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Abstract

A distributed file management system (DFS) with a plurality of nodes and a plurality of files is
disclosed. The DFS uses the UNIX operating system tree structure employing inodes {(data structures
containing the administrative information of each file) to manage the local files and surrogate inodes
(s.sub.-- inode) to manage access to files existing on another node. In addition, the DFS uses a file
access structure lock (fas.sub.-- lock) to manage multiple requests to a single file. The primary reason
for the addition of the fas.sub.-- lock for each file is to avoid the problem of deadlocks. The inodes and
s.sub.-- inodes use the fas.sub.-- lock to synchronize their accesses to a file and avoid a deadlock
situation where both s.sub.-- inode and inode await the use of a file that is locked by the other.
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Parent Case Text

This is a continuation of application Ser. No. 014,900 filed Feb. 13, 1987, now abandoned.

Claims

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is set
forth in the following claims:

1. A distributed system having data in a file residing at a server data processing system, said file data

~ being accessible by a plurality of processes in at least one client data processing system and said server
data processing system, said server data processing system and said at least one client data processing
system connected by a communication means, said distributed system comprising:

a first lock means, in said server data processing system, for serializing access to the data in the file by
processes at the servor data processing system;

a second lock means, in said client data processing system, for serializing access to data in a cache in the
client data processing system corresponding to said data in said file by processes at the client data
‘processing system;

_ a third lock means in said server data processing system for serializing access to a file access structure
list containing descriptions of locks granted by said first lock means at said server data processing
system; and

means for using said third lock means, to lock said file access structure list in said server data processing

system, instead of using said first lock means to lock said data in said file, by an operation which is

capable of causing a remote procedure call to be generated between the server data processing system

" . and the client data processing system, said remote procedure call requiring access to the data in the
cache at the client data processing system and to the data in the file at the server data processing system,

“thereby avoiding a lock simultaneously existing on both said first lock means and said second lock
means during a remote procedure call.

2. The distributed system of claim 1 wherein said third lock means serializes use of said first lock means
when one of said plurality of processes closes said file.

3. The distributed system of claim 1 wherein said third lock means serializes use of said first lock means
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when one of said plurality of processes opens said file.

4. The distributed system of claim 1 wherein said third lock means serializes use of said first lock means
when a list of processes having current access to said file is interrogated.

5. The distributed system of claim 1 wherein said third lock means serializes use of said first lock means
during a write to said file when said file is open for write access in more than one of a plurality of data
processing systems.

6. The distributed system of claim 1 wherein said first lock means for serializing access to said data in
said file at said server data processing system is locked by a process during an operation to said file in
said server data processing system.

7. The distributed system of claim 1 wherein said first lock means for serializing access to said data in
said file at said server data processing system is locked by a process during a read operation to said data
in said file at said server data processing system.

8. The distributed system of claim 1 wherein said first lock means for serializing access to said data in
said file at said server data processing system is locked by a process during a write operation to said data
in said file at said server data processing system.

9. The distributed system of claim 1 wherein said first lock means for serializing access to said data in
said file at said server data processing system is unlocked by a process before said remote procedure call

_ is sent to said client data processing system from said server data processing system if the remote
procedure call requires a lock on said second lock means for serializing access to said data in said cache
in said client data processing system.

10. The distributed system of claim 1 wherein said first lock means for serializing access to said data in
said file is unlocked by a process at said server data processing system when said server data processing
system originates said remote procedure call to the client data processing system, thereby allowing the
server data processing system to accept read and write requests after said remote procedure call is sent.

11. The distributed system of claim 1 wherein said second lock means for serializing access to said data

in said cache at said client data processing system is locked by a process during an operation at said

client data processing system requiring access to said data in said cache in said client data processing
system.

12. The distributed system of claim 1 wherein said second lock means for serializing access to said data
in said cache at said client data processing system is unlocked by a process if an operation at said client
- data processing system requires a lock on said third lock means.

13. The distributed system of claim 1 wherein said second lock means for serializing access to said data

. in said cache at said client data processing system is locked by a process during an operation at said
client data processing system requiring access to said data in said cache until said remote procedure call
is sent from client data processing system to said server data processing system.

14. The distributed system of claim 1 wherein said second lock means for serializing access to said data
in said cache is unlocked at one of a plurality of client data processing systems by a process when said
remote procedure call is sent to said server data processing system from said one of said plurality of
client data processing systems.
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15. A method, in a data processing system, of preventing a deadlock between a first lock that serializes
access to data in a file at a server data processing system and a second lock that serializes file access
within a client process in a client data processing system, said method comprising:

locking a third lock for serializing access to a list of data corresponding to at least said first lock,
representing client data processing systems having current access to said file;

) locking said first lock for serializing access to said data in said file at said server data processing system;
and '

| unlocking said first lock at said server data processing system before sending, by said server data
processing system, a remote procedure call to said client data processing system to lock said second
Jock, by an operation executing at said client data processing system requiring access to the file.

- 16. A method, in a data processing system, of preventing a deadlock between a first lock that serializes
access to data in a file at a server data processing system and a second lock that serializes file access in a
cache in a client data processing system, said method comprising:

locking said second lock at said client data processing system by an operation executing at said client
data processing system and accessing data in said cache corresponding to said file;

unlocking said second lock by an operation at said client data processing system before a remote
. procedure call request is sent from said client data processing system to said server data processing
system;

locking a third lock in said server data processing system, by said remote procedure call request, for
serializing access to a list of client data processing systems having current access to said file;

locking said first lock by an operation executing at said server data processing system and requiring
access to said file at said server data processing system; and

unlocking said first lock by said server data processing system while maintaining said third lock before
sending said remote procedure call to said client data processing system if said remote procedure call
requires a lock on said second lock, thereby allowing said server data processing system to accept read
and write operations requiring a lock on said first lock after said remote procedure call is sent.

17. A method, in a data processing system, of preventing a deadlock between a first lock that serializes
access to data in a file at a server data processing system and a second lock that serializes access to data,
corresponding to said file, in a cache in a client data processing system, said method comprising:

locking said first lock by an operation executing at said server data processing system and requiring
access to said file at said server data processing system;

locking said second lock by an operation executing at the client data processing system requiring access
to said data in said cache;

unlocking said second lock by an operation at said client data processing system if said operation
generates a remote procedure call from said client data processing system to said server data processing
system; and

a locking a third lock for serializing access to a list of files representing client accesses to said files in
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said server data processing system by a second operation executing in said server data processing system
in response to said remote procedure call received by said server data processing system from said client
data processing systern, thereby avoiding locking of both said first lock and said second lock during said
remote procedure call.

18. A method of preventing deadlocks in a distributed data processing system of the type having at least
one server data processing system having at least one file physically residing at the server data
processing system and having a first data structure representing said file at said server data processing
system, and at least one client data processing system having access to data from said file by a
communications link between said server data processing system and said client data processing system,
said client data processing system having access to said data from said file from a cache at the client
data processing system, said client data processing system further having a second data structure
_representing said cached data at said client data processing system, said method of preventing deadlocks
in a distributed processing system comprising:

locking said first data structure during execution of an operation from a process, at said server data
processing system, requiring access to at least a portion of said file at said server data processing system;

.locking said second data structure during execution of an operation from a process, at said client data
' processing system, requiring access to at least a portion of said file in the cache at said client data
processing system; and

unlocking said second data structure before controiling access to at least a portion of said file residing at
said server data processing system by locking a third data structure, in said server data processing
system, instead of locking said first data structure by said at least one client data processing system,
thereby maintaining the control of the locking of said first data structure by said server data processing
system and eliminating said first data structure as a critical locking resource between said client data
processing system and said server data processing system.

Description

CROSS REFERENCE TO RELATED APPLICATIONS

This application is related in subject matter to the following applications filed concurrently herewith and
assigned to a common assignee:

Application Ser. No. 07/014,899 filed by A. Chang, G. H. Neuman, A. A. Shaheen-Gouda, and T. A.
Smith for A System And Method For Using Cached Data At A Local Node After Re-opening A File At
A Remote Node In A Distributed Networking Environment; now U.S. Pat. No. 4,897,781, issued Jan.
30, 1990.

‘Application Ser. No. 07/014,884 filed by D. W. Johnson, L. W, Henson, A. A. Shaheen-Gouda, and T.
A. Smith for Negotiating Communication Conventions Between Nodes in a Network; now abandoned.

Application Ser. No. 07/014,897 filed by D. W. Johnson, G. H. Neuman, C. H. Sauer, A. A. Shaheen-

Gouda, and T. A. Smith for A System And Method For Accessing Remote Files In A Distributed
Networking Environment; now U.S. Pat. No. 4,887,204, issued Dec. 12, 1989.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005



United States Patent: 5,175,852 Page 6 of 33

Application Ser. No. 07/014,891 filed by L. W. Henson, A. A. Shaheen-Gouda, and T. A. Smith for
. Distributed File and Record Locking; now abandoned.

Application Ser. No. 07/014,892 filed by D. W. Johnson, L. K. Loucks, C. H. Sauer, and T. A. Smith for
Single System Image; Uniquely Defining an Environment For Each User In a Data Processing System;
- now abandoned.

Application Ser. No. 07/014,888 filed by D. W. Johnson, L. K. Loucks, A. A. Shaheen-Gouda for
Interprocess Communication Queue Location Transparency now U.S. Pat. No. 5,133,053, issued Jul. 21,
1992,

Application Ser. No. 07/014,889 filed by D. W. Johnson, A. A. Shaheen-Gouda, and T. A. Smith for
Directory Cache Management In a Distributed Data Processing System.

The disclosures of the foregoing co-pending applications are incorporated herein by reference.
DESCRIPTION
Field of the Invention

This invention generally relates to improvements in operating systems for a distributed data processing

system and, more particularly, to an operating system for a multi-processor system interconnected by a

- local area network (LAN) or a wide area network (WAN). IBM's System Network Architecture (SNA)
may be used to construct the LAN or WAN. The operating system according to the invention permits

. the accessing of files by processors in the system, no matter where those files are located in the system.
The preferred embodiment of the invention is disclosed in terms of a preferred embodiment which is
implemented in a version of the UNIX.sup.1 operating system; however, the invention could be
mplemented in other and different operating systems.

.sup.1 Developed and licensed by AT&T. UNIX is a registered trademark of AT&T in the U.S.A. and
other countries. ,

BACKGROUND OF THE INVENTION

Virtual machine operating systems are known in the prior art which make a single real machine appear
to be several machines. These machines can be very similar to the real machine on which they are run or
they can be very different. While many virtual machine operating systerns have been developed, perhaps
the most widely used is VM/370 which runs on the IBM System/370. The VM/370 operating system
creates the illusion that each of several users operating from terminals has a complete System/370 with
varying amounts of disk and memory capacity.

