499

United _States Patent: 5,185,861 Page 1 of 22

USPTO PATENT FULL-TEXT AND IMAGE DATABASE

[Home][Quick]'Aduanced[PatNum lLHelg]

~ —

[Hit List I Previous Buttum J

[View Carq[ndd to Cartl

Images
(To£7)
. United States Patent 5,185,861
Valencia February 9, 1993
Cache affinity scheduler R
Abstract

‘A computing system (50) includes N number of symmetrical computing engines having N number of
cache memories joined by a system bus (12). The computing system includes a global run queue (54), an
- FPA global run queue, and N number of affinity run queues (58). Each engine is associated with one
affinity run queue, which includes multiple slots. When a process first becomes runnable, it is typically
attached one of the global run queues. A scheduler allocates engines to processes and schedules the
processes to run on the basis of priority and engine availability. An engine typically stops running a
process before it is complete. When the process becomes runnable again the scheduler estimates the
remaining cache context for the process in the cache of the engine. The scheduler uses the estimated
amount of cache context in deciding in which run queue a process is to be enqueued. The process is
enqueued to the affinity run queue of the engine when the estimated cache context of the process is
sufficiently high, and is enqueued onto the global run queue when the cache context is sufficiently low.
The procedure increases computing system performance and reduces bus traffic because processes will
run on engines having sufficient cache affinity, but will also run on the best available engine when there
is insufficient cache context.

- Inventors: Valencia; Andrew J. (Portland, OR)

Assignee: Sequent Computer Systems, Inc. (Beaverton, OR)
Appl. No.: 747658

Filed: August 19, 1991

| Current U.S. Class: ' 711/120; 710/52; 711/121; 711/124; 711/133; 711/141
Intern'l Class: GOG6F 012/00; GO6F 015/16

Field of Search: 364/DIG.
: 1,243,243.4,243.41,243.42,243.44,228 3,228.1,230,229,238.4,240
395/425,400,775,275,650,200,164,166,325

References Cited [Referenced By]

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 Page 2 0of 22

_- U.S. Patent Documenis
3848234 Nov.,, 1974 MacDonald 305/425.

4414624 Nov., 1983 Summer et al. 395/650.

4638427 Jan., 1987 Martin 395/500.

4695951 Sep., 1987 Hooker 364/200.
Other References

S. Curran & M. Stumm, “A Comparison of Basic CPU Scheduling Algorithms for
Multiprocessor UNIX," Computing Systems, vol. 3, No. 4, Fall 1990.

Symmetry Series Computers manufactured by Sequent Computing Systems as described on
pp. 1-9 of the present application.

Primary Examiner: Richardson; Robert L.
. Attorney, Agent or Firm: Stoel Rives Boley Jones & Grey

Claims

I claim:
1. A computing system, comprising:

multiple computing engines that run processes, the multiple computing engines being associated with
respective cache memories and respective affinity run queues;

cache context estimating means for estimating an amount of cache context of a particular one of the
cache memories with respect to a particular one of the processes;

enqueuing means for enqueuing certain ones of the processes to the affinity run queues; and

decision means responsive to the estimated amount of cache context for deciding whether to enqueue the
particular process to a particular one of the affinity run queues.

2. The system of claim 1 in which the certain ones of the processes that are enqueued to the affinity run
queues comprise a first set of processes, and the enqueuing means also enqueues a second set of
processes to at least one global run queue, where some of the processes are included in both the first and
second sets of processes, and in which the decision means decides whether the particular process is to be
“enqueued to the particular affinity run queue or to one of the global run queues.

3. The system of claim 2 in which each one of the affinity run queues and each one of the global run
gueues comprises an array of slots arranged in priority, each slot being capable of queuing a linked list
of processes.

4. The system of claim 2 in which one of the affinity run queues and one of the global run queues have
substantially identical data structure.

5. The system of claim 2 in which there are at least two global run queues and the processes include

http://patft.uspto. gov/netacgi/nph-Parser?Sect]=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 Page 3 of 22

processes of a particular type, and one of the global run queues may enqueue processes of the particular
type and another one of the global run queues may not.

6. The system of claim 1 in which the decision means considers whether the particular process is
affinitied or unaffinitied in deciding whether to enqueue the particular process to the particular affinity
run queue.

7. The system of claim 1 in which the cache context estimating means includes engine activity
measuring means for counting engine activity time occurring from a time when the particular process
* leaves the particular computing engine to a later time.

8. The system of claim 7 in which the engine activity measuring means includes a counter that counts
units of engine activity.

9. The system of claim 7 in which the later time is a time at which the decision means decides whether
the particular process is to be queued to the particular affinity run queue.

10. The system of claim 7 in which the processes include user processes and kernel processes, and the
engine activity measuring means counts engine activity time occurring during user processes, not during
kernel processes.

11. The system of claim 1 in which the decision means is responsive to a number of processes queued to
the particular affinity queue in deciding whether the particular process is to be queued to the particular
affinity run queue.

12. The system of claim 1 in which the decision means is responsive to a priority of the particular
processed queued to the particular affinity queue in deciding whether the particular process is to be
quened to the particular affinity ran queue.

13. The system of claim 1 in which the decision means is responsive to a number of processes enquened
to the affinity run queue of the particular computing engine and a number of processes enqueued to the
affinity run queunes of other ones of the computing engines.

14. The system of claim 1 in which the decision means is responsive to a number of the processes that
are queued to ones of the affinity run queues other than the particular affinity run queue in deciding
whether the particular process is to be queued to the particular affinity run quene.

15. The system of claim 1 in which the decision means is responsive to an anticipated amount of data
passing on a system bus in deciding whether the particular process is to be queued to the particular
affinity run queue.

16. The system of claim 1 in which the decision means decides whether the particular process is to be
“queued to the particular affinity run queue in response to the particular process being located in a
predetermined section of the affinity run queue. '

17. A computing system, comprising:

multiple computing engines that run processes, the multiple computing engines each being associated
with a cache memory and an affinity run queue;

cache context estimating means for estimating with respect to a particular one of the processes an

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

L

United States Patent: 5,185,861 Page 4 0of 22

amount of cache context of the cache memory associated with a particular one of the multiple computing
engines, which ran the particular process;

enqueuing means for enqueuing certain ones of the processes to the affinity run queues; and

decision means responsive to the amount of cache context for deciding whether to enqueue the particular
process to the affinity run queue associated with the particular computing engine.

18.A computing system, comprising:

URERE :

multiple computing engines that run processes, the multiple computing engines each being associated
with a respective cache memory, a respective affinity run queue, and at least one global run queue;

cache context estimating means for estimating an amount of cache context of a particular one of the
cache memories with respect to a particular one of the processes;

enqueuing means for enqueuing certain ones of the processes to the affinity run queues; and

decision means tesponsive to the amount of cache context for deciding whether to enqueue the particular
process to the affinity run queue associated with the particular computing engine or to one of the global
Tun queues.

