516

-

(12

W" Uaktmal®
United States’}ﬂél‘#—

Bereiter

! iRt R i
8

US006581104B1

(10) Patent No.: US 6,581,104 B1

(54

(75)

(73)

)

@
@)
1)

(52
(58)

(56)

LOAD BALANCING IN A DISTRIBUTED
COMPUTER ENTERPRISE ENVIRONMENT
Inventor: Thomas William Bereiter, Austin, TX
(US)
Assignee:
Notice: TbJs patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 US.C.
154(a)X2).
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
Appl. No.: 08/724,662
Filed: Oct. 1, 1996
Int. CL.7 e GOGF 15/16
US. ClL ... 709/232; 709/233; 709/213
Field of Search 395/650, 750,
395/200.53, 200; 370/60, 234, 395, 232,
235, 253, 389, 227; 709/224, 219, 203,
201, 229, 232, 200, 105, 213, 233; 703/21;
705/9
References Cited
U.S. PATENT DOCUMENTS
4551833 A 11/1985 3707236
5,142,531 A 8/1992 ... 370/254
5204949 A * 4/1993 ... 395/200
5283807 A * 2/1994 .. 395/650
5,287,508 A * 2/1994 .. 395/650
5295139 A 3/1994
5377327 A 12/1994 395/200.65
5406559 A 4/1995 Edemetal. 370/516
542879 A * 6/1995 370/60
5,425,023 A 6/1995

45) Date of Patent: *Jun. 17, 2003
5,434,848 A 7/1995 Chimento, Jr. et al. 370/232
5,440,719 A * §8/1995 Hanesetal.ccureeeennn 703/21
5452350 A * 9/1995 Reynolds et al. weer 3797220
5,491,801 A 2/1996 Jain et al. 395/200.71

(List continued on next page.)
FOREIGN PATENT DOCUMENTS
EP 0498967 2/1991
wo 9524812 9/1995

OTHER PUBLICATIONS

Tida et al, Autonomous routing scheme for large scale
network based on neural processing IEEE, 1989.*
Douglas C.Schmidt, Tim Harrison and Ehab Al-Shaer. [ww-
w.acllanl/CORBA#DOCS], Jun. 1995.*

(List continued on next page.)

Primary Examiner—Mark Powell

Assistant Examiner—Thong Vu

(74) Attorney, Agent, or Firm—Jeffrey S. LaBaw; Joseph
R. Burwell; David H. Judson

) ABSTRACT

A method of balancing loads during data distribution in a
managed network environment wherein at least one gateway
machine services a plurality of endpoints. System manage-
ment tasks include data distributions, which are normally
initiated at the gateway and distributed to all managed
endpoints. Load balancing is achieved by setting a load
parameter for each subnet of cach network path between the
gateway machine and an endpoint machine serviced thereby.
The load parameter is selectable and identifies an amount of
network bandwidth that may be used by a particular data
distribution over the segment. Prior to initiating a
distribution, the effective load that a given subnet will “see”
when the operation begins is then calculated. If that effective
load for any subnet exceeds that subnet’s respective load
parameier, the data distribution rate is altered for the overall
network path. This technique effectively balances network
loads and makes more efficient use of resources.

16 Claims, 5§ Drawing Sheets

US 6,581,104 B1

Page 2
U.S. PATENT DOCUMENTS 5805072 A * 9/1998 Kakemizu 370/408
. 5,889,761 A * 3/1999 Yamato 370/231

5,506,834 A * 4/1996 Sekihata et al. 370/253 5023849 A * 7/1999 Venkatraman .. 700/224
5515371 A 5/1996 370/517 5925100 A * 7/1999 Drewry et al. 7097219
5517643 A * 5/1996 395/650 5,978,851 A * 11/1999 Kayama et al. 709/232
5,581,610 A * 121996 i 379133
5,598,566 A * 1/1997 Pascucci et al 395/750 OTHER PUBLICATIONS
5,600,637 A * 2/1997 370/389
5,652,751 A * 7/1997 3707227 IBM Technical Disclosure Bulletin “Connection Establish-
5,712981 A * 1/1998 McKee et al 709241 ment in Hierarchical Networks with Bandwidth Manage-
5,717,745 A * 2/1998 Vijay etal. . 379112 e vol. 35, No. 6, Nov., 1992
5,734,652 A * 3/1998 KWOk 3707395 7o 70 5 TR y . .
5742587 A * 4/1998 Zomig et al. ... 370/235 IBM Technical Disclosure Bulletin “Predicting Congestion
5,774,668 A * 6/1998 Choquier et al. 7091203 in Packet Switch Networks,” vol. 18 No. 6, Nov. 1975.
5793976 A * 8/1998 Chenetal. ... 709/224
5,799,002 A * 8/1998 Krishnancceesceerns 370/234 * cited by examiper

U.S. Patent Jun. 17, 2003

Sheet 1 of 5§ US 6,581,104 B1
[20\‘ TME SERVER
TN MANAGER
12
MANAGED
MANAGED MANAGED NODE (LARGE)
NODE NODE
16 16 16
I
N
/ :.//’/
coo 33 \\;.3 MR
TN GATEWAY TN GATEWAY TN GATEWAY

NODES (TNs)]