The physical disk devices are managed by the VM/370 operating system. The physical volumes residing
on disk are divided into virtual volumes of various sizes and assigned and accessed by users carrying out
a process called mounting. Mounting defines and attaches physical volumes to a VM/370 operating
system and defines the virtual characteristics of the volumes such as size, security and ownership.

Moreover, under VM/370 a user can access and use any of the other operating systems running under
VM/370 either locally on the same processor or remotely on another processor. A user in Austin can use
a function of VM/370 called "passthru" to access another VM/370 or MVS/370 operating system on the
same processor or, for example, a processor connected into the same SNA network and located in Paris,
France. Once the user has employed this function, the files attached to the other operating system are
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available for processing by the user.

There are some significant drawbacks to this approach. First, when the user employs the "passthru"
function to access another operating system either locally or remotely, the files and operating
environment that were previously being used are no longer available until the new session has been
terminated. The only way to process files from the other session is to send the files to the other operating
system and effectively make duplicate copies on both disks. Second, the user must have a separate
"logon" on all the systems that are to be accessed. This provides the security necessary to protect the
integrity of the system, but it also creates a tremendous burden on the user. For further background, the
reader is referred to the text book by Harvey M. Deitel entitled An Introduction to Operating Systems,
published by Addison-Wesley (1984), and in particular to Chapter 22 entitled "VM: A Virtual Machine
Operating System". A more in depth discussion may be had by referring to the text book by Harold
Lorin and Harvey M. Deitel entitled Operating Systems, published by Addison-Wesley (1981), and in
particular to Chapter 16 entitled "Virtual Machines”.

The invention to be described hereinafter was implemented in a version of the UNIX operating system
but may be used in other operating systems having characteristics similar to the UNIX operating system.
The UNIX operating system was developed by Bell Telephone Laboratories, Inc., for use on a Digital
Equipment Corporation (DEC) minicomputer but has become a popular operating system for a wide
range of minicomputers and, more recently, microcomputers. One reason for this popularity is that the
UNIX operating system is written in the C programming language, also developed at Bell Telephone
Laboratories, rather than in assembly language so that if is not processor specific. Thus, compilers
written for various machines to give them C capability make it possible to transport the UNIX operating
system from one machine to another. Therefore, application programs written for the UNIX operating
system environment are also portable from one machine to another. For more information on the UNIX
operating system, the reader is referred to UNIX.TM. System, User's Manual, System V, published by
Western Electric Co., January 1983. A good overview of the UNIX operating system is provided by
Brian W. Kernighan and Rob Pike in their book entitled The Unix Programming Environment,
‘published by Prentice-Hall (1984). A more detailed description of the design of the UNIX operating
system is to be found in a book by Maurice J. Bach, Design of the Unix Operating System, published by
Prentice-Hall (1986).

AT&T Bell Labs has licensed a number of parties to use the UNIX operating system, and there are now
several versions available. The most current version from AT&T is version 5.2. Another version known
as the Berkeley version of the UNIX operating system was developed by the University of California at
Berkeley. Microsoft, the publisher of the popular MS-DOS and PC-DOS operating systems for personal
-computers, has a version known under their trademark as XENIX. With the announcement of the IBM
- RT.sup.2 PC (RISC (reduced instruction set computer)} Technology Personal Computer) in 1985, IBM
Corp. released a new operating system called AIX sup.3 (Advanced Interactive Executive) which is
compatible at the application interface level with AT&T's UNIX operating system, version 5.2, and
includes extensions to the UNIX operating system, version 5.2. For more description of the AIX
operating system, the reader is referred to AIX Operating System Technical Reference, published by
IBM Corp., First Edition (Nov. 1985).

.sup.2 RT and RT PC are trademarks of IBM Corporation.
-sup.3 AIX is a trademark of IBM Corporation.
The invention is specifically concerned with distributed data processing systems characterized by a

plurality of processors interconnected in a network. As actually implemented, the invention runs on a
plurality of IBM RT PCs interconnected by IBM's Systems Network Architecture (SNA), and more
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specifically SNA LU 6.2 Advanced Program to Program Communication (APPC). SNA uses as its link

level Ethernet.sup.4, a local area network (LAN) developed by Xerox Corp., or SDLC (Synchronous

Data Link Control). A stmplified description of local area networks including the Etheret local area

~ network may be found in a book by Larry E. Jordan and Bruce Churchill entitled Communications and
Networking for the IBM PC, published by Robert J. Brady (a Prentice-Hall company) (1983). A more

definitive description of communications systems for computers, particularly of SNA and SDLC, is to

be found in a book by R. J. Cypser entitled Communications Architecture for Distributed Systems,

published by Addison-Wesley (1978). It will, however, be understood that the invention may be

- implemented using other and different computers than the IBM RT PC interconnected by other networks

than the Ethernet local area network or IBM's SNA.

.sup.4 Ethernet is a trademark of Xerox Corporation.

As mentioned, the invention to be described hereinafter is directed to a distributed data processing
_ system in a communication network. In this environment, each processor at a node in the network
potentially may access all the files in the network no matter at which nodes the files may reside. As
shown in FIG. 1, a distributed network environment 1 may consist of two or more nodes A, B and C
connected through a communication link or network 3. The network 3 can be a local area network
(LLAN) as mentioned or a wide area network (WAN), the latter comprising a switched or leased
teleprocessing (TP) connection to other nodes or to a SNA network of systems. At any of the nodes A, B
or C there may be a processing system 10A, 10B or 10C, such as the aforementioned IBM RT PC. Each
of these systems 10A, 10B and 10C may be a single user system or a multi-user system with the ability
to use the network 3 to access files located at a remote node in the network. For example, the processing
system 10A at local node A is able to access the files 5B and 5C at the remote nodes B and C.

The problems encountered in accessing remote nodes can be better understood by first examining how a
standalone system accesses files. In a standalone system, such as 10 shown in FIG. 2, a local buffer 12
in the operating system 11 is used to buffer the data transferred between the permanent storage 2, such
as a hard file or a disk in a personal computer, and the user address space 14. The local buffer 12 in the
operating system 11 is also referred to as a local cache or kemel buffer. For more information on the
UNIX operating system kernel, see the aforementioned books by Kernighan et al. and Bach. The local
cache can be best understood in terms of a memory resident disk. The data retains the physical
characteristics that it had on disk; however, the information now resides in a medium that lends itself to
faster data transfer rates very close to the rates achieved in main system memory.

In the standalone system, the kernel buffer 12 is identified by blocks 15 which are designated as device

number and logical block number within the device. When a read system call 16 is issued, it is issued
with a file descriptor of the file 5, and a byte range within the file 5 as shown in step 101 in FIG. 3. The
operating system 11 takes this information and converts it to device number and logical block numbers
of the device in step 102. Then the operating system 11 reads the cache 12 according to the device
number and logical block numbers in step 103.

-Any data read from the disk 2 is kept in the cache block 15 until the cache block 15 is needed. -
Consequently, any successive read requests from an application program 4 that is running on the
processing system 10 for the same data previously read from the disk is accessed from the cache 12 and
not the disk 2. Reading from the cache is less time consuming than accessing the disk; therefore, by
reading from the cache, performance of the application 4 is improved. Obviously, if the data which is to
be accessed is not in the cache, then a disk access must be made, but this requirement occurs
infrequently.

Similarly, data written from the application 4 is not saved immediately on the disk 2 but is written to the
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cache 12. This again saves time, improving the performance of the application 4. Modified data blocks
mn the cache 12 are saved on the disk 2 periodically under the control of the operating system 11.

Use of a cache in a standalone system that utilizes the AIX operating system, which is the environment
in which the mvention was implemented, improves the overall performance of the system disk and
minimizes access time by eliminating the need for successive read and write disk operations.

In the distributed networking environment shown in FIG. 1, there are two ways the processing system
10C in local node C could read the file 5A from node A. In one way, the processing system 10C could
copy the whole file 5A and then read it as if it were a local file 5C residing at node C. Reading the file in
this way creates a problem if another processing system 10B at node B, for example, modifies the file
SA after the file 5A has been copied at node C. The processing system 10C would not have access to the
latest modifications to the file 5A,

. Another way for processing system 10C to access a file 5A at node A is to read one block at a time as
~ the processing system at node C requires it. A problem with this method is that every read has to go
~ across the network communications link 3 to the node A where the file resides. Sending the data for
every successive read is time consuming,

Accessing files across a network presents two competing problems as illustrated above. One problem
involves the time required to transmit data across the network for successive reads and writes. On the
other hand, if the file data is stored in the node to reduce network traffic, the file integrity may be lost.
For example, if one of the several nodes is also writing to the file, the other nodes accessing the file may
not be accessing the latest updated file that has just been written. As such, the file integrity is lost, and a
node may be accessing incorrect and outdated files. Within this document, the term "server" will be used
to indicate the processing system where the file is permanently stored, and the term client will be used to
* mean any other processing system having processes accessing the file. The invention to be described
hereinafter is part of an operating system which provides a solution to the problem of managing
distributed information.

Other approaches to supporting a distributed data processing system in the UNIX operating system
- environment are known, For example, Sun Microsystems has released a Network File System (NFS) and

.. Bell Laboratories has developed a Remote File System (RES). The Sun Microsysterns NFS has been

. described in a series of publications including S. R. Kleiman, "Vnodes: An Architecture for Multiple
File System Types in Sun UNIX", Conference Proceedings, USENIX 1986 Summer Technical
Conference and Exhibition, pp. 238 to 247; Russel Sandberg et al., "Design and Implementation of the
Sun Network Filesystem", Conference Proceedings, Usenix 1983, pp. 119 to 130; Dan Walsh et al.,

"Overview of the Sun Network File System", pp. 117 to 124; JoMei Chang, "Status Monitor Provides
Network Locking Service for NFS"; JoMei Chang, "SunNet", pp. 71 to 75; and Bradley Taylor, "Secure
Networking in the Sun Environment”, pp. 28. The AT&T RFS has also been described in a series of

" publications including Andrew P. Rifkin et al., "RFS Architectural Overview", USENIX Conference

Proceedings, Atlanta, Ga. (June 1986), pp. 1 to 12; Richard Hamilton et al., " An Administrator's View

of Remote File Sharing", pp. 1 to 9; Tom Houghton et al., "File Systems Switch", pp. 1 to 2; and David

" J. Olander et al., "A Framework for Networking in System V", pp. 1 to 8.