19. A computing system, comprising:

multiple computing engines that run processes including unaffinitied processes and affinitied processes,
the multiple computing engines being associated with respective cache memories, respective affinity run

queues, and at least one global run queue;

cache context estimating means for estimating an amount of cache context of a particular one of the
cache memories with respect to a particular one of the processes;

enqueuing means for enqueuing certain ones of the processes to the affinity run queues; and

decision means responsive to the estimated amount of cache context for deciding whether a particular
unaffinitied process should become affinitied to a particular one of the computing engines and enqueued

 tothe affinity run queue of the particular computing engine, and for deciding whether a particular

affinitied process should become unaffinitied and enqueued to one of the global run queues.
20. A computing system, comprising:
multiple computing engines that run processes and are associated with respective affinity run queues,

. respective particular numbers of the processes being associated with each computing engine, the
respective particular numbers being at least zero;

7 A

po

storage means for storing multiple variables each having a value and each respectively associated with
the multiple computing engines, each respective particular number corresponding to one of the
variables;

sampling means for repeatedly sampling the respective particular numbers of the processes associated
with each computing engine;

http://patft.uspto.gov/netacgi/nph-Parser?Sect1 =PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 : Page 5 of 22

determining means for determining which of the respective particular numbers of processes are greater
than the corresponding variable values;

increasing means for increasing each one of the variable values for which a corresponding respective
particular number is determined to be greater; and

moving means for transferring certain ones of the processes from one of the affinity run queues
associated with one of the computing engines associated with a highest variable value to one of the

affinity run queues associated with one of the computing engines associated with a lowest variable
value.

21. The system of claim 20 in which each one of the respective particular number of the processes is an

integer equal to a number of the processes in the affinity run queue of the respective computing engine
plus one if one of the processes is being i by the respective computing engine when a sample is made.

22. A method for assigning processes to run queues in a multi-engine computing system, the method
comprising the steps of:

queuning a process to a global run queue;
running the process on a first computing engine which is associated with a first cache memory;
storing the process in a memory;

storing a first count of a counter associated with the first computing engine at a time that the process is
stored;

storing a second count of the counter at a time that the process becomes runnable;

comparing the first and second counts to estimate the amount of cache context remaining in the first
cache memory with respect to the process; and

deciding whether to enqueue the process to an affinity run queue associated with the first computing
engine or to another run queue based on the estimated amount of cache context. :

23. The system of claim 21 further comprising priority considering means for considering a priority of ;
one of the processes in determining whether the process should be transferred.

24. A computing system, comprising:
- multiple computing engines that run processes and are associated with respective affinity run quenes,

respective particular numbers of the processes being associated with each computing engine, the
respective particular numbers being at least zero;

T

storage means for storing multiple variables each having a value and each respectively associated with
one of the multiple computing engines, each respective particular number corresponding to one of the
variables;

determining means for determining which of the respective particular numbers of processes are greater
than the corresponding variable values;

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 Page 6 of 22

increasing means for increasing each one of the variable values for which a corresponding respective
particular number is determined to be greater; and

moving means for transferring certain ones of the processes from one of the affinity run queues
associated with one of the computing engines having a particular variable value to another one of the
affinity run queues associated with one of the computing engines associated with a lower variable value.

.* 25.The system of claim 24 further comprising priority considering means for considering a priority of

one of the processes in determining whether the process should be transferred.

Description

TECHNICAL FIELD

This invention relates to scheduling of processes that run on computing engines in a multiprocessor
computing system and, in particular, to a scheduler that considers erosion of cache memory context
when deciding in which run queue to enqueue a process.

BACKGROUND OF THE INVENTION

FIG. 1 is a block diagram of major subsystems of a prior art symmetrical multi-processor computing
system 10. Examples of system 10 are models S27 and S81 of the Symmetry Series manufactured by
Sequent Computing Systems, Inc., of Beaverton, Oregon, the assignee of the present patent application.
The Symmetry Series models employ a UNIX operating system with software written in the C
programming language. The UNIX operating system, which is well known to those skilled in the art, is

- discussed in M. Bach, The Design of the UNIX Operating System, Prentice Hall, 1986. The C
programing language, which is also well known to those skilled in the art, is described in B. Kernighan
and D. Ritchie, The C Programming Language, 2d Ed., Prentice Hall, 1988.

Referring to FIG. 1, system 10 includes N number of computing engines denominated engine 1.sub.p,
engine 2.sub.p, engine 3.sub.p, . . ., engine N.sub.p (collectively "engines 1.sub.p -N.sub.p "). Each one
of engines 1.sub.p -N.sub.p is 2 hardware computer which includes a microprocessor such as an Intel

. 386 and associated circuitry. System 10 is called a symmetrical multi-processor computing system

~ because each one of engines 1.sub.p -N.sub.p has equal control over system 10 as a whole.

Each one of engines 1.sub.p -N.sub.p has a local cache memory denominated cache 1.sub.p, cache
2.sub.p, cache 3.sub.p, . . ., cache N.sub.p, respectively (collectively "caches 1.sub.p -N.sub.p "). The
purpose of a cache memory is to provide high-speed access and storage of data associated with

_processes performed by an engine. A system bus 12.sub.p joins engines 1.sub.p -N.sub.p to a main RAM
memory 14.sub.p of system 10. Data stored in one of cache memories 1.sub.p -N.sub.p can originate
from the corresponding engine, the cache memory of another engine, a main memory 14.sub.p, a hard
disk controlled by a disk controller 18, or an external source such as terminals through a
communications controfler 20.

Cache memories 1.sub.p -N.sub.p are each organized as a pseudo least-recently-used (LRU) set

associative memory. As new data are stored in one of the cache memories, previously stored data are
" pushed down the cache memory untii the data are pushed out of the cache memory and lost. Of course,

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1 &u=/netaht... 12/20/2005

T R e S 2L S D e W 2T e el R e es et T VT

United States Patent: 5,185,861 Page 7 of 22

the data can be copied to main memory 14 or another cache memory before the data are pushed out of
the cache memory. The cache context of a process with respect to an engine "erodes™ as data associated
with a process is pushed out of the cache memory of the engine.

A scheduler determines which engine will run a process, with a highest priority process running first. On

a multi-processor system, the concept of priority is extended to run the highest n number of priority
processes on the m number of engines available, where m =n unless some of the engines are idle. In
system 10, the scheduler is a software function carried on by the UNIX operating system that allocates
engines to processes and schedules them to run on the bases of priority and engine availability. The
scheduler uses three distinct data structures to schedule processes: (1) a global run queue 4 (FIG. 2), (2)
a floating point accelerator (FPA) global run queue, and (3) an engine affinity run queue 38 (FIG. 3) for
each engine. The FPA global run queue is the same as global run queue 34 except that the FPA global
run queue may queue processes requiring FPA hardware.

