494

United States Patent: 5,202,971 Page 1 of 43

USPTO PATENT FULL-TEXT AND IMAGE DATABASE

- l Home ” Quick ”.&dvanceﬂ(l?atmum H Help]

{ Hit List J[Previnus” Nesxt 'I Bottaom J

[h"iew CartJ[.O.dd to Cart]

Images
(20 0£27)
United States Patent 5,202,971
Henson , et al April 13, 1993

4 System for file and record locking between nodes in a distributed data processing
environment maintaining one copy of each file lock

Abstract

A conventional single node operating system is provided with a distributed file management system

(DFS) with a plurality of nodes and a plurality of files. The DFS uses the UNIX operating system tree

structure employing inodes (data structure containing administrative information for each file) to

manage the local files and surrogate inodes (s.sub.-- inode) to manage access to files existing on another

node. In addition, the DFS uses a lock table to manage the lock status of files. The method which

implements the DFS locking of records and files involves the following steps. If the file is a local file,

* then the UNIX operating system standard file locking is used. However, if a remote file is to be locked,

the UNIX operating system LOCKF and FCNTL system calls are intercepted and an remote process call

(RPC) DFS.sub.-- LOCK.sub.-- CONTROL is executed. The server node receives the remote process

. call and carries out the lock request. The request could entail locking a single record, a set of records or
- the whole file. The server then acknowledges receipt of the RPC by sending a signal while the client

surrogate inode is waiting for a reply from the DFS.sub.-- LOCK.sub.-- CONTROL RPC. The client

confirms the reception of the lock and sends an acknowledgement to the remote server. The server

updates the lock table after receiving the acknowledgement from the client surrogate inode. If the server @

- does not confirm the reception of DFS.sub.-- LOCK sub.-- CONTROL's acknowledgement, then 8
DFS.sub.-- LOCK.sub.-- CONTROL updates the lock table.

Inventors: Henson; Larry W. (Austin, TX); Shaheen-Gouda; Amal A. (Austin, TX); Smith; Todd
A. (Austin, TX)

Assignee: International Business Machines Corporation (Armonk, NY)

Appl. No.: 629073

Filed: December 17, 1990

R

Current U.S. Class: T07/8; 710/200
Intern'l Class: GO6F 012/14

Field of Search: 364/200,500 395/600,425,725

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

 United States Patent: 5,202,971 Page 2 of 43

References Cited [Referenced By]

U.S. Patent Documents

4214304 Jul., 1980 Shimizu et al. 364/200.
4313161 Jan., 1982 Hardin et al. 364/200.
4358823 Nov., 1982 McDonald 364/200.
4399504 Aug., 1983 Obermarck 364/200.
. 4400771 Aug., 1983 Suzuki et al. : 364/200.
- . 4439830 Mar., 1984 Chueh 364/200.
4476528 Oct., 1984 Matsumoto 364/200.
4480304 Oct., 1984 Carr 364/200.
4574350 Mar., 1986 Starr 364/200.
. 4577272 Mar., 1986 Ballew 364/200.
".. 4590468 May., 1986 Stieglitz 340/825.
4621321 Apr., 1986 Boebert 364/200.,
4633392 Dec., 1986 Vincent 364/200.
4663748 May., 1987 Karbowiak 340/825.
4698752 Oct., 1987 Goldstein 364/200.
4714992 Dec., 1987 Gladney 364/200.
4716528 Dec., 1987 Crus 364/300.
4719569 Jan., 1988 Ludemann ~ 364/200.
4720784 Jan., 1988 Radhkrishnan 364/200.
4742450 May., 1988 Duvall 364/200.
4751702 Jun., 1988 Beier 371/9.
4805106 Feb., 1989 Pfeifer 364/200.
. 4819159 Apr., 1989 Shipley 364/200.
. 4858116 Ang., 1989 Gillett 364/200.
4868866 Sep., 1989 Williams 364/408.
. 4887204 Dec., 1989 Johnson 364/200.
Other References

Rifkin et al., "RFS Architectural Overview" pp. 248-259.

- Sun Micro Systems "Vnodes: An Architecture for Multiple File System Types in Sun UNIX"
by S. R. Kleiman. _
AT&T Information Systems "An Administrators View of Remote File Sharing” by Richard
Hamilton et al. A

"AT&T "A Framework for Networking in System V" by David J. Olander et al., pp. 1-8.
AT&T Information Systems "File System Switch" by Tom Houghton.
Sun Microsystems, Inc., "Sun-3 Architecture”, Aug. 1986, pp. 8-9, 49-57.
Bach, Maurice J., The Design of the UNIX Operating System, 1986, pp. 382-389.
Gould, Ed, "The Network File System Implemented on 4.3 BSD", pp. 294-298,
Atlas, Alan; Flinn, Perry; "Error Recovery in a Stateful Remote Filesystem", pp. 355-365.
Sun Microsystems "Qverview of the Sun Network File System" by Dan Walsh et al., pp.

‘http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

¥

United States Patent: 5,202,971 Page 3 of 43

117-124.

Sun Microsystems "Design and Implementation of the Sun Network Filesystem" by Russel
Sandberg et al., pp. 119-130.

Secure Networkmg in the Sun Environment by Bradley Taylor et al., pp. 28- 36 Sun
Microsystems, Inc.

Primary Examiner: Lee; Thomas C.
Assistant Examiner: Coleman; Eric
Attorney, Agent or Firm: Whltham C. Lamont

_Parent Case T ext

‘ ThlS is a continuation of Ser No. 07/014, 891 ﬁled Feb. 13 1987 now abandoned

Clatms

We claim:

1. A method for locking at least one range of a file residing at a first node of a data processing system,
said method comprising: .

maintaining, in memory at said first node, information describing said at least one locked range of said
file, said information used to service at least one locking request from at least one process located in at
least one second node;

moving, from said first node, said information to reside in memory at one of said at Jeast one second
node when each of said at least one process resides at said one of said at least one second node; and

' servicing, at said one of said at least one second node, a subsequent lock request, performed by any
‘process residing at the one of said at least one second node, using said moved information.

2. A method for locking at least one range of a file residing at a first node of a data processing system,
said method comprising:

maintaining, in memory at said first node, information describing said at least one locked range of said
file, said information used to service at least one locking request from at least one process located in at
least one second node;

" moving, from said first node, said information to reside in memory at one of said at least one second
node when each of said at least one process resides at said one of said at least one second node;

servicing, at said one of said at least one second node, a subsequent lock request, performed by any
process residing at the one of said at least one second node, using said moved information and,;

moving, from said one of said at least one second node, said moved information to reside in memory at

said first node when at least one operation performed at a different node than said one of said at least
one second node requires the use of the information describing said at least one locked range of said file.

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 4 of 43

3. A method for locking at least one range of a file residing at a first node of a data processing system,
said method comprising:

creating information that resides in memory at at least one second node and that describes said at least
one locked range of said file, said information used to service at least one locking request from at least
one process located in at least one second node; and

servicing, at said one of said at least one second node, a subsequent lock request, performed by any
process residing at the one of said at least one second node, using said information only when each of
said at least one process resides at said one of said at least one second node.

4. A method for locking at least one range of a file residing at a first node of a data processing system,
said method comprising:

creating information that resides in memory at at least one second node and that describes said at least
one locked range of said file, said information used to service at least one locking request from at least
one process located in said at least one second node;

servicing, at said at least one second node, a subsequent lock request, performed by any process residing
at the one of said at least one second node, using said information when each of said at least one process
resides at said one of said at least one second node; and

storing, in memory at said first node, said information when at least one operation performed at a
different node than said one of said at least one second node requires use of said information describing
said at least one locked range of said file.

5.A system, in a data processing system, for locking at least one range of a file residing at a first node of
said data processing system, said system comprising:

. adata structure, at said first node, describing said at least one range of said file, said data structure being
. used to service at least one locking request from at least one process located in at least one second node;

means for moving, from said first node, said data structure to reside at one of said at least one second
node when each of said at least one process resides at said one of said at least one second node; and

means for servicing, at said one of said at least one second node, a subsequent lock request, performed
by any process residing at the one of said at least one second node, using said moved data structure.

‘6. A system in a data processing system, for locking at least one range of a file residing at a first node of
said data processing system, said system comprising:

a data structure, at said first node, describing said at least one locked range of said file, said data
. structure used to service at least one locking request from at least one process located in at least one
second node;

first means for moving, from said first node, said data structure to reside at one of said at least one
second node when each of said at least one process resides at said one of said at least one second node;

means for servicing, at said one of said at least one second node, a subsequent lock request, performed

| http://patfi.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 5 of 43

by any process residing at the one of said at least one second node, using said moved data structure; and

second means for moving, from said one of said at least one second node, said moved data structure to
said first node when at least one operation performed at a different node than said one of said at least
one second node requires the use of the data structure describing said at least one locked range of said
file.

7. A system, in a data processing system, for locking at least one range of a file residing at a first node of
* said data processing system, said system comprising: ‘

a data structure, which resides at one of said at least one second node, describing said at least one locked
range of said file, said data structure used to service at least one locking request from at least one
process located in at least one second node; and

means for servicing, at said one of said at least one second node, a subsequent lock request, performed

by any process residing at the one of said at least one second node, using said data structure residing at

said one of said at least one second node when each of said at least one process resides at said one of
said at least one second node.

8. A system, in a data processing system, for locking at least one range of a file residing at a first node of
said data processing system, said system comprising:

a data structure, which resides at one of said at least one second node, describing said at least one locked
range of said file, said data structure used to service at least one locking request from at least one
‘process located in at least one second node;

means for servicing, at said one of said at least one second node, a subsequent lock request, performed
by any process residing at the one of said at least one second node, using said data structure when each
of said at least one process resides at said one of said at least one second node; and

means for storing, m said first node, said data structure when at least one operation performed at a
different node than said one of said at least one second node requires the use of the data structure
describing said at Jeast one locked range of said file.

| 9. A method for locking a range of bytes of a file residing at a first node of a data processing system,
-said method comprising:

sending a message from a second node to the first node requesting a lock on the range of bytes of the file
residing in storage at said first node;

sending notification from the first node to the second node that the lock is available; and

‘releasing the lock at the first node when a confirmation of said sent notification is not received by said
first node from said second node.

10. A system for locking a range of bytes of a file residing at a first node and accessible by processes
located at a least one second node, said system comprising:

a first message from the second node to the first node requesting a lock;

means for sending notification from the fist node to the second node that the lock is available; and

hitp://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 - Page 60f43

means for releasing the lock at the first node when a confirmation of said sent notification is not
‘received by said first node from said second node.

11. A method for locking at least one range of a file residing at a first node of a data processing system,
said method comprising:

ntercepting, in one of a at least one second node, any file locking system operation that is being applied
to said file from an application running in one of the at least one second node;

invoking a remote procedure call in said one of the at least one second node;
processing said remote procedure call in said first node;

returning to said one of the at least one second node information describing the state of the locks of the
file; and

using said information, which resides in memory of said one of the at least one second node, to perform S
said locking system operation in said one of the at least one second node. :

12. The method of claim 11 further comprising the step of intercepting, in one of the at least one second
node, at least one subsequent file locking system call that is being applied to said file from an
application running in said one of the at least one second node, and using said information, which
resides in said one of the at least one second node, to perform said at least one subsequent file locking
system call in said one of the at least one second node.

13. A method of providing file locks in a distributed data processing system of the type having a
plurality of nodes and a plurality of files physically residing at different ones of said nodes and a
distributed file management system with a plurality of inodes comprising administrative information for
each of said plurality of files and a plurality of surrogate inodes; said plurality of inodes including a
server inode, at a server node, including access control means for a local file or a portion of said local
file of said plurality of files and said plurality of surrogate inodes including a client surrogate inode, at a
client node, corresponding to said server inode providing remote access control means for said local file,
said remote access control means including locking means for locking said server inode to secure said
local file or said portion of said local file, said method of providing file locks including:

- unlocking said surrogate inode at said client node in response to said remote access control means
" locking said local file or said portion of said local file,

sending a remote procedure call for obtaining a lock on said local file or said portion of said local file by
means of said remote access control means from said client node to said server node subsequent to said
~ step of unlocking said surrogate inode, and

Ce S

controlling the grant of a lock in response to said remote procedure call.

14. The method for locking said local files from a local node in a distributed data processing system as
recited in claim 13 further including the steps of:

requesting an unlock of said local file from said server node; and

unlocking said local file.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 7 of 43

15. The method for locking said local files from a local node in a distributed data processing system as
recited in claim 13 wherein said step of controlling the grant of a lock further includes

locking said local file of said portion of said Iocal file by means of said remote access control means,
wherein said method further includes the step of:

locking said inode of said server node subsequent to said step of locking said local file of said portion of
~ said local file by means of said remote access control means.

. 16. The method of providing file locks in a distributed data processing system as recited in claim 13
further including locking said local files from said server node including the steps of:

requesting a lock on said local file from said server node, and
locking said local file by means of said remote access control means.