One feature of the distributed services system in which the subject invention is implemented which
distinguishes it from the Sun Microsystems NFS, for example, is that Sun's approach was to design what
is essentially a stateless machine. More specifically, the server in a distributed system may be designed
to be stateless. This means that the server does not store any information about client nodes, including
such information as which client nodes have a server file open, whether client processes have a file open
in read.sub.-- only or read.sub.-- write modes, or whether a client has locks placed on byte ranges of the
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file. Such an implementation simplifies the design of the server because the server does not have to deal
with error recovery situations which may arise when a client fails or goes off-line without properly
informing the server that it is releasing its claim on server resources.

An entirely different approach was taken in the design of the distributed services system in which the
present invention is implemented. More specifically, the distributed services system may be
characterized as a "statefull implementation". A "statefull" server, such as that described here, does keep
information about who is using its files and how the files are being used. This requires that the server
have some way to detect the loss of contact with a client so that accumulated state information about that

~client can be discarded. The cache management strategies described here, however, cannot be
implemented unless the server keeps such state information. The management of the cache is affected,
as described below, by the number of client nodes which have issued requests to open a server file and
the read/write modes of those opens.

SUMMARY OF THE INVENTION

It 1s therefore a general object of this invention to provide a distributed services system for an operating
system which supports a multi- processor data processing system interconnected in a communications
network that provides user transparency as to file location in the network and as to performance.

It is another, more specific object of the invention to provide a technique for providing a distributed file
management system (DFS) with a file access control structure lock (fas.sub.-- lock) for preventing the
problem of deadlocks.

According to the invention, these objects are accomplished by creating a fas.sub.-- lock for each file
accessed from a remote system. The fas.sub.-- lock is used to lock instead of locking the file's inode.
This makes it possible for the DFS to regulate accesses to files and avoid the problem of a deadlock
occurring.

BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, aspects and advantages of the invention will be better understood from
the following detailed description of the preferred embodiment of the invention with reference to the

accompanying drawings, in which:

FIG. 1 is a block diagram showing a typical distributed data processing system in which the subject
invention is designed to operate;

FIG. 2 is a block diagram illustrating a typical standalone processor system;

FIG. 3 is a flowchart showing the steps performed by an operating system when a read system call is
made by an application running on a processor;

“FIG. 4 is a block diagram of the data structure illustrating the scenario for following a path to a file
operation at a local node as performed by the operating system which supports the subject invention;

FIGS. 5 and 6 are block diagrams of the data structures illustrating the before and after conditions of the
scenario for a mount file operation at a local node as performed by the operating system;

FIG. 7 1s a block diagram, similar to FIG. 1, showing a distributed data processing system according to
the invention;
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FIG. 8 is a block diagram of the data structure for the distributed file system shown in FIG. 7,
FIGS. 9A to 9F are block diagrams of component parts of the data structure shown in FIG. 8&;
FIGS. 10,11 and 12 are block diagrams of the data structures illustrating the scenarios for a mount file
operation and following a path to a file at a local and remote node in a distributed system as performed

by the operating system;,

FIG. 13 is a block diagram showing in more detail a portion of the distributed data processing system
shown in FIG. 7;

FIG. 14 is a state diagram illustrating the various synchronization modes employed by the operating
system which supports the present invention;

FIG. 15 is a block diagram, similar to FIG. 13, which illustrates the synchronous mode operations;

FIG. 16 is a state diagram, similar to the state diagram of FIG. 14, which shows an example of the
synchronization modes of the distributed file system; and

FIG. 17 is a diagram showing the control flow of accesses to a file by two client nodes.

FIG. 18 is a diagram showing a deadlock when two operations are currently executing.

FIG. 19 is a diagram showing the execution steps of an open request from a client node.

DESCRiPTION OF THE PREFERRED EMBODIMENT

The following disclosure describes solutions to problems which are encountered when creating a

distributed file system in which the logic that manages a machine's files is altered to allow files that

physically reside in several different machines to

appear to be part of the local machine's file system. The implementation described is an extension of the
- file system of the ATX operating system. Reference should be made to the above-referenced Technical
Reference for more information on this operating system. Specific knowledge of the following AIX file
system concepts is assumed: tree structured file systems; directories; and file system organization,

including inodes.

- In a UNIX operating system, an individual disk (or diskette or partition of a disk) contains a file system.
The essential aspects of the file system that are relevant to this discussion are listed below:

a) each file on an individual file system is uniquely identified by its inode number;
b) directories are files, and thus a directory can be uniquely identified by its inode number;
¢) a directory contains an array of entries of the following form:

name--inode number, where the inode number may be that of an individual file or that of another
directory; and

d) by convention, the inode number of the file system's root directory is inode number 2.
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Following the path "/dirl/dir2/file" within a device's file system thus involves the following steps:
1. Read the file identified by inode number 2 (the device's root directory).
2. Search the directory for an entry with name=dir1.

3. Read the file identified by the inode number associated with dir] (this is the next directory in the
- path). .

4. Search the directory for an entry with name=dir2.

5. Read the file identified by the inode number associated with dir2 (this is the next directory in the
path).

6. Search the directory for an entry with name=file.

7. The inode number associated with file in this directory is the inode number of the file identified by
the path "/dirl/dir2/file".

The file trees which reside on individual file systems are the building blocks from which a node's
aggregate file tree is built. A particular device (e.g., hard file partition) is designated as the device which
contains a node's root file system. The file tree which resides on another device can be added to the
node’s file tree by performing a mount operation. The two principal parameters to the mount operation
are (1) the name of the device which holds the file to be mounted and (2) the path to the directory upon
which the device's file iree is to be mounted. This directory must already be part of the node's file tree;
i.e., it must be a directory in the root file system, or it must be a directory in a file system which has
already been added (via a mount operation) to the node's file tree.

After the mount has been accomplished, paths which would ordinarily flow through the "mounted over"
directory instead flow through the root inode of the mounted file system. A mount operation proceeds as
follows:

1. Follow the path to the mount point and get the inode number and device number of the directory
which is to be covered by the mounted device.

2. Create a data structure which contains essentially the following:
a) the device name and inode number of the covered directory; and
b) the device name of the mounted device.

, The path following in the node's aggregate file tree consists of (a) following the path in a device file tree
until encountering an inode which has been mounted over (or, of course, the end of the path); (b) once a
mount point is encountered, using the mount data structure to determine which device is next in the

path; and (c) begin following the path at inode 2 (the root inode) in the device indicated in the mount
structure.

The mount data structures are volatile; they are not recorded on disk. The list of desired mounts must be

re-issued each time the machine is powered up as part of the Initial Program Load (IPL). The preceding
discussion describes how traditional UNIX operating systems use mounts of entire file systems to create
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file trees and how paths are followed in such a file tree. Such an implementation is restricted to

“mounting the entire file system which resides on a device. The invention described herein is based on an
enhancement, embodying the concept of a virtual file system, which allows (1) mounting a portion of
the file system which resides on a device by allowing the mounting of directories in addition to allowing
mounting of devices, (2) mounting either remote or local directories over directories which are already
part of the file tree, and (3) mounting of files (remote or local) over files which are already part of the
file tree.

In the virtual file system, the operations which are performed on a particular device file system are
clearly separated from those operations which deal with constructing and using the node's aggregate file
tree. A node's virtual file system allows access to both local and remote files.

The management of local files is a simpler problem than management of remote files. For this reason,
the discussion of the virtual file system is broken into two parts. The first part describes only local
operations. This part provides a base from which to discuss remote operations. The same data structures
and operations are used for both remote and local operations. The discussion on local operations
describes those aspects of the data and procedures which are relevant to standalone operations. The
discussion on remote operations adds information pertinent to remote operations without, however,
reiterating what was discussed in the local operations section.

FIG. 4 shows the relationship that exists among the data structures of the virtual file system. Every
mount operation creates a new virtual file system (vfs) data structure. The essential elements in this
structure are (a) a pointer to the root vnode (virtual node) of this virtual file system (e.g., the arrow from
block 21 to block 23), and (b) a pointer to the vnode which was mounted over when this virtual file
system was created (e.g., the arrow from block 25 to block 24).

Whenever an inode needs to be represented in the file systemn independent portion of the system, it is
represented by a vnode. The essential elements in this structure are the following:

a) a pointer to the vfs which contains the vnode (e.g., the arrow from block 22 to block 21});

b) a pointer to the vfs which is mounted over this vnode (e.g., the arrow from block 24 to block 25; but
“note however that not all vnodes are the mount point for a virtual file system, i.e., a null pointer
indicates that this vnode is not a mount point);

¢) a pointer to either a surrogate inode or a real inode (e.g., the arrow from block 26 to block 32); and
* d) a pointer to a node table entry (this is a non-null only when the file is a remote file).

The AIX operating system, in common with other UNIX operating systems, keeps a memory resident
table which contains information about each inode that is being used by the system. For instance, when a
file is opened, its inode is read from the disk and a subset of this inode information, together with some
additional information, is stored in the inode table. The essential clements of an inode table entry are (a)
a pointer to the head of a file access structure list and (b) information from the disk inode, the details of
which are not relevant here.

