORE. SKELETON BOA

INTERFACE INTERFACE
2 CLIENT REQUEST ;

§ RESULTS
21 OBJECT REQUEST BROKER

U.S. Patent May 19, 1998 Sheet 5 of § 5,754,763

MACHINE
BOUNDRY

FIG. 6

e i e e

100~ ORGANIZE
LOGICAL HIERARCHY

¥

102~] INITIATE SYSTEM
MANAGEMENT TASK

¥

104~] COUNT NUMBER OF
METHOD INVOCATIONS

106
DOES
COUNT EXCEED A
NUMBER OF PERMITTED
COPIES
?

FIG. 7

ISSUE WARNING

‘e

TAKE REMEDIAL
ACTION ™~110

108

5,754,763

1

SOFTWARE AUDITING MECHANISM FOR A
DISTRIBUTED COMPUTER ENTERPRISE
ENVIRONMENT

TECHNICAL FIELD
The present invention is directed to managing a large
distributed computer enterprise environment and, more
particularly, to anditing licensed program usage in a manner
that does not increase management overhead and that may
be carried out without user involvement.

BACKGROUND OF THE INVENTION

1 is known in the art to connect computers in a large,
geographically-dispersed netwark environmeat and to man-
age such environment in a distributed manner. One such
management framework consists of a server that manages a
number of nodes, each of which has a local object database
that stores object data specific to the local node. Each
managed node typically includes a management framework,
comprising a number of mapagement routines, that is
capable of a relatively large number {(e.g., hundreds) of
simultaneous network connections to remote machines.

In a netwark environment such as the one described
above, software vendors must in large part rely on the
honesty and the diligence of their custorners to ascertain the
correct number of licenses held by the customer and,
therefore, an appropriste amount to be charged to the
customex for licensing purposes. As the size and complexity
of the distributed netwark increases, the task becomes more
cumbersome and time consuming. Further, in some foreign
countries intellectnal property rights, namely the right to
exclude others from copying ar using software, are not even
recognized, let alone respected.

The priar art has addressed the problem of managing
software licensing in a pumber of ways. The most common
technique is the implementation of a licensing manager ar
sexver (or subserver) dedicated to the fanction of monitoring
and controlling access to licensed programs or other content.
Another approach is to provide a separate anditing process
to sid the user, however, this technique consumes valuable

time that could be used for other system mapage-
ment tasks, In part because of the lack of efficient technical
mechanisms and the widespread amount of illicit copying,
several private organizations have been areated to “police™
unlawful software usage on behalf of owners. The most
well-known organizations are the Software Publisher’s
Association, a non-profit trade association, and the Business
Software Alliance, an anti-piracy trade association.
Although these orgamizations are often successful in
addressing software piracy and misuse, their very existence
points out the inadequacies of priar technical solutions.

Mareover, the solutions provided by the pror art become
unmanageable or inordinately expeasive as the enterprise
increases in size. As companics grow, they desire to place ail
of their computing resources onto the enterprise network,
and this requirement places significant strain on system
administrators as the nomber of computers in the enterprise
rises. Moreover, a piece of software may be licensed to a
particular machine (a so-called “node” locked arrangement)
or the license may “float™ between machines (although only
as many clicats may use the software simultaneously as are
permitted under the lHcenses). As different types of such
machines move in and out of a large enterprise nefwork,
keeping track of licenses becomes an acute problem. The
prior art addresses this problem by adding more system
resources to manage license compliance and/or by increas-

2
ing the complexity of the licensing server. s of such
prior axt approaches are U.S. Pat. Nos. 5,138,712, 5,390,297,
5,438,508 and 5,204,897. The paradigmatic approach of the

- prior art is thas to increase the complexity and cost of license

10

15

20

30

35

45

55

&0

65

management.

1t would be desirable to have a mechanism that accurately
assesses or andits use of licensed software or other content
without adding overhead to the system, and preferably
without ovest action on the user’s part.

BRIEF SUMMARY OF THE INVENTION

B is a primary object of the invention to undertake a new
approach to software auditing in 2 large distributed enter-
prise environment which obviates complex and costly
license management schemes of the prior art,

E is ancther object of the invention to reliably audit usage
of licensed software or other content in an enterprise that has
placed a large number of its computing resources on a
petwork, without at the same time signficantly increasing
system management overhead.

