490

US006259448B1

a» United States Patent (10) Patent No.: US 6,259,448 B1
McNally et al. @5) Date of Patent: Jul. 10, 2001
(549) RESOURCE MODEL CONFIGURATION AND ' 5,862,325 * 1/1999 Reed et al. ccorecermerererecnmsnenne 7097201
DEPLOYMENT IN A DISTRIBUTED
COMPUTER NETWORK OTHER PUBLICATIONS
Njal Pettit et al., “A Graphical Analysis Method for Piece-
(75) Inventors: gﬂchael McNally; Brian Jay Vetter, wise Linear Systems,” IEEE, p. 1122-1127, 1994.*
oth of Austin, TX (US) Jian Xu et al,, “A Simulated Annealing Method for Mapping
(73) Assignee: International Business Machines Production Syitems onto Multicomputers,” IEEE, p.
Corporation, Armonk, NY (US) 130-136, 1990.
i IBM Technical Disclosure Bulletin, “Graphical Network

Analyzer,” Dec. 1993, vol. 36, No. 12, (pp. 473-480).
IBM Technical Disclosure Bulletin, “Object Model for a
Graphic Network Topology Interface,” Oct. 1995, vol. 38,
No. 10, (pp. 369-370).

IBM Technical Disclosure Bulletin, “Graphical User Inter-_
face for the Distributed Computing Environment,” Jan.

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
US.C. 154(b) by 0 days.

(21) Appl. No.: 09/089,964

(22) Filed: Jun. 3, 1998 1995, vol. 38, No. 1, (pp. 409-410).
IBM Technical Disclosnre Bulletin, “Combining Multiple
(51) Imt. CL7 ..o GOGF 3/00; GOGF 15/177 Layers of Configuration Models into a Single Report,” Mar.
(52) US. Ch o 345/348; 345/329; 345/339; 1094, vol. 37, No. 3 (pp. 557-560).
345/969; 709/201; 705/223 .
(58) Field of Search ..o 345/329,335, * cited by examiner

345/339, 348, 356, 969; 395/200.31, 200.33,

200.35, 200.53, 200.54; 709/201, 203, 205, Pn'rfmry Examir.zer—Raymond J: Bayerl
223, 224 Assistant Examiner—X. L. Bautista

(74) Attorney, Agent, or Firm—Duke W. Yee; Jeffrey S.

(56) References Cited LaBaw
U.S. PATENT DOCUMENTS &) ABSTRACT
5,157,667 10/1992 Carusone, Jr. et al. 371261 Amethod of deploying a “resource model” in 2 distributed

- 395/161 computer network using a computer having graphical user
e 7090223 X interface (GUI). The resource model has a pumber of
- 364/551.01 properties associated therewith including a set of mapping
- 395/800 rules. To deploy the resource model, an icon representing the
gggﬁgg resource model is displayed on the interface, together with
709 223 a set of distribution icons. Each dxstn'buu.on icon, for
.. 395/336 example, represents a set of given machines in the distrib-
... 395/161 uted computer network. The icon representing the resource
... 395/161 model is then associated with a selected one of the distrib-
... 395/683 uted icons, preferably via a drag-and-drop protocol. When
;ggﬁgg the resource model icon is dropped onto the selected distri-
- bution icon, the resource model is deployed in the network
g:gz%ggg - iﬁggg g::gg :11 3 42/9352/32;2 by instantiating its mapping rules at each machine in the set.
5,758,083 * 5/1998 Singh et al.ccooeoierrinneens 709/223
5,764,908 6/1998 Shoji et al.ccconnenmnne. 709/203 X 20 Claims, 6 Drawing Sheets

IS

5,353,401 10/1994 Jizawa et al.ccenns
5,394,522 * 2/1995 Sanchez-Frank et al.
5,414,644 5/1995 Seaman et al.
5,475,851 12/1995 Kodosky et al. ...
5,481,741 1/1996 McKaskle et al. ..
5,495,567 2/1996 Tizawa et al. ...
5,504,921 * 4/1996 Dev et al. ...
5,539,869 7/1996 Spoto et al.

5,555,370 9/1996 Lietal. ...
5,557,731 9/1996 Lietal. ...
5,604,907 2/1997 Conner et al.
5,623,657 4/1997 Conner et al.
5,625,823 4/1997 Debenedictis et al.

*

70~ oy s || I -

-
-
-

RESOURCE -, “DRAG-N-DROP _v==m=d
MODEL b~y | paas

————

790 | HousTON
DISTRIBUTION DEPLOY GUI

U.S. Patent Jul. 10, 2001 Sheet 1 of 6 US 6,259,448 B1

20)
N TME SERVER 14
TN MANAGER
12
¥
MANAGED
MANAGED NODE (LARGE)
NODE
16 16
[
Q o o o
ooo ‘ — >MR
o——— 7T

TN GATEWAY TN GATEWAY

TERMINAL ' TERMINAL
L NODES (TNs) NODES (TNs)

U.S. Patent JuL10,2001 Sheet 2 of 6 US 6,259,448 Bl

FIG. 2
GATEWAY
m———
16~ ! SERVER 'E
i 2N ors |
| ! S
! 23] AUTHORIZER — i
| | o | | THREADS
.' o | oo LIBRARY 29 i ~_17
: : S Kis
: 971 B |
e e e e e e 2
ENDPOINT ENDPOINT
CLIENT CLIENT
LCF °c ©° © LCF
2% X
RUNTIME
DAEMON e
<
247 28 |,

FIG. 2A

U.S. Patent Jul. 10,2001 Sheet3 of 6 US 6,259,448 B1

4 TN MANAGER

TERMINAL NODES (TNs)