FIG. 2 illustrates the prior art global run queue 34 used by system 10. Referring to FIG. 2, global run
queue 34 includes an array gs and a bit mask whichqs. Array gs is comprised of 32 pairs (slots) of 32-bit
words, each of which points to one linked list. The organization of the processes is defined by data
structures. Each slot includes a ph.sub.-- link field and a ph.sub.-- rlink field, which contain address
pointers to the first address of the first process and the last address of the last process, respectively, in a
double circularly linked list of queued processes. The 32 slots are arranged in priority from 0 to 31, as

listed at the left side of FIG. 2, with priority 0 being the highest priority.

The bit mask whichgs indicates which slots in the array gs contain processes. When a slot in gs contains
a process, whichgs for that slot contains a "1". Otherwise, the whichgs for that slot contains a "0". When
an engine looks for a process to run, the engine finds the highest priority whichgs bit that contains a 1,
and dequeues (i.e., detaches) a process from the corresponding slot in gs.

FIG. 3 illustrates the affinity run queue 38 used by system 10. Under default condition, after a process
becomes runnable, it is enquened (i.e., joined) to either global run queue 34 or the FPA global run
queue, rather than to an affinity run queue 38. However, a process may be "hard affinitied” to run only
on a particular engine. In that case, the process is enqueued only to the affinity queue 38 for that engine
(rather than a global run queue) until the hard affinity condition is ended. Of course, there are times, for
example, when it is asleep, when a hard affinitied process is not queued to any run queue.

Referring to FIG. 3, each one of engines 1.sub.p -N.sub.p is associated with its own affinity run queue
38. Bach affinity run queue 38 has an e.sub.-- head field and an e.sub.-- tail data structure, which contain
the address pointers to the first and last address, respectively, of the first and last processes in a doubly

~ circularly linked list of affinitied processes. When a process is hard affinitied to an engine, it is

enqueued in FIFO manner to the double circularly linked list of the affinity run queue 38 that
corresponds to the engine. The FIFQO arrangement of each linked list is illustrated in FIG. 3. Each of the
linked lists of the slots of global run queue 34, shown in FIG. 2, has the same arrangement as the linked

list shown in FIG. 3. :

Affinity run queue 38 differs from global run queue 34 in the following respects. First, global run queue
34 has 32 slots and can, therefore, accommodate 32 linked lists. By contrast, each affinity run queue 38
has only one slot and one linked list. Second, as a consequence of each affinity run queue 38 having

only one linked list, the particular engine corresponding to the affinity run queue 38 is limited to taking -

only the process at the head of the linked list, even though there may be processes having higher priority
in the interior of linked list. Third, the linked list of processes must be emptied before the engine can
look to a global run queue for additional processes to run. Accordingly, affinity run queue 38 does not

- have a priority structure and runs processes in round robin fashion. Fourth, as noted above, only hard

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 Page 8 0f 22

affinitied processes are enquened to affinity queune 38.

Because of the non-dynamic and explicitly-invoked nature of hard affinity, it is used mostly for

~ performance analysis and construction of dedicated system configurations. Hard affinity is not used in -
many customer configurations because the inflexibility of hard affinity does not map well to the
complexity of many realworld applications.

The lifetime of a process can be divided into several states including: (1) the process is "runnable," (i.e.,
the process is not running, but is ready to run after the scheduler chooses the process), (2) the process is
- executing (i.c., running) on an engine, and (3) the process is sleeping. The second and third states are
well known to those skilled in the art and will not be described herein in detail.

~ When a process is runnable, the scheduler first checks to see whether the process is hard affinitied to an
. engine. If the process is hard affinitied, it is enqueued onto the FIFO linked list of the affinity run queue
38 associated with the engine.

If the process is not hard affinitied to an engine and is not marked for FPA hardware, then the process is
queued on one of the linked lists of gs in global run queue 34 according to the priority of the process.
The appropriate bit in whichgs is updated, if necessary. If the process is not affinitied, but has marked
itself as requiring FPA hardware, the process is queued to one of the linked lists of fpa.sub.-- gs in the
FPA global run queue, and the appropriate bit in fpa.sub.—- whichgs is updated, if necessary, where
fpa.sub.-- gs and fpa.sub.-- whichgs are analogous to gs and whichgs.

‘When an engine is looking for a process to run, the engine first examines its affinity run queue 38. If
affinity run queue 38 contains a process, the first process of the linked list is dequeued and run. If
affinity run queue 38 for a particular engine is empty, then the scheduler examines whichgs of global run
queue 34 and fpa.sub.-- whichgs of the global FPA run queue to see whether processes are queued and at
what priorities. The process having the higher priority runs first. If the highest priorities in whichgs of
global run queue 34 and fpa.sub.-- whichgs in the FPA global run queue are equal, the process in the
FPA format rups first.

-A goal of system 10 1s to achieve a linearly increasing level of "performance" (i.e., information
processing capacity per unit of time), as engines and disk drives are added. An obstacle to meeting that
goal occurs when there is insufficient bus bandwidth (bytes per unit time period) to allow data transfers
to freely flow between subsystem elements. One solution would be to increase the bandwidth in system

~ bus 12.sub.12. However, the bandwidth of system bus 12.sub.p is constrained by physical cabinet and

connector specifications.

The problem of inadequate bandwidth is exacerbated because system 10 allows customers to add
additional disk drives and engines to increase the value of the number N.sub.p after the system is in the

~ field. In addition, in system 10, engines 1.sub.p -N.sub.p and the disk drives may be replaced with
higher performance engines and disk drives. Increased engine performance increases the number of
instructions processed per operating system time slice. This in turn requires larger cache memories on
the processor boards in an effort to reduce memory-to-processor traffic on the main system bus.
However, cache-to-cache bus traffic increases along with the cache memory size thereby frustrating that
effort. Likewise, adding multiple disk drives increases the requirement for disk I/O bandwidth and

- capacity on the bus.

When a process moves from a previous engine to a new engine, there is some cost associated with the

- transition. Streams of cache data move from one engine to another, and some data are copied from main
memory 14, Certain traffic loads, database traffic loads in particular, may result in a bus saturation that

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 Page 9 of 22

degrades overall system performance. Data are transferred over system bus 12.sub.p as data are switched
from main memory 14.sub.p or the previous cache memory to the new engine and the new cache
memory. However, each time a process runs from the global run queue, the odds that the process will
run on the same engine as before approaches 1/m, where m is the number of active on-line engines. On a
large system, m is usuaily 20 or more, giving less than a 5% chance that the process will run on the same
engine as before. However, it 1s difficult to accurately characterize the behavior of an operating system.
The actual odds will, of course, depend on CPU and 1/0 load and the characteristics of the jobs running.

In many situations, it is desirable for an engine to stop running an unfinished process and perform
another task. For example, while an engine is running one process, a higher priority process may
become runnable. The scheduler accommodates this situation through a technique called "nudging.” A
nudge is a processor-to-processor interrupt that causes a destination processor to re-examine its

. condition and react accordingly. In the case of a higher priority process, the "nudged" destination engine
will receive the interrupt, re-enter the operating system, notice that there is higher priority work waiting,
and switch to that work. Each nudge has a corresponding priority value indicating the priority of the
event to which the engine responds. As an optimization, the priority of the nudge pending against an
engine is recorded per engine. When nudge is called for priority less than or equal to the value already
pending on the engine, the redundant nudge is suppressed.