It is a further important object to audit softwm usage
within a large managed network transparently such that
users arc not directly aware of the license verification
activith

Tt is still apother object of the invention to take advantage
of existing system management functionality within a man-
aged enterprise environment to facilitate auditing of licensed
software usage as a background process and with little oz no
increase in systems management overhead,

1t is a further important object of the invention to facilitate
the protection and enforcement of intellectunal property
rights within organizations that operate large distributed
compater networks, but without resott to costly and complex
licensing management mechanisms or techniques.

Another object of the invention is to provide a transparent
method of auditing software usage in conjunction with
another systems management tasic

It is still ancther important object of the invention to
automatically acquire software licensing information as a
byproduct of performing other systems management tasks
within a managed environmeat.

It is a more particular object of the inveation to take
advantage of an existing secure object-oricnted system man-
agement framework to implement a transparent software
liceasing audit protocol.

It is still another object to reduce the legal exposure
associated with operating licensed software programs within
a large enterprise environment by antomatically auditing
software usage during certain system management opera-
tions.

1 is still another object of the invention to meet the needs
of castomers with very large and geographically-dispersed
netwmhand,mmepammlniy to significantly expard the
auditing capabilities of network administrators. By enabling
sudundlﬁngprooedmesmbemnedomwnhhtﬁeano
overhead, the number of expert system administrators may
be conveniently reduced.

These and other objects are achieved in a large distributed
enterprise that includes computing resources organized into
one or more managed regions, cach region being managed
by a management sexrver servicing one or more gateway
machines, with each gateway machine servicing a plurality
of endpoint machines. A system management framework is
preferably “distributed” on the gateway machines and the
one or more endpoint machines to carry out system man-

5,754,763

3

agement tasks. A method of auditing software usage in this
network environment takes advantage of the information
pormally collected during a system management task. This
information typically includes the number of nodes of the
managed region affected by the system management task
and the type of machine located at each affected node. Using
this information, a determination is then made of the number
of podes associated with each type of machine. A calculation
is then made of the number of software copies of a particular
program that are running on the nodes associated with each
type of machine. By comparing the calculated number of
software copies of the particular program with a given
sumber of software copies of the particular program, the
system administrator (or a third party, for example, via a
remote connection) may determine whether software usage
has exceeded a given authorization. The given number of
software copies of the particular program is the number of
licensed copies of the particular program operating within
the managed region.

According to the invention, information collected during
a system management task is used to facilitate software
license compliance. Generally, a system management task is
initiated by having an object running on a first machine
invoke an operation on an object on a second machine. The
invocation is secured by an authentication protocol.
heferably, the information used in the software auditing
protocol is collected by simply counting the number of
simmitaneous invocations across the managed region as the
system management task is carried out, and then determin-
ing whether the count exceeds an authorized number.

The foregoing has outlined some of the more pertinent
objects of the present invention. These objects should be
construed to be merely illustrative of some of the more
prominent featores and applications of the invention. Many
other beneficial results can be attained by applying the
disclosed invention in a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detailed Description of the pre~
ferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings in which:

FIG. 1 illustrates a simplified diagram showing a large
distributed ing enterprise environment in which the
present invention is implemented;

FIG. 2 is a block diagram of a preferred system manage-
ment framewark ilinstrating how the framework function-
ality is distributed across the gateway and its endpoints
within a managed region;

FIG. 2A is a block diagram showing the two parts of the
LCF shown in FIG. 2.

FIG. 3 illustrates a smaller “workgroup” implementation
of the enterprise in which the server and gateway functions
are supported on the same machine;

FIG. 4 shows a simplificd representation of how a system
administrator implements a system management task; and

FIG. § illustrates the ORB/BOA object-invocation mecha-
nism used by the present invention; and

FIG. 6 illustrates a method invocation across machine
boundaries during a system management task; and

FIG. 7 is a flowchart showing a high level protocol for
auditing application program usage during a particelar sys-
tem management task.

35

65

4
DETAILED DESCRIPTION

Referring now to FIG. 1, the invention is preferably
implemented in a large distributed computer environment 10
comprising up to thousands or even tens of thousands of
“nodes.” The nodes will typically be geographically dis-
persed and the overall environment is “managed” in a
distributed manner. Preferably, the managed environment
(ME) is logically troken down into a series of loosely-
connected managed regions (MR) 12, ecach with its own
management server 14 for managing local resources with the
MR. The network typically will include other servers (not
shown) for carrying out other distributed network functions.
These inchude name sexrvers, security servers, file servers,
threads servers, time sexvers and the like. Multiple servers
14 coordinate activities across the enterprise and permit
remote sitc management and operation. Each server 14
serves a number of gateway machines 16, cach of which in
tum support a phurality of “endpoints™ 18, The server 14
coardinates all activity within the MR using a terminal node
manager 20.