17. The method of providing file locks in a distributed data processing system as recited in claim 16,
wherein said step of requesting a lock further includes

intercepting a remote procedure call from said server node to said client node of said distributed data
processing system, and

transmitting said remote procedure call to said client node subsequent to said step of locking said local
file by means of said remote access control means.

18. The method for locking said local files from a local node in a distributed data processing system as
recited in claim 17, wherein said step of controliing the grant of a lock further includes

locking said local file of said portion of said local file by means of said remote access control means,
wherein said method further comprising the step of:

Iocking said inode of said server node subsequent to said step of locking said local file of said portion of
said local file by means of said remote access control means.

Description

- CROSS REFERENCE TO RELATED APPLICATIONS

This application is related in subject matter to the following applications filed concurrently herewith and
assigned to a common assignee: '

Application Ser. No. 07/014,899, now U.S. Pat. No. 4,897,781, filed by A. Chang, G. H. Neuman, A. A.
Shaheen-Gouda, and T. A. Smith for A System And Method For Using Cached Data At A Local Node
After Re-opening A File At A Remote Node In A Distributed Networking Environment.

Application Ser. No. 07/014,884, now abandoned filed by D. W. Johnson, L. W. Henson, A. A.

Shaheen-Gouda, and T. A. Smith for Negotiating Communication Conventions Between Nodes In A
Network. :

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 ‘ Page 8 0f 43

Application Ser. No. 07/014,897, now U.S. Pat. No. 4,887,204, filed by D. W. Johnson, G. H. Neuman,
C. H. Sauer, A. A. Shaheen-Gouda, and T. A. Smith for A System and Method For Accessing Remote
Files In A Distributed Networking Environment.

Application Ser. No. 07/014,900, now U.S. Pat. No. 5,175,892, filed by D. W. Johnson, A. A. Shaheen-
Gouda, T. A. Smith for Distributed File Access Structure Lock.

Application Ser. No. 07/014,892, now U.S. Pat. No. 5,001,628, filed by D. W Johnson, L. K. Loucks, C.
H. Sauer, and T. A. Smith for Single System Image Uniquely Defining An Environment for Each User
In A Data Processing System.

Application Ser. No. 07/014,888, now U.S. Pat. No. 5,133,053, filed by D. W. Johnson, L. XK. Loucks,
A. A Shaheen-Gouda for Interprocess Communication Queue Location Transparency.

Application Ser. No. 07/014,889, now U.S. Pat. No. 5,151,989, filed by D. W. Johnson, A. A. Shaheen-
Gouda, and T. A. Smith for Directory Cache Management In A Distributed Data Processing System.

.The disclosures of the foregoing co-pending applications are incorporated herein by reference.
DESCRIPTION
1. Field of the Invention

This invention generally relates to improvements in operating systems for a distributed data processing
system and, more particularly, to an operating system for a multi-processor system interconnected by a
local area network (LAN) or a wide area network (WAN). IBM's System Network Architecture (SNA)
may be used to construct the LAN or WAN. The operating system according to the invention permits
the accessing of files by processors in the system, no matter where those files are located in the system.
The preferred embodiment of the invention is disclosed in terms of a preferred embodiment which is
implemented in a version of the UNIX.sup.l operating system; however, the invention could be
implemented in other and different operating systems.

.sup.1 Developed and licensed by AT&T. UNIX is a registered trademark of AT&T in the U.S.A, and
other countries.

- 2. Background of the Invention

Virtual machine operating systems are known in the prior art which make a single real machine appear
to be several machines. These machines can be very similar to the real machine on which they are run or
. they can be very different. While many virtual machine operating systems have been developed, perhaps

. the most widely used is VM/370 which runs on the IBM System/370. The VM/370 operating system
creates the illusion that each of several users operating from terminals has a complete System/370 with
varying amounts of disk and memory capacity.

The physical disk devices are managed by the VM/370 operating system. The physical volumes residing
on disk are divided into virtual volumes of various sizes and assigned and accessed by users carrying out
a process called mounting. Mounting defines and attaches physical volumes to 2 VM/370 operating
system and defines the virtual characteristics of the volumes such as size, security and ownership.

Moreover, under VM/370 a user can access and use any of the other operating systems runming under

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 9 of 43

VM/370 either locally on the same processor or remotely on another processor. A user in Austin can use
a function of VM/370 called "passthru" to access another VM/370 or MVS/370 operating system on the
same processor or, for example, a processor connected into the same SNA network and located in Paris,
France. Once the user has employed this function, the files attached to the other operating system are
available for processing by the user.

" There are some significant drawbacks to this approach. First, when the user employs the "passthru”
function to access another operating system either locally or remotely, the files and operating
environment that were previously being used are no longer available until the new session has been
terminated. The only way to process files from the other session is to send the files to the other operating
system and effectively make duplicate copies on both disks. Second, the user must have a separate
"logon” on all the systems that are to be accessed. This provides the security necessary to protect the
integrity of the system, but it also creates a tremendous burden on the user. For further background, the
reader is referred to the text book by Harvey M. Deitel entitled An Introduction to Operating Systems,
published by Addison-Wesley (1984), and in particular to Chapter 22 entitled "VM: A Virtual Machine
Operating System". A more in depth discussion may be had by referring to the text book by Harold

‘Lorin and Harvey M. Deitel entitled Operating Systermns, published by Addison-Wesley (1981), and in

- particular to Chapter 16 entitled "Virtual Machines".

The invention to be described hereinafter was implemented in a version of the UNIX operating system
but may be used in other operating systems having characteristics similar to the UNIX operating system.,
The UNIX operating system was developed by Bell Telephone Laboratories, Inc., for use on a Digital
Equipment Corporation (DEC) minicomputer but has become a popular operating system for a wide
range of minicomputers and, more recently, microcomputers. One reason for this popularity is that the
UNIX operating system is written in the C programming language, also developed at Bell Telephone
Laboratories, rather than in assembly language so that it is not processor specific. Thus, compilers
written for various machines to give them C capability make it possible to transport the UNIX operating
system from one machine to another. Therefore, application programs written for the UNIX operating
system environment are also portable from one machine to another. For more information on the UNIX
operating system, the reader is referred to UNIX.sup.TM System, User's Manual, System V, published
by Western Electric Co., January, 1983. A good overview of the UNIX operating system is provided by
Brian W. Kemighan and Rob Pike in their book entitled The Unix Programming Environment,
published by Prentice-Hall (1984). A more detailed description of the design of the UNIX operating
system is to be found in a book by Maurice J. Bach, Design of the Unix Operating System, published by
Prentice-Hall (1986).

AT&T Bell Labs has licensed a number of parties to use the UNIX operating system, and there are now
several versions available. The most current version from AT&T is version 5.2. Another version known
as the Berkeley version of the UNIX operating system was developed by the University of California at
Berkeley. Microsoft, the publisher of the popular MS-DOS and PC-DOS operating systems for personal
computers, has a version known under their trademark as XENIX. With the announcement of the IBM
‘RT PC.sup.2 (RISC (reduced instruction set computer) Technology Personal Computer) in 1985, IBM

" Corp. released a new operating system called AIX.sup.3 (Advanced Interactive Executive) which is
compatible at the application interface level with AT&T's UNIX operating system, version 5.2, and
includes extensions to the UNIX operating system, version 5.2. For more description of the AIX
operating system, the reader is referred to AIX Operating System Technical Reference, published by
IBM Corp., First Edition (November, 1985). '

ORI

.sup.2 RT and RT PC are registered trademarks of IBM Corporation.

.sup.3 AIX is a trademark of IBM Corporation.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

" United States Patent: 5,202,971 Page 10 of 43

The invention is specifically concerned with distributed data processing systems characterized by a
plurality of processors interconnected in a network. As actually implemented, the invention runs on a
plurality of IBM RT PCs interconnected by IBM's Systems Network Architecture (SNA), and more
specifically SNA LU 6.2 Advanced Program to Program Communication (APPC). SNA uses as its link
level Ethernet.sup.4, a local area network (LAN) developed by Xerox Corp., or SDLC (Synchronous
Data Link Control). A simplified description of local area networks including the Ethernet local area

" network may be found in a book by Larry E. Jordan and Bruce Churchill entitled Communications and
Networking for the IBM PC, published by Robert J. Brady (a Prentice-Hall company) (1983). A more
definitive description of communications systems for computers, particularly of SNA and SDLC, is to
be found in a book by R. J. Cypser entitled Communications Architecture for Distributed Systems,
published by Addison-Wesley (1978). It will, however, be understood that the invention may be
implemented using other and different computers than the IBM RT PC interconnected by other networks
than the Ethernet local area network or IBM's SNA.

.sup.4 Ethernet is a trademark of Xerox Corporation.

As mentioned, the invention to be described hereinafter is directed to a distributed data processing
system in a communication network. In this environment, each processor at a node in the network
potentially may access all the files in the network no matter at which nodes the files may reside. As
shown in FIG. 1, a distributed network environment 1 may consist of two or more nodes A, B and C
connected through a communication link or network 3. The network 3 can be a local area network
(LAN) as mentioned or a wide area network (WAN), the latter comprising a switched or leased
teleprocessing (TP) connection to other nodes or to a SNA network of systems. At any of the nodes A, B
or C there may be a processing system 10A, 10B or 10C, such as the aforementioned IBM RT PC. Each

.of these systems 10A, 10B and 10C may be a single user system or a multi-user system with the ability
to use the network 3 to access files located at a remote node in the network. For example, the processing
system 10A at local node A is able to access the files 5B and 5C at the remote nodes B and C.

The problems encountered in accessing remote nodes can be better understood by first examining how a
standalone system accesses files. In a standalone system, such as 10 shown in FIG. 2, a local buffer 12
in the operating system 11 is used to buffer the data transferred between the permanent storage 2, such
as a hard file or a disk in a personal computer, and the user address space 14. The local buffer 12 in the
operating system 11 is also referred to as a local cache or kernel buffer. For more information on the
UNIX operating system kernel, see the aforementioned books by Kernighan et al. and Bach. The local
cache can be best understood in terms of a2 memory resident disk. The data retains the physical
characteristics that it had on disk; however, the information now resides in a medium that lends itself to
faster data transfer rates very close to the rates achieved in main system memory.

In the standalone system, the kernel buffer 12 is identified by blocks 15 which are designated as device
number and logical block number within the device. When a read system call 16 is issued, it is issued

-. with a file descriptor of the file 5 and a byte range within the file 5, as shown in step 101 in FIG. 3. The
‘operating system 11 takes this information and converts it to device number and logical block numbers
of the device in step 102. Then the operating system 11 reads the cache 12 according to the device
number and Jogical block numbers, step 103.

Any data read from the disk 2 is kept in the cache block 15 until the cache block 15 is needed.
Consequently, any successive read requests from an application program 4 that is running on the
processing system 10 for the same data previously read from the disk is accessed from the cache 12 and
not the disk 2. Reading from the cache is less time consuming than accessing the disk; therefore, by

- reading from the cache, performance of the application 4 is improved. Obviously, if the data which is to

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 11 of 43

be accessed is not in the cache, then a disk access must be made, but this requirement occurs
infrequently.

Similarly, data written from the application 4 is not saved immediately on the disk 2 but is written to the
- cache 12. This again saves time, improving the performance of the application 4. Modified data blocks
in the cache 12 are saved on the disk 2 periodically under the control of the operating system 11.

Use of a cache in a standalone system that utilizes the AIX operating system, which is the environment
in which the invention was implemented, improves the overall performance of the system disk and
minimizes access time by eliminating the need for successive read and write disk operations.

In the distributed networking environment shown in FIG. 1, there are two ways the processing system
10C in local node C could read the file 5A from node A. In one way, the processing system 10C could
copy the whole file SA and then read it as if it were a local file 5C residing at node C. Reading the file in
.this way creates a problem if another processing system 10B at node B, for example, modifies the file
5A after the file SA has been copied at node C. The processmg system 10C would not have access to the
latest modifications to the file SA.

- Another way for processing system 10C to access a file SA at node A is to read one block at a time as
the processing system at node C requires it. A problem with this method is that every read has to go
across the network communications link 3 to the node A where the file resides. Sending the data for

‘every successive read is time consuming.

Accessing files across a network presents two competing problems as illustrated above. One problem
involves the time required to transmit data across the network for successive reads and writes. On the
other hand, if the file data is stored in the node to reduce network traffic, the file integrity may be lost.
For example, if one of the several nodes is also writing to the file, the other nodes accessing the file may
~ not be accessing the latest updated file that has just been written. As such, the file integrity is lost, and a
node may be accessing incorrect and outdated files. The invention to be described hereinafter is part of
an operating system which provides a solution to the problem of managing distributed information.

Within this document, the term "server” will be used to indicate the processing system where the file is
permanently stored, and the term client will be used to mean any other processing system having
" processes accessing the file.