When a process becomes runnable, the scheduler scans engines 1.sub.p -N.sub.p for the engine(s)
running the lowest priority process(es). If the newly runnable process has an equal or greater priority
than the presently running processes, the engine (or one of the engines) with the highest priority (e.g.,
engine 1.sub.p) is "nudged"” to reschedule in favor of the newly runnable process. Consequently, a
. process (e.g., process X) ceases to run on engine 1.sub.p, at least temporarily. During the time other

" processes are runming on engine 1.sub.p, the cache context for process X erodes.

Two problems with the prior art scheduler are illusirated by considering what happens when process X
(in the example above) becomes runnable. First, if process X is not hard affinitied, it is enqueued to a
global ran queue. However, as noted above, there is only approximately a 1/m chance that process X
will next run on engine 1.sub.p. Therefore, even though the cache context for process X may be very
high in cache 1.sub.p of engine 1.sub.p, process X will probably be run on another engine. If process X
is Tun on another engine, some of the capability of system 10 will be used in moving data over system
bus 12.sub.p. As data is moved over system bus 12.sub.p to the other engine, system performance may
‘be reduced.

Second, if process X is hard affinitied, it will be enqueued onto affinity run queue 38 of engine 1.sub.p,
regardless of how many other processes are enqueued onto affinity run queue 38 of engine 1.sub.p and
regardless of whether other engines are idle. Therefore, system performance may be reduced because of
idle engines.

Thus, the prior art scheduler poorly reuses cache memory unless the flexibility of symmetrical
multiprocessing is given up by using hard affinity. Therefore, there is a need for a scheduler that causes
a runnable process to be enqueued onto the affinity run queue of an engine when the cache context (or
warmth) of the process with respect to the engine is sufficiently high, and to be enqueued onto a global
run quene when the cache context is sufficiently low. Additionally, periodic CPU load balancing
calculations (schedcpu()) could be improved to maintain a longer-term view of engine load and to cause
redistribution of processes if a significant excess of processes exists at any particular engine. Further,
such redistribution of processes could consider the priority of the processes to be moved.

SUMMARY OF THE INVENTION

.http://patﬂ.us_pto.gov/netacgi/nph-Paréer?Sectl=PT02&Sect2=HITOFF&p=1&u=/netaht... - 12/20/2005

United States Patent: 5,185,861 Page 10 of 22

An object of the present invention is to provide a linear performance increase as engines having higher
performance microprocessors and larger cache memories are added fo a system.

Another object of the invention is to provide a scheduler that enqueues processes to either an affinity run
queue or a global run queue so as to, on average, maximize performance of a multi-processor computing
system.

A further object of the invention is to optimize the assignment of processes to engines in an attempt to
minimize engine-to-engine movement of processes and their related cache memory context.

Still another object of the invention is to increase the effective bus bandwidth in a multi-processor
computing system by reducing the amount of unnecessary bus traffic.

This invention satisfies the above objects by implementing data structures and algorithms that improve
the process allocating efficiency of the process scheduler by reducing cache-to-cache traffic on the bus
and thereby improve the overall computing system performance. The scheduler uses the concept of
cache context whereby a runnable process is enqueued onto the affinity run queue of an engine when the
estimated cache context of the process with respect to the engine is sufficiently high, and is enqueued
onto a global run queue when the estimated cache context is sufficiently low. A premise underlying the
operation of the present invention is that it is often more efficient to wait for a busy engine where cache
context already exists than to move o a waiting engine where cache context will need to be transferred
or rebuilt,

Additional objects and advantages of this invention will be apparent from the following detailed
description of a preferred embodiment thereof which proceeds with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the major subsystems of a prior art symmetrical multi-processor computing
system.

"FIG. 2 is a schematic diagram of a prior art global run queue.
‘FIG. 3 is a schematic diagram of a prior art engine affinity run queue.

_FIG. 4 is a block diagram of the major subsystems of a symmetrical multi-processor computing system
operating in accordance with the present invention.

FIG. 5A 1s a schematic diagram of a global run queue and according to the present invention.
FIG. 5B is a simplified version 'of the diagram of FIG. 5A.

| FIG. 6 is a schematic diagram of an afﬁnity run queue according to the present invention.
FIG. 7 illustrates relationships among data structures according to the present invention.

FIG. 8 illustrates relationships among data structures of the present invention from the perspective of the
process data structure.

FIG. 9 illustrates relationships among data structures of the present invention from the perspective of the

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

ORI

United States Patent: 5,185,861 Page 11 of 22

engine data structure.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENT HARDWARE

A preferred embodiment of the present invention is implemented in a symmetrical multi-processor
computing system 50, shown in FIG. 4. Referring to FIG. 4, system 50 includes N number of computing
engines denominated engine 1, engine 2, engine 3, . . ., engines N (collectively "engines 1-N"). Each
one of engines 1-N has a local cache memory denominated cache 1, cache 2, cache 3, ..., cache N,
respectively ("collectively caches 1-N™), each of which is organized as a pseudo LRU FIFQ, described

- above. The hardware of system 50 may be identical to the hardware of prior art system 10, with the only
changes being software additions and modifications. Alternatively, in addition to the changes in
software, one or more of engines 1-N may be different from the engines of engines 1.sub.p -N.sub.p.
Caches 1-N and main memory 14 may have different capacities from those of caches 1.sub.p -N.sub.p

* and main memory 14.sub.p, respectively. System bus 12 may have a different number of conductors

~ from those of system bus 12.sub.p. Additional potential modifications and additions to system 10 are

described below.

Overview of data structures

In prior art system 10, each run queue a process could be scheduled from had a discrete data structure.
Global run queue 34 included whichgs and gs. FPA global run queue included whichgs.sub.— fpa and
‘'gs.sub.-- fpa. Each engine's affinity run queue included e.sub.-- head and e.sub.-- tail.

By contrast, in the preferred embodiment, a single data structure, struct rung, is used instead. Where
prior art system 10 treated each kind of scheduling data structure with special-case code, the preferred
embodiment applies the same code, changing only which instance of struct runq it is operating upon.

As used herein, "cache context" is a measure of how much of the data associated with a process isin a
cache memory. When the data is initially copied from main memory 14 to a cache memory, the cache
context of the cache memory with respect to the process is high (in fact, 100%). The cache context of
the cache memory with respect to the process decreases or "erodes” as data in the cache are pushed out
of the cache memory as data not associated with the process are added to the cache memory. A cache
memory is "warm" if the estimated amount cache context is above a certain level. A cache memory is
"cold" if the estimated amount of cache context is below a certain level. A process has "cache affinity"
with respect to an engine if a pointer (*p.sub.-- rq) of the process points to the affinity run queue,
described below, of the engine.