U.S. Patent Jun. 17, 2003 Sheet 2 of 5 US 6,581,104 B1

FIG. 2
GATEWAY
i SERVER 1
16~ 1 214 I
I ORB i
I I ! 19
| 23] PC
: N AUTHORIZER SECT :
! BRARY Riog ! THREADS L\
| e LOCATOR u 23 | 17
25 !
{ } 0SS Lk
i BOA f 15
77 N
e e e e e e e e o 22
ENDPOINT ENDPOINT
CLIENT CLIENT
LCF o o o LCF
N
24 24
oo | | Pamee | | FIC. 24
A N
248 [+,
oW
A
| ~35
FIG. 44 | FIG. 4B | RoutR
A By

EP1 EP2 EP1 EP2

U.S. Patent Jun. 17,2003 Sheet 3 of 5 US 6,581,104 B1

TME SERVER

TERMINAL NODES (TNs)

FIG. 3

GW GwW

Ay
b ROUTER Ar —IC

ROUTER, ROUTER,

B c BL lD

EP1 EP2 EPt EP2

FIG. 4C FIG. 4D

U.S. Patent Jun. 17, 2003

Sheet 4 of 5 US 6,581,104 B1
FIG. 6
SOURCE NODE
A (10 mb) C (10 mb)
EP1 EP3
EP2 EP4 B (10 mb) ROUTER
G (100 mb)
EP14
ROUTER £P13
D (10 mb) F (10 mb)
EP5 EP7 EP11
E (56kb)
EP6 EP8 EP10 EP12
EP9
30~{"SET TUNABLE LOAD PARAMETER
¥
32~ INVOKE METHOD
¥
34 CALCULATE EFFECTIVE LOAD
™ FOR EACH SUBNET THAT WILL
HANDLE THE METHOD INVOKED
EFFECTIVE LOAD IN FIG. 6
ANY AFFECTED SUBNET HAVE™_ YES
A PREDETERMINED RELATIONSHIP g
T0 THAT SUBNET'S LOAD
PARAMETER ALTER CHARACTERISTICS
2 OF HOW DATA WILL
BE DISTRIBUTED |40
v
38 INITIATE PHYSICAL DISTRIBUTION INITIATE PHYSICAL
DISTRIBUTION 42

U.S. Patent Jun. 17,2003 Sheet 5 of 5 US 6,581,104 Bl

APPLICATION l]

DIALOGS

Y

APPLICATION
,
60

FIG. 8
0N cuents) @Ecr IMPLEMENTATION (SERVER) }~ 72
75 83 T [5 8 s 2
N\ / /
DYNAMIC DIRECT SERVER
mvocaion | | CHENT ore | | skewerow | | B0
INTERFACE INTERFACE
2 CLIENT REQUEST 5
RESULTS
217 OBJECT REQUEST BROKER

US 6,581,104 B1

1

LOAD BALANCING IN A DISTRIBUTED
COMPUTER ENTERPRISE ENVIRONMENT

TECHNICAL FIELD

The present invention is directed to managing a large
distributed enterprise environment and, more particnlarly, to
regulating how data is distributed among computing
resources in the managed environment.

BACKGROUND OF THE INVENTION

The problem of designing the most-efficient message
distribution hierarchy in a complex network must take into
consideration a number of factors including network
topology, network bandwidth and machine resources. A
well-designed distribution method would be both efficient
and fault tolerant. Because of the varying capabilities of the
actual networks in use today, however, it is not possible to
select, a priori, a distribution method that will work well for
all petworks. This problem is exacerbated in a large,
geographically-dispersed network environment. One such
known environment includes a management framework
comprising a server that manages a number of nodes, each
of which has a local object database that stores object data
specific to the local node. The server is used to perform a
variety of system management tasks, including a multi-
plexed distribution service that performs an efficient one-
to-many data distribution. A data distribution is typically
initiated at each target node with an object method invoca-
tion.

It is also known in such distribution schemes to provide
a network load tupable parameter that can be set to limit the
amount of data a distribution will write per unit time. Such
techniques, however, do not adequately address the serious
Joading problems that can occur when multiple endpoints
seek to obtain distribution service at the same time. The
following illustrates this problem in a representative distri-
bution hierarchy. Assume a repeater in the network fans-ont
to 50 machines, the machines are all on separate T1 links,
and the network has a 10 mbit local area network (LAN) that
must be crossed o get 10 a router running the T1 links. The
repeater has a sustainable send rate of 750 KB/sec, and the
petload tuning parameter is set to 500 KB/sec to keep LAN
traffic manageable. In this example, the LAN becomes a
“bottleneck” because only 4-5 endpoints (500/1.5) can be
kept busy in parallel. If the distribution is made to more than
5 endpoints in parallel, all distributions are slowed down.
Sending the distribution to all 50 machines has the effect of
making each network only one tenth as busy. The problem
is made even worse if the endpoint machires include rela-
tively slow modems (e.g., less than 9600 baud), which is
quite common since endpoint machines are typically the last
part of the enterprise to be upgraded. On these old networks,
even a single 16 K write operation saturates the network for
close to 30 seconds, making it impossible to do other work.

Thus, it would be desirable to provide an improved
mechanism to distribute data efficiently in a managed pet-
work environment.

BRIEF SUMMARY OF THE INVENTION

It is a primary object of the invention to provide an
efficient one-to-many data distribution service for a distrib-
uted enterprise computing environment.