\
36
/
CURRENT
STATE CONTROLS
39
35~ { MAPPING RULES) RESOURCE MODEL

FIG. 4

US 6,259,448 B1

Sheet 4 of 6
EVENT
STREAM

Jul. 10, 2001

<——CONTROL REQUESTS

U.S. Patent

NODE

r | c
“ ve T
) - 1
il 2 |1 e
i £ 1 B 1S3ND3Y IN3WAOT4IC
. 3 /cn.v. _ ! <
I I m“w - - val's)
“ P 1SIN03Y INIWAOT3C
[«

“ 1 E / |
_ 8 1SIN0TY INIWAOTAIC | ¢n o
! t ¥ = 0

_ ! = /

vV = 3 1SINOTY ININAOTE3A | o <1S3ND3Y ININAOTAIA

= =
A [_ m

| 1SINDIY INFWAOT30

] !
“ P2 1530034 IN3WADA30 o
| I 3" [,
{ | = .
_ \ o 1O 1IN0 ININAOTA3C O
_ = Nt
“ pP R
i I S 8
| = Z
] TIVISNI “3L¥OINd3¥ "¥3A00SIG

<———— STATE INQUIRIES ™\

DATABASE

U.S. Patent

DEPLOY OR IMPLEMENT

NEW MODEL

Jul. 10, 2001 Sheet 5 of 6 US 6,259,448 B1
ADMINISTRATOR
OPENS RESOURCE |60
MODELING DESKTOP
¥
SELECT MODEL TO |)

IN THIS CONTEXT, A

“DOMAIN" REPRESENTS

TARGET HOSTS
REPRESENTED BY EXISTING

DOMAIN?

YES

A SET OF TARGET
NODES FOR DEPLOYMENT

NO 64
N

CREATE NEW DOMAIN
AND
ASSIGN TARGET HOSTS

r

USE GUI “DRAG AND
DROP" T0 ASSOCIATE |_g5
MODEL WITH DOMAIN
D FIG. 6
70~ 2o s | | TR i
ESOURCE “"DRAG-N-DROP
MODEL N DALLAS
72¢-1 | HousTON
DISTRIBUTION DEPLOY GUI
FICG. 7 FIG. 8

U.S. Patent Jul. 10, 2001 Sheet 6 of 6 US 6,259,448 B1

BUILD Gul START

_____ - HAVE ALL
= | MACHINES RECEIVED

¢ ?
DRAG—N~DROP THE_ AUTOMATION
COMPOSITE

RESOURCE NO
: MODEL DEPLOY AUTOMATION

: AT NEXT MACHINE |>-84
PRIMITIVE
RESOURCE
MODELS

|INSTALL AUTOMATION |_ge

FIG. 9 FIG. 10

START (FOR EACH
MACHINE IN DOMAIN)

98 RESOURCE USE T%N;gg;% Ff:{ULEs %0
INSTANCES
TARGET RESOURCES

92
YES_~ ANY RESOURCE
INSTANCES?
CONSULT MODEL INSTANCE
96~ "REGISTRY IN SEARCH %0
OF EXISTING INSTANCES
]

100~ INSTANTIATE NEW
INSTANCES AS NECESSARY

v

REGISTER
1027 NEw MODEL INSTANCES

(TERMINATOR)
FIG. 11

94

US 6,259,448 B1

1
RESOURCE MODEL CONFIGURATION AND
DEPLOYMENT IN A DISTRIBUTED
COMPUTER NETWORK
BACKGROUND OF THE INVENTION

1. Technical Field

The present invention is directed to a user interface for
configuring and deploying resource “models” in a large
distributed computer enterprise environment.

2. Description of the Related Art

Enterprises now desire to place all of their computing
resources on a computer network. To this end, it is known to
connect computers in a large, geographically-dispersed net-
work environment and to manage such an environment in a
distributed manner. One such management framework con-
sists of a server that manages a number of nodes, each of
which has a local object database that stores object data
specific to the local node. Each managed node typically
includes a management framework, comprising a number of
management routines, that is capable of a relatively large
oumber (e.g., bundreds) of simultaneous network connec-
tions to remote machines. The framework manages hun-
dreds of megabytes of local storage and can spawn many
dozens of simultaneous processes to handle method requests
from local or remote users. This amount of power, however,
is quite costly. Each managed node requires upwards of a
megabyte of local memory of disk plus a permanent TCP/IP
connection. If a managed node sees heavy use, then such
costs go up considerably. Moreover, as the number of
managed nodes increases, the system maintenance problems
also increase, as do the odds of a machine fajlure or other
fault.

The problem is exacerbated in a typical enterprise as the
node numbser rises. Of these nodes, only a small percentage
are file servers, name servers, database servers, or anything
but end-of-wire or “endpoint” machines. The majority of the
network machines are simple personal computers (“PC’s™)
or workstations that see little management activity during a
normal day. Nevertheless, the management routines on these
machines are constantly poised, ready to handle dozens of
simultaneous method invocations from dozens of wide-
spread locations, invocations that rarely occur.

‘When networks get very large, individual machines tend
to lose their identity. Nevertheless, machines of certain
classes share certain problems. To manage such distributed
systems, it has been proposed to “abstract” a given
“resource” in the distributed network into a so-called
“model” to facilitate administration. Examples of distributed
system resources include computer and communications
hardware, operating system software, application programs,
systems of programs cooperating to provide a service, and
the like. Managing resource models (as opposed to specific
resources) provides significant advantages. Thus, for
example, by enabling an administrator to characterize the
type or class of machine that should receive a particular task,
resource model-based management obviates naming a vast
host of machines explicitly or the distribution of tasks to all
machines within a domain.

Although resource model-based management is desirable,
there remains a need to provide techniques to facilitate
building and deployment of resource models within a dis-
tributed computing environment. This is the problem solved
by the present invention.

BRIEF SUMMARY OF THE INVENTION

It is a primary object of this invention to simplify con-
figuration and deployment of resource models within a large,
distributed computer network.