‘Other approaches to supporting a distributed data processing system in the UNIX operating system
environment are known. For example, Sun Microsystems has released a Network File System (NFS) and
- Bell Laboratories has developed a Remote File System (RFS). The Sun Microsysterms NES has been
described in a series of publications including S. R. Kleiman, "Vnodes: An Architecture for Multiple
File System Types in Sun UNIX", Conference Proceedings, USENIX 1986 Summer Technical
Conference and Exhibition, pp. 238 to 247; Russel Sandberg et al., "Design and Implementation of the
Sun Network Filesystem”, Conference Proceedings, Usenix 1985, pp. 119 to 130; Dan Walsh et al.,
"Overview of the Sun Network File System", pp. 117 to 124; JoMei Chang, "Status Monitor Provides

. Network Locking Service for NFS"; JoMei Chang, "SunNet", pp. 71 to 75; and Bradley Taylor, "Secure
Networking in the Sun Environment", pp. 28 to 36. The AT&T RFS has also been described in a series
of publications including Andrew P. Rifkin et al., "RFS Architectural Overview", USENIX Conference
Proceedings, Atlanta, Ga. (June, 1986}, pp. 1 to 12; Richard Hamilton et al., "An Administrator's View
of Remote File Sharing", pp. 1 to 9; Tom Houghton et al., "File Systems Switch", pp. 1 to 2; and David
J. Olander et al., "A Framework for Networking in System V*, pp. 1 to 8.

One feature of the distributed services system in which the subject invention is implemented which

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

O XRVIRT

United States Patent: 5,202,971 Page 12 0of 43

distinguishes it from the Sun Microsystems NFS, for example, is that Sun's approach was to design what
. is essentially a stateless machine. More specifically, the server in a distributed system may be designed
to be stateless. This means that the server does not store any information about client nodes, including
such information as which client nodes have a server file open, whether client processes have a file open
in read.sub.-- only or read.sub.-- write modes, or whether a client has locks placed on byte ranges of the
file. Such an implementation simplifies the design of the server because the server does not have to deal
with error recovery situations which may arise when a client fails or goes off-line without properly
informing the server that it is releasing its claim on server resources.

An entirely different approach was taken in the design of the distributed services system in which the
present invention is implemented. More specifically, the distributed services system may be
characterized as a "statefull implementation". A "statefull" server, such as that described here, does keep
information about who is using its files and how the files are being used. This requires that the server
have some way to detect the loss of contact with a client so that accumulated state information about that
client can be discarded. The cache management strategies described here, however, cannot be

“implemented unless the server keeps such state information. The management of the cache is affected,
as described below, by the number of client nodes which have issued requests to open a server file and
the read/write modes of those opens.

SUMMARY OF THE INVENTION

1t is therefore a general object of this invention to provide a distributed services system for an operating
system which supports a multi-processor data processing system interconnected in a communications
network that provides user transparency as to file location in the network and as to performance.

It is another, more specific object of the invention to provide a technique for providing a distributed file
and record locking capability.

According to the invention, these objects are accomplished by using the following steps to lock files. If
the file is a local file, then the UNIX operating system standard file locking is nsed. However, ifa
.remote file is to be locked, the UNIX operating system LOCKF and FCNTL system calls are intercepted
and an remote process call (RPC) DFS.sub.-- LOCK.sub.-- CONTROL is executed. The server node
receives the remote process call and carries out the lock request. The request could entail locking a

" single record, a set of records or the whole file. The server then sends the tells the client to awaken by
sending a signal while the client surrogate inode is waiting for a reply from the DES.sub.-- LOCK.sub.--
CONTROL RPC. The client confirms the reception of the lock and acknowledges receipt of the RPC to
the remote server. The server updates the lock table after receiving the acknowledgement from the client
surrogate inode. If the server does not confirm the reception of DFS.sub.-- LOCK.sub.-- CONTROL's
acknowledgement, then DES.sub.-- LOCK .sub.-- CONTROL removes the lock from the lock table.

BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, aspects and advantages of the invention will be better understood from
the following detailed description of the preferred embodiment of the invention with reference to the

accompanying drawings, in which:

FIG. 1 is a block diagram showing a typical distributed data processing system in which the subject
invention is designed to operate;

FIG. 2 is a block diagram illustrating a typical standalone processor system;

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

AR £ A PN

" FIG.2lisa diagram showing the filock data structure.

United States Patent: 5,202,971 Page 13 0f 43

FIG. 3 is a flowchart showing the steps performed by an operating system when a read system call is
made by an application running on a processor;

FIG. 4 is a block diagram of the data structure illustrating the scenario for following a path to a file
operation at a local node as performed by the operating system which supports the subject invention;

FIGS. 5 and 6 are block diagrams of the data structures illustrating the before and after conditions of the
scenario for 2 mount file operation at a local node as performed by the operating system;

CHIRCTE -

FIG. 7 is a block diagram, similar to FIG. 1, showing a distributed data processing system according to
the invention,

FIG. 8 is a block diagram of the data structure for the distributed file system shown in FIG. 7;

FIGS. 94, 9B, 9C, 9D, 9E and 9F are block diagrams of component parts of the data structure shown in
FIG. §;

FIGS. 10, 11 and 12 are block diagrams of the data structures illustrating the scenarios for a mount file
operation and following a path to a file at a local and remote node in a distributed system as performed
by the operating system;

FIG. 13 is a block diagram showing in more detail a portion of the distributed data processing system
shown in FIG. 7;

FIG. 14 1s a state diagram illustrating the various synchronization modes employed by the operating
system which supports the present invention;

FIG. 15 is a block diagram, similar to FIG. 13, which illustrates the synchronous mode operations;

FIG. 16 is a state diagram, similar to the state diagram of FIG. 14, which shows an example of the
synchronization modes of the distributed file system;

FIG. 17 is a diagram showing the control flow of accesses to a file by two client nodes;
FIG. 18 is a diagram showing the flock data structure;
FIG. 19 is a diagram showing the relationship of lock lists, lock table, entries and inodes;

FIG. 20 is a diagram showing the sleep lock list and its relationship to the lock table; and

 FIG. 22A is a flow chart showing the high level operation of requesting a lock.

R 3

FIG. 22B is a flow chart showing the high level operation of OPEN/CLOSE or CHMOD processing.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The following disclosure describes solutions to problems which are encountered when creating a

distributed file system in which the logic that manages a machine's files is altered to allow files that g
physically reside in several different machines to appear to be part of the local machine's file system.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 | Page 14 of 43

The implementation described is an extension of the file system of the ATX operating system. Reference
should be made to the above-referenced Technical Reference for more information on this operating
system. Specific knowledge of the following AIX file system concepts is assumed: tree structured file
systems; directories; and file system organization, including inodes.

In a UNIX operating system, an individual disk (or diskette or partition of a disk) contains a file system.
The essential aspects of the file system that are relevant to this discussion are listed below:

a) each file on an individual file system is uniquely identified by its inode number;
b) directories are files, and thus a directory can be uniquely identified by its inode number;
¢) a directory contains an array of entries of the following form:

name--inode number, where the inode number may be that of an individual file or that of another
directory; and

d) by convention, the inode number of the file system's root directory is inode number 2.
Following the path */dirt/dir2/file” within a device's file system thus involves the following steps:
1. Read the file identified by inode number 2 (the device's root directory).

2. Search the directory for an entry with name=dir1.

3. Read the file identified by the inode number associated with dirl (this is the next directory in the
path).

4. Search the directory for an entry with name=dir2.

5. Read the file identified by the inode number associated with dir2 (this is the next directory in the

 path).

6. Search the directory for an entry with name=file.

7. The inode mumber associated with file in this directory is the inode number of the file identified by
the path "/dirl/dir2/file".

The file trees which reside on individual file systems are the building blocks from which a node's
aggregate file tree is built. A particular device (e.g., hard file partition) is designated as the device which
contains a node's root file system. The file tree which resides on another device can be added to the
node's file tree by performing a mount operation. The two principal parameters to the mount operation

- are (1) the name of the device which holds the file to be mounted and (2) the path to the directory upon

which the device's file tree is to be mounted. This directory must already be part of the node's file tree;
i.e., it must be a directory in the root file system, or it must be a directory in a file system which has
already been added (via a mount operation} to the node’s file tree.

After the mount has been accomplished, paths which would ordinarily flow through the "mounted over"
directory instead flow through the root inode of the mounted file system. A mount operation proceeds as
follows:

~ http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 15 of 43

1. Follow the path to the mount point and get the inode number and device number of the directory
which is to be covered by the mounted device.

2. Create a data structure which contains essentially the following:
a) the device name and inode number of the covered directory; and
b) the device name of the mounted device.

The path following in the node's aggregate file tree consists of (a) following the path in a device file tree
until encountering an inode which has been mounted over (or, of course, the end of the path); (b) once a
mount point is encountered, using the mount data structure to determine which device is next in the
path; and (c) begin following the path at inode 2 (the root inode) in the device indicated in the mount
structure.

The mount data structures are volatile; they are not recorded on disk. The list of desired mounts must be
re-issued sach time the machine is powered up as part of the Initial Program Load (IPL). The preceding
discussion describes how traditional UNIX operating systems use mounts of entire file systems to create
file trees and how paths are followed in such a file tree. Such an implementation is restricted to
mounting the entire file system which resides on a device. The invention described herein is based on an
enhancement, embodying the concept of a virtual file system, which allows (1) mounting a portion of
the file system which resides on a device by allowing the mounting of directories in addition to allowing
mounting of devices, (2) mounting either remote or local directories over directories which are already
part of the file tree, and (3) mounting of files (remote or local) over files which are already part of the
file tree.

In the virtual file system, the operations which are performed on a particular device file system are
clearly separated from those operations which deal with constructing and using the node's aggregate file
tree. A node's virtual file system allows access to both local and remote files.

‘The management of local files is a simpler problem than management of remote files. For this reason,
the discussion of the virtual file system is broken into two parts. The first part describes only local
‘operations. This part provides a base from which to discuss remote operations. The same data structures
and operations are used for both remote and local operations. The discussion on local operations

~ describes those aspects of the data and procedures which are relevant to standalone operations. The

- discussion on remote operations adds information pertinent to remote operations without, however,
 reiterating what was discussed in the local operations section.

FIG. 4 shows the relationship that exists among the data structures of the virtual file system. Every
mount operation creates a new virtual file system (v{s) data structure. The essential elements in this
structure are (a) a pointer to the root vnode (virtual node) of this virtual file system (e.g., the arrow from
block 21 to block 23), and (b) a pointer to the vnode which was mounted over when this virtual file
system was created (e.g., the arrow from block 25 to block 24).

Whenever an inode needs to be represented in the file system independent portion of the system, it is
represented by a vnode. The essential elements in this structure are the following:

a) a pointer to the vfs which contains the vnode (e.g., the arrow from block 22 to block 21);

b) a pointer to the vfs which is mounted over this vnode (e.g., the arrow from block 24 to block 25; but
" note however that not all vnodes are the mount point for a virtual file system, i.e., a mull pointer

hitp://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

ogme v

United States Patent: 5,202,971 Page 16 0f 43

indicates that this vnode is not a mount point);
¢) a pointer to either a surrogate inode or a real inode (e.g., the arrow from block 26 to block 32); and
d) a pointer to a node table entry (this is a non-null only when the file is a2 remote file).

The AIX operating system, in common with other UNIX operating system based operating systems,
keeps a memory resident table which contains information about each inode that is being used by the
system. For instance, when a file is opened, its inode is read from the disk and a subset of this inode
information, together with some additional information, is stored in the inode table. The essential
elements of an inode table entry are (a) a pointer to the head of a file access structure list and (b)
information from the disk inode, the details of which are not relevant here.

The file access structure records information about which nodes have the file open, and about the modes
(read.sub.-- only or read.sub.-- write) of the opens. There is a separate file access structure for each node
which has the file open. This state information enables the server to know how each client s using the

- server file.

