493

US006111572A

United States Patent [19] (111 Patent Number: 6,111,572

Blair et al. {451 Date of Patent: Aug. 29, 2000

[54] RUNTIME LOCALE-SENSITIVE 5960406 9/1999 Rasansky et al. wwuwercererrene 70509
SWITCHING OF CALENDARSIN A 6,018,343 1/2000 Wang et al. ..ccoineiecseienne 345/963 X
DISTRIBUTED COMPUTER ENTERPRISE FOREIGN PATENT DOCUMENTS

ENVIRONMENT

[75] Inventors: Steven Cameron Blair; David James
Hetherington, both of Austin, Tex.;
David Bruce Kumhyr, Fuquay-Vanna,
N.C.

[73] Assignee: Imternational Business Machines

Corporation, Armonk, N.Y.

[21] Appl. No.: 09/151,232
[22] Filed: Sep. 10, 1998

[51] Int.CL’ GOGF 3/00
[52] US.Ch .o 345/333; 345/963; 345/329;
345/331; 704/8; 709/203; 709/205

[58] Field of Searchomwmmuunnns 345/333, 335,
345/334, 963, 329, 331, 332, 971; 704/8;

709/203, 219, 205, 201; 705/8, 9

[56] References Cited
U.S. PATENT DOCUMENTS

4,831,552 5/1989 Scully et al.cuirieiveenirecneens 345/329
4,977,520 12/1990 McGaughey, III et al. .
5,323,314 6/1994 Baber et al.
5,855,006 12/1998 Huemoeller et al. -
5,893,073 4/1999 Kasso et al. ...ccirsesensensessnens 705/8

9642062 12/1996 WIPO.
OTHER PUBLICATIONS

Moldover, A.D., IBM Technical Disclosure Bulletin, “Com-
posite Calendar View (Meeting Schedule Aid)”, Jul. 1987,
vol. 30, No. 2, pp, 627-629.

Primary Examiner—Raymond J. Bayerl
Antorney, Agent, or Firm—Jeffrey S. LaBaw; David H.
Judson :

[57] ABSTRACT

A display method operative within a display device of a data
processing system connected in a distributed computing
environment having nodes located across geographically-
dispersed boundaries. The method begins by defining a
plurality of sets of holiday objects each corresponding to a
set of holidays specific to a given locale. A graphical
representation of a calendar, together with a set of holiday
objects, are then displayed. If the user enters a new locale,
the method dynamically switches between sets of holiday
objects according to the new locale entered. The new set of
holiday objects may be displayed on the same calendar, or
on a new calendar.

27 Claims, 10 Drawing Sheets

< March

e) marzo mp

Sun Mon Tue Wed Thu Fri

mABnBEnE
000 &E R
s ffss]l 7 Jlre]] roff]
[z2]lzs [os [5]]
£ B

GIEEE|E

lun mar mer gio ven sab dom

L'
AHoBa0an
Lofleflizflis el |
i3 2 | |
%@Iﬂ.‘

< 1998 (3

QE@i@

1998 o

U.S. Patent Aug. 29, 2000 Sheet 1 of 10 6,111,572

20

N TME SERVER
TN MANAGER
12
MANAGED
MANAGED MANAGED NODE (LARGE)
NODE NODE
16 16 16
[
N ...
00 o0¢ > % = >MR

TN GATEWAY TN GATEWAY TN GATEWAY

TERMINAL TERMINAL
NODES (TNs) NODES (TNs)

U.S. Patent ;\ug. 29, 2000 Sheet 2 of 10 6,111,572

FIG. 2
GATEWAY
r T m—_—_m =1
16 I SERVER |
N 2N e :
I I _/"19
| 93 , IPC
! N AUTHORIZER T !
I I THREADS
RARY - ~
| 951 LOCATOR B 29: 1
| L L8 ks
| aa BOA !
|27 N
e 22
ENDPOINT ENDPOINT
CLIENT CLIENT
LCF ° o © LCF
’ N
24 24
FIG. 24

RUNTINE
24~,| L OMEMON |1 \jopagy

’
24A 2ip

U.S. Patent Aug. 29, 2000 éheet 30f10 6,111,572 |

TME SERVER

TERMINAL NODES (TNs)

26 28

(e 0] [T ol
& March > & marzo o

Sun Mon Tue Wed Thu Fri Saf lun mar mer gio ven sab dom

naaEnEnn g

HEB
[a]=]~

[¢]
2]
o] [l -1[~]

U.S. Patent Aug. 29, 2000 Sheet 4 of 10 6,111,572

['style [Date | Color/Font | Holidays

~Calendar styles
| Gregorian v|
- Options -First day of week ~Weekend days —
@Abbreviated days ® Sunday @ Sunday
O Monday 0 Monday
O Abbreviated months O Tuesday O Tuesday
O Wednesday {0 Wednesday
@Constrain date selection ||oThursdey O Thursday
o Friday 0 Friday
1 Yillo Saturday Saturday

0K W“ Cancel

FIG. 54

U.S. Patent Aug. 29, 2000 Sheet 5 of 10 6,111,572

Calendar Preferences _______]

(‘style [Date | Color/Font | Holidays

- Time zone

[(PST) Pacific Stondard Time V]

-Formal date format

[EEEE, MNMM d.yyyy |

-Formal date format example
Sunday August 21, 1955

- Informaol date format

EEEE, MMMM_d,yyyy Y

- Informal dafe format example
08/21/55

OK Ll Apply §if Cancel

FIG. 5B

U.S. Patent Aug. 29, 2000 Sheet 6 of 10 6,111,572

@Ieudar Preferences '

Style | Date | Color/Font| Holidays

- Font Points
r(')iolog v] [

- Colors
- Foreground
[white v

- Background

[white M|

- Current day

me v

- Selected day -
| white vi

-Weekend days
[ava.awt.Color{r=0,g=255,b=0] v

{ Holiday
liava.awt.Color{r=0,g=255,b=0] v}

ﬂl[Aley “ Cancel
FIG. 5C

U.S. Patent Aug. 29, 2000 Sheet 7 of 10 6,111,572

E Calendar Preferences !

rSiyle Date | Color/Font | Hofidays

~Currently defined holidays

From 04/05/1998 22:00 to 04/04/1998 21:00 Paim Sunday
From 07/04/1898 21:00 o 07/03/1998 21:00 Independence Doy
From 11/26/1998 21:00 fo 11/25/1998 21:00 Thonksgiving
From 11/11/1999 21:00 fo 11/10/1999 21:00 Veterans Day
From 04/01/1999 21:00 fo 03/31/1999 21:00 Passover

From 01/01/1999 21:00 to 12/31/1998 21:00 New Year’s Day
From 11/11/1998 21:00 fo 11/10/1998 21:00 Veterans Doy
From 04/12/1998 21:00 {0 04/11/1998 21:00 Easter Sunday
From 07/04/1999 21:00 o 07/03/1999 21:00 independence Day
From 03/28/1999 21:00 fo 03/27/1999 21:00 Palm Sunday

'ﬁ Delete
410 4}2 44

]
{ 1 T 7 | A ;
o S 0K l] Apply 1|l Cancel

FIG. 5D 38

U.S. Patent ;&ug. 29, 2000 Sheet 8 of 10 6,111,572

rHoliduy Formula
~Calendar style
® Gregorian |
| 47
oHijri (Um Al-qura) 1
O Hebrew
~Holiday ~Options
- Holiday source — - Locale |
A 111 | [Worid Wide vH
4 —i
9 - Start date ————————— || - Sunrise/Sunset
- O Holiday begins of sunset -
514l T 10 s Nl 57
End date - Repetition
% IID] oCalendar regularity
53“/ o Formula TT™-59
o None
0K " Apply fii Cancel ™48
7 A A
40 42 44

[fra=—[0[x] FIG. 6

1 IR O

iz Il 1]
BEOoBEnoanon
Lol i lrelrs [l f[ss [[¢]

FIG. 7

U.S. Patent Aug. 29, 2000 Sheet 9 of 10 6,111,572 |

ll@l
ﬂ 23R |

1 1 L

EEmOaBn
ma@ooon
mnooooo
Lo ol arflz2 [z | 2¢] 5]
) DEooe

/

CREATE FIRST SET
OF HOLIDAY OBJECTS <o 5758

!