10

20

25

45

60

65

2

It is another primary object of this invention to build and
deploy a given resource model into a distributed computer
network environment preferably using a drag-and-drop pro-
tocol on a graphical user interface (GUI) of a computer.

It is yet another object of this invention to simplify the
method by which a given resource model is associated with
a given set of machines in a large distributed computer
enterprise enviropment.

Yet another more general object of this invention is to
simplify distributed computing network management.

A still further object of the invention is to implement a
drag-and-drop protocol in a user interface of a management
computer to instantiate a set of resource mapping rules on
each of a set of given machines in the environment.

A more general object of this invention is to use 2
“drag-and-drop” protocol on a computer GUI to build and/or
deploy predefined task objects or task group objects within
a distributed computer network.

A still further object of this invention is to deploy pre-
defined task objects to a number of locations in a network
with a mininmum of actions required by the administrator.

These and other object of the invention are providedina
method of deploying a resource model in a distributed
computer network using a computer having a graphical user
interface. The resource model generally has a number of
properties associated therewith: a current state, a set of state
rules, a set of controls, and a set of mapping rules. The state
of the model describes the modeled resource by an attribute
set. State rules define how changes to state atiributes signify
state changes of the modeled resource. Controls enable a
user, through an appropriate user interface, to interact with
and control the underlying resource to be manipulated.
Mapping rules determine how a model is comnected to an
actual resource. Typically, mapping rules operate on a set of
node identifiers defining 2 portion of the managed network
(c.g., a geographic region) over which the model is to be
deployed. The state rules and the controls comprise an
“automation” that is deployed to a particular node in the
network and is executable in a runtime environment resident
there.

The present invention describes a method to deploy the
resource model, which includes the automation. The method
begins by having an administrator open up a deployment
task window on the GUL Using conventional menus and
other conventional GUI components, the administrator
selects a resource model and a set of distribution icons. Each
distribution icon corresponds to a set of machines, for
example. Alternatively, a particular set of machines may be
“discovered” by the system with the distribution icon then
being associated therewith. The icon representing the
resource model, together with the set of distribution icons,
are then displayed on the GUL In a representative case, each
distribution icon represents a set of given machines in the
distributed computer network, e.g., machines located in one
geographic area of the distributed enterprise environment.

The icon representing the resource model is then associ-
ated with a selected one of the distributed icons, preferably
via a drag-and-drop protocol. When the resource model icon
is dropped onto the selected distribution icon, the resource
model is deployed in the network. Typically, deployment
includes instantiating the resource model mapping rules at
each machine in the set without further administrator or
local machine involvement. One preferred technique for
instantiating the resource model mapping rules uses the
runtime environment at each receiving node.

According to a feature of the invention, a discovery
process is implemented to discover at least one set of

US 6,259,448 B1

3

machines having a particular resource associated therewith.
A distribution icon associated with the discovered set is then
displayed. A given resource model is then instantiated on the
discovered set of machines by dropping-and-dragging an
icon representing the resource model onto the distribution
icon. In response to this operation, the resource model is
instantiated onto the set of machines.

The method is preferably implemented in a computer for
use in managing the large distributed computer enterprise
environment. The computer includes a processor, an oper-
ating system, a graphical user interface, and a data storage
system for storing network configuration data for use in
managing the distributed computer environment. The com-
puter also includes a resource model deployment means
comprising a number of functional components: a first
program or routine for discovering at least one set of
machines having a resource associated therewith, a second
program or routine for associating the discovered set of
machines with a distribution icon displayed on the interface,
and a third program or routine responsive to dragging and
dropping an icon representing a resource model onto the
distribution icon for directing instantiation of the resource
model onto the set of machines. The resource model is
instantiated on a given machine in the set using a runtime
environment supported on the machine as a local resource.

The foregoing has outlined some of the more pertinent
objects of the present invention. These objects should be
construed to be merely illustrative of some of the more
prominent features and applications of the invention. Many
other beneficial results can be attained by applying the
disclosed invention in a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detailed Description of the pre-
ferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings in which:

FIG. 1 illustrates a simplified diagram showing a large
distributed computing enterprise environment in which the
present invention is implemented;

FIG. 2 is a block diagram of a preferred system manage-
ment framework illustrating how the framework function-
ality is distributed across the gateway and its endpoints
within a managed region;

FIG. 2A is a block diagram of the elements that comprise
the LCF client component of the system management frame-
work;

FIG. 3 illustrates a smaller “workgroup” implementation
of the enterprise in which the server and gateway functions
are supported on the same machine;

FIG. 4 is a block diagram of a resource model that is
managed according to the present invention;

FIG. 5 is a block diagram illustrating how a “composite”
resource model is associated with a subset of “primitive”
resource models in the distributed computer network envi-
ronment;

FIG. 6 is a flowchart of a preferred method of configuring
and deploying a resource model;

FIGS. 7-8 illustrates a preferred graphical user interface
(GUI) on a central computer showing the “drag-and-drop”
protocol of the invention for deploying a resource model,

20

25

35

45

55

65

4

FIG. 9 is a GUI representation illustrating how a “drag-
and-drop” technique is also useful in building a resource
composite resource model using a plurality of primitive
resource models;

FIG. 10 is a flowchart illustrating how a resource model
is instantiated onto a set of machines identified by a distri-
bution icon; and

FIG. 11 is a flowchart illustrating a preferred instantiation
routine at a particular machine. :

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, the invention is preferably
implemented in a large distributed computer environment 10
comprising up to thousands of “podes.” The nodes will
typicaily be geographically dispersed and the overall envi-
ronment is “managed” in a distributed manner. Preferably,
the managed environment (ME) is logically broken down
into a series of loosely-connected managed regions (MR)
12, each with its own management server 14 for managing
local resources with the MR. The network typically will
include other servers (not shown) for carrying out other
distributed network functions. These include name servers,
security servers, file servers, threads servers, time servers
and the like. Multiple servers 14 coordinate activities across
the enterprise and permit remote site management and
operation. Each server 14 serves a number of gateway
machines 16, each of which in tum support a plurality of
endpoints 18. The server 14 coordinates all activity within
the MR using a terminal node manager 20.