The file system supports a set of operations which may be performed on it. A process interacts with a
file system by performing a file system operation as follows:

1. The user calls one of the operations providing (perhaps) some input parameters.

2. The file system logic performs the operation, which may alter the internal data state of the file system.

3. The file system logic retumns to the calling user, perhaps returning some return parameters.

The operations which can be performed on a file system are referred to as "vn.sub.-- operations" or
"vn.sub.-- ops". There are several vn.sub.-- ops, but the ones which are important to this discussion are
described below:

 VN.sub.-- LOOKUP
In the vn.sub.-- lookup operation, the essential iterative step in following a path in a file system is to

- locate the name of a path component in a directory file and use the associated inode number to locate the
next directory in the chain. The pseudo code for the vn.sub.-- lookup operation is listed below:

function lookup
input: directory wvnode pointer,
name to be looked up in directory
output: vnode pointer to named file/dir.
: convert directory vnode pointer
to an inode pointer;
-- use private data pointer of vnode
lock directory's incde;
if(we don't have search permission in
directory)}
unlock directory inode;
return error;
search directory for name;
if(found }

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/2 0/2005

g

United States Patent: 5,202,971

c¢reate file handle for name;

-- use inode found in directory entry;
get pointer to vnode for file handle;
unlock directory inode;
return pointer to vnode;

else -- not found

unlock directory inode;

return error;
‘VN.sub.-- OPEN

Page 17 of 43

The function vn.sub.-- open creates a file access structure (or modifies an existing one) to record what
open modes (READ/WRITE or READ.sub.-- ONLY) to open a file. The pseudo code for the vn.sub.--

open operation is listed below:

‘function vn.sub.-- open
inputs: vnode pointer for file to be opened
open flags (e.g., read-only,

read/write)
create mode -- file mode bits if
creating
output: return code indicating success oxr
failure

get pointer to file's inode from vnode;
lock inode;
if (not permitted access }
unlock inode;
return(error);
get the file access structure for this
client;
-- if there is no file access structure
allocate one
if(couldn't allocate file access
structure }
unlock inode;
return(exrror);
update file access structure read-only,
read/write, and text counts;
1f(truncate mode is set)
truncate file:
unlock the inode;
LOOKUPPN

I TITY

The lookuppn operation is the function which follows paths. Its input is a path (e.g., "/dirl/dir2/file"),

and its return is a pointer o the vnode which represents the file. Lookuppn calls vn.sub.-- lookup to read

one directory, then it checks to see if the vnode returned by vn.sub.-- lookup has been mounted over. If

the vnode is not mounted over, then lookuppn calls vn.sub.-- lookup in the same file system. If the

vnode has been mounted over, then lookuppn follows the pointer from the mounted over vnode (e.g.

block 24 in FIG. 4) to the vfs of the mounted file system (e.g., block 25 in FIG. 4). From the vfs, it

follows the pointer to the root vnode (e.g., block 26 in FIG. 4) and issues a new vn.sub.-- lookup giving
as input the vis's root vnode and the name which constitutes the next element in the path. The pseudo :

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht...

12/20/2005

United States Patent: 5,202,971

code for the lookuppn function is listed below:

" function lookuppn
input: pathname
output: pointer to vnode for named file
if{ first character of path is ~/~)
current vnode for search is user's xoot
directory vnode;
.else
.current vnode for search is user's
current directory vnode;
repeat]
if{ next component of path is "..")
while(current vnode is root of a
virtual file system)
current vnode becomes the vnode that
the virtual file system is mounted

over;
if(there is not mounted over vnode)
return(error }; -- ".." past root
of file system
use vn.sub.-- lookup to look up path compecnent
in current vnode;
if (vn.sub.-- lookup found component) ;
current vnode becomes the vnode
returned by vn.sub.-- lookup;

while (current vnode is mounted over)
follow current vnode's pointer to vfs
structure that represents the
mounted virtual file system;
current vnode becomes root vnode of
the mounted vis;

else -- vn.sub.-- lockup couldn't file component

return(error); -- search failed
until(there are no additional path
components };
return(current vnode);

Page 18 0f 43

The operation will be illustrated by describing the scenarios of following a path to a file and mounting a
_directory. First, in following a path to a file, suppose an application process issues a system call (e.g.,
open) for file "/u/dept54/status". This request is accomplished by the operating system in the following
manner with reference to FIG. 4 (operations which are basically unchanged from the UNIX operating
system are not explained here in any detail). The following assumptions are made: First, the vfs
" represented by block 21 is the root virtual file system. Second, the file "/u" is represented by vnode
" block 24 and inode block 31. Third, a previous mount operation has mounted a device's file system onto
the directory "/u". This mount created the vfs represented by block 25. Fourth, all of the directories and
files involved are on the same device. Fifth, the following directory entries exist in the indicated

directories:

DIRECTORY
INCDE NUMBER NAME INODE NUMBER

http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 19 of 43

2 Hull 15
45 "depts54" 71
71 *"status" 12

The code which implements the system call calls lookuppn to follow the path. Lookuppn starts at the
root vnode (block 23) of the root virtual file system (block 21) and calls vn.sub.-- lookup to look up the
name "u" in the directory file represented by this vnode. Vua.sub.-- lookup finds in the directory that the
name "u" is associated with inode 15 in block 31. Vn.sub.-- lookup must return a pointer to a vnode
associated with inode 15. To do this it first brings inode 15 into the inode table. Then it checks to see if
- there is already a vnode in the parent vfs (the input vnode (block 23) has a pointer to the parent vfs) for
this vnode. In this case there is. Vn.sub.-- lookup then finds the vnode (block 24) in the root vfs (block

- 21) and returns a pointer to the vnode. Lookuppn discovers that the returned vnode is mounted over in

the parent vis. It follows the "mounted over" pointer from the vnode (block 24) to the mounted vfs
(block 25). Lookuppn follows the "root vnode" pointer to the root vnode (block 26) of the new vis
(block 25). Lookuppn now calls vn.sub.-- lookup again, this time inputting a pointer to the root vnode
(block 26) and name "dept54". As before, vn.sub.-- lookup reads the directory, finds the inode
associated with the name, finds or creates a vnode for this inode in the parent vfs (block 25) and returns
~ apointer to this vnode. Lookuppn calls vn.sub.-- lookup once more inputting the vnode for the just
found directory and the name "status". Vn.sub.-- lookup reads the directory, finds the inode associated
-with the name (block 34), finds or creates a vnode (block 28) for this inode in the parent vfs (block 25)
and returns a pointer to this vnode. The code which implements the system call now performs the
Tequested operation on the file.

Suppose now that an application process issues a "mount” system call to mount the directory "/u/gorp"
over the directory "/u/foo". The following scenario explains how this request is accomplished by the
operating system (again, operations which are basically unchanged from UNIX operating system are not
explained in any detail).

. This scenario refers to FIG. 5, which represents initial conditions, and FIG. 6, which represents the final
. conditions, with the following assumptions: First, the vfs represented by block 41 is the root virtual file

* system. Second, all of the directories and files involved are on the same device. Third, the following
directory entries exist in the indicated directories:

" DIRECTORY

INODE NUMBER NAME INODE NUMBER
2 Ilull . 15
2 "ete" 83
15 "gorp" 92
83 “foo" 75
75 rfilel" 89

The code which implements the mount system call performs the following operations. Lookuppn is
called to follow the path to the directory which is to be mounted over--"/etc/foo”. At the completion of
this operation, the root vfs (block 41) contains a vnode for "/etc/foo" (block 44} which has a pointer to
the root vfs {block 41) and pointer to an inode table entry (block 45) for inode 75. Lookuppn is called to

4 htlp://patﬁ.uspto.gov/netacgi/nph—Parser?Sectl=PT02&S/ect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 20 of 43

follow a path to the directory which is to be mounted --"/etc/gorp”. At the completion of this operation,
the root vis (block 41) contains a vnode for "/etc/gorp” (block 49) which has a pointer to the root vfs
(block 41} and a pointer to an inode table entry (block 48) for inode 92. Now the mount logic creates the
new virtual file system by first creating a new vfs (block 46) and then creating a root vnode for this vfs
(block 47) with a pointer back to its parent vfs (block 46) and a pointer to the root inode (inode 92,
block 48) of the vfs. A "mounted over" pointer is installed in the covered vnode (block 44) in the root
vis (block 41), and a pointer to the vnode upon which it is mounted (block 44) is installed in the new
vis.

The foregoing illustrates the data structure for standalone operation. Reference is now made to FIG. 7
which shows a distributed system similar to that shown in FIG. 1 in which the operating system which
supports the present invention has been implemented. In the following description, the term "server" is
used to indicate the node where a file is permanently stored, and the term "client" is used to mean any
other node having processes accessing the file. It is to be understood, however, that the term "server"
does not mean a dedicated server as that term is used in some local area network systems. The
distributed services system in which the invention is implemented is a truly distributed system
supporting a wide variety of applications running at different nodes in the system which may access files
located anywhere in the system.

The data structure for the distributed system shown in FIG. 7 is illustrated in FIG. 8, and the component
parts of that data structure are shown in FIGS. 9A to 9F. With reference to FIG. 8, a client node may
have access to files which reside in a remote server node. Such a client gains access to a server's files by
mounting one of the server's directories. In the client node, the data structures created by a remote mount
operation compare to those created by mounting a local entity in the following ways: Just as in the local
case, a remote mount creates a vfs in the client node (e.g., block 54). Just as in the local case, use of a
file in a virtual file system which contains remote files creates a vnode structure in the client node (e.g.,
block 57). Just as in the local case, the vnode structure has a pointer to a inode table entry (e.g., block
63). The inode table entry, however, does not contain the inode information from the remote file.
Instead, the inode table entry contains a surrogate inode. This surrogate inode stands for, or represents,
the remote inode.

In the server node, some data structures are constructed to allow the server to record state information
about how remote nodes are using its files. More specifically, each server has a "dummy vfs” (e.g.,
block 71) to provide a vfs to hold files open by remote clients. A server has only one dummy vis, and all
files open by all remote clients reside in this vfs. The dummy vfs is not a part of the server's file tree. For
each file which is open by a remote node, there is a vnode (e.g., block 74) in the server's dummy vfs.
Each file which is open by a remote node has an inode table entry in the server's inode table (e.g., block
85). This inode table entry is the same as that which exists because a local process at the server has a file
~ open. For example, block 84, which is in the table because of a remote open, has the same structure as
block 88, which is in the table because of an operation at the server.

When a client and server communicate about a server file, they need a way to identify the file. This is
done with a file handle. When a client request causes the server to reply with a designation of a
particular file (e.g., a remote lookup request), the file is identified by a file handle. When a client request
catries a designation of a particular file (c.g., 2 remote open request), the file is identified by a file
handle. The file handle contains the following fields: device number, inode number, and inode
generation number.

. The need for a file handle is illustrated by the following scenario. Suppose a client makes a request of a

- server and gets a file handle in reply. The client stores and remembers the file handle. Some activity at
the server causes the file to be deleted and the inode slot reused for another file. The client makes a

http://patft.uspto.gov/netacgi/nph-Parser?Sect|=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

I Tt e

R S

United States Patent: 5,202,971 Page 21 of 43

request of the server using the stored file handle. The server receives the file handle and performs the
operation on the new file. This would be an unacceptable operation.

This flaw is prevented by use of the inode generation nurber. The inode generation number is stored on
disk as a field in the inode. When the server deletes a file, it increments the inode generation number. If
a request arrives at a server, the file handle is broken apart, the device number and inode number are
used to locate the inode, and then the file handie inode generation number is compared to the inode's
inode generation number. If they are different, then the request is rejected.

When a client wants to open a file which resides on a remote server, it uses a network transport

. mechanism to establish a connection with the server. Subsequent transactions regarding this file (e.g.,

read, write, etc.) flow on this connection. Each node contains a node table. A node uses entries in its
node table (e.g., block 70) to record information about existing connections to remote nodes.

There are a limited number of operations that one node in the network can request another node to
perform on its behalf. These operations are called dfs.sub.-- ops. When a node makes a request of
another node, the following operations occur: First, the requesting node sends a message which specifies
which dfs.sub.-- operation is being requested and carries the parameters appropriate to that request.

" Next, the receiving node receives the request and performs the specified operation. Finally, the receiving

node sends a message which carries the reply parameters appropriate for the dfs.sub.-- operation.

There is a close correlation between the vi.sub.-- ops that are issned within a local node to a file system
and the dfs.sub.-- ops that are issued over the network. A typical operation on a remote file is as follows:
First, a local kernel issues a vn.sub.-- op, not knowing whether the file being operated on is remote or
Tocal. Second, since the file resides in a remote node, the file system implementation code sends the
corresponding dfs.sub.-- op to the node which holds the file. Note that if the file had been a local file,
the operation would have been performed, the return parameters would have been returned, and the task
would have been complete. Third, the node which holds the file receives the dfs.sub.-- operation request
and requests ifs local file system to perform the corresponding vn.sub.-- operation. The return
parameters from this va.sub.-- op are used to construct the return parameters for the dfs.sub.-- op.
Fourth, the requesting node receives the dfs.sub.-- op reply from the server node and uses the dfs.sub.--
op return parameters to construct the return parameters to the original vn.sub.-- operation request.

The operation will be illustrated by describing the scenarios of mounting a remote directory over a local
directory and following a path to a file. In the first scenario, suppose that an application process in a
client node issues a "mount" system call to mount a server node's directory "/u/gorp" over the local
client directory "/etc/foo". The following scenario explains how this request is accomplished. This
“scenario refers to FIG. 10, which represents the initial conditions, and to FIG. 11, which represents the
final condition, with the following assumptions: The vfs represented by block 51 is the root virtual file
system of the server's file tree, and all the server directories and files involved are on the same device.