The file access structure records information about which nodes have the file open, and about the modes
(read only or read.sub.-- write) of these opens. There is a separate file access structure for each node
which has the file open. This state information enables the server to know how each client is using the
server file.
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The file system supports a set of operations which may be performed on it. A process interacts with a
file system by performing a file system operation as follows:

1. The user calls one of the operations providing (perhaps) some input parameters.
2. The file system logic performs the operation, which may alter the internal data state of the file

3. The file system logic returns to the calling user, perhaps returning some return parameters. The
operations which can be performed on a file system are referred to as "vn.sub.-- operations" or "vn.sub.--
ops". There are several vn.sub.-- ops, but the ones which are important to this discussion ate described e
below:

VN.sub.-- LOOKUP

-In the vn.sub.-- lookup operation, the essential iterative step in following a path in a file system is to
locate the name of a path component in a directory file and use the associated inode number to locate the
next directory in the chain. The pseudo code for the vn.sub.-- lookup operation is listed below:

function lookup

input: directory vnode pointer,

name to be locked up in directory
output: vnode pointer to named file/dir.
convert directory vnode pointer

to an inode pointer; )
use private data pointer of vnode
lock directory's inode;-

if( we don't have search permission in
directory )

unlock directory inode;

return error;

search directory for name;

if( found )

create file handle for name;

use inode found in directory entry;
get pointer to vnode for file handle;
unlock directory inode;

return pointer to vnode;

else -- not found

unlock directory inode;

return error;

VN.sub.-- OPEN

The function vn.sub.-- open creates a file access structure (or modifies an existing one) to record what
open modes (READ/WRITE or READ.sub.-- ONLY) to open a file. The pseudo code for the vn.sub.—
open operation is listed below:

function vn.sub.-- open
inputs: vnode pointer for file to be opened
open flags (e.g., read-only,
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read/write)

create mode -- file mode bits if
creating

output: return code indicating success or
failure

get pointer to file's inode from vnode;
lock inode;
if( not permitted access )
unlock inode;
- return( error );
get the file access structure for this
client; .
if there is no file access structure
- allocate one
if( couldn‘'t allocate file access
stxucture )
unlock inode;
return{ error };
update file access structure read-only,
read/write, and text counts;
if ( truncate mode is set )
truncate file:
unlock the inode;

LOOKUPPN

Page 15 0f 33

The lookuppn operation is the function which follows paths. Its input is a path (e.g., "/dir1/dir2/file"),
and its return 1s a pointer to the vnode which represents the file. Lookuppn calls vn.sub.-- lookup to read
one directory, then it checks to see if the vnode returned by vn.sub.-- lookup has been mounted over. If
the vnode is not mounted over, then lookuppn calls vn.sub.-- lookup in the same file system. If the
vnode has been mounted over, then lookuppn follows the pointer from the mounted over vnode (e.g.,
block 24 in FIG. 4) to the vfs of the mounted file system (e.g., block 25 in FIG. 4). From the vf5, it
follows the pointer to the root vnode (e.g., block 26 in FIG. 4) and issues a new vn.sub.-- lookup giving
as input the vfs's root vnode and the name which constitutes the next element in the path. The pseudo

code for the lookuppn function is listed below:

function lookuppn
input: pathname
output: pointer to vnode for named file
if{ first character of path is ~/ )
current vnode for search is user's root
directory vnode;
.else
current vnocde for search is user's
current directory vnode;
repeat
if{ next component of path ig ".." )
while( current vnode is root of a
virtual file system )
current vnode becomes the vnode that
the virtual file system is mounted
over;
if( there is not mounted over vnode )}
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return( error ); -- ".." past root
of file system
use vn.sub.-- lookup to look up path component
in current vnode;
if( vn.sub.-- lockup found component };
current vnode becomes the vnode
returned by vn.sub.-- lookup:;

while{ current vnode is mounted over )
follow cuxrent vnode's pointer to vfs
structure that represents the
mounted virtual file system;
current vnode becomes root vnode of
the mounted vis;

else -- vn.sub.-- lockup couldn't file component

"return( error ); -- search failed

until ( there are no additional path

components ) ;

return( current vnode );

The operation will be illustrated by describing the scenarios of following a path to a file and mounting a
directory. First, in following a path to a file, suppose an application process issues a system call (e.g.,
open) for file "/u/dept54/status”. This request is accomplished by the operating system in the following
manner with reference to FIG. 4 (operations which are basically unchanged from the UNIX operating

_ system are not explained here in any detail). The following assumptions are made: First, the vfs
represented by block 21 is the root virtual file system. Second, the file "/u" is represented by vnode
block 24 and inode block 31. Third, a previous mount operation has mounted a device onto the directory
"fu". This mount created the vfs represented by block 25. Fourth, all of the directories and files involved
are on the same device. Fifth, the following directory entries exist in the indicated directories:

DIRECTORY

INODE NUMBER NAME INODE NUMBER
2 v 15

45 vdepth4" 71

71 "status" 12

The code which implements the system call calls lookuppn to follow the path, Lookuppn starts at the
_root vnode (block 23) of the root virtual file system (block 21) and calls vn.sub.-- lookup to look up the
name "u" in the directory file represented by this vnode. Vn.sub.-- lookup finds in the directory that the

- -name "u" is associated with inode 15 in block 31. Vn.sub.-- lookup must return a pointer to a vnode

associated with inode 15. To do this it first brings inode 15 into the inode table. Then it checks to see if
there is already a vnode in the parent vfs (the input vnode (block 23) has a pointer to the parent vfs) for
this vnode. In this case there is. Vn.sub.-- lookup then finds the vnode (block 24) in the root vfs (block
21) and returns a pointer to the vnode. Lookuppn discovers that the returned vnode is mounted over in
the parent vfs. It follows the "mounted over" pointer from the vnode (block 24) to the mounted vfs
(block 25). Lookuppn follows the "root vnode™ pointer to the root vnode (block 26) of the new vfs
(block 25). Lookuppn now calls vn.sub.-- lookup again, this time inputting a pointer to the root vnode
(block 26) and name "dept54". As before, vn.sub.-- lookup reads the directory, finds the inode
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associated with the name, finds or creates a vnode for this inode in the parent vfs (block 25) and returns
a pointer to this vnode. Lockuppn calls vn.sub.-- lookup once more inputting the vnode for the just
found directory and the name "status". Vn.sub.-- lookup reads the directory, finds the inode associated
with the name (block 34), finds or creates a vnode (block 28) for this inode in the parent vfs (block 25)
and returns a pointer to this vnede. The code which implements the system call now performs the
requested operation on the file.

Suppose now that an application process issues a "mount” system call to mount the directory "/u/gorp™
over the directory "/u/foo". The following scenario explains how this request is accomplished by the
operating system (again, operations which are basically unchanged from UNIX operating system are not
explained in any detail). '

This scenario refers to FIG. 5, which represents initial conditions, and FIG. 6, which represents the final
conditions, with the following assumptions: First, the vfs represented by block 41 is the root virtual file
system. Second, all of the directories and files involved are on the same device. Third, the following
directory entries exist in the indicated directories:

DIRECTORY

TNODE NUMBER NAME INODE NUMBER
2 llull . 15

2 “ete" 83

15 “gorp" 92

83 "foo" 75

75 "filel® 89

The code which implements the mount system call performs the following operations. Lookuppn is
called to follow the path to the directory which is to be mounted over--"/etc/foo". At the completion of
this operation, the root vfs (block 41) contains a vnode for "/etc/foo" (block 44) which has a pointer to

- the root vfs (block 41) and pointer to an inode table entry (block 45) for inode 75. Lookuppn is called to
follow a path to the directory which is to be mounted --"/etc/gorp". At the completion of this operation,
the root vfs (block 41) contains a vnode for "/etc/gorp" (block 49) which has a pointer to the root vis
(block 41) and a pointer to an inode table entry (block 48) for inode 92. Now the mount logic creates the
. new virtual file system by first creating a new vfs (block 46) and then creating a root vnode for this vfs
(block 47) with a pointer back to its parent vfs (block 46) and a pointer to the root inode (inode 92,
block 48) of the vfs. A "mounted over" pointer is installed in the covered vnode (block 44) in the root
vis (block 41), and a pointer to the vnode upon which it is mounted (block 44) is installed in the new
vis.

The foregoing illustrates the data structure for standalone operation. Reference is now made to FIG. 7

- which shows a distributed system similar to that shown in FIG. 1 in which the operating system which
supports the present invention has been implemented. In the following description, the term "server" is
used to indicate the node where a file is permanently stored, and the term "client" is used to mean any
other node having processes accessing the file. It is to be understood, however, that the term "server"
does not mean a dedicated server as that term is used in some local area network systems. The
distributed services system in which the invention is implemented is a truly distributed system
supporting a wide variety of applications running at different nodes in the system which may access files
located anywhere in the system.
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The data structure for the distributed system shown in FIG. 7 is illustrated in FIG. 8, and the component
parts of that data structure are shown in FIGS. 9A to 9F. With reference to FIG. 8, a client node may
have access to files which reside in a remote server node. Such a client gains access to a server's files by
mounting one of the server's directories. In the client node, the data structures created by a remote mount
operation compare to those created by mounting a local entity in the following ways: Just as in the local
case, a remote mount creates a vfs in the client node (e.g., block 54). Just as in the local case, use of a
file in a virtual file system which contains remote files creates a vnode structure in the client node (e.g.,
block 57). Just as in the local case, the vnode structure has a pointer to a inode table entry (e.g., block
63). The inode table entry, however, does not contain the inode information from the remote file.
_ Instead, the inode table entry contains a surrogate inode. This surrogate inode stands for, or represents,
the remote inode.

RN

In the server node, some data structures are constructed to allow the server to record state information
about how remote nodes are using its files. More specifically, each server has a "dummy vis" (e.g.,
block 71) to provide a vfs to hold fies open by remote clients. A server has only one durmy vfs, and all
files open by all remote clients reside in this vfs. The dummy vfs is not a part of the server's file tree. For
each file which is open by a remote node, there is a vnode (e.g., block 74) in the server's dummy vfs.
Each file which is open by a

remote node has an inode table entry in the server's inode table (e.g., block 85). This inode table entry is
the same as that which exists because a local process at the server has a file open. For example, block
84, which is in the table because of a remote open, has the same structure as block 88, which is in the
table because of an operation at the server.

When a client and server communicate about a server file, they need a way to identify the file. This is
done with a file handle. When a client request causes the server to reply with a designation of a
particular file (e.g., a remote lookup request), the file is identified by a file handle. When a client request
~ carries a designation of a particular file (e.g., a remote open request), the file is identified by a file
handle. The file handle contains the following fields: device number, inode number, and inode
generation number. ’

The need for a file handle is illustrated by the following scenario. Suppose a client makes a request of a A
server and gets a file handle in reply. The client stores and remembers the file handle. Some activity at
the server causes the file to be deleted and the inode slot reused for another file. The client makes a
request of the server using the stored file handle. The server receives the file handle and performs the

operation on the new file. This would be an unacceptable operation.

This flaw is prevented by use of the inode generation number. The inode generation number is stored on
disk as a field in the inode. When the server deletes a file, it increments the inode generation number, If
arequest arrives at a server, the file handle is broken apart, the device number and inode number are
used to locate the inode, and then the file handle inode generation number is compared to the inode's
inode generation number. If they are different, then the request is rejected. g

When a client wants to open a file which resides on a remote server, it uses a network transport
mechanism to establish a connection with the server. Subsequent transactions regarding this file (e.g.,
read, write, etc.) flow on this connection. Each node contains a node table. A node uses entries in its
node table (e.g., block 70) to record information about existing connections to remote nodes.