Referring now to FIG. 2, each gateway machine 16 runs
a server component 22 of a system management framework.
The server component 22 is a multi-threaded runtime pro-
cess that comprises several components: an object request
broker or “ORB” 21, an authorization service 23, object
location service 25 and basic object adaptor or “BOA” 27.
Server component 22 also includes an object library 29.
Preferably, the ORB 21 runs continuously, separate from the
operating system, and it communicates with both server and
client processes through separate stubs and skeletons via an
interprocess communication (IPC) facility 19. In particular,
a secure remote procedure call (RPC) is used to invoke
operations on remote objects. Gateway machine 16 also
includes an operating system 15 and a threads mechanism
17.

The system management framework includes a client
component 24 supported on each of the endpoint machines
18. 10 The client component 24 is 2 low cost, low mainte-
nance application suite that is preferably “dataless” in the
sense that system management data is not cached or stored
there in a persistent manner. Implementation of the man-
agement framework in this “client-server” manner has sig-
nificant advantages over the prior art, and it facilitates the
connectivity of personal computers into the managed envi-
ronment. Using an object-oriented approach, the system
management framework facilitates execution of system
management tasks required to manage the resources in the
MR. Such tasks are quite varied and include, without
limitation, file and data distribution, network usage
monitoring, user management, printer or other resource
configuration management, and the like.

In the large enterprise such as illustrated in FIG. 1,
preferably there is one server per MR with some number of
gateways. For a workgroup-size installation (e.g., a local
area network) such as illustrated in FIG. 3, a single server-
class machine may be used as the server and gateway, and

US 6,259,448 B1

5

the client machines would run a low maintenance frame-
work References herein to a distinct server and one or more
gateway(s) should thus not be taken by way of limitation as
these elements may be combined into a single platform. For
intermediate size installations the MR grows breadth-wise,
with additional gateways then being used to balance the load
of the endpoints.

The server is the top-level authority over all gateway and
endpoints. The server maintains an endpoint list, which
keeps track of every endpoint in a managed region. This list
preferably contains all information necessary to uniquely
identify and manage endpoints including, without limitation,
such information as name, location, and machine type. The
server also maintains the mapping between endpoint and
gateway, and this mapping is preferably dynamic.

As noted above, there are one or more gateways per
managed region. Preferably, a gateway is a fully-managed
node that has been configured to operate as a gateway. As
endpoints login, the gateway builds an endpoint list for its
endpoints. The gateway’s duties preferably include: listen-
ing for endpoint login requests, listening for endpoint upcall
requests, and (its main task) acting as a gateway for method
invocations on endpoints.

As also discussed above, the endpoint is a machine
runpning the system management framework client
component, which is referred to herein as the low cost
framework (LCF). The LCF has two main parts as illustrated
in FIG. 2A: the LCF daemon 244 and an application runtime
library 24b. Together, these components comprise a runtime
environment, The LCF daemon 244 is responsible for end-
point login and for spawning application endpoint
executables. Once an executable is spawned, the LCF dae-
mon 244 has no further interaction with it. Each executable
is linked with the application runtime library 24b, which
bandles all further communication with the gateway.

Preferably, the server and each of the gateways is a
computer or “machine” having a windows-based graphical
user interface of “GUI™). For example, each computer may
be a RISC System/6000® (a reduced instruction set or
so-called RISC-based workstation) running the AIX
(Advanced Interactive Executive) operating system, prefer-
ably Version 3.2.5 or greater. Suitable alternative machines
include: an IBM-compatible PC x86 or higher running
Novell UnixWare 2.0, an AT&T 3000 series running AT&T
UNIX SVR4 MP-RAS Release 2.02 or greater, Data General
AViiON series running DG/UX version 5.4R3.00 or greater,
an HP9000/700 and 800 series running HP/UX 9.00 through
HP/UX 9.05. Motorola 88K "series running SVR4 version
R40V4.2, a Sun SPARC series running Solaris 2.3 or 2.4, or
a Sun SPARC series running SunOS 4.1.2 or 4.1.3. Of
course, other machines and/or operating systems may be
used as well for the gateway and server machines.

Each endpoint is also a computer. In one preferred
embodiment of the invention, most of the endpoints are
personal computers (e.g., desktop machines or laptops). In
this architecture, the endpoints need not be high powered or
complex machines or workstations. One or more of the
endpoints may be a notebook computer, e.g., the IBM
ThinkPad® machire, or some other Intel x86 or Pentium®-
based computer running Windows ’95 or greater operating
system. IBM® or IBM-compatible machines running under
the OS/2®operating system may also be implemented as the
endpoints. An endpoint computer preferably includes a
browser, such as Netscape Navigator or Microsoft Internet
Explorer, and may be connected to a gateway via the
Internet, an intranet or some other computer network. The

10

15

40

50

55

60

65

6

browser typically includes a Java Virtual Machine (JVM),
which provides a convenient runtime environment for pro-
grams written as Java applications or applets.

In the present invention, interactions with distributed
system “resources” are effected using so-called “models™. A
model also serves to describe how a resource is observed and
managed. In general, a resource is a component or clement
within the distributed system that is manageable or that
needs to be managed. Examples of resources are quite
diverse and include, amnong others, machines, computer and
communications hardware, operating system software,
application programs, file systems, machine processes, sys-
tem interfaces, and systems of programs cooperating to
provide a service. Any manageable component, element,
process, interface or device within the distributed system
may be considered a “resource.”