CREATE SECOND SET
OF HOLIDAY OBJECTS |62 FIG. 8

y

DISPLAY CALENDAR
USING LOCAL RESOURCES [64

-

i
=
H-‘l{ﬂl

9]

) 4

66
DOES
LOCALE HAVE
AN ASSOCIATED
HOLIDAY FILE
LISTING?

68
/

DISPLAY DEFAULT
HOLIDAY FILE LISTING

RETRIEVE FILE |70
]
DISPLAY HOLIDAYS |~ 79
74
YES $
< FIG. 9

6,111,572

Sheet 10 of 10

Aug. 29, 2000

U.S. Patent

6,111,572

1

RUNTIME LOCALE-SENSITIVE
SWITCHING OF CALENDARS IN A
DISTRIBUTED COMPUTER ENTERPRISE
ENVIRONMENT

BACKGROUND OF THE INVENTION

This application includes matter protected by copyright.
All rights are reserved.

1. Technical Field

The present invention is directed to managing a large
distributed computer enterprise environment and, in
particular, to graphic calendar display methods for use in
gisplaying locale-sensitive information such as local holi-

ays.

2. Description of the Related Art

Large organizations mow desire to place all of their
computing resources on a computer network. To this end, it
is known to connect computers in a large, geographically-
dispersed network environment and to manage such an
environment in a distributed manner. One such management
framework consists of a server that manages a number of
nodes, each of which has a local object database that stores
object data specific to the local node. Each managed node
typically includes a management framework, comprising a
number of management routines, that is capable of a rela-
tively large number (e.g., hundreds) of simultaneous net-
work connections to remote machines. The framework man-
ages hundreds of megabytes of local storage and can spawn
many dozens of simultaneous processes to handle method
requests from local or remote users.

Managed nodes are often located across national bound-
aries. Thus, a typical managed network of the type described
above may include offices located in numerous countries.
Multinational companies that operate such networks must
deal with scheduling administrative events in these different
locales. These locales, however, often have different holi-
days that impact such scheduling. As an example, assume
the enterprise desires to upgrade each endpoint computer in
a managed region with a new version of a large computer
program. Obviously, it would not be desirable to distribute
this new load during the day when computer users are
otherwise occupied and working. A better solution would be
to distribute the new program files on a day in which the
system usage is relatively low, e.g., a holiday, such as U.S.
Independence Day, July 4th. Independence Day, of course,
is not a holiday outside the United States. Thus, while
distribution on July 4th would make sense for those endpoint
computers operating within the United States, such distri-
bution would be undesirable in the Company’s other offices
(e.g., the United Kingdom, Egypt, Italy and the like).

Thus, to the extent a large managed region crosses coun-
try boundaries, it is necessary to deal with the problem of
scheduling management tasks while taking into consider-
ation local holidays or other events that may impact such
scheduling.

The present invention addresses this problem.

BRIEF SUMMARY OF THE INVENTION

It is a primary object of this invention to implement a
display calendar usable world-wide, presented in a culturally
correct format.

It is an object of the present invention to implement
locale-sensitive holiday scheduling in a large distributed
computer enterprise environment.

It is another object of this invention to provide a display
mechanism that enables programs running in multiple
locales to deal with different holidays that are significant in
the locale.

10

15

20

25

30

40

45

50

55

60

65

2

Yet another object of this invention to provide a user
configurable, calendar preferences display mechanism for

_generating locale-sensitive display calendars in a distributed

computer enterprise environment.

Still another object of this invention is to provide a
user-configurable, locale-independent holiday listing.

It is another primary object of this invention to display a
graphical representation of a monthly calendar and to sup-
port multiple calendar styles.

It is a further specific object of the invention to implement
a locale-sensitive holiday display mechanism for use in a
managed computer enterprise environment spanning the
boundaries of culturally-diverse countries.

A more specific object of the present invention is to
provide an object-oriented “class” construct that encom-
passes given information about a locale-specific holiday.
The holiday class enables information about specific holi-
days to be encapsulated and thus easily manipulated by
graphic display routines executing on a given computer.

It is a more particular object of the present invention to
display a graphical representation of a calendar that adapts
its display to the conventions of the locale in which it is
being run or the stored preferences of a system administra-
tor. Thus, for example, in an English language, United States
locale, weeks start on Sunday and the text for the day of the
week and month names are displayed in English. If the
locale and language were switched to Italian language and
locale, the first day of the week would be Lundi (Monday)
and all text displays would be in Italian. This behavior
preferably requires no intervention on the part of the pro-
gramimer or user.]

Each system that supports the invention preferably is
provided with a separate resource list of holidays for each
supported locale. In unsupported locales, preferably a
default resource is used since the locale-specific resource is
not provided. The default resource contains no holiday
specifiers, so the calendar will not have any holidays dis-
played. This prevents inappropriate display of holidays that
are not observed in the locale. Other holidays may be added
by the user to create their own locale-specific resource.

In accordance with the invention, a display method is
operative within a display device of a data processing
system connected in a distributed computing environment
having nodes located across geographically-dispersed
boundaries. The method begins by defining at least first and
second sets of holiday objects, each set of holiday objects
corresponding to a set of holidays specific to a respective
first or second locale. In a runtime operation, a representa-
tion of a first calendar is then displayed with the first set of
holiday objects presented therein. Upon a given action (e.g.,
entry of a new locale having the second set of holidays), the
method then automatically displays a representation of a
second calendar with the second set of holiday objects
presented therein. The first and second calendars may be
displayed individually, side-by side (i.e. concurrently), or
the first and second calendars may be the same. In the latter
case, the first and second set of holiday objects may be
displayed in different ways (e.g., in different colors, font
styles or the like) so that the user may readily identify the
differences between the two sets.

Generalizing, the inventive method defines a plurality of
sets of holiday objects, each set of holiday objects corre-
sponding to a set of holidays specific to a respective locale
in the distributed computing environment. By selecting
among the plurality of sets depending on a locale specified
by the user, a locale-specific calendar is then displayed. The

6,111,572

3

system then dynamically switches the set of holiday objects
that are presented within the calendar (or perhaps generates
a new calendar) as the user selects a new locale. In this
manner, a user may readily view locale-specific schedules of
other users in the distributed enterprise (e.g., in different
countries) that might impact a given administrative, man-
agement or other planning decision.

Preferably, a given holiday object is defined according to
an object-oriented class construct to facilitate implementa-
tion of the inventive holiday display calendar using local
object-oriented resources (e.g., Java-based classes).