It is 2 more specific object of the invention to control
distribution of data in a large, geographically-dispersed
managed enterprise having a plurality of endpoint machines.

10

60

65

2

It is another object of the invention to enable an enterprise
to place substantially all of its computing resources on a
network that is managed in a reliable, cost-effective manner,
and to provide an efficient data distribution service within
such enterprise.

It is a further object of the invention to provide a multi-
plexed distribution scheme within a managed environment
wherein distribution loads within one or more networks
connected to respective endpoint machines are balanced.

Still another object of the invention is to provide load
control for each network that connects an endpoint machine
to 2 management node in the enterprise environment.

Another object of the invention is to facilitate parallel
distribution to endpoint machines in a large, distributed
enterprise environment.

It is another object of the invention to use actual network
load information during a data distribution to ensure that
cach network does not exceed a desired load value.

1t is still another object of the invention to meet the needs
of customers with very large and geographically-dispersed
networks and, more particularly, to significantly expand the
data distribution capabilities of the network administrators.

These and other objects are achieved in a large distributed
enterprise that includes computing resources organized into
one or more managed regions, each region being managed
by a management server servicing one or more gateway
machines, with each gateway machine servicing a plurality
of endpoint machines. A system management framework is
preferably “distributed” on the gateway machines and the
one or more endpoint machines to carry out system man-
agement tasks.

To facilitate balanced distribution of data, a network
administrator first sets a load parameter identifying an
amount of network bandwidth that may be consumed by a
particular data distribution over each subnet of each network
path between the gateway machine and the endpoints ser-
viced by that gateway. Prior to initiating a data distribution,
a calculation is made of the effective load for each subnet
that will be affected by (ie. that will handle) the data
distribution. A determination is then made regarding
whether the effective load in any subnet that is affected by
the data distribution exceeds the load parameter for that
subnet. If so, the data distribution is altered by inserting one
or more delays in the rate at which data is transmitted over
the affected petwork path from the gateway. The data
distribution, as altered, is then initiated. These steps are
repeated for a new data distribution, or at predetermined
intervals.

The foregoing has outlined some of the more pertinent
objects of the present invention. These objects should be
construed to be merely illustrative of some of the more
prominent features and applications of the invention. Many
other beneficial results can be attained by applying the
disclosed invention in a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detailed Description of the pre-
ferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings in which:

FIG. 1 illustrates a simplified diagram showing a large
distributed computing enterprise environment in which the
present invegtion is implemented;

US 6,581,104 B1

3

FIG. 2 is a block diagram of a preferred system manage-
ment framework illustrating how the framework function-
ality is distributed across the gateway and its endpoints
within a managed region;

FIG. 2A is a block diagram of the LCF client component
of the system management framework;

FIG. 3 illustrates a smaller “workgroup” implementation
of the enterprise in which the server and gateway functions
are supported on the same machine;

FIGS. 4A-4D illustrate several representative network
connections between a gateway machine and a pair of
endpoint machines in a representative managed network;

FIG. 5 illustrates a superset of all of the network connec-
tions shown in FIGS. 4A-4D showing a representative
portion of the managed network;

FIG. 6 is a flowchart showing a preferred method of
managing a data distribution according to the present inven-
tion;

FIG. 7 shows a simplified representation of how a system
administrator implements a system management task; and

FIG. 8 illustrates the ORB/BOA object-invocation mecha-
nism used to facilitate a data distribution in the invention.

DETAILED DESCRIPTION

Referring now to FIG. 1, the invention is preferably
implemented in a large distributed computer environment 10
comprising up to thousands or even tens of thousands of
“nodes.” The nodes will typically be geographically dis-
persed and the overall environment is “managed” in a
distributed manner. Preferably, the managed environment
(ME) is logically broken down into a series of loosely-
connected managed regions (MR) 12, each with its own
management server 14 for managing local resources with the
MR. The network typically will include other servers (not
shown) for carrying out other distributed network functions.
These include name servers, security servers, file servers,
threads servers, time servers and the like. Multiple servers
14 coondinate activities across the enterprise and permit
remote site management and operation. Each server 14
serves a number of gateway machines 16, each of which in
turn support a plurality of “endpoints” 18. The server 14
coordinates all activity within the MR using a terminal node
manager 20.

Referring now to FIG. 2, each gateway machine 16 runs
a server component 22 of a system management framework.
The server component 22 is multi-threaded runtime process
that comprises several components: an object request broker
or “ORB” 21, an authorization service 23, object location
service 28 and basic object adaptor or “BOA” 27. Server
component 22 also includes an object library 29. Preferably,
the ORB 21 runs continuously, separate from the operating
system, and it communicates with both server and client
processes through separate stubs and skeletons via an inter-
process communication (IPC) facility 19. In particular, 2
secure remote procedure call (RPC) is used to invoke
operations on remote objects. Gateway machines 16 also
includes an operating system 15 and a threads mechanism
17.

The system management framework includes a client
component 24 supported on each of the endpoint machines
18. The client component 24 is a low cost, low maintenance
application suite that is preferably “dataless” in the sense
that system management data is not cached or stored there
in a persistent manner. Implementation of the management
framework in this “client-server” manuner has sigpificant

10

45

55

65

4

advantages over the prior art, and it facilitates the connec-
tivity of personal computers into the managed environment.
Using an object-oriented approach, the system management
framework facilitates execution of system management
tasks required to manage the resources in the MR. Such
tasks are quite varied and include, without limitation, file
and data distribution, network usage monitoring, user
management, printer or other resource configuration
management, and the like.