A resource that cannot be decomposed into other man-
ageable components is sometimes called a primitive
resource. A resource that can be decomposed into other
manageable components is a composite resource. Thus, for
example, one primitive resource is a single file system on a
file server. An example of a composite resource is the file
server system as a whole. A composite resource may be built
from a set of one or more primitive resources.

The present invention provides a tool to facilitate man-
agement of “resources” present in a large distributed net-
work of computers using “resource models.” As seen in FIG.
4, a resource model 30 preferably has the following prop-
erties: a current state 32, a set of state rules 34, a set of
controls 36, and a set of mapping rules 38. The “state” 32 of
a model describes the modeled resource by an arbitrary set
of attributes capturing all aspects of the resource necessary
to manage it. Models for primitive resources, for example,
might have a very concisc state, while a composite resource
may have a complex state involving many separate
attributes. Conceptually, the state 32 represents everything
an administrator needs to know about a resource to deter-
pine its operability and to manage the resource. Many of the
attributes that comprise the state of a composite resource
model come directly from the state of more primitive
component models. Others are derivatives of component
states.

As a concrete example, assume the resource model is a
model for a disk partition. The attributes for such a model
might then be the amount of free space in the partition, the
pumber of bad blocks in the partition, the number of files
within the partition, and the like. Of course, these attributes
are merely representative. A more complex or “composite”
resource model would be a model of a database server. The
state of the composite model would then depend on the state
of the more primitive components, like the disk drive or a
drive partition, a central processor, and the like.

State rules 34 preferably define how changes to state
attributes sigpify significant changes in state 32 of the
modeled resource. A state rule 34 is a predicate function over
the range of values of all state attributes. The state rules of
aresource model are tailored for the real world resource they
model. Thus, in the example of a particular piece of
hardware, these rules define how the hardware (i.e. the
resource) interacts with an operating system, what network
connections are used by the resource, what programs rin on
the resource, etc. When a particular state attribute changes,
a state rule that was satisfied under the prior state may no
longer be satisfied, and vice-versa. This is referred to as a
state change, and it results in an “event” 33 being emitted
from the model. An event therefore is simply an announce-
ment of a state change.

US 6,259,448 Bl

7

As an example of a state change (in the context described
above), assume that the available disk space (the resource
associated with the more primitive model) changes and
drops below a certain threshold. Such event may then trigger
a “state” change in the database server model (the resource
associated with the composite model) indicating, for
example, that the higher level resource may be unavailable.
Of course, is is merely a representative example and should
not be taken as limiting the scope of the present invention.

As noted above, the controls 36 are, in effect, the inter-
faces to a model that allow the underlying resource to be
manipulated. For example, a model for a database server
might include controls (accessible through an appropriate
user interface) to modify the current security level of the
system. Controls on a composite resource model may oper-
ate by calling on controls in component models. Returning
again back to the database server model example, there may
be a “cleanup” control on the database that shuts down a
given operation at the server level. Execution of that control
may then extend down to the more primitive level (in this
example, the disk) to effect some necessary or ancillary
function. This example is again merely illustrative. Accord-
ing to the preferred embodiment, the state rules may be
augmented by instructions to call on selected controls when
a state becomes satisfied or dissatisfied.

Mapping rules 38 preferably determine how a model
hooks up to a real world resource. An actual mapping rule
may be expressed in a high level manner by any convenient
text, graphical or other format. Also, the manner in which
the mapping rule gets carried out is not limited. Thus, for
example, the rule may be effected through a database query
that examines a database (that describes the machines in the
network) and selects appropriate machines, e.g., using 2
lookup table technique. Yet another alternative is to use an
agent-like piece of code (e.g., an applet) that dynamically
gathers information at a particular machine by querying the
machine to determine whether given characteristics meet
some criteria defined by the mapping rule.

In a preferred embodiment, the mapping rules operate on
a set of node identifiers defining a portion of the managed
network over which the model is to be deployed. The rules
determine for each node whether a model access point 35
should be established there for the particular resource model.
A node identifier identifies a point on the network where a
model can be deployed. An access point 35, then, is the
interface established by a model when it is deployed on a
node. Each access point established for a model corresponds
to a single instance of the modeled resource.

When an access point 35 is created for a deployed
resource model, canonical identifiers of the resource, the
model, and the node are combined into an ordered tuple. The
model registers this (resource, model, node) tuple in a
globally-accessible registry. Another function of the map-
ping rules, therefore, is to determine whether the model has
already been deployed for a given real resource.

FIG. § illustrates a resource model 40 for a composite
resource that has a plurality of “primitive” resource models
42a-42n associated therewith. As previously illustrated in
FIG. 4, each resource model has its own set of properties
including state, state rules, controls and mapping rules. The
events from the primitive resource models are applied to the
composite resource model via event stream 44. State inquir-
ies 46 and control requests 48 are provided to the submodels
42 from the state rules and controls of the composite
resource model. An access point 45 connects the composite
resource to other resources in the network. The node data-

5

10

15

20

50

55

60

65

8

base 50 preferably is associated with 2 managing server
(e.g., server 14 or gateway 16 of FIG. 1). The database
includes network configuration data describing the state of
each resource, e.g., as defined by that resource’s model.
Information about the state of a given machine or compo-
nent within the distributed computing environment may also
be available or discoverable from other sources. When it is
desired to deploy a given resource model, a deployment
request 52 is supplied to the mapping rules 54 of the
composite model, and these mapping rules provide the
deployment request to each of the mapping rules associated
with a given submadel 42. The particular mapping rules, as
illustrated by the arrow 56, enmable scveral functions or
methods including discover, replicate and install. These
methods are the work performed by the mapping rules.

The “discover” method identifies the particular state rules
and controls that are present within the resource model. As
used herein, the state rules and controls are sometimes
referred to as an “automation”. An automation, comprised of
those state rules and confrols, is preferably executable in a
runtime environment instatled on or associated with a given
resource. Thus, in one representative implementation, an
automation is a Java applet or application that is executed in
a Java runtime environment of a browser running on an
endpoint computer. The discover method may also be used
to locate an access point for the resource model deployed to
a given resource. The replicate method is used to make a
copy of the resource model, and the install method is used
to invoke the mapping rules and thus instantiate the auto-
mation in the local runtime environment.