The foregoing has outlined some of the more pertinent
features and objects of the present invention. These features
and objects should be construed to be merely illustrative of
some of the more prominent features and applications of the
invention. Many other beneficial results can be attained by
applying the disclosed invention in a different manner or
modifying the invention as will be described. Accordingly,
other objects and a fuller understanding of the invention may
be had by referring to the following Detailed Description of
the preferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings in which:

FIG. 1 illustrates a simplified diagram showing a large
distributed computing enterprise environment in which the
present invention is implemented;

FIG. 2 is a block diagram of a preferred system manage-
ment framework illustrating how the framework function-
ality is distributed across the gateway and its endpoints
within a managed region;

FIG. 2Ais a block diagram of the elements that comprise
the LCF client component of the system management frame-
work;

FIG. 3 illustrates a smaller “workgroup” implementation
of the enterprise in which the server and gateway functions
are supported on the same machine;

FIG. 4A and FIG. 4B are graphical representations of a
monthly calendar illustrated how the calendar adapts its
display to the conventions of the locale in which it is being
run or the stored preferences of an administrator;

FIGS. SA-5D illustrate a tabbed panel dialog for selection
of calendar preferences;

FIG. 6 illustrates an Add Holiday Panel Dialog panel that
enables an administrator to define a holiday, specify the
locales in which it is observed, and the calendar to which it
is mapped;

FIG. 7 illustrates a representative U.S.-based monthly
calendar displaying a locale-specific holiday in accordance
with the present invention;

FIG. 8 illustrates a representative Israel-based monthly
calendar displaying a locale-specific holiday spanning sev-
eral days in accordance with the present invention;

FIG. 9 is a flowchart illustrating runtime switching of
locale-sensitive calendars according to the present inven-
tion; and

FIG. 10 is a representative data processing system having
a display device on which locale-specific calendars are
displayed according to the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, the invention is preferably
implemented in a large distributed computer environment 10

10

20

25

30

45

50

55

60

65

4

comprising up to thousands of “nodes.” The nodes will
typically be geographically dispersed and the overall envi-
ronment is “managed” in a distributed manner. Preferably,
the managed environment (ME) is logically broken down
into a series of loosely-connected managed regions (MR)
12, each with its own management server 14 for managing
local resources with the MR. The network typically will
include other servers (not shown) for carrying out other
distributed network functions. These include name segvers,
security servers, file servers, thread servers, time servers and
the like. Multiple servers 14 coordinate activities across the
enterprise and permit remote management and operation.
Each server 14 serves a number of gateway machines 16,
each of which in turn support a plurality of endpoints 18.
The server 14 coordinates all activity within the MR using
a terminal node manager 20.

Referring now to FIG. 2, each gateway machioe 16 runs
a server component 22 of a system management framework.
The server component 22 is a multi-threaded runtime pro-
cess that comprises several components: an object request
broker or “ORB” 21, an authorization service 23, object
location service 25 aud basic object adaptor or “BOA” 27.
Server component 22 also includes an object library 29.
Preferably, the ORB 21 runs continuously, separate from the
operating system, and it communicates with both server and
client processes through separate stubs and skeletons via an
interprocess communication (IPC) facility 19. In particular,
a secure remote procedure call (RPC) is used to invoke
operations on remote objects. Gateway machine 16 also
includes an operating system 15 and a thread mechanism 17.

The systemm management framework includes a client
component 24 supported on each of the endpoint machines
18. The client component 24 is a low cost, low maintenance
application suite that is preferably “dataless” in the sense
that system management data is not cached or stored there
in a persistent manner. Implementation of the management
framework in this “client-server” manner has significant
advantages over the prior art, and it facilitates the connec-
tivity of personal computers into the managed environment.
Using an object-oriented approach, the system management
framework facilitates execution of system management
tasks required to manage the resources in the MR. Such
tasks are quite varied and include, without limitation, file
and data distribution, network usage monitoring, user
management, printer or other resource configuration
management, and the like.

In the large enterprise such as illustrated in FIG. 1,
preferably there is one server per MR with some number of
gateways. For a workgroup-size installation (e.g., a local
area network) such as illustrated in FIG. 3, a single server-
class machine may be used as the server and gateway, and
the client machines would run a low maintenance frame-
work. References herein to a distinct server and one or more
gateway(s) should thus not be taken by way of limitation as
these elements may be combined into a single platform. For
intermediate size installations the MR grows breadth-wise,
with additional gateways then being used to balance the load
of the endpoints.

The server is the top-level authority over all gateway and
endpoints. The server maintains an endpoint list, which
keeps track of every endpoint in a managed region. This kst
preferably contains all information necessary to uniquely
identify and manage endpoints including, without limitation,
such information as name, location, and machine type. The
server also maintains the mapping between endpoint and
gateway, and this mapping is preferably dynamic.

As noted above, there are one or more gateways per
managed region. Preferably, a gateway is a fully-managed

6,111,572

5

node that has been configured to operate as a gateway.

Initially, a gateway “knows” nothing about endpoints. As

endpoints login, the gateway builds an endpoint list for its
. endpoints. The gateway’s duties preferably include: listen-

ing for endpoint login requests, listening for endpoint update

requests, and (its main task) acting as a gateway for method

invocations on endpoints.

As also discussed above, the endpoint is a machine
running the system mapagement framework client
component, which is referred to herein as a2 management
agent. The management agent has two main parts as illus-
trated in FIG. 2A: the daemon 242 and an application
runtime library 24b. The daemon 24z is responsible for
endpoint login and for spawning application endpoint
executables. Once an executable is spawned, the dacmon
244 has no further interaction with it. Each executable is
linked with the application runtime library 24b, which
handles all further communication with the gateway.

Preferably, the server and each of the gateways is a
computer or “machine.” For example, each computer may
be 2 RISC System/6000® (a reduced instruction set or
so-called RISC-based workstation) running the AIX
(Advanced Interactive Executive) operating system, prefer-
ably Version 3.2.5 or greater. Suitable alternative machines
include: an IBM-compatible PC x86 or higher running
Novell UnixWare 2.0, an AT&T 3000 series running AT&T
UNIX SVR4 MP-RAS Release 2.02 or greater, Data General
AViiON series running DG/UX, an HP9000/700 and 800
series running HP/UX 9.00 through HP/UX 9.05. Motorola
88K series running SVR4 version R40V4.2, a Sun SPARC
series running Solaris 2.3 or 2.4, or a2 Sun SPARC series
running SunOS 4.1.2 or 4.1.3. Of course, other machines
and/or operating systems may be used as well for the
gateway and server machines.

Each endpoint is also a computer. In one preferred
embodiment of the invention, most of the endpoints are
personal computers (e.g., desktop machines or laptops) In
this architecture, the endpoints need not be high powered or
complex machines or workstations. One or more of the
endpoints may be a notebook computer, e.g., the IBM
ThinkPad® machine, or some other Intel x86 or Pentium®-
based computer running Windows ’95 or greater operating
system. IBM® or IBM-compatible machines running under
the OS/2® operating system may also be implemented as the
endpoints. An endpoint computer preferably includes a Web
browser such as Netscape Navigator or Microsoft Internet
Explorer. An endpoint computer thus may be connected to a
gateway via the Internet, an intranet or some other computer
network.