In the large enterprise such as illustrated in FIG. 1
preferably there is one server per MR with some number of
gateways. For a workgroup-size installation (e.g., a local
area network or “LAN”) such as illustrated in FIG. 3, a
single server-class machine may be used as the server and
gateway. References herein to a distinct server and one or
more gateways should thus not be taken by way of Limitation
as these devices may be combined into a single platform. For
intermediate size installations the MR grows breadth-wise,
with additional gateways then being used to balance the load
of the endpoints.

The server is the top-level authority over all gateway and
endpoints. The server maintains an endpoint list, which
keeps track of every endpoiunt in a managed region. This list
contains all information necessary to uniquely identify and
manage endpoints including, without limitation, such infor-
mation as name, location, and machine type. The server also
maintains the mapping between endpoint and gateway, and
this mapping is dynamic. Based on site-specific scttings, it
is possible to reassign endpoints when gateways go down or
to automatically add new endpoints as they appear on the
network.

As noted above, there are one or more gateways per
managed region. A gateway is a full managed node that has
been configured to operate as a gateway. Initially, a gateway:
“knows” nothing about endpoints. As endpoints login
(discussed below), the gateway builds an endpoint list for its
endpoints. The gateway’s duties include: listening for end-
point login requests, listening for endpoint upcall requests,
and (its main task) acting as a gateway for method invoca-
tions on endpoints.

As also discussed above, the endpoint is a machine
running the system management framework client
component, which is referred to hercin as the low cost
framework (LCF). The LCF has two main parts as illustrated
in FIG. 2A: the Icf daemon 244 and an application runtime
library 24b. The LCF daemon 244 is responsible for end-
point login and for spawning application endpoint
executables. Once an executable is spawned, the LCF dae-
mon 24¢ has no further interaction with it. Each exccutable
is linked with the application runtime library 24b, which
handles all further communication with the gateway.

Preferably, the server and each of the gateways is a
computer or “machine.” For example, each computer may
be a RISC System/6000® (a reduced instruction set or
so-called RISC-based workstation) running the AIX
{Advanced Interactive Executive) operating system, prefer-
ably Version 3.2.5 or greater. The AIX operating system is
compatible at the application interface level with the UNIX
operating system, version 5.2.

The various models of the RISC-based computers are
described in many publications of the IBM Corporation, for
example, RISC System/6000, 7073 and 7016 POWERSsta-
tion and POWERserver Hardware Technical Reference.
Order No. SA23-2644-00. The AIX operating system is
described in AIX Operating System Technical Reference,
published by IBM Corporation, First Edition (November,

US 6,581,104 B1

5

1985), and other publications. A detailed description of the
design of the UNIX operating system is found in a book by
Maurice J. Bach, Design of the Unix Operating System,
published by Preptice-Hall (1986). Suitable alternative
machines include: an IBM-compatible PC 486 or higher
running Novell UnixWare 2.0, an AT& T 3000 series running
AT&T UNIX SVR4 MP-RAS Release 2.02 or greater, Data
General AViiON series running DG/UX version 5.4R3.00 or
greater, an HP9000/700 and 800 series running HP/UX 9.00
through HP/UX 9.05. Motorola 88K series running SVR4
version R40V4.2, a Sun SPARC series running Solaris 2.3 or
2.4, or a Sun SPARC series running SunOS 4.1.2 or 4.1.3.
Of course, other machines and/or operating systems may be
vsed as well for the gateway and server machines.

Each endpoint is also a computer. In one preferred
embodiment of the invention, most of the endpoints are
personal computers (e.g., desktop machines or laptops). In
this architecture, the endpoints need not be high powered or
complex machines or workstations. One or more of the
endpoints may be a notebook computer, such as an IBM
ThinkPad® machine, or some other Intel x86 or Pentinm®-
based computer running Windows 3.1 or greater operating
system. [BM® or IBM-compatible machines running under
the OS/2® operating system may also be implemented as the
endpoints. For more information on the OS/2 operating
system, the reader is directed to 08/2 2.0 Technical Library.
Programming Guide Volumes 1-3 Version 2.00, Order Nos.
10G6261, 10G6495 and 10G6494.

As noted above, the server-class framework running on
each gateway machine is multi-threaded and is capable of
maintaiping headreds of simultancous network connections
to remote machines. A thread of execution may be a separate
process (in the UNIX paradigm) or a separate thread in a
single process (in the POSIX pthreads paradigm). POSIX is
a series of standards for applications and user interfaces to
open systems, issued by the Institute of Electrical and
Electronics Engineers Inc. (IEEE). The IEEE POSIX.1c is
the emerging standard for user level multi-threaded pro-
gramming and is implemented in the served component of
the systems management framework. All objects in this
framework exhibit “state.” This state may be completely
persistent, in which case it is represented by attributes in the
object database associated with a gateway machine, or the
state may be non-persistent.