"System 50 includes at least one global run queue, such as global run queue 54 shown in FIGS. 5A and
5B, and an affinity run queue 58 shown in FIG. 6 for each engine 1-N. Global run queue 54 and affinity
run quene 58 are examples of the "struct runq" data structure, described below. FIG. 5B is a simplified
version of FIG. 5A. The structures of global run queue 54 and affinity run queue 58 are similar to the
structure of global run queue 34 in that they may queue processes in different linked lists, according to

* -priority. Each linked list in the multiple slots of global run queue 54 and affinity run queue 58 has the

same structure as that of the linked list in the single slot of prior art affinity run queue 34, shown in FIG.
3.

Although each run queue has the same data structure as that of global run queue 54, particular types of
processes may be queued to only a certain type of run queune. For example, a first group of engines 1-N
could contain Intel 386 microprocessors, a second group of engines 1-N could include Intel 486

- microprocessors, and a third group of engines 1-N could contain FPA-equipped Intel 386

microprocessors. In this example, each engine would point to its own affinity run queune 58. In addition,

http://patft.uspto.gov/metacgimph-Parser?Sect]1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

R IE

United States Patent: 5,185,861 Page 12 of 22

the first group of engines 1-N would point to global run queue 54. The second group of engines 1-N
would point to a 486 fype global run queue. The third group of engines 1-N would point to an FPA
global queue, System 50 could include additional types of global run queues including global run queues
for engines having an expanded instruction set, a reduced instruction set, on-chip cache, or other
properties. In the case of an engine with a microprocessor with on-chip cache, the present invention
preferably would optimize the use of both on-chip and on-board cache.

In some circumstances, a process may be enqueued at different times to more than one type of global
run queue. For example, a process that is compatible with the Intel 386 format may be able to run on
both an Intel 386 and an FPA engine. In that case, depending on the demands on the different types of
engines, the process could be enqueued to either global run queue 54 or the FPA global run queue.

The scheduler according to the present invention comprises the conventional UNIX scheduler to which
is added the new and changed data structures and algorithms described herein.

When a process becomes runnable, the scheduler selects the run queue to which the process is to be
enqueued. System 50 may use any conventional means to enqueue a process to a run queue. The
scheduler selects the run queue by considering an estimation of how much cache context (if any) the
process has with respect to the cache of an engine. The estimation of cache context with respect to a
process is based on the number of user (as opposed to kernel) process clock ticks an engine has executed
since the last time it ran the process.

The process clock ticks are produced by a clock routine, named hardclock. The hardclock routine is
entered for each engine one hundred times a second. If the routine is entered during a time when a
particular engine is running a user process, then a 32-bit counter associated with the particular engine is
incremented. Engines 1-N include counters 1-N, respectively, shown in FIG. 4. For example, counter 2
is included with engine 2. The functions of hardclock and counters 1-N may be performed either by
existing hardware in prior art system 10 with additional software, or by additional hardware and
software.

As each process leaves an engine, a pointer (*p.sub.-- runeng) that points to the engine is stored. The
value (p.sub.-- runtime) of the counter of the engine is also stored. For example, at time t.sub.1, process
X leaves engine 2. Accordingly, *p.sub.-- runeng=engine 2 and the count (p.sub.-- runtime) of counter 2
at time t.sub.1 are stored. At time t.sub.2, the process becomes runnable again. At time t.sub.3, the
scheduler calculates the difference (D.sub.e-p) between the stored p.sub.-- runtime and the count (e.sub.-
- runtime) of counter 2 at time t.sub.—- D.sub.e-p is inversely related to the probable amount of cache

. context remamning. The scheduler uses D.sub.e-p in estimating how much cache context remains for the

* process with respect to the engine.

An engine is pointed to by and can run processes from two or more run queues. In the examples
described herein, system 50 employs three types of run queues, each having the identical data structure:
a global UNIX rumn queue 54, an FPA global run queue, and one affinity run queue 58 for each engine.
When an engine is activated, it is pointed to by a list of the appropriate run queues. Processes are
generally initially attached to the global run queue, and may be moved to other run queues as described
below.

Conceptually, a process does not choose to run on a particular engine; instead, a process is enqueued to
a run queue, and then is run by an engine that is a member of an engine list pointed to by the run queue.
If the engine list contains only a single engine, the run queue is an affinity run queue and the process is
affinitied to the engine. If the engine list contains only FPA-equipped engines, the run queue is an FPA
run queue and the process has FPA affinity. A global run queue points at an engine list that contains all

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

w0

BV

United States Patent: 5,185,861 Page 13 of 22

of the engines on the system that will run processes of the type queued to the global run queue.

Each process has a data structure that has two pointers to run queues: a current run queue pointer
(*p-sub.-- 1q) and a home run queue pointer (*p.sub.-- rghome). The current first pointer indicates the
run queue to which the process is enqueued when it becomes runnable. The home run queue pointer
indicates the home run queue of the process. When a process is first created, both pointers generally
point to a global run queue. (The home run queue may be an affinity run queue if the process is hard
affinitied to an affinity run queue.) However, when a process is moved to an affinity run queue (because
of sufficient cache context), the current run queue pointer is moved, but the home pointer is unchanged.
If the process needs to move from its current run queue (because of insufficient cache context or the
engine is shutting down), the current run queue pointer of the process is moved back so that the current
run queue pointer points to the home run queue. For an FPA process, the home run queue pointer points
to an FPA global run queue. This allows the scheduler to apply cache affinity to more than one global
scheduling pool of processes, without the need for consideration of special cases.

The following sequence of aperations is exemplary of the handling of processes by the cache affinity
scheduler of the present invention. When a process is first created, it is attached to its current run queue
which is generally the global run queue. If the process has a higher priority than that of the process
currently running in any engine that is a member of the engine list for the current run queue, the engine
is nudged to decide whether to immediately run the newly enqueued process in place of the running
process.

In addition, an engine can become idle and look for a runnable process among any of the run queues that
are on the list of run queues for that engine. The engine then selects the highest priority process found,
and runs it. Sometime later the process will cease running, at which time the counter value (p.sub.--
runtime) for the process is stored. Often when a process stops running it enters a sleeping state in which
the process waits for another action such as a key stroke prior to becoming runnable again,

‘When the process subsequently becomes runnable, cache context becomes a consideration in deciding to
which run queue the process should be enqueued. The scheduler first examines the p.sub.-- flag field of
the process to determine whether the cache affinity bit (SAFFIN) is set (i.e., =1). If the cache affinity bit
‘is set, the scheduler considers whether the process has cache affinity in deciding in which run queue the
process will be enqueued.

The scheduler next inspects the engine on which the process last ran to determine the current counter
value for that engine (e.sub.-- runtime). D.sub.e-p =e.sub.-- numtime-p.sub.-- runtime is the accumulated

- clock tick value for other user processes that have run or are running on the engine since the process last

ran there. If D.sub.e-p is low (e.g., less than 3), the estimated cache context is high. Accordingly, on
average, the performance of system 50 will be increased by enquening the process to the affinity run
queue rather than to a global run queue. In that case, the process switches its current run queue pointer
from the process' home run gueue to the affinity run queue for that engine. If D.sub.e-p is high (e.g.
_more than 15), the estimated cache context is low and the process is moved back to its home run queue.