There are a limited number of operations that one node in the network can request another node to
perform on its behalf. These operations are called dfs.sub.-~ ops. When a node makes a request of
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another node, the following operations occur: First, the requesting node sends a message which specifies
which dfs.sub.—- operation is being requested and carries the parameters appropriate to that request.
Next, the receiving node receives the request and performs the specified operation. Finally, the receiving
node sends a message which carries the reply parameters appropriate for the dfs.sub.— operation.

There is a close correlation between the vn.sub.-- ops that are issued within a local node to a file system
and the dfs.sub.-- ops that are issued over the network. A typical operation on a remote file is as follows:
First, a local kernel issues a vn.sub.-- op, not knowing whether the file being operated on is remote or
local. Second, since the file resides in a remote node, the file system implementation code sends the
corresponding dfs.sub.- op to the node which holds the file. Note that if the file had been a local file,
the operation would have been performed, the return parameters would have been returned, and the task
would have been complete. Third, the node which holds the file receives the dfs.sub.-- operation request
and requests its local file system to perform the corresponding vn.sub.-- operation. The return
parameters from this vn.sub.-- op are used to construct the return parameters for the dfs.sub.-- op.
Fourth, the requesting node receives the dfs.sub.-- op reply from the server node and uses the dfs.sub.--
op return parameters to coustruct the return parameters to the original vn.sub.-- operation request.

The operation will be illustrated by describing the scenarios of mounting a remote directory over a local
directory and following a path to a file. In the first scenario, suppose that an application process in a
client node issues a "mount” system call to mount a server node's directory "/u/gorp" over the local
client directory "/etc/foo". The following scenario explains how this request is accomplished. This
scenario refers to FIG. 10, which represents the initial conditions, and to FIG. 11, which represents the
final condition, with the following assumptions: The vfs represented by block 51 is the root virtual file
system of the server's file tree, and all the server directories and files involved are on the same device.
The following entries exist in the indicated directories:

Server Node

DIRECTORY

INODE NUMBER = NAME INODE NUMBER
2 llull 15

15 "gorp" . 92

92 “filea" &7

Client Node

DIRECTORY

INODE NUMBER NAME INODE NUMBER
2 YetcH 83

83 vfoo! 75

The code which implements the mount system calls lookuppn to follow the path to the directory which
is to be mounted over--"/etc/foo". At the completion of this operation, the root vfs (block 51) contains a
vnode for "/etc/foo" (block 53) which has a pointer to the root vfs (block 51) and a pointer to an inode
table entry (block 61) for inode 75. Since the directory being mounted resides in a remote node, a
dfs.sub.-- mount request is issued to the server node, passing the path "/u/gorp" as the path to the object
to be mounted. Upon receiving the dfs.sub.-- mount request, the server node calls lookuppn to follow the
path to the directory which is to be mounted--"/u/gorp". At the completion of this lookup operation, the
server's root vis (block 71) contains a vnode for "/u/gorp" which has a pointer to the root v{s and pointer
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to an inode table entry for inode 92. The server uses the information in the inode (device 0, inode 92) to
construct a file handle for the file "/u/gorp”. The server returns this file handle in the reply to the
dfs.sub.-- mount request and then releases the vnode and inode. Finally, the client receives the file
handle in the reply to the dfs.sub.-- mount request and performs the operations necessary to create the
new virtual file system as follows:

a) Create a new vfs (block 54).

b) Create a root vnode for this vfs (block 55) with a pointer back to its parent vfs (block 54) and a

" pointer to the root inode of the vfs (block 62). Since the root inode of this vfs is a remote directory, the
inode pointed to from the root vnode is a surrogate inode. This surrogate inode contains the file handle
retumed by the server in response to the client's dfs.sub.-- mount request.

¢) Install a "mounted over" pointer in the covered vnode (block 53) in the root vfs (block 51).
d) Install in the new v{s (block 54) a pointer to the vnode upon which it is mounted (block 53).

Suppose now that after executing the remote mount described above (mount server /u/gorp over client
etc/foo) a client process issues a system call to operate on the file "/etc/foo/file2". The block numbers in
the following scenario refer to FIG. 11, which represents initial conditions, and FIG. 12, which
represents the system state after the open operation. First, the code which implements the system call
calls lookuppn to follow the path. Lookuppn starts at the root vnode (block 52) of the root virtual file
system (block 51) and calls vn.sub.-- lookup to look up the name "u" in the directory file represented by
this vnode. Vn.sub.-- lookup finds in the directory that the name "u" is associated with inode 15.
Vn.sub.-- lookup constructs-a vnode and inode in the root virtual file system for inode 15 and returns to
lookuppn a pointer to this vnode. Lookuppn calls vn.sub.-- lookup again, this time to look up the name
"foo" in the directory identified by inode 15. Vn.sub.-- lookup reads the indicated directory and
discovers that the name "foo" is associated with inode 75 in block 61. There already exists in the root vis
(block 51) a vnode (block 53) for this inode (block 61), so vn.sub.-- lookup returns a pointer to this
vnode. Lookuppn discovers that the vnode is mounted over (the "mounted over" pointer in block 53
points to block 54). Lookuppn thus follows the "mounted over” pointer to the next vfs (block 54) and
follows its root vnode pointer to the root vnode (block 55) of the virtual file system. Lookuppn now calls
vn.sub.- lookup for the next element ("file2") of the path giving vn.sub.-- lookup a pointer to block 55
and the name "file2". The directory to be searched resides in a remote node and is identified by the file
handle stored in the client surrogate inode (block 62). Vi.sub.-- lookup issues a dfs.sub.— lookup to the
server which holds the file, sending the file handle which identifies the directory and the name ("file2")
which is to be looked up. When the server receives the dfs.sub.—- lookup, it uses the file handle to
identify the directory to be read and issues a vn.sub.-- lookup to search for the name "file2" in this
directory. Vn.sub.-- lookup reads the directory and discovers that the inode number associated with the
name "file2" is 67. Vn.sub.-- lookup constructs a vnode and inode in the dummy virtual file system for
inode 67 and returns to lookuppn a pointer to this vnode. Dfs.sub.-- lookup uses the information in data
structures returned by vn.sub.-- lookup to construct a file handle for the file identified by inode 67. It

‘returns this file handle to the client, as the reply to the dfs.sub.-- lookup request, and releases the vnode
and inode. In the client, a vnode (block 58) and surrogate inode (block 63) are created for the found file.
Since “file2" is the last piece of the path, lookuppn returns to its caller a pointer to the found vnode
(block 58). The code which implements the system call now performs the requested operation on the
file.

In the distributed services system in which the invention is implemented as shown in FIG. 7, a local

cache 12A, 12B and 12C exists at every node A, B and C. If file 5 permanently resides at node A on
~ disk 2A, use of the cache 12A by local processes 13A executing at the server node A is the same as that
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in a stand alone system as discussed above. However, remote processes 13B and 13C executing at nodes
B and C, respectively, access file 5 through a two step caching scheme using a server cache and a client
cache as shown in FIG. 3. The server node gets blocks of file 5 from disk 2A and stores it in the server
cache 12A. Client node B goes out over the network 3 and gets blocks of file S from the server cache
12A. Client node B stores the blocks of file 5 as it existed in the server cache 12A into the client cache
12B. When the user address space 14B of client node B secks data from any block of file 5, the client
cache 12B is accessed instead of going across the network 3 for each access. Using the client cache 12B
to access a remote file 5 can significantly improve the performance since it can save network traffic and
overhead. :

The system and method of this invention manages the use of the client cache 12B and server cache 12A
in a distributed environment to achieve high performance while preserving the file access semantics at
the application program level. This allows existing programs which run on a standalone system to run on
a distributed system without any modification. The file access semantics preserves a file's integrity as it
is being opened by different processes that issue read and write system calls to access and modify the
file. The file access semantics require that only one I/O operation is allowed on any byte range at a time,
and once an I/O operation starts, it cannot be pre-empted by any other I/O operation to the same byte
range of the file.

-An example of this is given by referring to FIG. 13. If process 131 issues a write system call to a byte
range N1-N2 in file 5, the write system call can only be executed when the entire byte range N1-N2 is
available for access by process 131, and no read operation involving the byte range N1-N2 is being
executed. During the execution of the write system call, all other operations involving the byte range
N1-N2 in file 5 are suspended until the write is completed. The write is not completed until the bytes are
written to the local cache 12A. When a write request is complete, the written data in the cache 12A is
visible to any subsequent read operation by any of the other processes 131 to 13N.

Another requirement of file access semantics is that when a file byte range such as N1-N2, which can be
a record or a set of related records accessed by the same I/0 operation, is visible to a read process, the
file byte range N1-N2 must always have a consistent set of data reflecting the last update to this range.
This range is never available for access while a write operation is being executed. In this way, the next
read issued by a process will read the data just written and not the old outdated data.

In a distributed networking environment of this invention as shown in FIG. 7, the execution of read and
write system calls from different application programs 4A and 4B and processes 131 to 13N and 231 to
23N are synchronized such that the file access semantics as previously discussed are preserved. The
system and method of this invention guarantees synchronization by utilizing various cache
synchronization (sync) modes. For a specific file 5, the I/O calls are synchronized by either the client B
or the server A depending on the location of the processes 131 to 13N or 231 to 23N which have the file
5 open for access, and the sync mode. '

The three synchronization modes are shown in FIG. 14 and are described with reference to FIG. 7. The

~ first mode 104 is referred to as ASYNC s.sub.-- mode, or asynchronous mode. The file 5 operates in this
mode 104 if file 5 is open for read/write access by processes 13C executing at only one client remote
node C, as shown in block 107 of FIG. 14. In this mode 104, all of the control is in the client node C.
Both the server cache 12A and client cache 12C are used for these read/write operations. A read or write
operation requires access to the server cache 12A only if it cannot be satisfied from the client cache 12C.
Modified blocks at the client 12C are written to the server 12A by the periodic sync operation, when the
file 5 is closed by all processes 13C in the client node C, or when more room is needed in the client
cache for other data. Additionally, modified blocks are written to the server when the file changes from
ASYNC s.sub.-- mode to FULLSYNC s.sub.-- mode.
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" A second mode 105 is READONLY s.sub.-- mode. The READONLY s.sub.-- mode 105 is used for files

5 that are open for read only access from processes 13C in only one node C, or from processes 13B and
13C in more than one node B and C as shown in block 108 in FIG. 14. In this mode 105, the server
cache 12A and the client caches 12B and/or 12C are used. The read request is issued for a block or more
at a time. Every other read request from the same client, either B or C, to the specific block does not go
to the server 12. Instead, it is read from the respective client cache, either B or C. In other words, a read
operation does not require access to the server 12A if it can be satisfied from the client cache 12C or
12B. In summary, the file 5 operates in mode 105 if the file 5 is open for read only access by any of the
processes 13A, 13B or 13C in any of the nodes A, B or C.