An endpoint is added to the enterprise by first copying the
LCF daemon 24a to the endpoint’s disk. This may be done
automatically through network login scripts, mamually by
inserting a diskette, or by preloading the boot disk at the time
of purchase or license. The first time the LCF daemon is
installed, and on each subsequent boot, the LCF daemon
attempts to login to its gateway. If the gateway is not known
or if the gateway does not respord, the dacmon issues a
broadcast requesting a gateway. For completely new end-
points the broadcast is ultimately forwarded to the server. If
a gateway hears a broadcast or a login request from an
endpoint it recognizes, the gateway services the request
itself.

When the server receives an endpoint’s gateway request
broadcast, the server consults its endpoint list to see which
gateway the endpoint belongs to. For new endpoints, or
when migrating between- gateways, the server uses a site
specific policy to choose the correct gateway (e.g., by
subnet). The gateway is informed of its new endpoint, the
gateway informs the endpoint, and the login completes.

An endpoint preferably cornmunicates only with its gate-
way. Requiring all endpoint communication to pass through

25

6
a single gateway greatly simplifies connectivity issues. After
a successful login, both endpoint and gateway know a
working address by which to address one another. If a DHCP
address lease expires, or anything changes in the network
topology, then the next endpoint login will establish the new
endpoint to gateway addresses.

There is no absolute maximum number of endpoints that
can be supported by a single gateway. The design strategy is
that the gateway is always in control of its own workload.
The endpoints are not allowed to send data unless granted
permission. When an endpoint has results to return, or if it
wishes to make an upcall, it sends a very small message
requesting service. The gateway queues the request and
services the queue as time allows. When an endpoint has
large results, it must break the results into chunks and may
only send a chunk when instructed to do so. This strategy
makes it possible for a single gateway to sapport thousands
of endpoints, albeit somwhat slowly. If a better quality of
service is desired, it is simply a matter of adding more
galeways.

Endpoint methods are normal CORBA methods (as dis-
cussed below) linked with IDL compiler generated code and
the endpoint application runtime library 24b. This results in
a pative executable designed to be spawned by the LCF
dacmon 244. Any number of methods may be implemented
in a single executable.

Preferably, an endpoint is installed without any methods.
Method executables are downloaded from the gateway as
required. When the LCF daemon receives a method invo-
cation request, it checks the local disk cache. If there is a
cache miss, or a version mismatch, then a new executable is
downloaded. In this way, an endpoint can start with nothing
and then build a working set of methods for fast execution.

FIGS. 4A—4E illustrate how a particular gateway (GW)
may be conaected to a pair of endpoint machines (EP1 and
EP2). As seen in FIG. 4A, the gateway GW is connected
directly to each of EP1 and EP2 (i.e. without any interme-
diate device) and thus the path between the GW and each
endpoint has a single path segment, which is labeled A. In
FIG. 4B, a router 35 is located in the path but both endpoints
EP1 and EP2 are directly connected to the router, and thus

; this configuration generates a pair of segments A and B in
" the path (between the GW and each respective endpoint).

45

S0

60

65

FIG. 4C shows yet another alternative wherein each of the
endpoints EP1 and EP2 connect to different branch points in
the couter 35, and this configuration also creates two path
segments (A and B) for each path between the GW and each
endpoint. FIG. 4D represents another altemnative configura-
tion wherein a second router 37 is used. In this situation, the
path between GW and EP1 includes two path segments (A
and B), while the path between GW and EP2 includes two
separate path segments (C and D). Thus, as can be seen by
these examples, the path between the gateway and an
endpoint serviced by the gateway can traverse either one or
two segments (which are, in effect, networks). Each addi-
tional endpoint serviced by the gateway can add zero (FIG.
4A), one (FIG. 4B) or two (FIG. 4C) pew paths, depending
on the existence (of lack thereof) of the intermediate router.

FIG. 5 shows a superset of the various petwork configu-
rations iflustrated in FIGS. 4A—4D, and thus illustrates how
larger enterprise connections may be formed. This network
includes a source node 41, routers 43 and 45, and fourteen
(14) endpoints EP1-EP14 distributed across six (6) subacts
(labeled “A” through “G”). In this example, it is assumed
that subnets A, B, C, D and F have a2 maximum speed of 10
megabits per second (mby/s), subnet E has a maximum speed

US 6,581,104 B1

7

of 56 kilobits per second (kb/s), and submet G has a
maximum speed of 100 mb/s. All data distributions are
assumed to start at the source node (which is typically the
management server and/or a gateway).

A distribution from one node (such as the source node) to
multiple endpoints appears on the network of FIG. 5 as
multiple simultancous one-to-one distributions. According
to the invention, tunable parameters allow a site adminis-
trator to specify what maximum percentage of available
bandwidth to use for each subnet A~G. As used herein, the
“effective” load of each subnet is computed (for example) by
recording the number of bytes written to a subnet per unit
time. If two operations are runping in parallel on the same
subnet, each will contribute to the effective load. For
example, if during a one second interval 16 k bytes have
been writlen, the data rate is 16 kB/s; if the subnet in
question is a 1 mb line, the percentage used is thus calculated
as (16 kB*8 bit)/1 mb=12.5%.

According to the present invention, several load balancing
concepts are implemented. When a distribution crosses two
subnets, the load for both subnets is considered and the
busiest of the two subnets preferably is used to determine the
amount of “delay” that should be inserted into the overall
distribution to balance the load. Also, the invention takes
into consideration the fact that all operations contribute to
the effective loads even though delays may be added on an
individual operation basis. These concepts are illustrated by
the examples set forth below, which are provided in refer-
ence to the network shown in FIG. §.