Data stracture descriptions

* The cache affinity scheduler employs a set of data structures and algorithms that handle processes
according to the general description given above. Some of the data structures are new, and others are
existing data structures for which additional fields have been defined. For existing data structures, the
added fields are described. Fields not disturbed in the conventional UNIX data structures are indicated

n (1]

by "..." in the listings. For new data structures, the entire declaration is included.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

et . D L o I R DR s - P LR I . St i A el U L e s

United States Patent: 5,185,861 Page 14 of 22

1. Added fields in the process data structure

struct proc

struct rung *p.sub.-- rghome;

/* home run queue of process */
struct rung *p.sub.-- rqg;

/* current run queue */
ulong p.sub.-- runtime;

/* eng time when last run */
struct engine *p.sub.-- runeng;

_ /* eng the process last ran on */
define SAFFIN 0x4000000
/* use affinity in scheduling */

b

The following is an explanation of the added process data structure fields:

*p.sub.-- rghome and *p.sub.-- rq are the home and current run queue pointers, As described below,
*p.sub.-- rq points to the run queune to which the process will enqueue itself. Therefore, if the process
chooses to enqueue itself to a different run queue (because of cache affinity considerations or an explicit
hard affinity request), the *p.sub.-- rq field is updated accordingly. *p.sub.-- rghome keeps track of the
base or home run queue of the process. Absent hard affinity, *p.sub.-- rghome points to a particular

- global run queue, depending on the type of process. For example, if the process is an FPA type process,
*p.sub.-- rghome for the process points to the FPA global run queue.

p.sub.-- runtime holds the engine hardclock counter value at the time this process last ran.

*p.sub.-- runeng is a pointer to the engine this process last ran on.

SAFFIN (cache affinity bit) is a new bit in the existing p.sub.-- flag field. Cache context will be
considered only for processes having this bit set. This bit is inherited through fork(), and all processes

initiated from initial startup of the system will have the cache affinity bit set. The bit is cleared when a
process hard affinities itself to an engine, as cache affinity is then a moot factor.

2. Added fields in the engine data structure

struct engine {

. int e.sub.-- npri;

/* priority of current process */
struct rungl *e.sub.-- rgl;

/* list of run queues to run from */
struct rung *e.sub.-- rqg;

: /* affinity run queue of engine */

ulong e.sub.-- runtime;

/* clock for cache warmth calc */
struct rung *e.sub.-- pushto;

/* load balancing, where to push */
int e.sub.-- pushent;

http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

B A

United States Patent: 5,185,861 Page 15 0f 22

/* # processes to push there */

The following is an explanation of the added fields in the engine data structure:

- e.sub.-- npti is a field used in the engine data structure of prior art system 10. Although e.sub.-- npri is
not added by the present invention, e.sub.-- npri is included here because it is discussed below with
respect to the timeslice algorithm. e.sub.-- npri records the priority of a process the engine may be
currently running. The scheduler uses e.sub.-- npri to correct for ties in priority of processes so that
processes from certain run queues are not continuously ignored.

e.sub.-- rql maintains the linked list of the run queues from which this engine schedules.

e.sub.-- rq indicates the affinity run queune for this engine (i.e., a run queue whose only member is this
engine). '

e.sub.-- runtime is the engine counter value that is compared with p.sub.-- runtime to calculate the
amount of cache context (cache warmth) remaining for this engine.

e.sub.-- pushto identifies the engine to which processes will be moved if process load balancing is
required. The algorithms controlling load balancing are described below.

e.sub.—- pushcent identifies the number of processes that will be moved to a different engine if load
balancing is used.

3. Run gueue data structure

/* a place to enqueue a process for running */

struct rung {

int r.sub.-- whichgs; /* bit mask of runq priority levels with waiting
processes */

struct prochd r.sub.-- gs[NQS];

/* Run gqueues, one per bit in r.sub.-- whichgs */
int r.sub.-- pwewmbers;
/* # processes belonging to this queue */
int r.sub.-- emembers;
/* # engs scheduling from this queue */
struct engl *r.sub.-- engs;
/* a list of those engines */
unsigned r.sub.-- flags;
/* miscellaneous flags */
struct rung *r.sub.-- act;

/* a pointer to next active rung */

}i

The following is an explanation of the run queue data structure fields:

http://patft.uspto.gov/netacgi/mph-Parser?Sect|=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 Page 16 of 22

r.sub.-- whichqgs and r.sub.-- gs correspond to the structures whichqs and gs used in prior art global run
queue 34. prochd is the pair of ph.sub.-- link and ph.sub.-- rlink (which are described in connection with
FIG. 2} for each slot in a run queue according to the present invention. Each bit in r.sub.-- whichgs
corresponds to an index in r.sub.-- gs[NQS]; the bit is set if there is a process queued in that slot. "NQS"
means the "number of queue slots," for example, 32 slots.

r.sub.-- pmembers and r.sub.-- emembers count the number of processes and engines, respectively,
belonging to this run queue.

*r.sub.-- engs is a pointer to a linked list of all engines scheduling from this run gueue.
r.sub.—- flags holds miscellaneous flags.
*1.sub.-- act is a pointer to a singly-linked list of all run queues active on the system. It is used primarily

by timeslice() to implement timeslicing priority among processes of equal priority on the system.
Timeslicing is discussed below.

4. Rung list and engine list data structures

struct rungl {
struct rung *rgl.sub.-- rung;
struct rungl *rgl.sub.-- next;
i A
struct engl {
struct engine *el.sub.-- eng;
struct engl *el.sub.-- mnext;

};

The struct rungl and struct engl data structures define circularly linked lists of run queue and engine
members. The struct runql statement defines the circular list of run queues to which an engine belongs,
and is pointed to from the *e.sub.-- rql field of the engine data structure. The struct engl statement
defines the circular list of engines that belong to a run queue, and is pointed to from the *r.sub.-- engs
. field of the run queue data structure. The lists are organized circularly to allow implementation of a

- conventional round robin scheduling routine. To avoid scheduling inequalities, the scheduling code sets
its list pointer (*e.sub.-- rql for engines; *r.sub.-- engs for run queues) to the last entry operated upon,
and starts looping one entry beyond the last entry. Because the lists are circular, the implementation
requires only the assignment of the list pointer.

FIGS. 7, 8, and 9 illustrates relationships among various data structures according to the present

~ invention. FIG. 7 illustrates only a single engine list and a single run queue list, whereas, there are
actually multiple lists of engines and multiple lists of run queues. FIG. 8 illustrates relationships among
data structures of the present invention from the perspective of the process data structure, for a single
process. FIG. 9 illustrates relationships among data structures of the present invention from the
perspective of the engine data structure, for a single engine.