" The following entries exist in the indicated directories:

Server Node

DIRECTORY

INODE NUMBER NAME INODE NUMBER
2 llu“ 15

i5 “goxrp" 92

92 wfile2" 67

Client Node
DIRECTORY

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1 &u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 22 of 43

INODE NUMBER NAME INODE NUMBER
2 tete" 83
83 *foo" 785

The code which implements the mount system calls lookuppn to follow the path to the directory which

is to be mounted over--"/etc/foo". At the completion of this operation, the root vfs (block 51) contains a

* vnode for "/etc/foo" (block 53) which has a pointer to the root vfs (block 51) and a pointer to an inode
table entry (block 61) for inode 75. Since the directory being mounted resides in a remote node, a
dfs.sub.-- mount request is issued to the server node, passing the path "/u/gorp" as the path to the object
to be mounted. Upon receiving the dfs.sub.-- mount request, the server node calls lookuppn to follow the
path to the directory which is to be mounted--"/u/gorp". At the completion of this lookup operation, the
server's root vis (block 71) contains a vnode for "/u/gorp” which has a pointer to the root vfs and pointer
to an inode table entry for inode 92. The server uses the information in the inode (device 0, inode 92) to

* construct a file handle for the file "/u/gorp". The server returns this file handle in the reply to the
dfs.sub.-- mount request and then releases the vnode and inode. Finally, the client receives the file
‘handle in the reply to the dfs.sub.-- mount request and performs the operations necessary to create the
new virtual file system as follows:

a) Create a new vfs (block 54).

" b) Create a root vnode for this vfs (block 55) with a pointer back to its parent vfs (block 54) and a
pointer to the root inode of the vis (block 62). Since the root inode of this vfs is a remote directory, the
inode pointed to from the root vnode is a surrogate inode. This surrogate inode contains the file handle
returned by the server in response to the client's dfs.sub.-- mount request.

¢) Install a "mounted over" pointer in the covered vnode (block 53) in the root vfs (block 51).
d) Install in the new vfs (block 54) a pointer to the vnode upon which it is mounted (block 53).

_Suppose now that after executing the remote mount described above (mount server /w/gorp over

client /etc/foo) a client process issues a system call to operate on the file "/etc/foo/file2". The block

numbers in the following scenario refer to FIG. 11, which represents initial conditions, and FIG. 12,

which represents the system state after the open operation. First, the code which implements the system
" call calls lookuppn to follow the path. Lookuppn starts at the root vnode (block 52) of the root virtual
file system (block 51) and calls vn.sub.-- lookup to look up the name "u" in the directory file represented
by this vnode. Vn.sub.-- lookup finds in the directory that the name "u" is associated with inode 15.
Vn.sub.-- lookup constructs a vnode and inode in the root virtual file system for inode 15 and returns to
Tookuppn a pointer to this vnode. Lookuppn calls vn.sub.-- lookup again, this time to look up the name
"foo" in the directory identified by inode 15. Vn.sub.-- lookup reads the indicated directory and
discovers that the name "foo" is associated with inode 75 in block 61. There already exists in the root vfs
(block 51) a vnode (block 53) for this inode (block 61), so vn.sub.-- lookup returns a pointer to this
vnode. Lookuppn discovers that the vnode is mounted over (the "mounted over" pointer in block 53
points to block 54). Lookuppn thus follows the "mounted over" pointer to the next vfs (block 54) and
follows its root vnode pointer to the root vnode (block 55) of the virtual file system. Lookuppn now calls
vn.sub.-- lookup for the next element ("file2") of the path giving vn.sub.-- lookup a pointer to block 55
and the name "file2". The directory to be searched resides in a remote node and is identified by the file
handle stored in the client surrogate inode (block 62). Vn.sub.-- lookup issues a dfs.sub.-- lookup to the
server which holds the file, sending the file handle which identifies the directory and the name (“file2")

 http://patft.uspto.gov/netacgi/nph-Parser?Scct] =PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

- United States Patent: 5,202,971 Page 23 0f 43

which is to be looked up. When the server receives the dfs.sub.— lookup, it uses the file handle to
identify the directory to be read and issues a vn.sub.-- lookup to search for the name "file2" in this
directory. Vn.sub.-- lookup reads the directory and discovers that the inode number associated with the
name "file2" is 67. Vn.sub.-- lookup constructs a vnode and inode in the dummy virtual file system for
inode 67 and returns to lookuppn a pointer to this vnode. Dfs.sub.-- lookup uses the information in data
structures returned by vn.sub.-- lockup to construct a file handle for the file identified by inode 67. It
returns this file handle to the client, as the reply to the dfs.sub.-- lookup request, and releases the vnode
and inode. In the client, a vnode (block 58) and surrogate inode (block 63) are created for the found file.
Since "file2" is the last piece of the path, lookuppn returns to its caller a pointer to the found vnode

~ (block 58). The code which implements the system call now performs the requested operation on the
file.

In the distributed services system in which the invention is implemented as shown in FIG. 7, a local
cache 12A, 12B and 12C exists at every node A, B and C. If file 5 permanently resides at node A on
disk 2A, use of the cache 12A by local processes 13A executing at the server node A is the same as that
in a stand alone system as discussed above. However, remote processes 13B and 13C executing at nodes
B and C, respectively, access file 5 through a two step caching scheme using a server cache and a client
cache as shown in FIG. 3. The server node gets blocks of file 5 from disk 2A and stores it in the server
cache 12A. Client node B goes out over the network 3 and gets blocks of file 5 from the server cache
12A. Client node B stores the blocks of file § as it existed in the server cache 12A into the client cache
12B. When the user address space 14B of client node B seeks data from any block of file 5, the client
cache 12B is accessed instead of going across the network 3 for each access. Using the client cache 12B
to access a remote file 5 can significantly improve the performance since it can save network traffic and
overhead.

The system and method of this invention manages the use of the client cache 12B and server cache 12A
in a distributed environment to achieve high performance while preserving the file access semantics at
the application program level. This allows existing programs which run on a standalone system to run on
a distributed system without any modification. The file access semantics preserves a file's integrity as it
is being opened by different processes that issue read and write system calls to access and modify the
file. The file access semantics require that only one I/O operation is allowed on any byte range at a time,
* and once an I/O operation starts, it cannot be pre-empted by any other I/0 operation to the same byte
range of the file.

An example of this is given by referring to FIG. 13. If process 131 issues a write system call to a byte
range N1-N2 in file 5, the write system call can only be executed when the entire byte range N1-N2 is
available for access by process 131, and no read operation involving the byte range N1-N2 is being
executed. During the execution of the write system call, all other operations involving the byte range
N1-N2 in file 5 are suspended until the write is completed. The write is not completed until the bytes are
written to the local cache 12A. When a write request is complete, the written data in the cache 12A is
visible to any subsequent read operation by any of the other processes 131 to 13N.

Another requirement of file access semantics is that when a file byte range such as N1-N2, which can be
~ arecord or a set of related records accessed by the same 1/Q operation, is visible to a read process, the
file byte range N1-N2 must always have a consistent set of data reflecting the last update to this range.
This range is never available for access while a write operation is being executed. In this way, the next
read issued by a process will read the data just written and not the old outdated data.

In a distributed networking environment of this invention as shown in FIG. 7, the execution of read and

. write system calls from different application programs 4A and 4B and processes 131 to 13N and 231 to

23N are synchronized such that the file access semantics as previously discussed are preserved. The

http://fpatft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 24 of 43

system and method of this invention guarantees synchronization by utilizing various cache
synchronization (sync) modes. For a specific file 5, the 1/0 calls are synchronized by either the client B
or the server A depending on the location of the processes 131 to 13N or 231 to 23N which have the file
5 open for access, and the sync mode. ‘ ‘

The three synchronization modes are shown in FIG. 14 and are described with reference to FIG. 7. The
first mode 104 is referred to as ASYNC's.sub.-- mode, or asynchronous mode. The file 5 operates in this
mode 104 if file 5 is open for read/write access by processes 13C executing at only one client remote
node C, as shown in block 107 of FIG. 14. In this mode 104, all of the control is in the client node C.
Both the server cache 12A and client cache 12C are used for these read/write operations. A read or write k&
operation requires access to the server cache 12A only if it cannot be satisfied from the client cache 12C.

Modified blocks at the client 12C are written to the server 12A by the periodic sync operation, when the

file 5 is closed by all processes 13C in the client node C, or when more room is needed in the client

cache for other data. Additionally, modified blocks are written to the server when the file changes from

ASYNC s.sub.-- mode to FULLSYNC s.sub.-- ode.

A second mode 105 is READONLY s.sub.-- mode. The READONLY s.sub.-- mode 105 is used for files
5 that are open for read only access from processes 13C in only one node C, or from processes 13B and E
13C in more than one node B and C as shown in block 108 in FIG. 14. In this mode 105, the server :
cache 12A and the client caches 12B and/or 12C are used. The read request is issued for a block or more
at a timne. Every other read request from the same client, either B or C, to the specific block does not go
1o the server 12. Instead, it is read from the respective client cache, either B or C. In other words, a read
operation does not require access to the server 12A if it can be satisfied from the client cache 12C or
-12B. In summary, the file 5 operates in mode 105 if the file 5 is open for read only access by any of the
processes 13A, 13B or 13C in any of the nodes A, B or C.

A third mode 106 is FULLSYNC s.sub.-- mode. The FULLSYNC s.sub.-- mode 106 is used for files 5

open in more than one node A, B and at least one node has the file 5 open for write access. In the

FULLSYNC s.sub.-- mode 106, the client cache 12C or 12B is bypassed, and only the server cache 12A
_is used. All read and write operations are executed at the server 12A.

- In a distributed environment 1 as shown in FIG. 7, most files 5 will more frequently be open for read

. only by processes 13A, 13B and 13C at several nodes A, B and C in the READONLY s.sub.-- mode 105
~shown in FIG. 14 or open for update at only one node in the ASYNC s.sub.-- mode 104. It will be less
frequent that there will be an open for read and write access by processes executing at more than one

‘node in the FULLSYNC s.sub.-- mode 106. In both the READONLY s.sub.-- mode 42 and the ASYNC

.s.sub.-- mode 104, the use of a client cache 12B, shown in FIG. 13, significantly reduces the remote
read/write response time of accessing file 5 and improves overall system performance.

As shown in FIG. 15, in the FULLSYNC s.sub.-- mode, the client cache is not used. The client node B
accesses the file 5 from the server A over the network 3 for each read and write operation. Although the
read/write response time increases in this mode, the file access semantics are preserved since a client
‘does not retain a file 5 in local cache that has not been updated along with the corresponding file
residing at the server.

e e

Utilizing the three modes to manage the use of the client cache optimizes overall system performance by
combining both an overall average increase in read/write response speed with file integrity, Using a
client cache in some situations decreases the read/write response time; while not using a client cache in
other situations preserves the file system semantics.

A file's sync mode is not only dependent on which nodes have the file open and whether the file is open

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 25 0of 43

for read or write, but also on whether the device where the file resides is open in raw access mode. Raw
access for a device means that a block of data LBN1 shown in FIG. 8 within a device 2A is accessed. In
this way, the reads and writes of the device 2A read and write to a block LBN1 of device 2A. It is not
relevant to which file the block belongs. The device 2A can be opened for raw access from a process
131 to 13N at the server node A. It can not be opened for raw access from a remote node B or C.

In FIG. 13, the cache 12A is managed as blocks LBN1 of device 2A, similar to a standalone system as
described above with reférence to FIG. 2. The server A looks at the server cache 12A as a logical block
LBN1 within a device 2A. The client B has no knowledge of where the file 5 resides on the device 2A.
All the client B knows is that it accesses a file 5 on block number N1 on device 2A. The client cache
12B handles the data as logical blocks N1 of file 5. In the server cache 12A, the data is handled as
logical blocks LBN1 of devices 2A. In handling the data this way, the server can guarantee that if data is
written to the device as a raw device, and if there is another read of a block of the file that happens to be
the same block that was written to the device, then the read would see the newly written data. This
preserves the file system semantics.

If the file is being accessed in a client node B, and the file is in ASYNC or READONLY mode, as
shown in FIG. 13, the client operating system 11B does not convert the file descriptor and byte range
within the file in the system call READ (file descriptor, N1) 16 to the device number and the logical
block number in the device. The client does convert the file descriptor and byte range to a file handle,
node identifier, and logical block number within the file. In the client cache 12B, there are blocks 17 that
are designated by file handle, node identifier, and logical block number within the file. When a read 16
is issued from a client application 4B, the request for the read goes to the operating system 11B with the
file descriptor and the byte range within the file. The operating system then looks in the client cache
12B. If the file handle, node identifier, and logical block number within the file is there, the cache 12B is
read; on the other hand, if it is not there, the read is sent to the server. The server then takes the file
‘handle and the logical block number within the file and converts it to a device number and logical block
in the device. This conversion is necessary since the server cache 12A is managed by device number and
block number within the device as it is in a standalone system. Afier the read is sent to the server, it is
handled the same as if the read was coming from its own application in a standalone system as described

- with reference to FIG. 2.