Preferably, the client-class framework running on each
endpoint is a low-maintenance, low-cost framework that is
ready to do management tasks but consumes few machine
resources (because it is normally in an idle state). Each
endpoint may be “dataless” in the sense that system man-
agement data is not stored therein before or after a particular
system management task is implemented or carried out.

The present invention implements the display of a holiday
calendar for use on computers operative in the large, dis-
tributed enterprise environment. As companies extend the
geographic reach of the computer networks, many comput-
ers in the managed region are located in countries having
diverse cultures and customs. As a result, it is desirable to
display calendar information (e.g., to system administrators
and to users of endpoint computers) in a manner that
" accommodates these diverse cultures. By way of example,
and with reference to FIGS. 4A and 4B, it is an object of the

5

15

35

45

50

55

60

65

6

present invention to provide a graphical representation of a
calendar that adapts its display to the conventions of the
locale in which it is being run or the stored preferences of a
system administrator. Thus, for example, in an English
language, United States locale, weeks start on Sunday and
the text for the day of the week and month names are
displayed in English. A representative display calendar for
the U.S. locale is illustrated as reference numeral 26 in FIG.
4A. If the locale and language were switched to Italian
language and locale, the first day of the week would be lundi
(Monday) and all text displays would be in Italian. A
representative display calendar 28 for the Italian locale is
shown in FIG. 4B. As will be described in more detail below,
the locale-sensitive display of calendar information is also
used to display local holidays, namely, holidays that have
significance within the cultural constraints and customs of
the locale in which the computer is located. As will be seen,
this behavior preferably requires no intervention on the part
of the programmer or user; thus, as the calendar is displayed,
appropriate holiday information is retrieved and displayed in
a locale-sensitive manner. A representative U.S. holiday
calendar (for the month of May) is shown in FIG. 7, with
Memorial Day highlighted and called out using flyover text.

To this end, a given computer system operative in the
managed environment is provided with a separate resource
list of holidays for each supported locale. In unsupported
locales, preferably a default resource is used since the
locale-specific resource is not provided. The default
resource contains no holiday specifiers, so the calendar will
not have any holidays displayed. This prevents inappropriate
display of holidays that are not observed in the locale. This
default operation thus preserves cultural integrity of the
display scheme. As will be seen, other holidays may be
added by the user to create the user’s own locale-specific
resource.

To this end, and in accordance with the invention, a
graphical user interface (GUT) tabbed display panel is pro-
vided for selection of calendar preferences. FIG. 5A is the
Style Panel 32 that gathers all user configurable elements
relating to calendar styles. FIG. 5B is the Date Panel 34 that
allows the administrator to select preferences of time zone,
formal and informal date format. FIG. 5C is the Color/Font
Panel 36 that allows the administrator to select preferences
of font, font point size and color. FIG. 5D is the Holiday
Panel 38, which allows display and creating of holidays on
a locale-specific basis. The Holiday Panel 38, as will be
seen, allows the user to add, edit and delete holidays. Each
panel includes all user configurable settings. Three buttons
40, 42 and 44 (OK, Apply and Cancel) are used to apply or
abandon the changes made. Preferably, all calendar prefer-
ences are stored on a per administrator basis, although this
is not a requirement.

With reference now to FIG. 5D, the Holiday Panel 38
preferably displays a scrollable list 46 of currently defined
holidays, each of which is listed with starting time and
ending time. The list 46 is empty in a locale that does not
support the holiday display functionality (or in a locale in
which no holidays are otherwise to be displayed). By
clicking on the Add button 41, the user may add a new
holiday. This action brings up an Add Holiday Dialog screen
48 such as illustrated in FIG. 6 and described below.
Referring back to FIG. 5D, by clicking the Edit button 43,
the user may edit a holiday. This action is enabled when a
holiday in the currently defined holidays list 46 is selected.
By clicking the Delete button 45, the user may remove a
holiday. This action is also enabled when a holiday in the
currently defined holidays list 46 is selected.

6,111,572

7

Referring now to FIG. 6, the Add Holidey Dialog panel 48
is now described. This panel enables the administrator to
define the holiday, to specify the locales it is observed in,
and to specify the calendar to which it is mapped. Thus, as
illustrated in the figure, the particular Calendar styles (in this
case, Gregorian, Hijri (Um Al-Qura) and Hebrew) may be
selected in the upper dialog box 47. The name of the Holiday
is entered as text in Holiday field 49, and the Start date and
End Dates are entered in the respective fields 51 and 53. The
Locale is selected using the Locale field 55, with “World
Wide” being the default selection. A Suarise/Sunset selec-
tion may be made at field 57, and a Repetition field 59 is
used (optionally) to provide additional formatting (e.g.,
calendar the holiday regularly, calendar according to a given
Formula, or none). If the Formula selection is made, an
additional dialog (not shown) is brought up to enable the
user to define specific rules for calculating the repetition of
the holiday. Normally, a holiday would be set up for annual
renewal.

The present invention thus provides a convenient mecha-
nism to track and display the difference between working
days and non-working days in enterprise management.
According to another feature of the present invention, holi-
day tracking/display is facilitated using an object-oriented
construct, e.g., a “class”, to define a holiday. The holiday is
a class that preferably encapsulates the following informa-
tion:

String sHolidayName // name of the holiday

Vector vLocales 1/ vector of a locale the
holiday is effective in; if
null, it is worldwide

int iCalGroup // calendar style group

long [StartDate // starting date and time
UTC

long IEndDate // ending date and time UTC

boolean fSunset {/ the holiday follows a
sunset rule (
holidays)

boolean fRepeating /] regularly repeating

boolean fOptional /] optional holiday

UFCFormula formulaHoliday ~ // the formula for the
holiday

The capture of the beginning and ending dates of the holiday
allows the definition to describe events that span more than
one day. As noted above, this function is provided using the
Holiday Dialog Panel 48 aund, in particular, the Start and
Stop fields 51 and 53. Also, because observance of some
religious holidays begin with sundown and ends with
suarise, the present invention enables the administrator to
also capture the initiation of a given holiday with respect to
a portion of the day. Thus, for example, Jewish holidays
normally begin on sundown. A display calendar running on
a managed computer in Israel would thus illustrate a typical
holiday as beginning at sunset on a given day and then
ending on a subsequent day. Thus, two or more days would
then be illustrated and displayed as a holiday as shown in
FIG. 8. The capture of start and stop time using the object-
oriented holiday class construct thus is quite advantageous.
Where such information is not specified, however, the
default definition of a holiday preferably is one day begin-
ning at 00:00 GMT and ending at the beginning of the
following day.

Using the GUI calendar preferences and the class, par-
ticular holidays may be defined to be effective on a world-
wide basis or only in certain locales. The vector vLocales
defined in the holiday class preferably contains the list of

5

1

=]

15

25

30

35

45

55

60

65

8
locales supported in the distributed computer enterprise
environment. Thus, for example, if the managed region
includes computers operative in the United States, the
United Kingdom and Italy, the vector would include appro-
priate data identifying those countries. As has been dis-
cussed above and illusirated in FIG. 7, holidays are denoted
on the visible calendar (e.g., running on an endpoint
computer) by a (user configurable) color change from nor-
mal days. The calendar will also display the holiday name in
the textbox 71 as previously described.