Assume a single distribution to endpoint EP9 in FIG. 5.
Each packet crosses subnets B and E. Assume that the
actwork load parameter is set to 80% for subnet B and to
50% for subnet E. After one second of operation, 4 k bytes
have been sent. On subnet B, the effective load is 4 kB/10
mb=0.3%. On subnet E, however, the load is 4 kB/56
kb=57%. Subnet B is thus well under maximum load, but
subnet E is too busy. According to the invention, a short
delay is then inserted to get the effective load back under
50%. Even though subnet B is near idle, the next write must
be delayed to reduce the load on subnet E.

Now, assume a distribution to endpoints EP1-EP4, which
are all endpoints on subnet A. In this example, the load
parameter for subnet A is assumed to be 25%. After one
second, 100 k bytes have been sent to each endpoint. Since
the same 100 k has been sent to four different endpoints, the
100 k has crossed subnet A four (4) times. The load on
subnet A is (4* 100 kB)/10 mb=31%. A delay is thus required
since this value exceeds the load parameter.

The following example assumes a distribution to end-
points EPS, EP6, EP11 and EP12. After one second, 100 k
bytes have been sent to each endpoint. The load on subnet
B is (4*100 kB)/10 mb=31%. The load on each of subnets
D and F is (2*100 kB)/10 mb=15.5%.

Now, assume that the distribution is to all endpoints. After
one second, 100 k bytes would have been sent to each
endpoint. The effective loads are then calculated as follows:

A=(4*100 kBY10 mb31%
B=(87100 kB)/10 mb=~62%
C=~(2*100 kB)/10 mb=15.5%
D={4"100 kB)10 mb=31%
[E=100 kB/S6 kb=1400%
F=(3100 kBY'10 mb=23%
G=(2100 XB)/100 mb=1.5%

20

35

45

55

65

8

Subnet E, with an effective load of 1400%, requires a long
delay. In such case, router 43 will buffer the 100 kB and
release data at the maximum rate subnet E can accept.
According to the invention, delays are inserted and the
network write size is reduced to get the effective rate back
to the configured network load. This will have the effect of
making subpet B less busy as well.

According to the invention, a mechanism is provided for
effectively managing the large scale distribution of data
from one or more gateway machines to the endpoints
serviced by those machines in a managed enterprise.
Typically, a particular gateway is connected to one or more
endpoint machines serviced by the gateway according to the
topology illustrated in one or more of the FIGS. 4A—4D. As
noted above, FIG. 5 is one such example. The mechanism is
described generally in the flowchart of FIG. 6 with respect
to a particular gateway machine and its related endpoints. Of
course, the method may be carried out for multiple gateway
machines in a parallel process but, for simplicity, only a
single gateway is shown.

An cxemplary method begins at step 30 by setting a
tunable load parameter, preferably for each subpet of each
network path between the gateway machine and an endpoint
machine. Network paths that need not load-balanced can be
omitted if desired. The load parameter is selectable and
identifies a maximum percentage of available bandwidth
that may be consumed by a particular download operation
over that subnet. This value may depend om nmumerous
factors including the type of connection, the type of data, the
speed and memory characteristics of the endpoint, whether
routers or other intermediate devices are used between the
gateway and its endpoints, etc. At step 32, a data distribution
is selected for initiation, typically (as will be described in
more detail below) by having an endpoint method invoke an
object supported on the gateway. A data distribution is
sometimes referred to herein as a “write” operation since
data is being written from a source node to a number of
managed endpoints. As illustrated in FIG. S, the various
connections and characteristics of the petwork paths and
subnets determine an “effective” load in each subnet of an
affected network path. A network path is said to be
“affected” if the data distribution will be provided over that
path. At step 34, and preferably before the actual distribution
is physically started on the wire(s), a calculation is made of
the effective load in each subpet affected by the method
invocation. At step 36, a test is made to determine whether
the effective load in each affected subnet has a predeter-
mined relationship (e.g., is greater than) the load parameter
for that subnet. If the outcome of the test at step 36 is
negative, no load balancing is necessary, and the routine
continues by initiating the distribution at step 38. If,
however, the outcome of the test at step 36 is positive, at
least one of the subnets will be overloaded (given the
predetermined load parameter for that subnet), and thus
some load balancing is necessary. In this case, the routine
continues at step 40 to alter the characteristics of the
distribution (typically by inserting some timing delay or
controlling the buffering of data in an upstream router) to
reduce the effective load in the affected subnet(s) when the
data is actually sent in step 42.

Therefore, as noted above, the load balancing algorithm
preferably checks for the possibility of subnet overload prior
to the write operation so that the data distribution may then
be altered in some meaningful way and then carried out
within the preset subnet load parameters. This “balancing”
technique is performed each time a write operation is
initiated, although it may be carried out in a different

US 6,581,104 B1

9

manner. Thus, the technique may be performed on a con-
tinuous basis (e.g., at regular intervals, such as every 2
minutes) as data is being distributed over the network. This
takes into consideration the fact that all operations contrib-
ute to the effective loads even though delays may be added
on an individual operation basis.