Pseudo-code for algorithms

The following is a description of the algorithms that govern the operation and relationship of processes,

hitp://patfl.uspto. gov/netacgi/nph—Parset?Sectl=PT02&_Sect2=HIT OFF &p=1&u=/netaht... 12/20/2005

LA

apnans

United States Patent: 5,185,861 Page 17 of 22

run queues, engines, and lists according to the present invention. The algorithms are expressed in
pseudo-code format below. Multi-processor system 50 may use any conventional means to perform the .
functions of the algorithms, which are described below in detail.

1. Set process runnable (setrun/setrq)

The following algorithm is called setrun/setrq:
If process allows cache affinity
calc.sub.-- affinity.
Insert process in r.sub.-- gs, update r.sub.-- whichgs.
. Find lowest priority engine in run queue.
.If it is lower than the process
Nudge the engine.

When it is newly created, or has awakened from a sleeping state, a process is set runnable by the above
setrun/setrq algorithm. The run queue in which the process will be placed is a function of whether it ever
ran before, where it may have run before, and the calculated amount of cache context for the process.

The scan for the lowest-priority engine traverses the *r.sub.-- engs list from the run queue data structure.

If the process is attached to an affinity global run queue, then the lowest priority engine is the only

engine associated with an affinity run queue.

2. Calculate cache affinity (calc.sub.-- affinity)

The calculation of cache affinity (i.c., the calc.sub.-- affinity of the setrun/setrq algorithm) of a newly
runnable process is described in the pseudo-code routine below. The following algorithm is called
calc.sub.-- affinity:

If process never ran
return
If process is currently on affinity run gqueue
If no cache warmth or shutdown
Leave the affinity run queune.
Else
If cache warmth and not shutdown
Join the affinity run queue.

This pseudo-code represents the basic process for utilizing cache affinity: if the process has cache g
warmth, attach the process to the affinity run queue; if the cache is cold, attach the process to its home
run queue. The exact number of clock ticks for "cold" and "warm" cache values are patchable
parameters, to allow implementation specific applications. A value of D.sub.e-p less than a lower limit
L.sub.lower indicates a warm cache. A value of D.sub.e-p greater than an upper limit L.sub.upper
indicates a cold cache, In a preferred embodiment, L.sub.lower and L.sub.upper =15.

If the value of D.sub.e-p is between L.sub.lower and L.sub.upper, the scheduler considers the current

state of run queue pointer *p.sub.-- rq in deciding in which run queue to enqueue a process. As
~ described above, if a process is affinitied to an engine, *p.sub.-- rq points to the affinity run queue of F

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 Page 18 of 22

that engine. If the process is not affinitied, then *p.sub.-- rq points to the home run queue, which is
typically global run queue 54. In essence, the algorithm states, if a process is not affinitied, then the run
queue to which *p.sub.-- rq points will not change unless the cache context is high. If a process is
affinitied, then the run queue to which *p.sub.-- rq points will not change unless the cache context is
low. The gap between L.sub.lower and L.sub.upper thus builds hysteresis into the run queue switching
algorithm and prevents pointer oscillations.

The hysteresis scheme is summarized in the table, below:

Run gqueue process
D.sub.e-p *p.sub, -- rg
engueued to

D.sub.e-p < L.sub.lower
global affinity
affinity
affinity
L.sub.lower .ltoreg. D.sub.e-p .ltorxeq. L.sub.upper
global global
affinity
affinity
D.sub.e-p > L.sub.uppexr
global global
affinity
global

As can be seen from the table, if D.sub.e-p <L.sub.lower, the process is enqueued to the affinity run
queue of the engine (*p.sub.-- runeng) on which the process last ran, regardless of whether *p.sub.-- rq
points to the affinity run queue or the global run queue. If L.sub.lower .ltoreq.D.sub.e-

p .ltoreq.L.sub.upper, then the process is enqueued to whatever run queue *p.sub.-- rq points to. If
D.sub.e-p >L.sub.upper, then the process is enqueuned to the global run queue, regardless of whether
*p.sub.-- rq previously pointed to the affinity run queue or the global run queue. In the case where
D.sub.e-p >L.sub.upper, if *p.sub.-- rq previously pointed to the affinity run queue, *p.sub.-- 1q is
changed to point to the global run queue.

The hysteresis scheme is illustrated by the following example. At time t.sub.o, both *p.sub.-- rq (current
run queue pointer) and *p.sub.-- rghome (home ran queue) of process X point to global run queue 54. At
time t.sub.1, process X is run by engine 1, and *p.sub.-- rq points to engine 1. At time t.sub.2, engine 1
stops running process X, which then goes to sleep. At time t.sub.2, the count of the counter of engine
number 1 is C.sub.1, which is stored in memory as p.sub.-- runtime. At time t.sub.3, process X becomes
runnable, and at time t.sub.4, the scheduler decides whether to enqueue runnable process X to the
‘affinity run queue 58 of engine 1 or to global run queune 54. At time t.sub.4, the count of the counter of
engine 1 is C.sub.1 +5, which is stored as e runtime. Therefore, D.sub.e-p =(C.sub.1 +5)-C.sub.1 =5. As
noted above, in a preferred embodiment, the L.sub.lower =3 and L.sub.upper =15. Because, L.sub.
lower .1toreq.5.ltoreq.L.sub.upper, *p.sub.-- rq continues to point to the global run queue.

Continuing the example, at time t.sub.5, process X is run by, for example, engine 5. Therefore, *p.sub.--

1q points to engine 5. At time t.sub.6, engine 5 stops running process X, which then goes to sleep. At
time t.sub.6, the count of the counter of engine number 5 is C.sub.2, which is stored in memory as

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

A

United States Patent: 5,185,861 Page 19 of 22

p.sub.-- runtime. At time t.sub.7, process X becomes runnable, and at time t.sub.8, the scheduler decides
whether to enqueue runnable process X to the affinity run queue S8 of engine 5 or to global run queue
54. At time t.sub.8, the count of the counter of engine 1 is C.sub.2 +2, which is stored as e.sub.--
runtime. Therefore, D.sub.e-p =(C.sub.2 +2)-C.sub.2 =2. Because, D.sub.e-p =2<L.sub.lower, process X
is enqueued to the affinity queue 58 of engine 5.

Then, the next time process X becomes runnable, the scheduler will decide whether process X should be
enqueued to the affinity queune 58 of engine 5 or global run queue 54. However, because process X is
affinitied to engine 5, D.sub.e-p must be greater than L.sub.lower =15 in order for process X to be
enqueued to global queue 54.

In a preferred embodiment, the calculation of D.sub.e-p is made before the decision of which run queue

to place the process. There is some latency time between the time the decision of which run queue to
place the process in and the time that the process is actually run on an engine. The cache context for that

process may have eroded during the latency time. Therefore, the latency time should be considered in
_choosing the values for L.sub.lower and L.sub.upper. The relatively low values assigned to L.sub.lower
. and L.sub.upper in the preferred embodiment compensate somewhat for cache context "cooling" during
* the latency time.