As previously described, a default file is loaded as a
resource if the calendar is loaded in a locale that is unsup-
poried. This file preferably contains no holidays so the
calendar will not have any holidays displayed. This default
operation prevents inappropriate displaying of holidays that
are not observed in the locale. For example, U.S. Indepen-
dence Day (July 4th) is not displayed if the calendar is
invoked on a non-U.S. endpoint computer, say, in an Egyp-
tian locale. Using the calendar preferences dialog (FIGS. SD
and 6), however, the users in other locales cau create their
own list of holidays.

The present invention is conveniently implemented in
Java. As is known in the art, Java is an object-oriented,
multi-threaded, portable, platform-independent, secure pro-
gramming environment used to develop, test and maintain
software programs. These programs include full-featured
interactive, standalone applications, as well as smaller
programs, known as applets, that executed by a Java virtual
machine (JVM). The basic calendar functionality (called
UFCalendar for convenience only) preferably is imple-
mented with the currently available Sun Java Development
Kit @DK 1.1.6) and the Java Foundation Classes (JFC
1.0.2). Familiarity with those resources is presumed in the
following discussion.

In particular, the calendar functionality described herein is
based upon the Java Calendar abstract base class and uses
the Java Gregorian calendar class. Other calendars (e.g., the
Hijri and Hebrew calendars) are preferably implemented
with subclasses provided by the former Taligent Inc. until
such time as Sun provides the classes to support those
calendar systems with the JDK.

According to the invention, a Java class file (e.g.,
CalendarHolidays__en_US.java) contains the basic list of
legal holidays for the United States of America. Other
holidays may be added by individual administrators using
the Add Holiday Dialog as previously described. Supported
locales add their own list of holidays during translation.
Other holidays may be added by administrators later.

The present invention provides numerous advantages. It
provides a calendar usable world-wide, presented in a cul-
turally correct format. It is fully internalized and enabled for
all locales and langnages supported by the distributed com-
puter enterprise. It provides a user-configurable, locale inde-
pendent holiday listing. It provides locale-sensitive classes
for date and time formatting. The invention further provides
a means for selecting single and multiple dates from a
graphical representation of a monthly calendar. Multiple
calendar styles are supported, and the calendar supports
runtime switching between all calendar styles. As noted
above, the calendar adapts its display to the conventions of
the locale in which it is being run or the stored preferences
of the administrator.

FIG. 9 illustrates a flowchart showing the runtime switch-
ing functionality of the present invention. The routine begins
at step 60 with the creation of a first set of holiday objects
that define a set of holidays for a first locale of the distributed
computing environment. Continuing with the above

6,111,572

9

example, the first locale is assumed to be a location within
the United States, and thus the first set of holiday objects
include conventional U.S. holidays; e.g., New Year’s Day,
Martin Luther King Day, Memorial Day, Independence Day,
and the like. Step 60 involves defining an object for each
holiday using the class structure described above. The
resuiting file is saved. At step 62, the administrator creates
a second set of holiday objects for a second locale in which
the distributed computer environment is managed. Thus, for
example, this locale is assumed to be Italy, with the appro-
priate local holidays then defined in the manner previously
described. These local holidays (defined by the class objects)
are then stored. At step 64, a display method is invoked to
display the calendar. At step 66, a test is run to determine
whether the locale in which the calendar is to be displayed
has an associated holiday file listing. If the outcome of the
test at step 66 is negative, the routine branches to step 68 to
display a defanlt holiday file listing, i.e. a listing with no
holidays included. This step ensures that non-local holidays
are not displayed by mistake or in a manner that might
otherwise offend local culture or custom. If, however, the
outcome of the test at step 68 indicates that the calendar has
an associated holiday file listing, the routine continues at
step 70 to retrieve the file. The holidays are then selectively
displayed at step 72. By “selectively”, it is meant that a
given holiday is displayed on the calendar if it occurs in the
given time period (e.g., a “month”) being then cumently
displayed. Of course, date/holiday information may be dis-
played in other than monthly cycles. At step 74, a test is run
repeatedly to determine whether the locale has been
changed. If the outcome of the test is negative, the routine
cycles. If, however, the result of the test at step 74 indicates
that the locale has changed, the routine returns to step 66 and
repeats the above-described steps.

The dynamic switching functionality may be imple-
mented as follows. Each application supporting the present
invention may include a Java-specific listener routine that
registers with an appropriate server. The listener routine runs
passively looking for locale-change event and/or language-
change event messages. The routine takes a given action
with respect to the display application depending on the type
of event message reccived. Thus, for example, if a language-
change event is received, that event may cause the repainting
of the calendar with a different language (e.g., English to
French). A locale-change event selectively controls the dis-
play application to alter display formats that are impacted by
the change. Thus, for example, a locale-change may require
a change to the holidays being displayed, the date format, the
time format, and other such locale-specific information.
Given events may be derived from user memu changes or
from other applications.

As an example, assume that a user in Japan is having a
problem and that the help desk is located in the United
States. The help desk operator may then cause the issuance
of a language-change and/or local-change event message
directed at the Japanese user’s desktop. This may be accom-
plished via a command line interface. When that message is
then processed by the user’s listener routine, the user’s
desktop display then is selectively altered to display English
language representations and/or other locale-specific infor-
mation. The use of such locale-specific event messages
enable selective control over the display of holiday infor-
mation in a runtime, dynamic manner. Thus, dynamic
switching between locale-specific calendars is typically
event-driven and under the control of a user or some
application that generates the locale-change message.

The above-described processing provides runtime switch-
ing between selected sets of holiday objects that comprise

10

20

25

30

35

45

50

55

60

65

10

the individual locale-specific calendars. This operation is
highly advantageous to system administrators who may or
may not be located in a specific locale but desire to obtain
scheduling information about how particular users might be
impacted by system-wide management tasks. Thus, for
example, assume a system administrator is planning a2 man-
agement task, such as a software load distribution, through-
out portions of the managed network spanning several
countries. He or she desires to implement that downlogd on
a given date when users in the locale in question are not
actively using the system. By using the runtime locale-
seositive switching function described above, the system
administrator may select between first and second sets of
holiday objects (corresponding to respective holiday sets in
country/locale A and country/locale B). Upon such selection
(e.g., of locale A), the system would then display a calendar
showing the relevant holiday display for each locale. The
calendar displays with local conventions. By entering a new
locale (e.g., locale B) in an interface menu (e.g., 2 command
line interface or GUI), the system would then automatically
display the calendar in the manner that it would be displayed
in locale B. Thus, locale-specific holiday and other naming
information is presented in a highly useful manner. As
illustrated in FIGS. 4A and 4B, the particular calendars
(from locale A and locale B) may be presented side-by-side,
if desired, so that the administrator may identify dates/times
that overlap or might otherwise conflict. Alternatively, the
holiday information may be presented on the same calendar,
perhaps in different colors and/or fonts, so that the particular
locale-specific information (for each locale) may be readily
ascertained. Regardless of which presentation format is used
(namely, individual calendars, side-by-side calendars, a
single calendar with concurrent display of holiday objects
from different locales, or the like), the administrator may
readily adapt the management task to avoid unnecessary
network use and/or interruptions with local activities.

The above-described example is not limited to use by the
system administrator. The runtime switching of calendars
may also be implemented within a given endpoint or other
computer at a given locale. Thus, if a particular user (e.g., in
Italy) wanted to determine whether a co-worker (e.g., in the
United States) would be available for 2 meeting on a given
date, the user could execute a runtime switch to a U.S.-
specific calendar and readily determine the appropriate
holidays (or other dates/times) that apply to his or her U.S.
co-worker.