A closed file does not have a synchronization mode. However, once a file is first opened by a process,
the file's sync mode is initialized according to the following as illustrated in FIG. 16. The sync mode for
a file is initialized to ASYNC 104 if the device there the file resides is closed 112; i.e., it is not open as a
special device and the file is open for write access at one remote node 113. The sync mode for a file is
READONLY 103 if the device where the file resides is closed, and the file is open for read only access
in one or more nodes 114, or both the device and the file are open for read only access 115. The sync
mode for a file is initialized to FULLSYNC 106 if the device where the file resides is open as a block

- special device for read/write access 116, or the file is open in more than one node and at least one of the
opens is for writing. A block special device means that there is a raw access to the device.

Once a file is initialized to a mode, if the conditions change, the file mode may change. Transitions from
one mode to another, as shown by lines 118 to 123 in FIG. 16, may occur under the following
conditions. If a file is presently in ASYNC mode 104, and the number of nodes where the file is open
becomes two or more, 124, then the sync mode changes to FULLSYNC 106 as shown via line 119.
Also, if there is an open of the block special device D where the file resides, 125, the sync mode will
change from ASYNC 104 to FULLSYNC 106. In a close operation for the file, if the close operation is
not the last close of the file, and the file is still open for write, there is no mode change. However, if the
close operation is the last close of the file for write access such that all the remaining opens are for read
access, 83, then the new mode becomes READONLY 105 as shown via line 121. If the close operation

. http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

L mpm

United States Patent: 5,202,971 Page 26 0of 43

is the last close of the file, then there is no sync mode.

If a file is presently in READONLY s.sub.-- mode 105 and there is a file open operation, there will not
be a mode change if the open is for read. However, if the open is for write, then the new sync mode is
ASYNC 104 if all the opens are in one client node, 127, as shown via line 120. Otherwise, the sync
mode is FULLSYNC. Furthermore, if the device where the file resides is open for read/write access,
130, the new sync mode for the file is FULLSYNC mode 106. For a close operation, if the close is the
last close of the file, there is no sync mode for the file. If the file is still open at one or more nodes after
a close operation, there is no change to the sync mode.

If a file is presently in FULLSYNC mode 106 and there is another open for the file, or the device where

the file resides is opened, there is no sync mode change. If after a close operation of the file, there

remains an open for read/write access at the remote node, and the block special device where the file

resides is not open, the sync mode is changed to ASYNC s.sub.-- mode 104, as shown by block 141 via
" line 118. The sync mode is changed from FULLSYNC 106 to READONLY 105 if the block special

device where the file resides is not open, and the file is open for read only access at one or more nodes

as shown by block 142 on line 122, or if the block special device where the file resides is open for read
" only access and the file is open for read only access as shown in block 143 on line 122.

All open and close operations for files and devices are resolved at the server node. The server
determines the sync mode of an open file when executing any operation that may change the mode. The
server also performs the change of the synchronization modes. As the server gets new opens or closes
for the file, a change in synchronization modes for the file may be triggered. If the required sync mode is
not the current one, the server sends a "change sync mode" remote procedure call to all the clients with
the file open. After a file is opened for the first time, the client that opened the file is informed of the
mode of the file. If the mode is either ASYNC or READONLY, the client can start using the client
cache for reads, and also for writes if the mode is ASYNC, as shown in FIG. 13. The client does not
have to read or write over the communications link to the server. If the mode is FULLSYNC as shown
in FIG. 15, the client cache is not used, and the client must send the read or write over the
communications link 3 to the server.

The server A, in FIG. 15, always sets the mode 151 of the file 5. The mode of the file is the same at
every node that has the file open. The server A also knows which nodes have the file open, and whether
the opens are for reads or writes. The server A does not have to know which processes 131 to 13N, 231
to 23N within a node have a file open. The server keeps all the above information in a file access

_ structure list 150, as shown in FIG. 15. Each element of the file access structure list 150 contains a node
which has the file open 152, the number of opens for read 153 in the node, and the number of opens for
write 154 in the node.

In the UNIX operating system, processes can lock byte ranges within files so that other processes do not
have access to these ranges. Support for such locking has varied from one version of the UNIX
" operating system to another; however, in most implementations, locks apply to a byte range of a file. A

- lock over the entire extent of a file locks the file and is sometimes called a file lock. By convention, a

request to lock a range of zero bytes in length indicates that all bytes from the beginning of the range to
the end of the file are to be locked. This allows a process to lock a file before appending additional bytes
to the file while maintaining control over all of the new bytes. A lock over an arbitrary byte range is
sometimes called a record lock, but within this document all locks on files and records (byte ranges) will
be simply referred to as locks.

In the ATX operating system, lockf(2) and fcntl(2) provide support for both read and write locks. Write
locks are exclusive locks: if a range of file is write locked, no other lock of either kind can exist on that

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&SSect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 27 0f 43

range. Read locks are shared locks: any number of overlapping read locks can apply to a segment of a
file. Notice that an existing read lock does not block other read locks, but it does block other write locks;
and an existing write lock blocks all other locks on an overlapping range.

Files, in the ATX operating system, are either in enforced locking mode or advisory locking mode. The
locking mode of a file is controlled by changing the file's permission codes with the chmod system call.
Locks on a file in enforced locking mode are called enforced locks; locks on a file in advisory mode are
called advisory locks. An advisory lock does not provide absolute protection for a file or record because
it does not prevent a process from reading or writing the locked file or record. Advisory locks only

. - affect the results of calls to lockf(2) or fentl(2), and so, must be used by processes that are cooperating,
. by using lock{(2) or fentl(2) to query the status of locks on the shared files that they are accessing. The

advantage of advisory locks is that they do not have to be interrogated by the kernel during ordinary
reading or writing operations. Enforced locks will probably be used less often. An enforced lock, like an
advisory lock, affects subsequent calls to lockf(2) and fcntl(2); but in addition, each read(2), write(2),
open(2), creat(2), fclear(2), firuncate(2), and shmat(2) insures that no read or write locked portion of the
file is being changed and that no write locked portion of the file is being accessed.

Three different commands of the fentl(2) system call are related to locking:

F.sub.-- GETLK Find the first existing lock that would prevent the lock described by fentl(2)'s argument

from being granted to the caller.

F.sub.-- SETLK Grant the lock described by fentl(2)'s argument to the caller. If the lock cannot be
granted because an existing lock interferes with the request, return the description of this existing lock.

F.sub.-- SETLKW Grant the lock described by fentl(2)'s argument to the caller. If the lock cannot be
granted because an existing lock interferes with the request, check for deadlock and if no deadlock will
be caused, cause the caller to wait. Each time an interfering lock is cleared, the kernel again attempts to
establish the requested lock by searching for any interfering locks. A process could wait forever.
Although deadlocks that involve only file locks on a single node are detected, deadlocks due to file
locks on multiple nodes can occur. Also, a process might never deadlock, but it could fail to obtain the

‘lock for an indefinite period because each time an interfering lock was cleared, another interfering lock

could already be set.

For each of these commands, a pointer to a structure, the flock structure describing a lock, is provided as
an argument in the fentl(2) call. The flock structure has the following form:

struct flock {
short 1l.sub.-- type;
short 1l.sub.-- whence;
long 1l.sub.-- start;
long 1l.sub.-- len;
unsigned long

1l.sub.-- sysig;

short 1.sub.-- pid;

The fields of the flock structure as shown in FIG. 18 have the following meanings:

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

- United States Patent: 5,202,971 Page 28 of 43

1.sub.-- type 200 is used to indicate whether the lock is a read or a write lock,

1.sub.-- whence 205 is 0 if the byte range for this lock starts at a position relative to the beginuning of the
file, 1 if the range starts at a position relative to the current position, and 2 if the range starts at a position

relative to the end of the file,
{

1.sub.-- start 201 is the offset, relative to the location specified by 1.sub.-- whence, of the beginning of
~ the range to be locked,

1.sub.-- len 202 is the size of the range to be locked,

1.sub.-- pid 204 is the process id of the lock's owner, returned by fentl in response to the F.sub.--
GETLK command,

1.sub.-- sysid 203 is the node id of the node where the lock’s owner resides.

Locks are associated with open files, and it is natural to place lock information with the other

~ information about an open file, in the file's inode structure. In the AIX operating system this is
impractical, the inode structure has a fixed size and cannot contain the variable amount of data that
could be associated with the locks on a file. Instead, the lock information is stored so that it is reached
from the inode structure 210, FIG. 19, and not contained within it. The data associated with file locks is
kept in a linked list pointed to by a field 220 of the inode structure 210. This linked list 221, 222, 223 is
a list of entries in a table called the lock table 215. Each entry of the lock table has the following form:

struct filock {
struct flock set;
union {
int wakeflg;
struct {
unsigned long sysid;
short pid;
} blk;
} stat;
struct filock *prev;
struct filock *next;

}

The filock structures 221, 222, 223 are chained together into separate lists, one for each file currently
having any locks set. The head of the list is pointed to by a member of the file's inode structure 220. One
additional list of filock structures is maintained by the ATX operating system. This list is the sleep list
230, 231, 232, FIG. 20, and is pointed to by the sleeplcks 229. The sleep list has one entry for each
process cutrently trying to establish a lock but prevented from doing so (and hence asleep) because of a
preexisting, interfering lock. When used as elements of a linked list 221, 222, 223 of locks on a file,
members of the filock structure have the following meanings:

set 300 1s a flock structure, as shown in FIG. 18,
containing a description of the locked region

http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971

and the process id and node id of the process

owning the lock,

stat.wakeflg 304 is set when some process 1s asleep,
waiting for the lock corresponding to this

entry to be released,

stat.blk.sysid and stat.blk.pid are not used,

prev 302 and next 303 are pointers to the previous and
next elements in the (doubly linked) list.

Page 29 of 43

When used as elements of the sleep list 230, 231, 232, the members of the filock structure FIG. 21 have

the following meanings:

set 300 is a flock structure, as shown in FIG. 18,
containing a description of the region that the
sleeping process wants to lock along with the
sleeping process's process id and node id,
stat.wakeflg 304 is not used,

stat.blk.sysid 304 is the node id of the process
owning the lock that blocked the request
described by the set mewber,

stat.blk.pid 301 is the process id of the process
owning the lock that blocked the request
described by the set member,

prev 302 and next 303 are pointers to the’
previous and next elements in the (doubly

linked) 1list.

Although there are two different system calls that can be used to perform locking in the AIX operating

" system, both are implemented by calling a routine named reclock. This routine operates as follows:

[reclockl]
INPUTS:
.inode pointer, pointer to inode for file to
be locked,

file peinter, pointer to file structure for
file to be locked the file
structure contains the current
offset and open mode of the file,

request, a pointer to an flock structure

' containing a description of region
to be locked or unlocked,

OUTPUT:

returns 0 if lock request is granted,

otherwise returns error indication.

PROCEDURE :

/* put request into a standard form */

convert range (l.sub.-~ whence, l.sub.-- start, and l.sub.-- len)

in request to form where l.sub.-- start is relative
to beginning of file;

http://patft.uspto.gov/metacgi/mph-Parser?Sect1=PTO2& Sect2=HITOFF &p=1&u=/netaht...

Rt

12/20/2005

United States Patent: 5,202,971 _ Page 30 of 43

/* get lock list */
lock list is pointed to by member of inode
structure;
/* attempt request */
if request is to unlock
scan lock list for locks owned by process
that called reclock;
unlock the portiomns of any such locks that
intersect the request's range;
wakeup any processes that were sleeping on
a locked range that has had portions : i
unlocked;
return 0 /* success */
/* otherwise, request is to set a lock */
/* test for interfering locks on the file */
while there is an interfering lock
/* check for deadlock */
‘if request causes a deadlock
return error;
if there is no room in lock table
/*¥ i.e. can't put caller to sleep
*)
/
return error;
/* now put caller to sleep;

*
/* an entry of the loék table is
W
/* chained onto the s{eep list;
+*
/* the sleep list has/one entry for
*
/* each process that és asleep and
*
/* waiting for a lock/range to be
*
/* unlocked; the lock/table entry on
*®
/* the sleep list idegtifies both
*
/* the sleeping proceés and the
*
/* process that owns ihe lock that ‘
* A
/* the sleeper is waiéing for. %
*

add entry to sleep list;
/* now we are almost ready to put

*
/* the running procesg to sleep; .
* i
/* first however, reléase inode if §
®
/% it is locked; this/could happen
*
/* if this code is being executed
*®
/* during a read or wéite of a file
* R
/* in enforced—lockin% mode ;
* i

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 31 of 43

if inode is locked
release inode;

/* finally ready so */
sleep, catch interrupts;
if interrupted from sleep
return error;

else /* normal awakening;

*/

/* interfexing lock is gone;
*/

/* no longer sleeping so
*/

remove entry from sleep list;

if inode was previously locked
relock inode;

/* now loop back and scan the entire

*/

/* list again, locks could have
*/

/* changed while we were sleeping
*/

}

/* now, no interfering locks are present
*/

add the new lock to the file's lock list;

/* note that some entries may be merged

*/
if reguest could be added to lock list
return 0; /* success
*/
else
: /* an error, perhaps there is no more
*/
/* room in the lock table
*/

return error;

' In a distributed environment, processes at more than one node can have a single file open at the same

* time. Each time a lock is added or removed, a file's entire lock list may have to be scanned and updated.