Referring now to FIG. 2, each gateway machine 16 runs
a server component 22 of a system management framework.
The server component 22 is multi-threaded runtime process
that comprises several componcats: an object request broker
or “ORB” 21, an autharization service 23, object location
service 25 and basic object o “BOA” 27. Sexrver
component 22 also inchudes an object library 29, Preferably,
the ORB 21 mns continuously, separate from the operating
system, and it commanicates with both server and client
processes through separate stubs and skeletons via an inter-
process communicatior (IPC) facility 19, In particular, a
secure remote procedure call (RPC) is used to invoke
operations on remote objects. Gateway machines 16 also
includes an operating system 1S and a threads mechanism
17.

The system management framework includes a client

24 supported on cach of the endpoint machines
18. The client component 24 is a low cost, low maintenance
application that is preferably “dataless” in the sense that
system management data is not cached or stored there in a
persistent manner. System management data is information
collected or distributed as a result of a system management
task. Implementation of the management framework in this
“client-server” manner has significant advantages over the
prior art, and it facilitates the connectivity of personal
computers into the managed eavironment. Using an object-
oriented approach, the system management framework
facilitates execution of system management tasks required to
manage the resources in the managed region. Such tasks are
quite varied and include, without limitation, file and data
distribution, network usage monitoring, user management,
printer ar other resource configuration managemeat, and the
tike,

In the large entarprise sach as illustrated in FIG. 1,
preferably there is one server per MR with some number of
gateways. For a workgroup-size installation (e.g., a local
area nctwork ar “LAN”) such as illustrated in FIG. 3, a
single server-class machine may be used as the server and
gateway. References herein to a distinct server and one or
more gateway(s) should thus not be taken by way of
limitation as these elements may be combined into a single
platform. For intermediate size installations the MR grows
breadth-wise, with additional gateways then being used to
balance the load of the endpoints.

The server is the top-level anthority over all gateway and
endpoints. The server maintains an endpoint list, which

5,754,763

5

keeps track of every endpoint in a managed region. This list
contains all information necessary to uniquely identify and
manage endpoints including, without limitation, such infor-
mation as name, location, and machine type. The sexver also
maintains the mapping between endpoint and gateway, and
this mapping is dynamic. Based on site-specific settings, it
is possible to reassign endpoints when gateways go down ar
to antomatically add new endpoints as they appesr on the
network.

As poted above, there are onc or mare gateways per
managed region. A gateway is a full inanaged node that has
been configured to operate as a gateway. Initially, a gateway
“knows” nothing about cndpoints. As endpoints login
(discussed below), the gateway builds an endpeint list for its
endpoints. The gateway’s duties include: listening for end-
point login requests, listening for endpoint upcall requests,
and (its main task) acting as a gateway for method invoca-
tions on endpoints.

As also discussed above, the endpoint is a machine
running the system management framework client
component, which is referred to hercin as the low cost
framework (LCF). The LCF has two main parts: the LCF
daemon and an application runtime library. The LCF dae-
mon is responsible for endpoint login and for spawning
application endpoint executables. Once an executable is
spawned, the LCF daemon has no further interaction with it.
Each executable is linked with the application runtime
library, which handles all further communication with the
gateway.

Preferably, the server and each of the gateways is a
computer or “machine,” For example, each computer may
be a RISC Systen/6000® (a reduced instruction set ar
so-called RISC-based workstation) running the AIX
(Advanced Interactive Executive) operating system, prefer-

- ably Version 32.5 or greater. The AIX operating system is
compatible at the application interface level with the UNIX
operating system, version 5.2,