Thus, as illustrated in FIG. 5, as resource models are
deployed, a “web” is formed of composite models that
depend on other models. The database 50 that links real
resources, instances of models, and nodes, allows operators
to find models of interest in order to observe the state of
resources and to issue control requests. State change events
that are dispatched by top-level composite models drive a
“super model” that encompasses all managed resources in
the network. Alternatively, composite models can be devel-
oped to support individual operators, so that particular
resources are managed by particular administrators.

According to the present invention, resource models
preferably are deployed into the distributed computer envi-
ronment using a simple “drop-and-drag” protocol on the
graphical user interface of a managing computer. As is
well-kaown, a graphical user interface (GUI) comprises a
number of common display clements such as windows,
icons, menus and dialog boxes (which include dialog box
options such as command buttons, text boxes, list boxes,
drop-down list boxes, option buttons and check boxes). The
present invention takes advantage of the existing GUI on a
management computer. Familiarity with basic GUI opera-
tion is presumed in the following discussion.

FIG. 6 is a flowchart illustrating a preferred resource
model configuration and deployment method implemented
on a GUI of a computer. FIGS. 7-8 illustrate a representative
GUI interface during the actual deployment process. FIG. 9
illustrates a representative GUI interface illustrating one
preferred technique for building a composite resource model
from a set of more primitive resource models using the
drag-and-drop technique.

The configuration and method begins at step 60 by having
an administrator open up a resource modeling desktop (e.g.,
a deployment task window on the GUI). At step 62, the
administrator selects a resource model to be deployed or
implements a new model (for example, through the build

US 6,259,448 B1

9

process illustrated below). Typically, step 62 requires the
administrator to open up a dialog box and select an existing
resource model. At step 63, a test is performed to determine
whether the target hosts are represented by am existing
domain. As used herein, 2 “domain” represents a set of target
nodes for deployment). If the outcome of the test at step 63
is negative, the routine branches to step 64 to create a new
domain and assign the target hosts to that domain. The
routine then continues at step 65, which step is also reached
by a positive outcome to the test at step 63. At step 65, the
routine continues with the user applying a GUI drag-and-
drop to associate the model with the domain.

The drag-and-drop technique is also useful in “building”
a composite resource model from a set of one or more
primitive resource models if the user desires to implement a
new model. Typically, this involves the administrator open-
ing up a dialog box and selecting the nature and/or type of
resource model(s) needed. A set of primitive resource model
icons may be displayed on the GUI, together with an icon
representing the composite resource. The user preferably
drags the primitive resource model icon on the composite
resource model icon to instantiate the attributes of the
primitive model into the composite model. As the primitive
resource models are configured into the composite model,
the underlying attribute sets change automatically to reflect
the changing composite resource model.

During the building and/or deployment process, the
administrator may initiate a discover operation to populate
the GUI with the display elements. In this manner, the
administrator may locate appropriate primitive resource
models to be joined in the composite resource model, or to
locate appropriate destination nodes for the resource modal
to be deployed.

Thus, in the deployment situation, an icon representing
the selected resource model and icons representing the
distribution sets (which may have been located through the
discovery process) are displayed on the GUI. This display is
illustrated in FIG. 7. In this deployment example, the icon 70
represents the resource model (or the automation compo-
nents thereof) and each distribution icon 72 represents a set
of machines in the distributed environment. If desired, a
distributed icon may have a bitmap associated therewith that
provides a visual clue as to its characteristics. Thus, in a
representative case, each distribution icon 72 represents a set
of given machines in the distributed computer network, e.g.,
machines located in one geographic area of the distributed
enterprise environment.

As previously described, the icon 70 representing the
resource model is then associdted with a selected one of the
distributed icons 72, preferably via a drag-and-drop proto-
col. As illustrated in FIG. 8, a drag-and-drop protocol
involves moving a graphical pointing device (e.g., a mouse)
cursor over the icon 70, actuating a control button thereon
(which attaches the cursor to the icon 70), dragging the icon
70 over, and then on top of the selected distribution icon 72,
and then dropping the icon 70 onto the selected distributed
icon 72. The drag-and-drop protocol uses local operating
system resources in a known manner. This operation com-
pletes the deployment as far as the administrator is con-
cerned. The above is merely illustrative, of course, as many
display variants are within the scope of the invention. Thus,
for example, more than one resource model (or automation
icon) may be displayed at a time.

As poted above, the drag-and-drop protocol may also be
used to “build” a resource model from a set of more
primitive component resource models. FIG. 9 illustrates this
process in a conventional GUL

25

40

45

60

65

10

FIG. 10 is a flowchart describing how the resource model
(identified by icon 70) is deployed across the set of machines
identified by the selected distribution icon 72. In this
example, it Is assumed that the set of machines are located
in a given geographic region of the network (e.g., the
computers located in Austin, Texas) and that each such
computer includes a rntime environment for the automation
components of the resource model. At step 80, a test is done
to determine whether all of the machines have received the
automation, If the outcome of the test at step 80 is positive,
the routine branches to step 82 and ends. If, however, the
outcome of the test at step 80 is negative, the routine
continues at step 84 to deploy the automation at a next
machine in the set of machines. At step 86, the automation
is installed and executed by the ruatime environment at the
machine. Step 86 causes the semantics of the mapping rules
to be invoked onto the actual physical resource (which, in
this example, is the machine) . This operation is done
transparently to the administrator at the central computer
and to the local user. The routine then returns to step 80. In
one embodiment, the automation is a Java applet and the
runtime is a JVM running as a local resource. It should be
appreciated that the flowchart shown in FIG. 10 is merely
illustrative, as the resource model instantiation typically
occurs in parallel at each of the set of machines.