A straightforward design of such a system would keep the lock list and sleep list at the file's server: each
time a lock is applied, requests are sent to the server (unless a process local to the server is applying the
lock) to perform the necessary actions on the lock list and possibly sleeping process list. A system based
on this straightforward design has the disadvantage of unnecessary network traffic and delays when the
only process having a file open are all running at a single non-server node.

Most often, files in an AIX operating system are opened by a single process; if the process is running at
a client (non-server) node, the straightforward design described above would introduce the undesirable
costs of communicating with a remote server in this common situation each time a lock was changed or
tested. Sometimes, a file in an AIX operating system is opén by many different processes at the same
time, all of which could be located at different nodes in a distributed environment. Any design for file
and record locking in an AIX operating system should avoid the costs of the straightforward design in
the simple more common cases and work properly, even if not as efficiently, in the less common more
complex cases. The invention described in this application accomplishes these conflicting goals.

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 32 0f 43

One solution to the problem might be to keep copies of the lock list and sleep list at all nodes where it
could be useful. The problem with this approach is that the lists don't stay consistent with each other as
changes are being made unless one list is denoted the master, in which case all changes must be
communicated with the master anyway and no advantage over the straightforward design are realized, or
changes to each list are carefully negotiated with other nodes having copies of the lists, producing
additional undesirable overhead in network traffic and delays each time a lock is modified.

The invention described in this application keeps only one copy of the lock list for each file. The lock
list information is kept at the server, step 404 of FIG. 22A, when there are several processes located at
different nodes having the file open, steps 406, 402, 403, 404, and 405 of FIG. 22A, and the information
is kept at the non-server node, step 413 of FIG. 224, in the frequent case of all processes with the file
open running at a single node steps 406, 411, 412, 413, and 414 of FIG. 22A. The problems of multiple
copy consistency are avoided, and the inefficiencies of requiring network messages for each lock
operation in the common case where all opens are at one node are also avoided.

There are two important implications of this architecture. First, processes may have to use remote
procedure calls (RPC)s to set or test locks. These RPCs will run on the file's server. Second, when the
synch mode of a file changes, the file's lock list may have to be moved from the client to the server,
steps 502, 504, 505, and 506 of FIG. 22B, or vice-versa, steps 502, 504, 507, and 508 of FIG. 22B. The
entries of an inode's lock table correspond to locks over segments of the inode's file. To represent a lock,
a lock list entry must contain information identifying the range of bytes locked, the type of lock (read or
write), the owner of the lock.

In standalone UNIX operating system a process that tries to establish a lock may have to wait for an
existing lock to clear first. Before waiting (going to sleep) the process must check the sleep list to insure
that no deadlock will occur if it does wait. A waiting process has its proc table use the W.sub.-- CHAN
field of the proc table to point to the lock table entry that it is waiting on.

In a distributed system, waiting is not as easy. There are two ways to wait on a blocking lock: 1) directly
on a local lock list entry and 2) indirectly on a server lock list entry. Direct waiting is identical to the
standalone waiting described above. It is used anytime that a process must wait for a lock that occurs
locally in a lock table. It is important to remember that a lock list for a file resides in only one node. If
the calling process is not in the same node then the lock list is in the server. A process that attempts to

- lock a region of a file that has its lock list located in a remote node (server) waits on the lock indirectly.
This indirect waiting is done by an RPC that invokes a transaction program in the server and waits on

_ the lock. In a standalone UNIX operating system, a process never enters the SLEEP state if a lock can be
granted or if waiting could create a deadlock. In a distributed system, a process performing a lock
‘request that does not reside in the same node as the lock table always enters the SLEEP state, at least
briefly. It must do so while it is waiting for the RPC to return. In order to avoid unnecessary network
communication, a process that is waiting for the reply from a dfs.sub.-- flock RPC will not know if it is
waiting because the RPC transaction program is in turn waiting for a blocking lock or if it is waiting
because the transaction program has not finished running in the server where no blocking lock was
found.

When a lock is first applied to a file that has no other locks, an entry is made in the server lock table if
the file is open in FULLSYNCH mode or READONLY mode, step 403 of FIG. 22A; an entry is made
in the client lock table if the file is open in ASYNCH mode, step 412 of FIG. 22A. Additional entries are
made in the same table and chained together to form a file lock list, as long as no open, close, or chmod
system calls change the file synchronization mode. (Note that chmod can change the file sync mode by
placing a file in enforced-locking mode, steps 500 and 501 of FIG. 22B. A file in enforced-locking

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2& Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

B - o

United States Patent: 5,202,971 Page 33 0of 43

mode is always treated as if it is in FULLSYNCH mode, regardless of the number of processes having
the file open.) When a file's synch mode changes tested in steps 502 and 504 of FIG. 22B, due to an
open for example, steps 500 and 501 of FIG. 22B, the lock list and sleeping processes are moved from
one node to another, steps 505, 506, 507, and 508 of FIG. 22B.

Files in enforced-locking mode have FULLSYNCH synchronization mode, and like other
FULLSYNCH files, the lock lists for enforced-locking mode files are kept at the server, step 404 of FIG.
22B.

Complications that must be addressed by the invention include the problems of when is the lock list
information moved between nodes, how is the lock list information moved between nodes, and how are
the processes sleeping while waiting for locks managed. Although the data structures used in ATX(TM)
to support the file and record locking in a distributed environment are the same as those described above
for standalone operation, the procedures used to add and remove locks are different in a distributed
system. The system calls lockf and fcntl on a client node, (the test at step 401 of FIG. 22A is used to
determine this), that is a node in a distributed environment that does not contain the file to be locked, are
implemented with calls to the raix.sub.-- flock. The routine raix.sub.-- flock works as follows:

[raix.sub.-- flock]

INPUTS:

vnode pointer, pointer to vnode for file to
be locked,

file pointer, pointer to file structure for
file to be locked, the file

structure contains the current

offget and open mode of the file,

request, a pointer to an flock structure
containing a description of region

to be locked or unlocked,

OUTPUT :

returns 0 if lock request is granted,
otherwise returns error indication.

PROCEDURE:

/* put request into standard form */

convert range (l.sub.-- whence, l.sub.-- start, and
l.sub.-- len} in request to form where

l.sub.-- gtart is relative to beginning of

file;

/* keep trying until exror or done */
~while{ TRUE)
‘if file is in ASYNCH mode (step 406 of FIG. 223A)
{
'/* do local processing */
./* lock the file's surrogate inode,
*/
/* waiting until we can. File's
*/
./* surrogate inode is pointed to by a
*/
/* member of a file's vnode structure
*/
wait until surrogate inode is unlocked,
then lock it;
/* could have slept in the previous
*/

/¥ step, so test synch mode again

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

[

United States Patent: 5,202,971 Page 34 0f 43

*

/
1f file is not in ASYNCH wmode
/* mode has changed so try again

*f
goto retry;
/* Ok, still in ASYNCH mode */
/* step 411 of FIG. 222 %/
if request is to unrlock a region
scan lock list for locks owned by
calling process;
unlock the portions of any locks i
that intersect the unlock
request'’s range;
wakeup any processes that were
sleeping on a locked range
that has had portions;
goto success;

" /* else, request is to set a lock */
/* test for any interfering locks */
while there is an interfering lock
{

/* check for deadlock */ o
if request causes deadlock

/¥ can't grant it */

goto errorexit;
if there is no room in lock table

/* can't put caller to sleep */

goto errorexit;
/*now put caller to sleep;

*

/*an entry of the loék table is
*

/*chained onto the s{eep list;
*

/*the sleep list has/one entry for
*

/*each process that és asleep and
*

/*waiting for a lock/range to be
*

/*unlocked;the lock éable entry on
*

/*the sleep list ideétifies.both

. *

/*the sleeping proceés and the
*

/*process that owns éhe lock that
*

/*the sleeper is waiéing for. :
*

9.

“add entry to sleep list;

/*now we are almost ready to put
*

/*the running procesé to sleep;
*

/*first however, reléase inode if
*

/*it is locked; this/could happen
*/

/*1if this code is being executed

L
3

http://patft.uspto.gov/netacgi/uph-Parser?Sect1=PTO2& Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971

*
. /
/*during a read or write of a file
*
/
/*in enforced-locking mode
*
/
if inode is locked
release inode;
/* finally ready so */
sleep, catch interrupts;
if interrupted from sleep
goto errorexit;
/* normal awakehing */
/* interfering lock is gome
*
/
/* no longer sleeping so
*
/
remove entry from sleep list;
/* has synch mode changed?
*/
if file sync¢ mode is not ASYNCH
goto retry;
if surrogate inode was previously
locked
relock surrogate inode;
: /* now loop back and try again */
}
/* now, no interfering locks exist */
/* step 412 of FIG. 22A */
add new lock to the file's lock list;
/* step 413 of FIG. 22A */
if request could be added to list
goto success;
/* success */
else
goto errorexit;

else /* file is not in ASYNCH mode */
{
request lock at server,
use dfs.sub.-- flock rpc;
/* dfs.sub.-- flock rpc will invoke

*/

/* aix.sub.-- flock at the server to
*/

/* perform the remote locking
*/

if error
goto errorexit;
else if no errors
goto success
/* neither error nor success,
*/
/* lock request happened during
*/
/* a synch mode change so just
*/
/* retry it */
H
retry:
if surrogate was unlocked

Page 35 of 43

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

FRTEON

BX TR

- . e Sl e Careas

United States Patent: 5,202,971

unlock surrogate;

/* now loop back and try again */
}

errorexit:

if surrogate was unlocked
unlock surrogate;

return error;

success:

if surrogate was unlocked
unlock surrogate;

return 0;

Page 36 of 43

- This function, raix.sub.-- flock, is invoked by calls to lockf or fentl for remote files, That is, when a
process at a client node uses lockf or fentl on a file at a server node, raix.sub.-- flock will be executed on
the client (NO branch of test at step 401 of FIG. 22A). If the file is open at the client in ASYNCH file
synchronization mode, raix flock will perform only local operations (YES branch of test at 406 of FIG.
22A); if the file is open at the client in a mode other than ASYNCH (NO branch of test at 406 of FIG.
22A), raix.sub.-- flock will use the dfs.sub.-- flock rpc, causing a kernel process to run in the server,
steps 402, 403, 404, and 405 of FIG. 22A. This kernel process will lock or unlock the specified range at
the server, where, in this case, the file's lock List resides. The dfs.sub.-- flock rpc sent by the client causes
the dfs.sub.— flock function to be run, by a kernel process, at the server. The dfs.sub.-- flock function's

operation can be described as follows:

[dfs.sub.-- flock]

INPUTS:

(received as a part of dfs.sub.-- flock xpc}
file handle, handle for file to be locked,

file structure, file structure for the file to be
locked containing the current offset and open
mode of the file,

request, a structure containing a description of
the the region to be locked or unlocked,

QUTPUT :

(returned as a part of reply to dfs.sub.-- flock rpc)
returns 0 if lock reguest 1s granted,

returns error number if error,

returns EBBUSY if operation failed and should be
retried because of synch mode changes

PROCEDURE:

if there is no vnode corresponding to the file
handle

/* file is no longer open */

send error back in reply;

/* requestor cannot still be awaiting

*/
/* reply, since that would imply that
*/
/* the file was still open
*/
}
perform lock operation using aix.sub.-- flock;
/* aix.sub.-- flock is called indirectly though
*/

hitp://patft.uspto.gov/netacgi/nph-Parser?Sect1=PT02& Sect2=HITOFF &p=1&u=/netaht...

12/20/2005

United States Patent: 5,202,971 Page 37 of 43

/* vn.sub. -- lockf */
if error

send back error in reply;
else EBUSY

send back EBUSY in reply;
else

send back reply with indication of success

with return confirmation requested;

if return confirmation indicates

that no process received reply

/* original requesting process is 7
*/

/* gone, so */

unlock original regquested lock;

}

iygmm e o

The dfs.sub.-- flock function invokes the vn.sub.-- lockf vnode operation to perform locking at the
server in response to the dfs.sub.-- flock RPC request. The vn.sub.-- lockf vnode operation at the server
will map into a call of the aix.sub.- flocl function (the YES branch of test at 401 of FIG. 22A). This
function is similar to the raix.sub.-- flock routine, but has to be concerned with the manipulation of the
file access structure lock. Notice that after attempts to acquire this lock and the lock on the inode,
aix.sub.-- flock has to allow for the possibility of changes in the file's synchronization mode. Sleeping
could have occurred while waiting for these locks. During the sleep periods, additional opens or closes
could have been performed on the file.