A third mode 106 is FULLSYNC s.sub.-- mode. The FULLSYNC s.sub.-- mode 106 is used for files 5
open in more than one node A, B and at least one node has the file 5 open for write access. In the
FULLSYNC s.sub.-- mode 106, the client cache 12C or 12B is bypassed, and only the server cache 12A
is used. All read and write operations are executed at the server 12A.

In a distributed environment 1 as shown in FIG. 7, most files § will more frequently be open for read
only by processes 13A, 13B and 13C at several nodes A, B and C in the READONLY s.sub.-- mode 105
shown in FIG. 14 or open for update at only one node in the ASYNC s.sub.-- mode 104. It will be less
frequent that there will be an open for read and write access by processes executing at more than one
node in the FULLSYNC s.sub.-- mode 106. In both the READONLY s.sub.-- mode 42 and the ASYNC
s.sub.-- mode 104, the use of a client cache 12B, shown in FIG. 13, significantly reduces the remote
read/write response time of accessing file 5 and improves overall system performance.

As shown in FIG. 15, in the FULLSYNC s.sub.-- mode, the client cache is not used. The client node B
accesses the file 5 from the server A over the network 3 for each read and write operation. Although the
read/write response time increases in this mode, the file access semantics are preserved since a client
does not retain a file 5 in local cache that has not been updated along with the corresponding file
residing at the server.

Utilizing the three modes to manage the use of the client cache optimizes overall system performance by
combining both an overall average increase in read/write response speed with file integrity. Using a
client cache in some situations decreases the read/write response time; while not using a client cache in
other situations preserves the file system semantics.

A file's sync mode is not only dependent on which nodes have the file open and whether the file is open
for read or write, but also on whether the device where the file resides is open in raw access mode. Raw
" access for a device means that a block of data LBN1 shown in FIG. 13 within a device 2A is accessed.

- In this way, the reads and writes of the device 2A read and write to a block LBN1 of device 2A. It is not
relevant to which file the block belongs. The device 2A can be opened for raw access from a process
131 to 13N at the server node A. It can not be opened for raw access from a remote node B or C.

In FIG. 13, the cache 12A is managed as blocks LBN1 of device 24, similar to a standalone system as
described above with reference to FIG. 2. The server A looks at the server cache 12A as a logical block
LBNT1 within a device 2A. The client B has no knowledge of where the file 5 resides on the device 2A.
All the client B knows is that it accesses a file 5 on block number N1 on device 2A. The client cache
12B handles the data as logical blocks N1 of file 5. In the server cache 12A, the data is handled as
logical blocks LBN1 of devices 2A. In handling the data this way, the server can guarantee that if data is
written to the device as a raw device, and if there is another read of a block of the file that happens to be
the same block that was written to the device, then the read would see the newly written data. This
preserves the file system semantics.
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If the file is being accessed in a client node B, and the file is in ASYNC or READONLY mode, as
shown in FIG. 13, the client operating system 11B does not convert the file descriptor and byte range
within the file in the system call READ (file descriptor, N1) 16 to the device number and the logical
block number in the device. The client does convert the file descriptor and byte range to a file handle,
node identifier, and logical block number within the file. In the client cache 12B, there are blocks 17 that
are designated by file handle, node identifier, and logical block number within the file. When a read 16
is issued from a client application 4B, the request for the read goes to the operating system 11B with the
file descriptor and the byte range within the file. The operating system then looks in the client cache
12B. If the file handle, node identifier, and logical block number within the file is there, the cache 12B is
read; on the other hand, if it is not there, the read is sent to the server. The server then takes the file
handle and the logical block number within the file and converts it to a device number and logical block
in the device. This conversion is necessary since the server cache 12A is managed by device number and
block number within the device as it is in a standalone system. Afier the read is sent to the server, it is
handled the same as if the read was coming from its own application in a standalone system as described
with reference to FIG. 2.

A closed file does not have a synchronization mode. However, once a file is first opened by a process,
the file's sync mode is initialized according to the following as illustrated in FIG. 16. The sync mode for
a file is initialized to ASYNC 104 if the device where the file resides is closed 112; i.e., it is not open as
a special device and the file is open for write access at one remote node 113. The sync mode for a file is
READONLY 105 if the device where the file resides is closed, and the file is open for read only access
in one or more nodes 114, or both the device and the file are open for read only access 115. The sync
mode for a file is initialized to FULLSYNC 106 if the device where the file resides is open as a block
special device for read/write access 116, or the file is open in more than one node and at least one of the
opens is for writing. A block special device means that there is a raw access to the device.

Once a file is initialized to a mode, if the conditions change, the file mode may change. Transitions from
one mode to another, as shown by lines 118 to 123 in FIG. 16, may occur under the following
conditions. If a file is presently in ASYNC mode 104, and the number of nodes where the file is open
becomes two or more, 124, then the sync mode changes to FULLSYNC 106 as shown via line 119.
Also, if there is an open of the block special device D where the file resides, 125, the sync mode will
change from ASYNC 104 to FULLSYNC 106. In a close operation for the file, if the close operation is
not the last close of the file, and the file is still open for write, there is no mode change. However, if the
close operation is the last close of the file for write access such that all the remaining opens are for read
.access, 83, then the new mode becomes READONLY 105 as shown via line 121. If the close operation
" 1is the last close of the file, then there is no sync mode.

If a file is presently in READONLY s.sub.-- mode 105 and there is a file open operation, there will not
be a mode change if the open is for read. However, if the open is for write, then the new sync mode is
ASYNC 104 if all the opens are in one client node, 127, as shown via line 120. Otherwise the sync mode
is FULLSYNC. Furthermore, if the device where the file resides is open for read/write access, 130, the
new sync mode for the file is FULLSYNC mode 106. For a close operation, if the close is the last close

- of the file, there is no sync mode for the file. If the file is still open at one or more nodes after a close
operation, there is no change to the sync mode.

If a file is presently in FULLSYNC mode 106 and there is another open for the file, or the device where
the file resides is opened, there is no sync mode change. If after a close operation of the file, there
remains an open for read/write access at the remote node, and the block special device where the file
resides is not open, the sync mode is changed to ASYNC s.sub.-- mode 104, as shown by block 141 via
line 118. The sync mode is changed from FULLSYNC 106 to READONLY 105 if the block special

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005



United States Patent: 5,175,852 Page 24 of 33

device where the file resides is not open, and the file is open for read only access at one or more nodes
- as shown by block 142 on line 122, or if the block special device where the file resides is open for read
only access and the file is open for read only access as shown in block 143 on line 122.

All open and close operations for files and devices are resolved at the server node. The server

determines the sync mode of an open file when executing any operation that may change the mode. The

server also performs the change of the synchronization modes. As the server gets new opens or closes

for the file, a change in synchronization modes for the file may be triggered. If the required sync mode is

. not the current one, the server sends a "change sync mode" remote procedure call to all the clients with
. the file open. After a file is opened for the first time, the client that opened the file is informed of the
mode of the file. If the mode is either ASYNC or READONLY, the client can start using the client

_ cache for reads, and also for writes if the mode is ASYNC, as shown in FIG. 13. The client does not
have to read or write over the communications link to the server. If the mode is FULLSYNC as shown
in FIG. 15, the client cache is not used, and the client must send the read or write over the
communications link 3 to the server.

The server A, in FIG. 15, always sets the mode 151 of the file 5. The mode of the file is the same at
every node that has the file open. The server A also knows which nodes have the file open, and whether
the opens are for reads or writes. The server A does not have to know which processes 131 to 13N, 231
to 23N within a node have a file open. The server keeps all the above information in a file access
structure list 150, as shown in FIG. 15. Each element of the file access structure list 150 contains 2 node
which has the file open 152, the number of opens for read 153 in the node, and the number of opens for
write 154 in the node. :

UNIX File Locking

In a UNIX operating system, processes can lock byte ranges within files so that other processes can not
have access to the ranges. Locks apply to a byte range of a file. A lock over the entire extent of a file
locks the file and could be called a file lock. A lock over an arbitrary byte range is sometimes called a
record lock, but for purposes of this disclosure, we will refer to record and file locks simply as locks.

Two types of locks are supported in this system, write locks and read locks. Write locks are exclusive
locks: if a range of a file is write locked, no other locks can exist on that range. The other type of locks,
read locks, are shared locks: any number of overlapping read locks can apply to a segment of a file.
Notice that an existing read lock does not block other read locks, but it does block other write locks. An
existing write lock blocks all other locks for a given range. Write locks can only be applied to file
descriptors that have been opened with write access.

Files are in either in enforcement-mode or not in enforcement-mode. Locks on a file not in enforcement-
mode are called advisory locks. An advisory lock does not provide absolute protection for a file or
record; however, it does prevent a process from reading or writing the locked file or record. Advisory
locks only affect the results of calls to lockf(2) or fentl(2). They must be used by processes that are
cooperating through the use of lockf(2) or fentl(2) to query the status of locks on the shared files that
they are accessing. The advantage of advisory locks is that they do not have to be interrogated by the
operating system kemel during reading or writing operations. An enforced lock, like an advisory lock
affects subsequent calls to lockf(2) and fentl(2). In addition, each read(2), write(2), open(2), creat(2),
fclear(2), firuncate(2), and shmat(2) will have to insure that no read or write locked portion of the file is
being changed and that no write locked portion of the file is being accessed.

Three different UNIX operating system commands of the fentl(2) system call are related to locking:
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\\

F.sub.-- GETLK Find the first existing lock that would prevent the lock described by fentl(2)'s argument
" from being granted to the caller.

F.sub.13 SETLK Grant the lock described be fentl(2)'s argument to the caller. If the lock cannot be
granted because an existing lock interferes with the request, return the description of this existing lock.

F.sub.-- SETLKW Grant the lock described by fentl(2)'s argument to the caller. If the lock cannot be
granted because an existing lock interferes with the request, check for deadlock and if no deadlock will
be caused, have the caller wait. Each time an interfering lock is cleared, the kernel will again attempt to
establish the requested lock by searching for any interfering locks. A process could wait forever.
Although deadlocks that involve only file locks on a single node will be detected, deadlocks due to
multiple file locks on multiple nodes can occur. A process could never deadlock, but it could live-lock
due to interfering locks for various files being alternately set.