The various models of the RISC-based computers are
described in many publications of the IBM Corporation, for
example, RISC Syszem/6000, 7073 and 7016 POWERstation
and POWERserver Hardware Technical Reference, Order
No. SA23-2644-00. The ATX ing system is described
in AIX Operating System Technical Reference, poblished by
IBM Corporation, First Edition (November, 1985), and other
puablications. A detailed description of the design of the
UNIX operating system is found in a book by Maurice J.
Bach, Design of the Unix Operating System, published by
Prentice-Hall (1986). Suitable alternative machines inchude:
an IBM-compatible PC 486 or higher running Novell Unix-
Ware 2.0, an AT&T 3000 scries ronning AT&T UNIX SVR4
MP-RAS Release 2.02 or greater, Data Geperal AViiON
series running DG/UX version 5.4R3.00 or greater, an
HP900V700 and 800 series running HP/UX 9.00 through
HP/UX 9.05. Motarola 88K series running SVR4 version
R40V4.2, a Sun SPARC series running Solaris 2.3 or 2.4, or
a Sun SPARC series running SunOS 4.12 or 4.13. Of
course, other machines and/ar operating systcms may be
used as well for the gateway and server machines.

Fach endpoint is also a computer. In one preferred
embodiment of the invention, most of the endpoints are
personal compaters (e.g., desktop machines or laptops). In
this architecture, the endpoints need not be bigh powered or

complex machines or warkstations. One or more of the
endpoints may be a notebook computer, e.g., an IBM
ThinkP2d® machine, ar some other Intel x86 or Pentium®-
based computer running Windows 3.1 or greater operating

6
system. IBM® or IBM-compatible machines running under
the OS/2® operating system may also be implemented as the
endpoints. For more information on the 0S/2 operating
system, the reader is directed to OS2 2.0 Technical Library,
Programming Guide Volumes 1--3 Version 2.00, Order Nos.
10G6261, 10G6495 and 10G6494.

As noted above, the server-class framework running on
each gateway machine is multi-threaded and is capable of
maintaining hundreds of simultaneous netwark connections
to remote machines. A thread of execution may be a separate
process (in the UNIX paradigm) or a separate thread in a
single process (in the POSIX pthreads paradigm). POSIX is
a series of standards for applications and user interfaces to

" open systems, issued by the Institute of Electrical and

0

55

60

65

Flectronics Engineers Inc. (IEEE). The POSIX.1c is
the emerging standard for user level multi-threaded pro-
gramming aod is implemented in the served component of
the systems management framework. All objects in this
framework exhibit “state.” This state may be completely
persistent, in which case it is represented by attributes in the
object database associated with a gateway machine, or the
state may be non-persistent. An exaniple of the latter might
be the current list of machines that are down.

As noted above, the client-class framework running on
each endpoint is a low-maintenance, low-cost framewark
(LCF) that is ready to do management tasks but consumes
few machine resources (becanse it is normally in an idle
state). This acchitecture advantageously enables a rational
partitioning of the enterprise with 10°s of servers, 100°s of
gateway machines, and 1000’s of endpoints. Each server
typically serves up to 200 gateways, each of which services
1000°s of endpaints. At the framewark level, all operations
to or fram an endpoint pass through a gateway machine. In
many operations, the gateway is transparent; it reccives a
request, determines the targets, resends the requests, waits
for results, then retums resnits back to the caller. Each
gateway handies multiple simultaneous requests, and there
may be any number of gateways in an enterprise, with the
exact number depending on many factors including the
availahble resources and the number of endpoints that need to
be sexviced.

FIG. 4 illustrates how a systems management fask is
implemented. Bach antharized administrator 58 has access
to a desktop computer 52 containing one or more icons |
representing system resources. As administrators interact
with dialog screeas and menus available from these icons,
they are able to change system confi; ions and create
new resources in the distributed environment, all in a known
manner. In particalar, when administrator 50 interacts with
the desktop, so-called “callbacks™ are invoked from the user
interface on underlying objects representing some system
resonrceorcmnmt.'l‘heumlmxksmumlawdmtoa
series of method imvocations that actaally perform the wark
and return and results or status to the administrator.

In particular, and with reference to the process flow
diagram of FIG. 4, the information flow begins when the
administrator 50 selects an icon ar interacts with a dialog.
The information is then sent to the desktop (usually located
uagateway)atstepﬂ,atwm&umnthew

n callback method is invoked at step 56, The
callback method thea invokes core application methods at
step 58, which communicate with the application object(s)
to perform some system mapagement operation, as illus-
trated at step 39. Any return information or state is passed
back at steps 68 and 61. If an update to the user interface is
required, the desktop 52 interprets the output and updates the
dialogs on the administrator’s desktop at step 62

5,754,763

7

Preferably, the framework includes a task library that
enables administrators to create “shell” saripts that can run
an any managed node of the enterprise environment. A shell
script integrated with a managed node is called a “task.”
When administrators want to create a task, they provide a
machine and a path to an executable file. The executable can
be a shell script, a specialized script, a compiled program or
any other kind of valid executable. When a task is created,
the executable is stored as an attribute in an object database
associated with a gatewsy machine. When the task is
needed, the executable file is retrieved from the attribute and
is provided to one or more managed nodes. After a task is
created, it is added to the task library and displayed as an
icon.