The inventive holiday calendar is useful to provide sup-
port for all significant calendar systems in use in the business
world today. As is well-known, the Gregorian calendar is the
primary calendar in world-wide business use. It is a solar
calendar with a 365 day year, with leap year rules adjusting
for variations in the Earth’s rotational speed. The Gregorian
calendar is a derivative of the Julian calendar using
expanded leap year mules to compensate for differences
between the solar year and the calendar year length. Accord-
ing to the invention, Gregorian is the default calendar
displayed if no calendar style is specified. The Gregorian
calendar also implements the proper leap year rules to be
year 2000 (Y2K) compliant.

Referring now back to FIG. 7, as noted above, the days of
the week are displayed in the calendar in a locale-specific
context. Thus, the day names preferably are loaded from
Java-supplied resource bundles and are derived from the
current locale setting or the stored administrator preferences
of locale and language. The beginning day of the week for
the set locale is also honored. The days are abbreviated w
here permitted by language and locale and calendar style.

6,111,572

n

As iltustrated in FIG. 5A, the calendar preferences panel
enables the user to select the default calendar style of the
calendar. Selecting different types of calendars alters the
options available as well as the default first days. With
reference to FIG. 5A, the following are the options that
apply to the selected calendar style.

The following options apply to the selected calendar style.

Display eras—Add the era to the year display

Abbreviated days—Show days as abbreviated or in full on
the days of the week controls. This option is disabled if
the calendar style is Hijri, Hebrew or Japanese Era.

Abbreviated months—Show months as abbreviated or in
full on the month control. This option is disabled if the
calendar style is Hijri, Hebrew or Japanese Era.

Display bi-directionally—Allows Hijri or Hebrew calen-
dars lo be displayed in a left to right form,

Constrain date selection—Allows selection of dates prior
to the current date.

Minimum days in the first week—Number of days that
compose a complete first week of the month.

An array of radio buttons is provided to allow the user to
set the first day of the week shown on the calendar. This
element is set by the current locale. The default setting is the
Java default for the current locale.

Referring now to FIG. 5B, the date panel allows the
administrator to select preferences for the display of time
zone, formal and informal date format. The following
options are preferably available:

Time Zone—Select the time zone that you wish to use for
date calculation. Dates are stored as an offset from
GMT.

Formal date format—The display mask that the user
wishes to use for formatting the formal (long) date
display. The format varies by locale.

SHORT is completely numeric, such as 12.13.52 or
3:30pm

MEDIUM is longer, such as Jan 12, 1952

LONG is longer, such as January 12, 1952 or
3:30:32pm

FULL is preity completely specified, such as Tuesday,
April 12, 1952 AD or 3:30:42pm PST.

Formal date format example—An example of the formal
(long) date display.

Informal date format—The display mask that the user
wishes to use for formatting the informal (short) date
display.

Tracking and storing changés to user configurable aspects
of the calendar is preferably done by preserving the alter-
ations in a serialized file. The calendar preference class
(CalendarPrefs.class) encapsulates all of the preferences.

/[Calendar preference properties:

public int ivCalStyle; /fpreferred calendar style
public TimeZone ivCalTZ; /Nocal timezone
public TimeZone ivUTCTZ; JIUTC timezone

public SimpleDateFormat ivFormalDateFormat;//LONG, SHORT,
MEDIUM or LONG

public SimpleDateFormat ivInformalDateFormat;// LONG, SHORT,
MEDIUM or LONG

public int ivFirstDayOfWeek; //ffirst day of the week
public int ivMinFirstDaysInWeelk; /fminimal days - first
week

public Vector ivWeekend; //days of the weekend
public boolean ivEras; //display eras

public boolean ivAbbDays; J/ebbreviated days

10

15

20

30

35

45

50

55

60

65

-continued

public boolean ivAbbMonths; {/abbreviated months
public boolean ivAbbAllowed; //abbreviations
allowed
public boolean ivDisplayBIDE [/display Bi-
directionally
public boolean ivConstrain //date constraining
on
public Poiat ivSetDateLocation; //Set date dialogue
location
public Dimension ivSetDateSize; //Set date dialogue
size
public Point ivAddHolidaylo- //Add holiday
dialogue location cation;
public Dimension ivAddHolidaySize; //Add koliday
dialogue size
public Point ivPrefe Location; //Pref
dialogue location
public Di i ivPrefe Size; 1/Prefa
dialogue size
Preferences for Calendar Styles
//Gregorian calendars

//AL_GREGORIAN && CAL_GREGORIAN_WRAP

/fHijri calendar

JICAL_HDRI_ARABIC &&

CAL_HURI_ARABIC_EN && CAL_HDRI_HINDI
public int ivHijriFirstDayOfWeek; //first day of the
week
public Vector ivHijriWeekend; /fdays of the weekend

/[Hebrew

/ICAL_HEBREW && CAL_HEBREW_EN
public int ivHebrewFimstDayOfWeek; //first day of the
week
public Vector ivHebrewWeekend; [/days of the weekend
/Japanese era

// CAL_JAPANESE_ERA && CAL_JAPANESE_ERA_EN
Component Files

The following components of UFCalendar may be

obtained from a calendar file system:

AddHolidayDialog.java Dialogue to add a holiday to the
serialized holiday list
CalendarPrefs.java Calendar preferences
DatePanel.java Date style panel for preferences
dialogue
DefineHolidayPanel Dislogue to create 2 holiday
FormulaPanel Dialogue for specifying holiday
repetition
HebrewCalendar.java Hebrew calendar class
HijriCalendar.java Hijri calendar class
HolidayPanel.java Holiday panel for preferences dialogue
PrefPanel.java ~ Color panel for preferences dialogue
SetDateDialog java Set the calendar date dialogue
StylePanel.java Style panel for preferences dialogue
UFCalendar.java The main calendar class
UFCalendarButton.java A popup calendar button
UpCalendatField.java Calendar field class
UFCalendarFormula Class definition for holiday formula
UFCalendarHoliday java Calendar holiday class
UFCslendarJapanErajava Jaf Era calendar class
UFCalendarlListener.java Calendar listener class
UFCalendarMultiField java Calendar Multi-field class
UFCalendarPrefs.java Calendar preferences class
UFPopupWindow.java Popup window for UFCalendar button
TCal.java Driver for testing calendar

The following resources of UFCalendar may be obtained
front a resource file system:

6,111,572

13 14
~continued
CalendarHolidays.java Holidays list default (o holidays) public Date getDate()
CalendarHolidays__en_US.java USA holidays list setSelectedDays
CalendarJapanEras.java Japanese eras 5 Set the vector of selected days.
CalendarResources.java Calendar human language data public void getSelectedDays(Vector v)
CalendarSymbols.java Element of calendar to utilize getSelectedDays
LanguageResources.java Language resources. Return the vector of selected days.
public Vector getSelectedDays()
setYear
The following framework dependencies may be obtained 10 Set the year.
from the file system: public void setYear(int i¥Yr)
getYear
Return the currently selected year.
public int getYear()
setMonth
UFResourceLoader Framework resource loaded 15 Set the month.
UFExceptionHandler Exception handler for framework. public void setMonth(int iMt)
IString International strings getMonth
Return the currently selected month
public int getMonth()
Calendar Constructors setMultiSelect
The calendar implements a variety of constructors for 5, Allow multiple sclection of dates.
s . public void setMultiSelect(boolean fMulti)
creation. For complete details on the constructors, reference goToDate
may be made to the Javadoc html file. Go to date.
public void goToDate(Date dt)
setTimeZone

UFCalendar ()

Default parameter less constructor for creating the calendar as
a bean.