Thus, prior to a a write operation, the effective load in
each of the subnets (over which the data distribution will
occur) of a given network path between a gateway and an
endpoint serviced by the gateway is evaluated and a load
balancing algorithm is applied lo ¢cnsure that, when the write
operation is actually implemented, data distribution throngh
the affected subnets does not exceed the effective bandwidth
of any such subnet. This advantageous result is achieved by
calculating an “effective” load for each subnet affected by
the data distribution. Prior to ipitiating the operation, a
determination is made whether the effective load exceeds (or
perhaps approaches) some preset threshold (which is pref-
erably selectable). If so, the overall distribution will be
slowed down or otherwise altered to prevent one particular
subnet (usually the most heavily loaded) from unbalancing
the rest of the distribution. In effect then, the subnets are
“charged” against their allotted bandwidth based on the
pumber of subnets that exist.

As used herein, an effective load may “exceed” a given
load parameter by even where the effective load is substan-
tially the same as the load parameter. Of course, the data
distribution speed may be altered when the effective load
bears some given relationship (e.g., 95%) of the load param-
eter. All such variations are well within the scope of the
inventive load balancing techmique.

Although in the preferred embodiment the degree to
which the data distribution characteristics must be modified
are calculated before the distribution occurs, the invention
also contemplates monitoring the actual load values during
a first data distribution and then adjusting the rate of a
second data distribution based on the network load con-
straints existing during the first distribution.

As noted above, however, preferably the load balancing
technique is carried out during a data distribution. FIG. 7
illustrates how a data distribution is selected and initiated. In
this managed environment, a data distribution is just one of
many “system management tasks” that are typically ipitiated
with an object method invocation. Turning now to FIG. 7,
each authorized administrator 50 has access to a deskiop
computer 52 containing one or more icons representing
system resources. As administrators interact with dialog
screens and menus available from these icons, they are able
to change system configurations and manage new resources
in the distributed environment, all in a2 known manper. In
particular, when administrator 50 interacts with the desktop,
so-called “callbacks” are invoked from the user interface on
underlying objects representing some system resource or
component. These callbacks are translated into a series of
method invocations that actually perform the work and
return and results or status to the administrator.

In particular, and with reference to the process flow
diagram of FIG. 7, the information flow begins when the
administrator 50 selects an icon or interacts with a dialog.
The information is then sent to the desktop (usually located
at a gateway) at step 54, at which time the appropriate
application callback method is invoked at step 56. The
callback method then invokes core application methods at
step 58, which communicate with the application object(s)
to perform some system management operation, as illus-
trated at step 39. Any return information or state is passed
back at steps 60 and 61. If an update to the user interface is

15

25

30

45

55

60

65

10

required, the desktop 52 interprets the output and updates the
dialogs on the administrator’s desktop at step 62.

Preferably, the framework includes a task library that
enables administrators to create “shell” scripts that can run
an any managed node of the enterprise environment. A shell
script integrated with a managed node is called a “task.”
When administrators want to create a task, they provide a
machine and a path to an executable file. The executable can
be a shell script, a specialized script, a compiled program or
any other kind of valid executable. When a task is created,
the executable is stored as an attribute in an object database
associated with a gateway machine. When the task is
needed, the executable file is retrieved from the attribute and
is provided to one or more managed nodes. After a task is
created, it is added to the task library and displayed as an
icon.

As referenced above, the systems management provides
an implementation of a CORBA 1.1 Object Request Broker
(ORB), basic object adaptor (BOA), and related object
services. CORBA 1.1 is a specification for an object-
oriented distributed computer systems management archi-
tecture provided by The Object Management Group (OMG),
a pon-profit association of more than 300 companies.
CORBA describes the use of the Object Request Broker
(ORB) and basic object adaptor (BOA) that provide a
mechanism for object invocation and return of results. The
specification defines interfaces to a set of low-level object
services and enables such services to be integrated in many
different language and systems using object encapsulation,
service requestor/provider isolation, and interface and
implementation separation.

In a CORBA 1.1 implementation as seen in FIG. 8, there
are three primary components: a client, an object
implementation, and the ORB/BOA. The client 70 is the
requestor of a service that is provided by an object imple-
mentation 72. The ORB 21 delivers the request from the
client 70 to the object implementation 72 through the BOA
27. The object implementation 72 then performs the
requested service, and any return data is delivered back to
the client. The client and object implementation are isolated
from each other, and neither has any knowledge of the other
except through their ORB/BOA interfaces. Client requests
are independent of the object implementation location and
the programming language in which they are implemented.

The ORB delivers the request to the BOA, which activates
the process under which the object implementation (e.g., a
server) runs. The BOA then invokes the method associated
with the request by way of a server skeleton 81. When the
method is finished, the BOA manages the termination of the
method and coordinates the return of any results to the
client. Alternatively, if a request is unknown until runtime,
a Dynamic Invocation Interface (DII) 78 is used to build a
request used in place of a client stub 83 linked at compile
time.