3. Switch to a new process (swtch)

The following algorithm is called swtch:
Record current engine, engine time in proc
Loop:
If shutdown
Shut down.
Find highest priority process in rum queue.
I1f found something to do
Run it.
idle (returns rung)
If idle found something
Run it.
End loop.

The first step updates the p.sub.-- runtime and *p.sub.-- mneng fields. These are then used by the setrq()
algorithm to iraplement cache affinity. The loop also calls a function to find the run queue containing
the highest priority process under the engine's list. If a run queue with a runnable process is found, the
next process from that run queue is dequeued and run. If a runnable process is not found, a subroutine,
idle(), is called to implement idleness. Idle(} also returns a run queue as idle() had this information
available to it. This loop then takes the next process from this run queue, and runs it. Idle() can aiso
detect that the idling engine has been requested to shutdown. In this case, idle() runs without a run
queue. This causes swich to go back to the top of its loop, detect that the engine has been requested to
shutdown, and shut itself down.

4. Priority and load balance algorithms
In a multi-engine, multi-run queue system, there is a need to periodically assess and adjust the priority of

processes and the engines on which those processes are queued to run on. The three major algorithms
are: (1) timeslice(), which timeshares processes of equal priority within a particular run queue slot; (2)

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2& Sect2=HITOFF &p=1&u=/netaht... ' 12/20/2005

Je{ £G4

United States Patent: 5,185,861 Page 20 of 22

schedcpu(), which periodically adjusts the priority of processes assigned to different run queue slots in
the same run queue; and (3) load.sub.-- balance(), which periodically moves processes from one run
queue to another to average the amount of work to be performed by each engine. The pseudo-code for
these algorithms is given below.

a. Cause timeslicing (timeslice)

The following algorithm is called timeslice:

For each active run gueue
Find highest priority waiter.
if higher than or equal to lowest priority
engine, Nudge engine.

The timeslicing algorithm is unchanged from the one in the conventional UNIX scheduler. What has
changed is the way in which the algorithm is applied to the affinity run queues, global run queue 54, and
the FPA run queue. In the system code of prior art system 10, both the FPA and affinity run queues were
special cases. In this invention, the same data structure (struct rung) is used for all types of run queues,
thereby making it possible to generalize the code and run the same algorithm across each run queue on
the active list. There is a possible problem when an engine is a member of more than one run queue.
However, the e.sub.-- npri field correctly indicates what priority is pending on that engine (via nudge),
so each successive run queue, as it is timesliced, will treat the engine accordingly.

b Change process priority (schedcpu)

The schedcpu() algorithm is unchanged from the one used in the conventional UNIX schedulers.

c. Cause load balancing (load.sub.-- balance{))

The following algorithm is called load.sub.-- balance:
Scan all on-line engines
Record engine with lowest maxnrun value
Record engine with highest maxnrun value.
If lowest is two less than highest
Move (highest-lowest)/2 processes from
highest to lowest.
Clear maxnrun value for all engines.
d. Calculate maxnrun

The following algorithm is called rung.sub.-- maxnrun:
For each on-line engine
Count how many processes are gqueued
If engine is running add one to this count
If count is greater than maxnrun for this
engine
Add 1/8 to wmaxnrun for this engine.

The maxnrun routine collects information about the overall process load of the various engines. The

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u~/netaht... 12/20/2005

United States Patent: 5,185,861 Page 21 of 22

value of maxnrun is used in the load balance algorithm. By sampling the number of processes queued to
each engine, the routine approximates how many processes are competing for each engine. By
incrementing the maxnrun value in 1/8th count intervals, the routine filters the value and prevents
utilization spikes from adversely skewing the maxnrun value. maxnrun is sampled 10 times per second.
The rung.sub.-- maxnrun algorithm could delete the step of adding one to the count if an engine is
running.

The load.sub.-- balance routine runs every five seconds, which corresponds to 50 samples of the
maxnrun value for each engine. The load.sub.-- balance routine identifies significant load imbalances
and then causes a fraction of the processes to move from the most loaded engine to the least loaded
engine. Maxnrun is cleared after each sampling interval. When there are ties among the most loaded or
least loaded engines, the load.sub.-- balance routine operates on the first tie found. Round robin
scanning is used to minimize "favoritism" on the part of the load balancing routine.

~© The advantage of the multi-run queue algorithm is that the scheduling code paths continue to be as short

as they were in the prior art. The cache affinity decision is made once at the time the process becomes
runnable, and there is no potential for the same process to be considered repeatedly as each engine looks
for work. Because there are separate run queues, there is also the possibility of moving the run quene
interlock into the run queue itself, thus allowing multiple engines to schedule and dispatch their
workloads in parallel.

Alternative embodiments of the invention

Tt will be obvious to those having skiil in the art that many changes may be made to the details of the
above-described embodiment of this invention without departing from the underlying principles thereof.

For example, the invention is also applicable to multi-processor computing systems other than those
using UNIX operating systems.

System 50 could include more than one type of engine, but only one global run queue. The global run
queue could queue processes of more than one type, such as, for example, 386 type processes and FPA
type processes.

The calculation of cache context can be made closer to the time that a process is actnally run, for
example, when there is only one process in front of the process in question.

.. The estimation of cache context may consider kemel processes as well as user processes. For example,

the counter of an engine could be incremented when the hardclock routine is entered while an engine is
running a kernel process.

" In the preferred embodiment described above, the scheduler considers only the value of D.sub.e-p and
whether the process is affinitied or unaffinitied in deciding whether a process should be enqueued to an
-affinity run queue or a global run queue. Alternatively, the scheduler could consider other factors such
as the number and/or priority of processes in the affinity run queue. The scheduler could also consider
how many processes there are in other run queues and how much data are expected to pass over system
bus 12 in the next short time period.

In the preferred embodiment, there is one cache memory for each engine. Alternatively, an engine could
have more than one cache memory or share a cache memory with one or more other engines.

In the preferred embodiment, the same data structure is used for each run queue. Alternatively, different

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,185,861 Page 22 of 22

data structures could be used for different types of run queues.

The preferred embodiment employs load.sub.-- balance. Alternatively or in addition, an engine could
"steal" work as follows. An idle engine counld scan the affinity run queues of other engines for waiting
processes that could be run on the idle engine. This could have the effect of the load.sub.-- balance
algorithm, but might achieve this effect with less latency. This technique could defeat the effects of
cache affinity by causing many more engine-to-engine process switches than would occur otherwise.
The cases where this technique can be used effectively are thus determined by the speed of the engines,
‘the size of the caches, and the CPU utilization characteristics of the processes being scheduled.

The scope of the present invention should be determined only by the following claims.

* % %k %k

JImages

[view Cart] [Add to Cart]

| mitist |[previous |[Top |

| eme || ouick J[ﬁduanced]lpatmum” Help |

http://patft.uspto.gov/netacgi/nph-Parser?Sect]1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