. A description of the detailed operation of aix.sub.-- flock follows:

faix.sub.-- flock]

INPUTS:

vnode pointer, pointer to vnode for file to
be locked,

file pointer, pointer to file structure for
file to be locked, the file

structure contains the current N
offset and open mode of the file, i
" reqguest, a pointer to an flock structure kS
containing a description of region :
to be locked or unlocked,

OUTPUT:

returns 0 if lock request is granted,

otherwise returns error indication.

PROCEDURE:
/* put request into a standard forxrm */ B
convert range (l.sub.-- whence, l.sub.-- start, and l.sub.-- len) .
in request to form where 1l.sub.-- start is relative '

to beginning of file;

/* get lock list, step 402 of FIG. 224 */

lock list is pointed to by member of inode

structure, inocde structure is pointed to

by member of the vnode structure; 3
/* get file access lock */ . i
wait for file access lock and lock it; i

http://patft.uspto.gov/netacgi/nph-Parser?Sect 1=PTO2&Sect2=HITOFF&p=1 &u=/netaht... 12/20/2005

B T T R L TP I SV AT DA S e e I

United States Patent: 5,202,971 Page 38 0f 43

/* could have slept, check mode */
if file synchronization mode is ASYNCH

goto ebusy;

/* notice that this cannot happen when
*/

/* there is a file open at the server
=/

. /* attempt request */
if request is to unlock
scan lock list for locks owned by process ..
that called reclock; %
unlock the portions of any such locks that : i
intersect the request's range;
wakeup any processes that were sleeping on
a locked range that has had portions
unlocked;
goto success;
/* otherwise, request is to set a lock */
/* test for interfering locks on the file */
while there is an interfering lock
/* check for deadlock */ i
if request causes a deadlock :
goto errorexit;
if there is no room in lock table
/* i.e. can't put caller to sleep
*
/
goto errorexit;
/* now put caller to sleep;

*

/* an entry of the lock taéle is
*

/* chained onto the sleep/list;
*

/* the sleep list has one/entry for
*

/¥ each process that is aéleep and
*

/* waiting for a lock ranée to be
*

/* unlocked; the lock tab{e entxry omn E
*

/* the sleep list identifges both

: *

/* the sleeping process aéd the
*

/* process that owns the {ock that
*

/* the sleeper is waiting/for.
*/

add entry to sleep list;
/* now we are almost ready to put

TURRTTEL

*

/* the running process to/sleep;
*

/* first however, release/inode if

. *

/* it is locked; this cou{d happen
*

/* if this code is being %xecuted
*

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 39 of 43

/* during a read or write of a file
*
/
/* in enforced-locking mode
*
/
if inode is locked
release inode;
release file access structure lock;
./* finally ready so *f
sleep, catch intexrrupts;
if interrupted from sleep
_goto errorexit;
if synchronization mode is ASYNCH
/* it changed during sleep */
goto ebusy; /* need to retxry */
remove entry from sleep list;
lock file access structure lock;
if inode was previously locked
relock inode;
/* now loop back and scan the entire

*/

/* list again, locks could have
*/

/* changed while we were sleeping
*/

}

/* now, no interfering locks are present
*/

add the new lock to the file's lock list,

step 403 of FIG. 22A;

/* note that some entries may be merged,

step 404. of FIG. 22A */
if request could be added to lock list
goto success; /* success
*/
else
/* an error, perhaps there is no more
*/
/* room in the lock table
*/

goto errorexit;

errorexit:

release file access structure lock;
return error;

ebusy:

release file access structure lock;
return EBUSY;

success:

return 0;

During the period of time that a file synchronization mode change is happening, the structures
describing the file are being updated at both the server and some non-server nodes. Because the updates
involve communication with a remote node, the processor can be preemipted after the updates have
started and before they are finished. To prevent processes from finding partially updated and hence
inconsistent information about a file during the time that the synchronization mode is changing, the AIX
operating system uses file access structure locks. Each opened file has a file access structure lock that

http://patfi.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

T

United States Patent: 5,202,971 Page 40 of 43

can be set to indicate to other processes that the operating system information about the file is possibly
inconsistent,

The procedure aix.sub.— flock, shown above, goes to sleep waiting on an interfering lock under some
conditions. Before doing so it is important that the file access structure lock be released. If aix.sub.—
_flock did not release the file access structure lock before waiting for some locks, a deadlock could occur.

The source code for the file access structure is provided below with some descriptive information to
show the detailed logic:

STRUCT FILE.sub.-- ACCESS

{ 7%

File Access Structure Pointer
*/

" 8TRUCT FILE.sub.-- ACCESS *FA.sub.-- NEXT; ;
/*

File Access Structure Flag
*/

SHORT FA.sub.-- FLAG; /*

File Access Structure Total Users
*/

SHORT FA.sub,~-- COUNT; /*

File Access Structure Read/Only Count
*/

SHORT FA.sub.-- OROCNT; /*

File Access Structure Read/Write Count
*/

SHORT FA.sub.-- ORWCNT; /*

File Access Structure Executing Processes
*/

SHORT FA.sub.-- TXTCNT; /*

File Access Structure Node Structure Ptr.
*/

STRUCT NODE *FA.sub.-- NID; /*

File Access Structure Node ID
*/

INT FA.sub.-- NID; /*

-File Access Structure S.sub.-- INODE Pointer
*/

STRUCT INODE *FA.sub.-- SIP; };

".File Access Structure Lock

The file access structure lock fas.sub.-- lock is used to synchronize the use of the inodes and surrogate
inodes (s.sub.-- inode) for open files in a distributed file system (DFS). The synchronization is
performed to avoid a deadlock situation which can occur if an inode and the s.sub.-- inodes are locked.

In a standalone ATX operating system, execution of system calls that require access to a file F are

serialized by locking the inode for F during the entire execution time of any system call for that file. In
DFS, if file F is open at a remote node C, a s.sub.-- inode is created at node C to represent file F. Thus,
two resources are involved: the inode for the specific file at the server node where the file resides, and

hitp://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

g

B L LR A T PP SO

United States Patent: 5,202,971 Page 41 of 43

the s.sub.-- inode at the client node where the file is opén. To serialize system calls executing at client C,
the s.sub.-- inode for file F is locked during the execution time for each call. If an access to the server is
required to read a block of data not available in the client cache, the inode for file F is also locked.

Locking the inode for file F in the server and the s.sub.-- inode for file F in the client for the entire
execution time of each system call can lead to a deadlock situation if the order in which the two

" resources are acquired is not always carried out in the same order. Typically, the s.sub.-- inode is locked
first and then the server is accessed via a remote procedure call (RPC) and the inode is locked. However,
there are some exceptions to the above order. Under certain conditions, the server may lock the inode
and then send a RPC to the client which requires the locking of the s.sub.-- inode.

A deadlock can occur in any one of the following situations in which two operations are currently
executing O1 and O2:

a) Ol is executing at a client node. O1 locks the s.sub.-- inode and tries to lock the inode in the server
for a read operation.

b) O2 is executing in the server. O2 locks the inode and initiates a RPC to the client node to open a file.
The execution of the RPC request in the client node waits on the s.sub.-- inode to lock it.

Because both operations are executing and require the same two resources and each have acquired one
and are waiting on the other locked resource, a deadlock situation is present. In examining the canse,
note that the deadlock o¢curs during the execution of the RPC from the server to the client. The inode on
the server is locked first and an attempt is made to lock the s.sub.-- inode. This is the reverse of most
cases where the s.sub.-- inode is locked first and then sends a RPC to lock the inode.

To prevent the above problem from occurring, the server could unlock the inode before originating a
RPC to lock the s.sub.-- inode to the client. Unlocking the inode during the execution of the open
operation will solve the above problem; however, it complicates the sync mode change management for
open files since more than one open and/or close operation can occur at the server in parallel. It may also
introduce another problem as shown in FIG. 17. In FIG. 17 file F at 10 is open in ASYNC mode by only
one process in client node C-1 at 20. Two operations are in progress: a close operation from C-1 at 20
and an open operation at 60 for the same file F at label 10 from another client C-2 at label 40. The close
* operation from C-1 at label 20 will lock the s.sub.-- inode (which has a use count of 1) and sends a
"dfs.sub.-- close” RPC at label 50 to the server at label 30. The open operation from C-2 at label 40
sends a "dfs.sub.-- open" RPC at label 70 to the server at label 30. This RPC arrives at the server and
executes before the "dfs.sub.-- close" RPC at label 50 from C-1 at label 20. The s.sub.-- mode for file F
is ASYNC, so the server unlocks the inode and sends a "dfs.sub.-- chng.sub.-- sync mode" RPC at label
80 to C-1 at label 20 requesting that file F at label 10 be changed to FULLSYNC s.sub.— mode. This
.RPC will arrive at C-1 at label 20 and wait for the s.sub.-- inode to be unlocked. Next, the "dfs.sub.--
close" RPC at label 50 arrives at the server. Since the inode for file F at label 10 is not locked at the
server, the close operation executes at the server and a "dfs.sub.-- close.sub.-- ack" RPC at label 90 is
sent to C-1 at label 20. When the "dfs.sub.— close.sub.-- ack" RPC at label 90 arrives at C-1 at label 20,
the use count on the s.sub.-- inode is decremented and since the use count's value is zero, the s.sub.--
inode is released at label 100. This leaves no s.sub.-- inode for the sync mode change to be applied to in
C-1 in label 20. '

A solution to this problem is to have the sync mode change procedure increment the use count of the
s.sub.-- inode before waiting on it. However, this approach raises more management headaches for the
file management system. A better approach is to introduce a new lock, the file access structure lock
(fas.sub.— lock). Use of the fas.sub.-- lock will eliminate the inode from being a critical resource. The

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

AR

United States Patent: 5,202,971 Page 42 of 43

two critical resources will be the s.sub.-- inode in the client node and the fas.sub.-- lock at the server. To
prevent a deadlock, any operation executing at a client node which requires holding the fas.sub.-- lock
should unlock the s.sub.-- inode before a RPC is sent to the server.

Operations that generate a RPC from the server to clients must acquire the fas.sub.-- lock before sending
a RPC. Examples of situations in a UNIX operating system and/or an AIX operating system
environment are:

Remote Procedure Calls (RPC):
* DFS.sub.-- OPEN * DFS.gub.-- CREATE
* DFS.sub.-- CLOSE * DFS.sub.-- GET.sub.-- ATTR
* DFS.sub.-- SET.sub.-- ATTR
* DFS.sub.-- LOOKUP
* DFS.sub.-- CHNG.sub.-- SYNC.sub.-- MODE UNIX System Calls From
Sexrver Processes:

* OPEN * CLOSE
* CREAT * STAT
* FULLSTAT * CHMOD
* EXTIT

The above UNIX operating system and AIX operating system operations correspond to the following
vn.sub.-- ops:

* yn.sub.-- open * vn.sub.-- create
* yn.sub.-- close * ym.sub.-- getattr
* yn.sub.-- setattr * vn.sub.-- lookup

An example of a vn.sub.-- ops execution is discussed below. The operation is executed at a client node
and locks the s.sub.-- inode as usual if any local processing is necessary. If one of the above listed RPCs
is sent to the server, then the s.sub.-- inode is unlocked before the RPC is sent. In the server, the RPC
request will lock the fas.sub.-- lock or wait on it if it is busy, then it will lock the inode for a file F. If it
is a local server operation, the executing process will acquire the fas.sub.-- lock and then lock the inode.
If a DFS.sub.-- CHNG.sub.-- SYNC.sub.-- MODE or a DFS.sub.-- GET.sub.—~ ATTR RPC is sent from
a server to a client, then the inode is unlocked before sending the RPC, Thus, the server can accept read
and write operations after the RPC is sent. When the response messages from all the clients are received,
. the server locks the inode to finish any remaining local processing,. If the operation was initiated at a
" " client node, an acknowledgement is sent to that client. The inode is then unlocked and the fas.sub.-- lock
is released.

The fas.sub.— lock provides the means to synchronize the inode use and avoid deadlock operations. It
minimizes the necessary software overhead that must be devoted to a distributed file system.

While the invention has been described in terms of a preferred embodiment in a specific operating

system environment, those skilled in the art will recognize that the invention can be practiced, with
. modification, in other and different operating systems within the spirit and scope of the appended

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=/netaht... 12/20/2005

United States Patent: 5,202,971 Page 43 of 43

_claims.

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is set
forth in the following claims:

*EE XX

Images

[view Cart]!ndd to Cart]

[Hit List]Erevious][Next][Top]

[_H_D_r_n_e ” uic Hﬁdvanced][PatMumH Help -]

http://patft.uspto.gov/netacgi/mph-Parser?Sect1=PTO2&Sect2=HITOFF &p=1&u=/netaht... 12/20/2005