FIG. 11 is a flowchart illustrating how the particular
mapping rules are actually instantiated on a particular
machine. As noted above, the routine is carried out on each
machine that in the domain that is the subject of the
deployment. It begins at step 90 by using the mapping rules
to identify the target resources on the machine. At step 92,
a test is done to determine whether any resource instances
are required. If not, the routine terminates at step 94. If
resource instances are required, the routine branches to step
96 to consult a2 model instance registry in search of existing
instances. These resource instances are supported in the
registry 98. The routine then continues at step 100 to
instantiate new instances as necessary. Thereafter, the rou-
tine registers the new model instances at 102 and then
terminates. This completes the processing.

One of ordinary skill will appreciate that the distribution
icons describe a “coarse” level of management control (for
a “set of machines”) while the particular mapping rules in a
resource model provide a “fine” level of management con-
trol over the particular resource on each machine. The
drag-and-drop protocol provides a convenient 2od simple
method of deploying such resonrce models. As has been
described, deployment includes administrator selection of a
particular distribution icon, and then instantiation of the
resource model mapping rules at each machine in the set
without further administrator or local machine involvement.
One preferred technique for instantiating the resource model
mapping rules uses the runtime environment at the receiving
node.

Thus, in the example of FIG. 7, each of the distribution
icons 72a-72c represents a given set of machines, in this
case, the machines located in Austin, Dallas and Houston,
respectively. One of ordinary skill will recognize, however,
that sets of machines may be organized by other character-
istics (and not merely by location). Generalizing, the type of
distribution may be quite varied. Thus, for example; the
resource model may be distributed to a given set of machines
having a particular type of operating system, e.g., UNIX
workstations, Windows NT workstations, 08/2
workstations, or the like, regardless of their location. In such
scenario, there would be a distribution icon for each oper-
ating system type. In another alternative, the administrator

"y

US 6,259,448 B1

1

may desire to distribute a particular model to a set of
machines according to function, e.g., routers, security
servers, file and print servers. In such case, there could bé a
distribution icon for routers, one for security servers, and so
on. A still further alternative would be to deploy a given
resource model to a certain class of user, e.g., system
administrator, chip designer, etc., in which case, each dis-
tribution icon would be associated with a given user class.
Combinations of such characteristics (e.g., Windows NT
machines located in Austin, Texas) may also be used.

‘When each distribution icon is created, preferably “links”
to the various machines are established and maintained in
the node database 50. Thus, when the given resource model
icon is dropped onto the distribution icon, the mapping rules
of the resource model are instantiated “under the covers”,
namely, without direct administrator or local user involve-
ment. The actual communication link may be established
later by the distribution mechanism when a task is actually
selected for distribution. The various machines which the
distribution mechanism links with the distribution icon is
based on the knowledge of the network topology and the
characterization by the network administrator of the type of
node which the icon represents. The network topology is
preferably known either through the database created by
systemn administration tasks or specialized discovery or a
combination thereof.

One of ordinary skill in the art will appreciate that the
graphical user interface (GUI) provides a convenient tool for
manipulating the iconic representations that are useful in the
inventive method. Thus, for example, different sets of icons
may be easily presented to the user after the assembly
process is concluded. One or more different pulldown menus
with distribution icons may be used to choose the appropri-
ate set of icons. Alternatively, a “next” push button might be
presented in a window until the desired set is shown. Of
course,. the use of “icons” is also merely exemplary, as any
convenient graphic representation (e.g., text, hypertext link,
image, bitmap or the like) may be used as well.

As previously noted, mapping rules determine for each
node whether a mode] access point should be established at
that node. A node identifier identifies a point on the network
where a model can be deployed. The resource model is then
deployed preferably by dragging the resource model icon
over to a distribution icon and then droppiog it.

If desired, a discovery process may also be used to
identify which nodes may constitute a given set of node
identifiers for receipt of a resource model. As an example,
consider a model for a primitive resource, such as temporary
file space. A request is made 10 map the model to a set of
nodes. According to the discovery process, the mapping
rules will first identify those nodes that are machines with
temporary file space. Then, for each such real resource
discovered, the rules attempt to locate an access point for the
model deployed to that unique resource. The rules then
perform the deployment and access point registration on all
nodes where the corresponding resource is “unmodeled”.

For a composite resource, the rules will embody some
criteria for sclecting from a list certain nodes to host access
points for real resources. The nodes chosen might corre-
spond to some particular host-centric component resource,
or they might correspond to a node suited for some other
reason to hosting the access point. In any case, because a
composite resource represents components that may be
distributed across a number of nodes, one node must be
chosen somehow to host the access point.

The principles of the present invention find particular
utility in deploying resource models in a large distributed

40

50

60

65

12

computer environment, but the techniques described are not
limited to this application. Thus, the teachings may be
generalized to cover the building and deployment of any
model or similar construct in such an enterprise environ-
ment. Alternatively, the technique may be useful in building
and deploying tasks within such as environment. In the latter
example, the present invention thus contemplates building a
task from a set of subtasks and then associating the task with
a subset of network nodes (having some common
characteristic) and preferably identified by a distribution
icon on the graphical user interface. The task is then
“installed” by the drag-and-drop technique previously
described.

As discussed above, another advantage of the invention is
the ability to build the composite “resource model” by
selecting more primitive component models whose
attributes are then combined “under the covers” by func-
tional relationships to determine a set of attributes for the
higher Ievel model. Thus, in the disk server example refer-
enced above, the administrator may browse to a library or
other repository and select a “disk partition™ resource model.
This model would then be displayed on the GUI using an
icon or the like. After the user selects all primitive resource
models, each such primitive is selectively dragged and then
dropped onto an icon representing the composite resource
model to effect the build.