As referenced above, the systems management provides
an implementation of a CORBA 1.1 Object Request Broker
(ORB), basic object adaptor (BOA), and related object
services. CORBA L1 is a specification for an object-
ariented distributed computer systems management archi-
tecture provided by The Object Management Group (OMG),
a non-profit association of more than 300 companies.
CORBA describes the use of the Object Request Broker
(ORB) and basic object adaptor (BOA) that provide a
mechanism for object invocation and return of resaits. The
specification defines interfaces to a set of low-level object
services and enables such services to be integrated in many
different language and systems using object eacapsulation,
service requestex/provider isolation, and interface and
implemgentation separation.

In a generic CORBA 1.1 implementation as seen in FIG.
5, there are three primary components: a clieat, an object
implementation, and the ORB/BOA. The client 70 is the
requestor of a service that is provided by an object imple-
mentation 72. The ORB 21 delivers the request from the

client 76 to the object implementation 72 through the BOA -

27. The object implementation 72 then performs the
requested service, and amy return data is delivered back to
the client. The client and object implementation are isolated
from cach other, and neither has any knowiedge of the other
except through their ORB/BOA interfaces. Client requests
are independent of the object implementation location and
the programming language in which they are implemented.

The ORB delivers the request to the BOA, which activates
the process under which the object implementation (e.g., a
server) runs. The BOA then invokes the method associated
with the request by way of a server skeleton 81. When the
method is finished, the BOA manages the termination of the
method and coordinates the retmre of any results to the
client. Alternatively, if a request is unknown until runtime,
2 Dynamic Invocation Intexface (DI 75 is used to build a
request used in place of a client smb 83 linked at compile
time,

‘The ORB 21 uses a secare remote procedure call (RPC)
service that provides secure peer-to-peer communication
between ORBs when an operation is invoked on a remote
object. The communication service provided within the
ORB uses a virtual transport layer residing on top of the
specific service in use, This transpost layer can consist of
cither domain sockets or TLL In the managed environment,
an application preferably is not aware of the particalar
protocol in use. This is becanse an application invokes an
operation on an object by cither calling the client stub or
through the usc of the DH 75 to build 2 request.

FIG. 6 depicts the interaction between two ORBS 85 and
87 when an object on oae machine invokes an operation on
an object on a remote machine. When a method of object 1

30

55

&0

65

8

invokes the client stub of a method of object 2, a message
is sent to ORB 85. The message specifies the method, object,
and arguments of the request (step 1). ORB 85 commumi-
cates with the management server 14 for the managed region
to determine whether the principal is authorized to invoke
the operation on object 2 (step 2). If the principal is
authorized to invoke the operation, the service also deter-
mines the location of object 2 and resolves any implemen-
tation inheritance as necessary. This information is then
returned to ORB 85 in a cryptographically-sealed credentials
package (step 3). ORB 85 then forwards the request to ORB
87 (step 4) which, in turn, invokes the desired method of
object 2 (step 5). When the method completes, the results are
passed back to ORB 87 (step 6), which returns them to ORB
8S (step 7). Finally, the results are delivered to the invoking
object (step 8).

‘The managed environment thus uses secure methods to
invoke objects across machine boundaries. There are two
aspects of this sccurity service, anthentication and authori-
zation. Authentication verifies the identity of a “peincipal.”
A fake identity on the network allows a vandal access to data
or resources that are normally unavailable. A password that
a user must enter when logging into a system is an example
of an authentication mechanism. Preferably, the network
environment uses a known “Kerberos” scheme far authen-
tication. Authoeization verifies that an identified principal
has sofficient privilege to perform a specific operation. Bach
method has an associated set of roles that control access to
the method. For any operation on an object, the authoriza-
tion process verifies that the principal has at least one of the
roles required by the method. ¥ so, the attempt to run an
operation is permitted. If not, it is refused.