UFCalendar (boolean EAddPopupMenu)

Constructs a calendar using the current time in the default
time zone with the default locale. The user must specify a frame for
the calendar and a boolean value for addition of the popup menu.

UFCalendar (int iCalendarType, boolean
fAddPopupMenu)

Constructs a calendar using the default time in the defauit
time zone with the default locale. The user must specify a panel for
the calendar, a calendar style and a boolean value for addition of
the popup menu.

UFCalendar (boolean fAddPopupMenu,
fAddMonthSel, boolean fAdd YearSel)

Constructs a calendar using the default time in the default
time zone with the default locale. The user must specify a panel for
the calendar, a boolean value for addition of the popup menu, a
boolean value for addition or deletion of the month selector and a
boolean value for the addition or deletion of the year selector.

UFCalendar(boolean fAddPopupMenu, Locale foc)

Constructs a calendar using the default time in the default
time zone with the provided locale. The user must specify a panel
for the calendar, a calendar style and a locale of the calendar.

UFCalendsar (boolean fAddPopupMenu, Date pDate)

Constructs a calendar using the provided date. The user must
specify a panel for the calendar, a boolean value for addition of the
popup menu, and a date for the initial calendar date,

UFCalendar (boolean fAddPopupMenu, Locale loc, Date
pDate, TimeZone Tz) #

Constructs a calendar using the provided locale, date, and
TimeZone. The user must specify a panel for the calendar, a locale
value, a date for the initial calendar date and a timezone.

30

35
boolean

Programmable Interface (APIs)

This section outlines the methods that may be program-
matically set in the UFCalendar. These methods are for
programs to invoke at runtime. Detailed usage information
can be obtained from the Javadoc html file for UFCalendar.

60

setDate
Sets the calendar’s date. The calendar will display the month
that contains the passed Gregorian Java date irrespective of the
style of the calendar.
public void setDate(Date dt)
getDate
Return the calendar’s currently selected date.

65

Set the time zone.
public void setTimeZone(TimeZone tzID)
getTimeZone
Set the time zone.
public TimeZone getTimeZone()
setlocale
Set the locale.
public void setLocale(Locale loc)
getLocale
Return the locale.
public Locale getLocale()
setCalendarStyle -
Set the calendar style, with one of the following constants
used.
CAL_GREGORIAN
CAL__GREGORIAN_WRAP

Gregorian calendar (default)
Gregorian calendar, wrapped head to
tail

CAL_JAPANESE_ERA Japanese Era calendar
CAL_JAPANESE_ERA_EN Jap Era calendar in R)
CAL_HDRI_ARABIC Hijri calendar, Arabic numerals
CAL_HDRI_ARABIC_EN Hijri calendar English, Arabic numerals
CAL_HDJRI_HINDI Hijri calendar, Hindi numerals
CAL_HEBREW Hebrew calendar
CAL_HEBREW__EN Hebrew, English transliteration
CAL__CHINESE_LUNAR Chinese Lunar calendar
CAL__CHINESE_TAIWAN Chinese Taiwan Era calendar
CAL_ISO ISO commercial calendar
CAL_JULIAN Julian calendar
CAL_SCALIGER Scaliger calendar
public void setCalendarStyle(int iCS)

getCalendarStyle

Return the calendar style and int constant. See UFCalendar
JavaDoc HTML.
public int getCalendarStyle()
setCalendarGroup
The individual calendar styles are also grouped according to type.
For example a Japanese Era calendar is a Gregorian calendar. The
following constants are used:
LUNAR
GREGORIAN
HURI
HEBREW
JULIAN
ASTRONOMICAL
getFirstDayOfweek
Return the starting day of the week, 0 - 6 (Sunday through
Saturday)
public int getWeekStart()
set FirstDayOfWeek
Set the starting day of the week.
getMinDaysInFirstWeek
Return the minimal number of days in the first week of a month.
public int getMinDaysInFirstweek()

6,111,572

15

~continued

setMinDaysInFirstWeek
Set the minimal number of days in the first week of a month.
public void setMinDaysInFirstweek(int iMinDays)
getWeekend
. Set the days that compose the weekend, 0 - 6 (Sunday through
Saturday).
public vector setWeekendDays()
setWeekEnd
Return the days that compose the weckend, 0 - 6 (Sunday through
Saturday).
public void setWeekendDays(Vector vWEDays)
getAbbreviatedDays
Get abbreviated days of the week text.
public boolean getAbbreviatedDays()
setAbbreviatedDays
Set abbreviated days of the week text if allowed by the
calendar type.
public void setAbbreviatedDays(boolean f)
getAbbreviatedMonths
Return abbreviated month of the week set.
public boolean getAbbreviatedMonths()
setAbbreviatedMonths
Set abbreviated month text if allowed by the calendar type.
public void setAbbreviatedMonths(boolean f)
getConstrainDate
Return constraining date.
public Date getConstrainDate()
setConstrainDate
Set constraining day.

Creating Calendars

Creating a Calendar in a Panel

To display 2 calendar in a panel; invoke the following
constructor, and register a PropertyChangeListener to notify
the application of date selection events.

boolean fAddMenu=true;

UFCalendar UFCal=new UFCalendar(fAddMenu);
Creating a Calendar Date Field

To display a calendar field in a panel; invoke the follow-
ing constructor, and register a PropertyChangeListener to
potify your application of date selection events.

UFCalendarField dateField=new UFCalendarField();

Creating a Multiple Date Selection Calendar

To display a calendar multiple selection field in a panel
invoke the following constructor, and register a Property-
ChangelListener to notify your application of date selection
events. :

UFCalendarMultiField

UFCalendarMultiField();
Translation to Other Languages

The calendar component is designed to be as simple as
possible and to contain all text for translation to a small
number of files.

Items Not Translated

Day and Month Names

The month names and day of the week names are loaded
from Java resources, the calendar does not contain any of
this text. Thus, no translation of these items is necessary, all
languages and locales supported by Java will display correct
weekday and month names without translation.

Japanese Era, Hebrew and Hijri Calendars The weekday
and month names for Japanmese Era, Hebrew and Hijri
calendar are stored in the resource bundle CalendarSym-
bols.java. This file preferably does not require translation as
they are always presented in the original languages.

dateFicld=new

10

15

20

30

35

45

55

60

16

Holidays

Add the holidays that are used in your locale. The format
is date as mm/dd/yyyy and holiday name. The text of the
names for holidays and the dates are stored in a resource
named CalendarHolidays + (language code) +_ +
(country code). Thus holidays for the United States of
America are stored in the file CalendarHolidays_en__
US java. For the Italian languages and locale, the file should
be named CalendarHolidays_it_IT.java. The translator
must create this file. Use CalendarHolidays__en_ US java as
a template for the file.