One of the preferred implementations of the invention is
as a set of instructions in a code module resident in the
random access memory of a computer. Until required by the
computer, the set of instructions may be stored in another
computer memory, for example, in a hard disk drive, or in
a removable memory such as an optical disk (for eventual
use in a CD ROM) or floppy disk (for eventual use in a
floppy disk drive), or even downloaded via the Internet.

In addition, aithough the various methods described are
conveniently implemented in a general purpose computer
selectively activated or reconfigured by software, one of
ordinary skill in the art would also recognize that such
methods may be carried out in hardware, in firmware, or in
more specialized apparatus constructed to perform the
required method steps.

Further, although the invention has been described in
terms of a preferred embodiment in a specific network
environment, those skilled in the art will recognize that the
invention can be practiced, with modification, within the
spirit and scope of the appended claims. Thus, for example,
while a drag-and-drop protocol is the preferred technique for
resource model deployment, this operation may be accom-
plished using other known input techniques, ¢.g., text enfry,
keystrokes, voice commands, and the like.

Having thus described our invention, what we claim as
new and desire to secure by letters patent is set forth in the
following claims:

What is claimed is:

1. A method of deploying a resource model in a distrib-
uted computer network using a computer having a graphical
user interface, the resource model having associated there-
with a set of one or more mapping rules for associating the
resource model to a given resource, the method comprising
the steps of:

displaying at least one distribution icon on the graphical

user interface, the icon representing a subset of nodes
in the distributed computer network;

associating the resource model with the distribution icon;

and

in response to the association, invoking the mapping rules

associated with the resource model at each node in the
subset.

US 6,259,448 B1

13

2. The method as described in claim 1 wherein the step of
associating the resource model to the distribution icon
comprises:

displaying a resource model icon on the graphical user

interface; and

dragging and dropping the resource model icon onto the

distribution icon.

3. The method as described in claim 1 wherein each node
in the subset of nodes is associated with a machine in the
distributed computer network.

4. The method as described in claim 1 further including
the steps of:

discovering the subset of nodes; and

associating the distribution icon with the discovered sub-
set of nodes prior to displaying the distribution icon on
the graphical user interface.

5. The method as described in claim 1 wherein the
distributed computer network is organized into one or more
managed regions, each region being managed by a manage-
ment server servicing one or more gateway machines, with
each gateway machine servicing a plurality of endpoint
machines.

6. The method as described in claim § wherein the
resource model defines a given resource in the distributed
computer network.

7. The method as described in claim 6 wherein the given
resource is selected from a set of resources consisting
essentially of computer and communications hardware,
operating system software, application programs and sys-
tems of programs that provide given services.

8. The method as described in claim 1 wherein the
resource model comprises a curre nt state, a set of state rules,
a set of controls and the mapping rules.

9. A method of deploying a resource model in a distrib-
uted computer network using a computer having a graphical
user interface, the resonrce model having associated there-
with a set of one or more mapping rules that associate the
resource model to a given resource, comprising the steps of:

(a) displaying a set of distribution icons on the graphical
user interface, each icon representing a set of given
machines in the distributed computer network;

(b) dragging and dropping an icon representing the
resource model onto a selected one of the distribution
icons; and

(c) in response to step (b), invoking the mapping rules
associated with the resource model at each machine in
the set. “

10. The method as described in claim 9 further including
the step of discovering at least one of the set of machines and
associating the distribution icon with the discovered set of
machines prior to displaying the distribution icon on the
graphical user interface.

11. The method as described in claim 9 further including
the step of modifying the set of di stribution icons displayed
on the graphical user interface.

12. The method as described in claim 9 wherein the
resource model defines a given resource in the distributed
computer network.

13. The method as described in claim 12 wherein the
given resource is selected from a set of resources consisting
of computer and communications hardware, operating sys-

10

25

30

35

40

45

14
tem software, application programs and systems of pro-
grams that provide given services.

14. The method as described in claim 12 wherein the
resource model comprises a current state, a set of state rules,
a set of controls and the mapping rules.

15. A method operative in a computer having a graphical
user interface for managing a large, distributed computer
network, comprising the steps of:

(a) discovering at least one set of machines having a

resource associated therewith;

(b) displaying a distribution icon associated with the

discovered set;

(c) dragging and dropping an icon representing a resource

model onto the distribution icon; and

(d) in response to step (c), directing instantiation of the

resource model onto the set of machines.

16. The method as described in claim 15 wherein the
resource model comprises a set of state rules, a set of
controls and a set of mapping rules.

17. The method as described in claim 16 wherein the step
of instantiating the resource model comprises invoking the
set of mapping rules on each of the set of machines.

18. In a large distributed enterprise having a management
server servicing a set of gateway machines, each of which
services a set of endpoint machines, a resource model
deployment method comprising the steps of:

(2) displaying a distribution icon associated with a set of

endpoint machines;

(c) associating an icon representing a resource model with

the distribution icon; and

(d) in response to step (c), instantiating the resource

model onto the set of endpoint machines.

19. A computer for use in managing a large distributed
computer enterprise, comprising:

a processor;

an operating system;

a graphical user interface; and resource model deploy-

ment means, comprising:

(a) means for discovering at least one set of machines
having a resource associated therewith;

(b) means for associating the discovered set of
machines with a distribution icon; and :

(c) means responsive to dragging and dropping an icon
representing a resource model onto the distribution
icon for instantiating the resource model onto the set
of machines.

20. A computer program product in computer-readable
media for use in a computer having a processor, an operating
system, a graphical user interface, and means for connecting
the computer into a large distributed enterprise, the com-
puter program product comprising:

(2) means for discovering at least one set of machines

having a resource associated therewith;

(b) means for associating the discovered set of machines

with a distribution icon; and

(c) means responsive to dragging and dropping an icon

representing a resource model onto the distribution icon

for instantiating the resource model onto the set of
machipes.