In Kerberos authentication schemes, an authentication
service uses a key shared between a user’s workstation and
the server to encrypt a “ticket” that, upon successful dearyp-
tion by a workstation, gives the workstation the ability to
access services in the network. The shared key used to
encrypt the ticket is based on the user's password. The
antheptication service knows the password because it is
stored there; the workstation learns the password because
the user types it in at login. Typically, a one-way hash of the
password is used to form the shared key since the passward
is an alphamumeric string and the key is usually 2 numbez.

According to the present invention as illustrated in the
flowchart of FIG. 7, the managed enviromnent is first
organized into 2 logical “hierarchy™ as illustrated in FIG. 1
This is step 100 in the flowchart. At step 102, a system
management task is initiated. During the exccution of a
system management task, an object supported on a first
machine (e.g., an endpoint) invokes an object located on a
second machine (e.g., a gateway), or vice versa. Method
invocations are carried out in a secure manner, using a
remote procedure call or some similar mechanism. As a
managemerit task is effected, the number of method invo-
cations (for the program being used to carry out the task) is
counted at step 104, Conveniently, this count provides a
simple way of determining whether an anthorized number of
software copies (of a particular program) are running in the
system. Thus, for example, assume the system management
task in question is carried out using a software application
and that the organization (including all endpoints) is
licensed to have 500 copics of that application. Upon
execution of the system. management task that affects afl
endpoints, the number of method invocations of the software
application should equal the number of anthorized copies. At
step 186 then, a test is made to determine if the number of
particular method invocations exceeds the number of autho-

5,754,763

9

rized copies of the program in question. If the oatcome of the
test at step 106 is affirmative, then an authorized usage has
been located and the routine continues at step 108 to issue
a warning to the system administrator. Remedial action may
then be taken at step 110. If the outcome of the test at step
106 is negative, then the routine terminates with respect to
the particular invocation.

The method may be carried out either on-line, ie. during
the execution of a particular system management task, or
off-line, Le. in response to a user-entered andit command. ¥

more than one application program is used to perform the
system management task, preferably the number of method

invocations per program are counted for auditing purposes.-

The method may be invoked each time a particolar system
management task is invoked or at nser-selected intervals.
The command may be provided by a system administrator
(such as discussed above) or it may be effected remotely,
e.g, by one or more software owners whose software is
running in the managed environment. The off-line mode of
operation may be convenicntly used to run an audit of ali
licensed software in the marnaged environment in a “batch”
mode.

Of course, the number of method invocations (counted
during execution of a System management task) may be
parsed in any convenient manner to determine the namber of
endpoint (or other machmw)mnnmgiheapphcanonandme
type of machine in question. This “type” mformauonmaybe
suitably organized in any convenient manner to provide the
administrator with a list of each type of machine (e.g.. DOS,
Windows 95, etc.) that effects the method invocation. With
such information, the system administrator, or a third party
who may access the network remotely, may determine
whether unanthorized software usage is occurring in the

network. Such unanthorized usage may then be
rectified through the appropriate purchase of additionat
Hcenses or other remedial techniques.

System management tasks in the enterprise environment

may be either client or server-initiated. Using the example of

" software distribution, a client-injtiated operation would be
an endpoint requesting a particular software package. A
sexver-initiated operation would be a server pushing the
same software package to a set of endpoints. Many end-
points can make requests at the same time, in which case the
total number of active requests at any given time is the count
of simmitanecus uses. For serves-initiated operations, the
count is the number of clients specified by the sexver as
targets of the push.

The audit management provided by the present invention
may involve “node locked” or “floating” licenses. In the
node locked case, a client machine is either licensed to use
apiece of software or is not licensed. In the case of a floating
license, any client may use a piece of software, but only as
many clients may use the software simnltaneously as there
are floating licenses. In a node-locked case, when the
licensed software is installed, the particnlar machine on
which the software is then installed (which may differ) is
designated as “owner™ for each license. When a client
initiates an operation involving that software, it succeeds
only if the client owns a license. When a server initiates an
operation on a clicat endpoint involving that software, the
client is checked to ensure that it owns a license. This may
be done by verifying that a particular clicnt is in a list of
“Jicensed”™ endpoints (with respect to the software).