: Lock Tables

" Locks are associated with open files, so it is natural to keep lock information with the information about
an open file, in the file's inode structure. The inode structure has a fixed size in the UNIX operating
system so the lock information had to be stored in another structure with the inode only containing an
address where the lock structure resides. The locks are kept in a linked list as a set of entries from the
kernel data structure called the lock table.

The UNIX operating system did not provide support for a distributed file system. In a distributed
system, there may be several nodes using the same file. The lock table for a file is always located in a
single node. If the file is in ASYNCH muode, the lock table (along with the active node information) is
kept at the single node where the file is open. When the file is in READONLY or FULLSYNCH mode,
the lock table is kept at the server. There are two important implications of this architecture. First,
processes may have to nse remote procedure calls (RPC)s to set or test locks. These RPCs will xun on
the file's server. Second, when the synch mode of a file changes, the file's lock table may have to be
moved from the client to the server or vice-versa. The entries of an inode's lock table correspond to
locks over segments of the inode's file. To represent a lock, a lock set entry must contain information
identifying the range of bytes locked, the type of lock (read or write), the owner of the lock.

' Some searching of the kernel data structures is eliminated by storing a flag in the lock entry indicating
whether or not a process is waiting on the entry's lock. This flag is another piece of information that is
contained in the actual implementation of the lock set entries. Finally, the lock set entries will probably
contain a pointer field used to link entries belonging to the same file together. We will study the

- implementation details by taking a detailed look at the following operatlons for manipulating the
elements of a lock set:

1) A way of iterating through the locks in the sets of locks associated with a particular inode.

2) A function that adds a lock to the set of locks for an inode.

3) A function that removes a lock from the set of locks for an inode.

An entry in a lock table represents a lock with a miﬁimum of the byte range locked and the owner
information for the lock. Operations that return the following attributes of locks will be needed:

1) The range of the segment locked 2) The type of the lock (read, write or temporary) 3) The lock owner
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A problem occurs when an owner is associated with a lock. The owner of a lock is identified by a
pointer to the owner's proc table. The proc table is a collection of management information concerning
each active process in the system. The data structure source code for the proc table is provided below
with information describing each field's purpose:

STRUCT PROC
STRUCT SEG.sub.-~ LIST
Segment Ids
P.sub.-- SEGS;

INT P.sub.~-- FLAG;
’ Flag for testing
CHAR P.sub.-- STAT;

Status of process
CHAR P.sub.-~- PRI;

Priority, Neg. High
CHAR P.sub.-- TIME;

Resident time Sched.
CHAR P.sub.-- CPU;

CPU Usage
CHAR P.sub.-- NICE;

USHORT P.sub.-- UID;

Real User Id.
USHORT P.gsub.-- SUID;

Effective User Id.

SHORT P.sub.-- PGRP;

Process Group Leader
SHORT P.sub.-- PID;

Unigue Process Id.
SHORT P.sub.-- PPID;

Process Id. of Parent
1ONG P.sub.-- ADDR;

Process Address
SHORT P_sub.-- SIZE;

Size of the image
STRUCT USER *P.sub,-- UPTR;
Location of
; Ublock for this

; process
CHAR P.sub.-- CURSIG;
INT P.sub.-- SIG;
Signals Pending
INT P.sub.-~- SIGMASK;
Signal Mask
INT P.sub.-- SIGIGNORE;
Signals being
; ignored
INT P.sub.-- SIGCATCH;
Signals to Catch
INT . P.sub.-- SIGACTION;

1=Bell style,
H 0=4.2 style
Union
’ CADDR.sub.-- T P.sub.-- CAD;

INT P.sub.-- INT;
A } P.sub.-- UNW;
#DEFINE P.sub.-- W.sub.-- CHAN

P.sub.-- UNW.P.sub.-- CAD;
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Pointer to the
Lock Table that a
process is waiting
on.

.
r

‘

: ;
#DEFINE P.sub.-- ARG

P.sub.-- UNW.P.sub.-- INT;
STRUCT TEXT *P.sub.-~ TEXTP;
Pointexr to text’
; structure
STRUCT PROC *P.sub.-- LINK ;
Linked list of i
; Running Processes -
INT P.sub.-~- CLKTIM
; Alarm Clock Signal
INT P.sub.~-- SMBEG
; Beg. of Shared Mem.
INT P.sub.-- SMEND .
. ; End of Shared Mem. d
CADDR.sub.-- T
P.sub.-~- FREQ
; Null or Regset %
LONG P.sub.-- PFLT ;
; # of Page Faults
INT P.sub.-~- EPID
; Locking id process
INT P.sub.-- SY¥SID

; NID of the remote
; process }; End of
the structure

The proc table is a useful way to identify the owner of a lock element because deadlock detection needs
to access the proc table for each lock's owner. In a distributed system, the owner might not be a local
process. When an owner is a remote process, the owner information needs to include the node id for the
node that the owner resides on. The information that is required is:

1) An operation that returns the address of the owner's proc table.

" 2) An operation that compares two owners and returns TRUE if the owners are the same process and
FALSE otherwise.

3) An operation that returns the node id of the owner. These operations use field references within
structures to perform the indicated operations.

Waiting For A Lock

In standalone operating system a process that tries to establish a lock may have to wait for an existing
lock to clear first. Before waiting (going to sleep) the process must check the lock sets of all the inodes
of the system to insure that no deadlock will occur if it does wait. A waiting process has its proc tabie
use the W.sub.-- CHAN field of the proc table to point to the lock table entry that it is waiting on.

In a DFS, waiting is not as easy. There are two ways to wait on a blocking lock: 1) directly on a local
lock set entry and 2) indirectly on a server lock set entry. Direct waiting is identical to the standalone
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waiting described above. Tt is used anytime that a process must wait for a lock that occurs locally in a
lock table. It is important to remember that a lock table for a file resides in only one node. If the calling
process is not in the same node then the lock table is in the server. A process that attempts to lock a
region of a file that has its lock table located in a remote node (server) waits on the lock indirectly. This
indirect waiting is done by a RPC that invokes a transaction program in the server and waits on the lock.
In a standalone UNIX operating system, a process never enters the SLEEP state if a lock can be granted
or if waiting could create a deadlock. In a distributed system, a process performing a lock request that
does not reside in the same node as the lock table always enters the SLEEP state, at least briefly. It must
do so while it is waiting for the RPC to return. In order to avoid unnecessary network communication, a
" process that is waiting for the lock RPC will not know if it is waiting because the RPC transaction

program is in turn waiting for a blocking lock or if it is waiting because the transaction program has not
finished running in the server where no blocking lock was found. In a distributed system, deadlocks can
span several nodes; therefore, to allow a process to wait only if there are no deadlocks is not practical
using a similar architecture to the standalone environment due to the overhead and checking that must be

- "done. Our invention is a method for providing such capabilities without the associated overhead and
complexity associated with a distributed version of the standalone deadlock prevention.

Deadlocks

A deadlock exists when there are a chain of processes executing and they are vying for resources that are
already busy. For example, if process one is waiting for a resource that process two controls, process
two is waiting for a resource that process three controls and so on until the last process is waiting for a
resource that process one has control of. A standalone UNIX operating system prevents deadlocks
involving file and record locking from occurring. In the past the UNIX operating system has not
supported distributed systems and has not been able to prevent such deadlocks from occurring. The
circular chain of processes forming a deadlock that we want to prevent are linked by two kinds of links:
1) processes pointing to locks through the process W.sub.-- CHAN fields of the process proc table and
2) locks pointing to processes through the owner fields of the locks. By following these links, a search
for circularity can be performed to determine if a deadlock will occur. Because an UNIX operating
system process can only wait on one thing (2 single w.sub.-- chan) and a lock is owned by only one
process, the searching of the chains is not hard. The only complication is the possibility of indirect
‘waiting. Indirect waiting occurs when a process is waiting for a response from a RPC that has been sent

~ to another node. To handle indirect waiting, applications are required to set a timer before executing a
RPC to ensure an awakening if a deadlock does occeur.

Distributed File Support Lock Control

The file access calls in a UNIX operating system environment make use of a data structure called
FLOCK. The structure of FLOCK is presented below:

STRUCT FLOCK

SHORT L.sub.~- TYPE;
SHORT L.sub.-- WHENCE;
LONG L.sub.-- START;
LONG L.sub.-- LEN;
SHORT L.sub.-- PID;
SHORT L.sub.-- NID;

}i
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Another important

structure for implementing distributed file support (DFS) is the file access structure.

The source code for the file access structure is provided below with some descriptive information to
show the detailed logic:

STRUCT
{ /=

File Access
STRUCT
File Access

SHORT
File Access

SHORT
File Access

- SHORT
‘File Access

SHORT
File Access

SHORT
File Access

FILE.sub.-- ACCESS

Structure Pointer
*/
FILE.sub.-- ACCESS *FA.sub.-- NEXT; ;
/*
Structure Flag
*/
FA.sub.-- FLAG; /*
Structure Total Users
*/
FA.sub.-- COUNT; /*
Structure Read/Only Count
*/
FA.sub.-- OROCNT; /*
Structure Read/Write Count
*/
FA.sub.-- ORWCNT; /*
Structure Executing Processes
*/
FA.sub.-- TXTCNT; /*
Structure Node Structure Ptr.

*/

STRUCT NODE *FA.sub.-- NID; /*
File Access Structure Node ID
*/
INT FA.gub.-- WID; /[/*
Flle Access Structure S.sub.-- INODE Pointer
*/
STRUCT INODE *FA.sub.-- SIP; };:
The DFS provides a lock control subroutine to coordinate the locking of files in a distributed

environment, The subroutine's interface source code is provided below to present the detailed logic.