One of ordinary skill in the art will appreciate that the
inventive holiday calendar is adapted for display on a
display device of a data processing system. One such system
is illustrated in FIG. 10 and includes system unit 112, display
device 114, keyboard 116, mouse 118 and printer 120. The
system unit 112 receives data for processing from imput
devices such as keyboard 116 and mouse 118, or via
networking interfaces (not illustrated). Mouse 118 is pref-
erably used in conjunction with a graphical user interface
(GUI) in which hardware and software system objects,
including data processing system components and applica-
tion programs, are controlled through the selection aund
manipulation of associated graphical objects displayed on
display device 114. To support storage and retrieval of data,
system unit 112 further includes diskette drive 122, hard disk
drive 123, and CD-ROM drive 124, which are connected to
system unit 112 in a well-known manner. Data processing
system may be diskless, otherwise known as a petwork
computer.

One of ordinary skill will appreciate that a “holiday” as
envisioned by the present invention should not be limited to
a holiday in the legal or political sense of the word (e.g., a
U.S. legal holiday such as Independence Day). Generalizing,
a “holiday” should be broadly construed to cover any given
type of event that may be designated by the administrator or
a third party to have local significance in the locale (even
though the event may not have significance in some other
locale in which the managed region is supported). Thus, the
present invention thus may also be used to display locale-
sensitive information besides legal holidays. For example,
given locales may designate certain days of the calendar for
carrying out given management or other operations.

One of the preferred implementations of the invention is
as a set of instructions in a code module resident in the
random access memory of a computer. Until required by the
computer, the set of instructions may be stored in another
computer memory, for example, in a hard disk drive, or in
a removable memory such as an optical disk (for eventnal
use in a CD ROM) or floppy disk (for eventual use in a
floppy disk drive), or even downloaded via the Intemnet.

In addition, although the various methods described are
conveniently implemented in a general purpose computer
selectively activated or reconfigured by software, one of
ordinary skill in the art would also recognize that such
methods may be carried out in hardware, in firmware, or in
more specialized apparatus constructed to perform the
required method steps.

Further, although the invention has been described in
terms of a preferred embodiment in a specific network
environment, those skilled in the art will recognize that the
invention can be practiced, with modification, in other and
different network architectures with the spirit and scope of
the appended claims.

Having thus described our invention, what we claim as
new and desire to secure by letters patent is set forth in the
following claims.

What is claimed is:

1. A display method operative within a display device of
a data processing system connected in a distributed com-
puting environment having nodes located across
geographically-dispersed boundaries, comprising the steps
of:

6,111,572

17

defining at least first and second sets of holiday objects,
each set of holiday objects corresponding to a set of
holidays specific to a respective first or second locale;

selecting between the first and second sets of holiday
objects depending on a locale dynamically specified by
the user; and

displaying a representation of a calendar with the sclected

set of holiday objects presented therein.

2. The display method as described in claim 1 wherein a
holiday object is defined according to an object-oriented
class construct.

3. The display method as described in claim 2 wherein the
holiday object includes information identifying the name of
the holiday.

4. The display method as described in claim 2 wherein the
holiday object includes information identifying the given
locale.

5. The display method as described in claim 2 wherein the
boliday object includes information identifying whether the
holiday begins at a given time.

6. The display method as described in claim 5 wherein the
given time is sunset.

7. The display method as described in claim 2 wherein the
boliday object includes information indicating whether the
holiday repeats on a given temporal basis.

8. The display method as described in claim 2 wherein the %

holiday object includes information identifying a formula by
which the holiday repeats.

9. The display method as described in claim 2 wherein the
holiday object includes information identifying a start date
and time and an end date and time.

10. The display method as described in claim 9 wherein
the start time and date and the end time and date are
synchronized with respect to a given time zone.

11. The display method as described in claim 1 wherein
the calendar displays a given month adapted to display date
conventions of the given locale.

12. A display method operative within a display device of
a data processing system connected in a distributed com-
puting environment having nodes located across
gcfaographically—dispersed boundaries, comprising the steps
of:

defining at least first and second sets of holiday objects,
each set of holiday objects corresponding to a set of
holidays specific to a respective first or second locale;

displaying a representation of a first calendar with the first
set of holiday objects presented therein; and

upon a given request, automatically displaying a repre-

sentation of a second calendar with the second set of
holiday objects presented therein.

13. The display method as described in claim 12 wherein
the first and second calendars are displayed concurrently.

14. The display method as described in claim 12 wherein
the first and second calendars are the same calendar and the
first and second sets of holiday objects are displayed
together.

15. The display method as described in claim 14 wherein
the first and second sets of holiday objects are displayed with
different styles to enable a user to distinguish each respective
set.

16. The display method as described in claim 12 wherein
a holiday object is defined according to an object-oriented
class construct.

17. The display method as described in claim 16 wherein
the representation of each calendar is generated using local
object-oriented display resources.

18. The display method as described in claim 17 wherein
the local object-oriented display resources are Java calendar
classes.

18

19. A display method operative within a display device of

a data processing system connected in a distributed com-

puting environment having nodes located across

geographically-dispersed boundaries, comprising the steps
5 oft
defining a plurality of sets of holiday objects, each set of
holiday objects corresponding to a set of holidays
specific to a respective locale in the distributed com-
puting environment;

selecting among the plurality of sets of holiday objects

depending on a locale specified by a user;

displaying a calendar with the sclected set of holiday

abjects presenting therein; and

dynamically switching to a new set of holiday objects

according to a new locale entered by a user.

20. The display method as described in claim 19 wherein
the step of dynamically switching to a new set of holiday
objects displays a new set of holiday objects on the calendar.

21. The display method as described in claim 19 wherein
20 the step of dynamically switching to 2 new set of holiday
objects displays a new set of holiday objects on a new
calendar.

22. The display method as described in claim 21 wherein
the new calendar is displayed together with the calendar.

23. A computer program product in a computer-readable
media for controlling a data processing system having a
display device, comprising:

means for defining a plurality of scts of holiday objects,

each set of holiday objects corresponding to a set of
holidays specific to a respective locale in the distributed
computing environment;

means for selecting among the plurality of sets of holiday

objects depending on a locale specified by a user;
means for displaying a calendar with the selected set of

holiday objects presenting therein; and .
means for dynamically switching to a new set of holiday

objects according to 2 new locale entered by a user.

24. The computer program product as described in claim
23 wherein the means for defining a set of holiday objects
40 includes graphical user interface display panel means for

displaying a list of locale-specific holidays.
25. The computer program product as described in claim
24 wherein the means for defining a set of holiday objects
further includes a graphical user interface display panel for
45 adding a holiday to the list of locale-specific holidays.

26. A computer program product in a computer-readable
media for controlling a data processing system having a
display device, comprising:

means for defining at least first and second sets of holiday

objects, each set of holiday objects corresponding to a

30

% set of holidays specific to a respective first or second
locale;
means for selecting between the first and second sets of
holiday objects depending on 2 locale dynamically
55 specified by the user; and

means for displaying a representation of a calendar with
the selected set of holiday objects presented therein.
27. A data processing system connected in a distributed
computing environment having nodes located across
¢o Eeographically-dispersed boundaries, comprising:
a Processor;
an operating system;
a display device running a graphical user interface;
means for defining a plurality of sets of holiday objects,
each set of holiday objects corresponding to a set of
holidays specific to a respective locale in the distributed
copmputing environment;

65

6,111,572

19
means for selecting among the plurality of sets of holiday
objects depending on a locale specified by a user;

means for displaying a calendar with the selected set of
holiday objects presenting therein; and

20

meaans for dynamically switching to a new set of holiday
objects according to a new locale entered by a user.

* ok kK F