Floating licenses may be handled in a different manner.
EBach time a particular system management operation is
ipitiated, a check is made to the server to authorize the

3s

45

65

10
operation and to locate the target(s) of the operation. Bach
operation may be associated with an application. K the
application uses some licensed software, the server counts
the number of operations started. When this number exceeds
the license limit, appropriate notifications can be given to the
system administrator, When the operation completes, the
system management framework sends an “operation com-
plete” message to the server. It is then a simple matter for the
sexver to keep a count of the number of simultaneous
operations. This count is then compared to the number of
floating licenses.

¥f the system management framework does not issue an
operation complete message, an alternative approach would
be to define the number of simultancous uses to be the
number of uses within a particular time window, and then
note the time at which each operation starts. The server then,
in effect, generates its own “operation complete™ message at
some specific time after each operation starts.

For sexver-initiated operations, a list of client endpoints is
created. This allows a simple optimization of the above-
described counting scheme. In particular, since the operation
is invoked on each client in the list, the length of the list can
be assumed to be the desired number of simultaneous
invocations. If this number were then to exceed the number
of floating licenses, then appropriate notifications are given.

As can be scen, the present invention takes advantage of
existing system management functionality within a managed
large enterprise environment to facilitate auditing of
Licensed software usage. It thus implements a new “paca-
digm” for anditing (or taking an inventory) of software
TLicenses that does not involve complex and costly licensing
mechanizms.

The managed environment includes a logical hierarchy
comprising a management server that services one or more
gateways that, in turn, manage sets of one ot more endpoint
machines. The network “topology” may change on a fre-
queat basis as endpoint machines (¢.g., personal computers
such as notcbook computers) move im and out of the
particular netwaork configuration even within a given day.
Preferably, the audit protocol is performed as a backgrouod
process during a conventional system management task
when method invocations cross machine boundaries,
although this preferred operation is not meant to be limiting.
This approach thus pravides a simple auditing mechanism
without resort to a dedicated server or subserver, and with
htﬂeornoinueasemsyﬂammmagmemove:had.ne
invention thus facilitates the protection and enforcement of
inteliectual property rights within organizations that operate
large distributed computer netwarks. The technique of auto-
matically acquiring software licensing infarmation as a
byproduct of performing other systems management tasks
within a2 managed environmeat is advantageous in that in
reduces an organization’s legal exposure and facilitates
license compliance. The invention takes unique advantage
of an existing secure object-oriented gystem management
framewark to implement the software licensing
andit protocol, preferably by counting the number of method
invocations across the distributed environment when a par-
ticular application is used.

One of the preferred implementations of the client com-
ponent of the system management framework (including the
auditing mechanism) is as a set of instructions in a code
module resident in the random access memory of the end-
point. Until required by the computer, the set of instructions
may be stared in another computer memory, far example, in
a hard disk drive, ar in a removable memoary such as an

5,754,763

11

optical disk (for eventnal use in a CD ROM) or floppy disk
{for eventual use in a floppy disk drive), or even downloaded
via the Internet. In addition, although the various methods
described are conveniently implemented in a general por-
pose computer selectively activated or reconfigured by
software, one of ordinary skill in the art would also recog-
nize that such methods may be carried out in hardware, in
firmware, or in more specialized apparatus constructed to
perform the required methad steps.

Further, although the invention has been described in
terms of a preferred embodiment in a specific network
environment, those skilled in the art will recognize that the
invention can be practiced, with modification, in other and
different network architectures with the spirit and scope of
the appended claims. The present invention, howevez, is not
to be construed as limited to auditing of just lcensed
software programs, as other type of content (e.g., data files)
may be auditing in a similar maoner. Algo, while in the
preferred embodiment the auditing protocol is effected by
counting method invocations of a particular application
program, this is not a limitation of the invention either

Moreover, the inventive auditing technique should be useful

in any distributed network environment.

Having thus described my invention, what I claim as new
and desire to secure by Letters Patent is set forth in the
following claims:

T claim:

1. A method of auditing software usage in a managed
network environment wherein computing resources are logi-
cally arganized into ope or morc managed regions, each
region being managed by a management server servicing
one or more gateway machines, cach gateway machine
servicing a plurality of endpoint machines, comprising the
steps of:

responsive to a system management task, collecting infor-

mation about a number of nodes of the managed region
affected by the system management task and the type of
machine located at each affected node; and

using the information to audit software usage in the

managed network.