One of the preferred implementations of the gateway
component of the system management framework
(including the load balancing mechanism) is as a set of
instructions in a code module resident in the random access
memory of the endpoint. Until required by the computer, the
set of instructions may be stored in another computer
memory, for example, in a hard disk drive, or in a removable
memory sach as an optical disk (for eventual use in a2 CD
ROM) or floppy disk (for evenmal use in a floppy disk
drive), or even downloaded via a network connection such
as the Internet. In addition, although the various methods
described are conveniently implemented in a general pur-
pose computer selectively activated or reconfigured by

US 6,581,104 B1

11

software, one of ordinary skill in the art would also recog-
nize that such methods may be carried out in hardware, in
firmware, or in more specialized apparatus constructed to
perform the required method steps.

Further, although the invention has been described in
terms of a preferred embodiment in a specific network
environment, those skilled in the art will recognize that the
invention can be practiced, with modification, in other and
different network architectures with the spirit and scope of
the appended claims. The present invention, however, is not
to be construed as limited to load balancing in the network
having any particular topology of gateway and endpoint
machines, but may also be useful in load balancing when-
ever a plurality of computing resources (that are directly or
through another network device connectable to 2 manage-
ment node) receive a data distribution from the management
node. Moreover, the inventive load balancing technique
sbould be useful in any distributed network environment.

Having thus described my invention, what I claim as new
and desire to secure by Letters Patent is set forth in the
following claims:

What is claimed is:

1. A method of regulating data distribution in a managed
network environment managed by a management server
servicing a set of gateways, cach of which services a set of
endpoints, comprising the steps of:

for each subnet of each network path between a gateway
and an endpoint, setting a load parameter identifying an
amount of network transmission capacity that may be
consumed by a particular data distribution over that
subnpet;

in response to a method invocation that initiates a data
distribution from the gateway, determining an effective
transmission load for each subnet affected by the data
distribution; and

if the effective transmission load in a given subnet is
greater than the load parameter for the given subnet,
altering a characteristic of the data distribution.

2. The method of regulating data distribution as described
in claim 1 wherein the characteristic is the rate at which data
is distributed in the path.

3. The method as described in claim 2 wherein the rate of
data distribution is reduced when the effective transmission
load exceeds the load parameter.

4. The method as described in claim 3 wherein the rate of
data distribution is reduced by inserting delays in data
transmission from the gateway to the endpoint along the
network path.

5. The method as described in claim 1 wherein the step of
setting a load parameter is performed in the gateway.

6. The method as described in claim 1 wherein the step of
determining the effective transmission load is carried out
before the data distribution is initiated.

7. A method of regulating data distribution in a managed
network environment having a source node that distributes
data to a set of endpoints, comprising the steps of:

(a) for each subnet of each network path between the
source node and an endpoint, setting a load parameter
identifying an amount of network transmission band-
width that may be comsumed by a particular data
distribution over that subnet;

(b) prior to initiating a data distribution from the source
node, determining an effective transmission load for
each subuet that is affected by the data distribution;

(c) determining whether the effective transmission load in
any subnet that is affecied by the data distribution
exceeds the load parameter for that subnet; and

20

25

35

40

45

60

65

12

(d) if the effective transmission load in any subnet exceeds
the load parameter for that subnet, altering a charac-
teristic of the data distribution.
8. The method as described in claim 7 wherein the data
distribution is altered by inserting one or more delays in the
rate at which data is transmitted over the affected network
path from the gateway.
9. The method as described in claim 7 further including
the step of repeating steps (b)~(d) for a new data distribu-
tion.
10. A computer connectable into a large distributed enter-
prise having a source node that manages endpoints over one
or more network paths each having one or more subnets, the
computer comprising:
a Processor;
an operating system; and
a load balancing mechanism comprising:
means for setting a load parameter identifying an
amount of network transmission bandwidth that may
be consumed by a particular data distribution over
each subnet of at least one network path;

means responsive 1o invocation of a write operation for
calculating an effective transmission load in each
subnet affected by the write operation; and

means for determining whether the effective transmis-
sion load in any subnet affected by the write opera-
tion is greater than the load parameter for that subnet
and, in response thereto, altering a characteristic of a
data distribution.

11. The computer as described in claim 10 wherein the
characteristic is the rate at which data is distributed along the
network path.

12. The computer as described in claim 11 wherein the
means for altering reduces the rate at which data is distrib-
uted when the effective transmission load in any subnet
affected by the write operation exceeds the load parameter
for that subnet.

13. The computer as described in claim 12 further inchud-
ing an interface means for setting the load parameter.

14. The computer as described in claim 10 further includ-
ing a threads mechanism run by the operating system for
exccuting multiple execution threads.

15. The computer as described in claim 14 wherein
process control for each network path controlled by the load
balancing mechanism is provided by one of the multipie
execntion threads.

16. A computer program product for use in a computer
having a processor, 2 memory and means for connecting the
computer into a large distributed enterprise wherein com-
puting resources are organized into one or more mapaged
regions, each region being managed by a management server
servicing one or more gateway machines, each gateway
machine servicing a plurality of endpoint machines, the
computer program product comprising:

means for setting a load parameter identifying an amount
of network transmission bandwidth that may be con-
sumed by a particular data distribution over a given
subnet of a metwork path between a gateway and an
endpoint;

means responsive to invocation of a write operation for
calculating an effective transmission load in each sub-
net affected by the write operation; and

means for determining whether the effective transmission
load in any subnet affected by the write operation has
a predetermined relationship to the load parameter for
that subnet and, in response thereto, altering a charac-
teristic of a data distribution.

* * ¥ ¥ *