STRUCT FLOC
SHORT

SHORT

LONG

LONG

SHORT

SHORT

i
DFS.sub. --
FAS.sub.~-
FILE.sub.--
STRUCT FLOC
SHORT CMD,

K {
L.sub.-- TYPE;
L.sub.-- WHENCE;
L.sub.~- START;
L.sub.-- LEN;
L.sub.-- PID;
L.sub.-- NID;

LOCK.sub.-~ CONTROL (FH, LOCK.sub.-- INFO, CMD,
FLAG)

BANDLE.sub.-- T FH;

K *LOCK.sub.-- INFQC;

FAS.sub.-- FLAG;

RETURN (ERRNO, MODE, START, LENGTH, NID, PID)
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The DES.sub.-- LOCK.sub.-- CONTROL subroutine has parameters FH (the handle of the file),

LOCK .sub.-- INFO (a pointer (address) of the FLOCK structure, CMD (process to be carried out) and
FAS.sub.-- FLAG (file access structure flag). The file handle is necessary to uniquely identify the file
that the command is to be run against. The LOCK .sub.-- INFO is necessary to identify the FLOCK
structure and the system information on the file contained within. The CMD is set to have the remote
process wait until any blocking locks are removed and then process the specified CMD. The CMD field
can be set to carry out an unlock, test, set or test&set command. The Lsub.-- len and 1.sub.-- start fields
in the FLOCK structure are used to specify the lock range for the command to apply to. The FAS.sub.--
FLAG is set to tell the server ta check the S.sub.-- MODE in the file access structure lock to see if it is
in FULL.sub.-- SYNC S.sub.-- MODE. If the file is in FULL.sub.-- SYNC S.sub.-- MODE then the
server proceeds with the command; however, if it is not, then an error is returned. If the file access
structure flag is not set, then the server does not acquire and check the file access structure lock before
proceeding with execution. This check allows an inquiry before processing and avoids the possibility of
deadlocks.

File Locking Subroutine
The LOCKEF subroutine is the principal interface used by applications to lock or unlock files for write

exclusive privileges. The interface source code of the subroutine is presented below to demonstrate its
usage:

#include <S8YS/LOCKF.H>

int lockf(fildes, function, size);
int fildes, function;

long size;

Locks may be set or released by UNIX operating system FCNTL(2) in a similar manner to LOCKF. The
external interface between applications and the LOCKF and FCNTL subroutines is unchanged between
UNIX operating system and this invention; however, the internals have been modified to support a

" distributed environment.

Internal Details

If a remote file is to be locked, the UNIX operating system LOCKF and FCNTL system calls are

- intercepted and an RPC DFS.sub.-- LOCK.sub.-- CONTROL is executed. The server node receives the

remote process call and carries out the lock request. The request could entail locking a single record, a
set of records or the whole file. The server then tells the client to awaken by sending a signal while the
client surrogate inode is waiting for a reply from the DFS.sub.-- LOCK sub.—~ CONTROL RPC. The
client confirms the reception of the lock and sends an acknowledgement to the remote server. The server
updates the lock table after receiving the acknowledgement from the client surrogate inode. If the server
does not confirm the reception of DFS.sub.-- LOCK.sub.-- CONTROL's acknowledgement, then
DFS.sub.-- LOCK.sub.-- CONTROL removes the lock from the lock table.

File Access Structure Lock
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The file access structure lock fas.sub.-- lock is used to synchronize the use of the inodes and surrogate
inodes (s.sub.-- inode) for open files in a distributed file system (DFS). The synchronization is
performed to avoid a deadlock situation which can occur if an inode and the s.sub.— inodes are locked.

In a standalone AIX operating system, execution of system calls that require access to a file F are
serialized by locking the inode for F during the entire execution time of any system call for that file. In
DFS, if file F is open at a remote node C, a s.sub.— inode is created at node C to represent file F. Thus,

~ two resources are involved: the inode for the specific file at the server node where the file resides, and
the s.sub.-- inode at the client node where the file is open. To serialize system calls executing at client C,
the s.sub.-- inode for file F is locked during the execution time for each call. If an access to the server is
required to read a block of data not available in the client cache, the inode for file F is also locked.

Locking the inode for file F in the server and the s.sub.-- inode for file F in the client for the entire
execution time of each system call can lead to a deadlock situation if the order in which the two
resources are acquired is not always carried out in the same order. Typically, the s.sub.-- inode is locked
‘first and then the server is accessed via a remote procedure call (RPC) and the inode is locked. However,
* ‘there are some exceptions to the above order. Under certain conditions, the server may lock the inode
and then send a RPC to the client which requires the locking of the s.sub.-- inode.

A deadlock can occur in any one of the following situations in which two operations are currently
executing 01 and 02, as shown in FIG. 18, where 01 is a read operation, and 02 is an open operation:

a) 01 is executing at a client node. 01 locks the s.sub.-- inode and tries to lock the inode in the server for
a read operation.

b) 02 is executing in the server. 02 locks the inode and initiates a RPC to the client node to open a file.
The execution of the RPC request in the client node waits on the s.sub.-- inode to lock it.

Because both operations are executing and require the same two resources and each have acquired one
and are waiting on the other locked resource, a deadlock situation is present. In examining the cause,
note that the deadlock occurs during the execution of the RPC from the server to the client. The inode on
the server is locked first and an attempt is made to lock the s.sub.-- inode. This is the reverse of most
cases where the s.sub.-- inode is locked first and then sends a RPC to lock the inode.

To prevent the above problem from occurring, the server could unlock the inode before originating a
RPC to lock the s.sub.-- inode to the client. Unlocking the inode during the execution of the open
operation will solve the above problem; however, it complicates the sync mode change management for
open files since more than one open and/or close operation can occur at the server in parallel. It may also
.introduce another problem as shown in FIG. 17. In FIG. 17 file F at 10 is open in ASYNC mode by only
one process in client node C-1 at 20. Two operations are in progress: a close operation from C-1 at 20
and an open operation at 60 for the same file F at label 10 from another client C-2 at label 40. The close
operation from C-1 at label 20 will lock the s.sub.-- inode (which has a use count of 1) and sends a
"dfs.sub.-- close” RPC at label 50 to the server at label 30. The open operation from C-2 at label 40
sends a "dfs.sub.-- open" RPC at label 70 to the server at label 30. This RPC arrives at the server and
executes before the "dfs.sub.-- close" RPC at label 50 from C-1 at label 20. The s.sub.-- mode for file F
is ASYNC, so the server unlocks the inode and sends a "dfs.sub.-- chng.sub.-- sync.sub.-- mode" RPC at
label 80 to C-1 at label 20 requesting that file F at label 10 be changed to FULLSYNC s.sub.-- mode.
This RPC will arrive at C-1 at label 20 and wait for the s.sub.-- inode to be unlocked. Next, the
"dfs.sub.-- close™ RPC at label 50 arrives at the server. Since the inode for file F at label 10 is not locked
at the server, the close operation executes at the server and a "dfs.sub.-- close.sub.-- ack" RPC at label
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90 is sent to C-1 at label 20. When the "dfs.sub.-- close.sub.-- ack" RPC at label 90 arrives at C-1 at

* label 20, the use count on the s.sub.-- inode is decremented and since the use count's value is zero, the
s.sub.-- inode is released at label 100. This leaves no s.sub.~- inode for the sync mode change to be
applied to in C-1 in label 20.

A solution to this problem is to have the sync mode change procedure increment the use count of the
s.sub.-- mode before waiting on it. However, this approach raises more management headaches for the
file management system, since at this time file F is not open at C-1 and its s.sub.-- mode is not
FULLSYNC. A better approach is to introduce a new lock, the file access structure lock (fas.sub.-- lock)
to serialize operations which access or change the access list to a file. Use of the fas.sub.-- lock will
eliminate the inode from being a critical resource. The two critical resources will be the s.sub.-- inode in
the client node and the fas.sub.-- lock at the server. To prevent a deadlock, any operation executing at a
client node which requires holding the fas.sub.-- lock should unlock the s.sub.-- inode before a RPC is
sent to the server.

Operations that may generate an RPC from the server to clients must acquire the fas.sub.-- lock before it
starts executing in the server. Examples of situations in a UNIX operating system and/or an AIX
operating system environment are: Remote Procedure Calls (RPC):

* DFS.sub.-- OPEN ¥ DFS.sub.-- CREATE
* DFS.sub.-- CLOSE * DFS.sub.-- GET.sub.-- ATTR
* DFS.sub.~-~ SET.sub.-- ATTR
¥ DFS.sub.-- LOOKUP
* DFS.sub.-- CHNG.sub.-- SYNC.sub.-- MODE
System Calls From Server

Processes:

* QOPEN * CLOSE
* CREAT * STAT

* FULLSTAT * CHMOD
* EXIT

The above UNIX operating system and ATX operating system operations correspond to the following
vn.sub.-- ops:

* yn.sub.-- open * yvn.sub.-- create
* yn.gub.-- close * vn.sub.-- getattr
* vn.sub.-- setattr * vn.sub.-- lookup

An example of a vn.sub.-- ops execution is discussed below and shown in FIG. 19. The operation (an
open) is executed at a client node and locks the s.sub.-- inode as usual if any local processing is
necessary. If one of the above listed RPCs (dfs.sub.— open) is sent to the server, then the s.sub.-- inode
is unlocked before the RPC is sent. In the server, the RPC request will lock the fas.sub.— lock or wait on
it if it is busy, then it will lock the inode for a file F. If it is a local server operation, the executing
process will acquire the fas.sub.— lock and then lock the inode. If a DFS.sub.-- CHNG.sub.--
SYNC.sub.-- MODE or a DFS.sub.—- GET.sub.-- ATTR RPC is sent from a server to a client, then the
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inode is unlocked before sending the RPC. Thus, the server can accept read and write operations after
the RPC is sent. When the response messages from all the clients are received, the server locks the inode
to finish any remaining local processing. If the operation was initiated at a client node, an
acknowledgement is sent to that client. The inode is then unlocked and the fas.sub.-- lock is released.

~ The fas.sub.—- lock provides the means to synchronize the inode use and avoid deadlock operations. The

fas.sub.-- lock synchronizes the access to the file access structure list containing information about the
nodes that have the file open. The fas.sub.-- lock is locked when a process opens or closes a file, or
when the file access structure list is being interrogated. The fas.sub.-- lock is also locked during a write
operation when the file is in FULLSYNC mode.

The inode lock synchronizes access to the data in the file at the sexrver. The inode lock is locked during a
read or write operation to the file in the server. The inode lock is unlocked before the server sends a
remote procedure call to the client, if the remote procedure call requires a lock on the s.sub.-- inode lock.

The s.sub.-- inode lock synchronizes the file access within a client process. The s.sub.-- inode is locked
if an operation at the client is accessing the file. The s.sub.-- inode is unlocked if the operation at the
client locks the fas.sub.-- lock. The s.sub.-- inode is also unlocked before a remote procedure call is sent
- from the client to the server.

If both the fas.sub.~- lock and the inode lock are locked, the inode lock is unlocked before the server
originates a remote procedure call to the client. This allows the fas.sub.-- lock and s.sub.-- inode lock to
be locked. The locks are unlocked in the reverse sequence that they became locked.

While the invention has been described in terms of a preferred embodiment in a specific operating
system environment, those skilled in the art will recognize that the invention can be practiced, with
modification, in other and different operating systems within the spirit and scope of the appended
claims.
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