2. The method as described in claim 1 wherein the step of
using the information to audit software usage includes the
steps oft

determining the number of nodes associated with each

type of machine; and

calculating a mnmber of software copies of a particular

program that are rupning on the nodes associated with
each type of machine.

3. The method as described in claim 2 further including
the step of comparing the calculated number of software
eopmot‘thcparuaﬂarpmgramwmag;vennum&
software copies of the particular program to determine
whether software usage has exceeded a given authorization.

4. The method as described in claim 3 wherein the given
pumber of software copies of the particular program is the
number of licensed copies of the particular program oper-
ating within the managed region.

5. The method as described in claim 1 wherein the
information is used by a system administrator of the man-
aged region to audit software usage.

6. The method as described in claim 1 wherein the
information is used by a third party that remotely accesses
the managed region to andit software usage.

7. The method as described in claim 1 wherein the system
management task is injtiated by having an object running on
a first machine invoke an operation on an object on 2 second
machine,

30

45

s’

55

65

12

8. The method as described in claim 7 wherein the
invocation is secured by an authentication protocol.

9. The method as desaibed in claim 8 wherein the
information is collected by counting a number of invoca-
tions across the managed region as the system management
task is carried out.

10. The method as described in claim 1 wherein the
endpoint machines include atleast some personal computers
that are relocatable within the managed region.

11. A method of auditing software usage in a managed
netwark environment wherein computing resources are 1ogi-
cally arganized into onc or more managed regions, cach
region being managed by a management server sexvicing
one of more gateway machines, each gateway machine
su'vicix;g a plorality of endpoint machines, comprising the
steps of:

deriving a count of a number of simuitaneous method
invocations of a given application program that occur
in response to a system management task; and
usingﬂzecountﬁodetaminewhethaanauﬂnoﬁudmm-
ber of copies of the application program within the
managed region has been exceeded.
l?.lhcmcthodasdescﬂxdmclmmllwhmﬂmmp
of using the count includes the steps of:

comparing the count with the authorized number of

copies; and

issuing a notification when the count exceeds the autho-

rized nnmber of copies.
13. The method as described in claim 11 wherein the
method invocations occur across machine boundaries in the
managed region.
14. The method as descrbed in claim 13 whercin an
invocation is secured by an anthentication protocol.
15. In a large distributed enterprise wherein computing
1esources are arganized into one or more managed regions,
each region being managed by a management server servic-
mgoneamegawwaynmdnnes.ead:gaﬁewaymadnnc
sexvicing a plurality of endpoint machines, 2 method of
audmngsoftwnmgewﬂhmn;da&mtedhcenmngma,
comprising the steps of:
deriving a count of a number of simnitancous method
invocations of one or more application programs that
occur in response to a system management task; and

using the count to determine whether an anthorized num-
ber of copies of cach application program within the
managed region has been exceeded.

16. In the method of claim 15, wherein the step of using
the count inciudes the steps of:
comparing the count with the agthorized mumber of

copies; and
issuing a notification when the count exceeds the autho-

rized number of
17. In the method of claim 16, whercin the method
invocations occur across machine boundaries in the man-
aged region.

18. A computer connectable into a large distributed enter-
prise wherein computing resources are organized into one or
memnagedmgiom,e-d:mg‘cnbdngmanagedbya
mapagement server servicing one of more gateway
machines, cach gateway machine servicing a plurality of
so endpoint machines, the camputer comprising:

a processor;

an operating system; and

an audit mechanism, comprising:

means for deriving a count of a number of simultaneous
method invocations of a given application program
that occur in response to a system management task;
and

5,754,763

13 14
means for using the count to determine whether an a computer-readable storage medium having a substrate;
authorized number of copies of the application pro- and
gram within the managed region has been exceeded. program data encoded in the substrate of the computer-

19. The computer as described in claim 18 wherein the readable storage medinm, wherein the program data
computer also includes an object-oriented system manage- 5 comprises:
meat framework for managing the method invocations. means for deriving a count of a number of simnltaneous
20. A computer program prodoct for use in a computer method invocations of a given application program.
having a processar, an interface, a memory, the computer that occur in response to a system management task;
connectable into a large distributed entexprise wherein com- and :
puting resources are organized into obe or more managed 10 means for using the count to determine whether an
regions, cach region being managed by a management server anthorized number of copies of the application pro-
servicing one or more gateway machines, each gateway gram within the managed region has been exceeded.

machine servicing a plurality of endpoint machines, the
computer program product comprising: L

