451

US005881270A

United States Patent [(111 Patent Number: 5,881,270
Worthington et al. 451 Date of Patent: Mar. 9, 1999
[54] METHOD FOR FLEXIBLE SIMULATION [56] References Cited
MODELING OF MULTI-COMPONENT
SYSTEMS USING A GLOBAL MAILBOX TO U-S. PATENT DOCUMENTS
FACILITATE COMMUNICATION BETWEEN 4,851,988 7/1989 Tittier ef al. ..occcrevemmmmancensuane 364/200
DISCRETE COMPONENT MODELS 5,197,016 3/1993 Sugimoto et al. .. - 364/490
5,544,067 8/1996 Rostoker et al. 364/489
[75] Inventors: Bruce Lee Worthington, Austin; 5,694,539 12/1997 Haley etal. ... 395/183.14
Colette Mary Donnelly, Pilugerville, 5,742,825 4/1998 Mathur et al.ccvverinrenanee 395/680
both of Tex. Primary Examiner—Kevin J. Teska
. . . Assistant Examiner—M. Irshadullah
[73] Assignee: International Business Machines Attorney, Agent, or Firm—Jeffrey S. Labaw; David H.
Corporation, Armonk, N.Y. Judson
[21] Appl. No.: 951,346 571 ABSTRACT
291 Filed: A methodology for allowing component models to be devel-
(22] Oct. 16, 1997 oped independently and allowing a user to select and con-
Related U.S. Application Data nect a set of models into a desired multi-component con-
figuration at run-time. The component models are built free
[63] Continuation of Ser. No. 846,863, May 1, 1997. from inter-model dependencies, thereby enhancing fiexibil-
ity and reuse. The component models conform to a standard
[51] Int. CL° GO6F 1546 ipterface for initialization (prior to simulation run) and
[52] US. Cl ... 395/5“); 395/500; 395/200.56; inter-mode!l communication (prjor to and durj_ng a simula~
395/183.14; 364/489; 364/490 tion run).
[58] Field of Searchooveeemmemecrrn 364/490, 489;

395/500, 183.14

o e e et it e e e e e)

19 Claims, 7 Drawing Sheets

SYSTEM_MAIN

GLOBAL_.REGISTRY

I4
16

A
18

5,881,270

Sheet 1 of 7

Mar. 9, 1999

U.S. Patent

lllllI.lll'lllllllIl'lll'llllll"l‘l‘lllllll!ll'd

[- e G e G P T - D G S . = G T cmr She G e M S Do e S e Gme ——
R e e s o o G e S G T . - = D GAD GuN G TS R e S W SN WM R TEn Mt S G - em

T NS MG MND VED SRL G e GRD GmE G GUT GNP GED G GED GEL SRS W FIE Gy ey W G WED GEL NN D G WD e S R QD fumy Mut Gl G GE

&
T
2
)
00
& | —
]
=
foa]
o
o
X
~
= F
<
M_
EML./G
Tﬂm Al
7

5,881,270

Sheet 2 of 7

Mar. 9, 1999

U.S. Patent

U.S. Patent Mar. 9, 1999 Sheet 3 of 7 5,881,270'

. O
' GENERATOR_DISK_P10s_BLUE '

L—-—»——-——@»-—»—-—l

|
! BUS_6XX ¢ F]'G. 3
S o
I HOST_BRIDGE !
. N
L BUS_BXX_MX Y
'''''' ——————— et
SYSTEM_MAIN ——— e — - i GLOBAL_R
N
i— PCI_BRIDGE 4
. . .
T—_ - Bl]

L———b——-—.@»——»—--—-}
SUBSYSTEM_DISK_BLUE

GENERATOR_DISK_PI0s_BLUE #0

0.
0
BUS_6XX #0
[B
0
HOST_BRIDGE #0
]
y0
BUS_6XX_MX #0
1
0
F[G SA PCI_BRIDGE #0
L]
0
BUS_PCI #0
1 l ¥/ 3
r 0 0 0
SUBSYSTEM_ SUBSYSTEM_ SUBSYSTEM_
DISK_BLUE #0 DISK_BLUE #1 DISK_BLUE #2

5,881,270

Sheet 4 of 7

Mar. 9, 1999

U.S. Patent

7
% P82 D
SRS -,
VV«; JVVV VV\ (72} VV\/ N
) ,
e p— L V > O > >
> 2 > > = > >
N = % IN_& A4 5
X m > >3 >0 4 v“
X2 SIS,
RTINSOV R IRRN
> WX o ;
- %6 e :
RN % = -
SPEREIIN x
2 SN .._,
(a4
> er.ﬂ_ 2 vT,) 0_ 1
2 o X S —____I"
> o0 by
oA
RT3
V A
/2 VVWVJVV V .\ V V V\V\/\/\J\V V\J
VV \JV 2082 > V\V\V SO v
> (73] > v 32NN v \
88 R 3\ 1%
vv\ 5 & >3 .vv.\ vvp v,.
N & LY 15 >
J/V WVV Vl /V _\V,
222

S
7]
[& N nd
O 2
O NnNnO
— Na —
AE T
LlonTaeon
SloJES
T|IS =2 O
P_D_A_P_
0 v ae O
LU R
s e W e
O |— o<

> VVJVNVJV RS

vvvv?,

SELECTION

(]

i o
~2| | %=
h ——
& n%:’llh....._

Trmln_u/Hl..___
Sa — _5
=3l |laN——1! !

S EIN T
7 7 g O
Q N Neeftlht =~
0 ol D__.LF

L | .
=H| |
o
e p———
o
|
o
<5
YS!

5,881,270

vvaV 52N
2R RRI

Vvvv VVWVV»V vvvvv
233> VVVVVV %6 %%
et 262622 % %%

RS
£5355%

MAIN_MEMORY

6

Sheet 5 of 7

Mar. 9, 1999

U.S. Patent

o6

FIG.

o0
un
o
v\ |
SR w -n
o -——
=) S R
DP ll-ll-_".
<< 7 i1
25 [~
[3] o
< (V2] #___
~ 11
N BN
o o S|t
a
=l B
ML
e
7
O
<
[fe}

GLOBAL VARIABLE

x4
GLOBAL BATSS

FIG.

5,881,270

Sheet 6 of 7

Mar. 9, 1999

U.S. Patent

50505

> PN
SO
vWVWVVVW Wv

SO

5,881,270

Sheet 7 of 7

Mar. 9, 1999

U.S.. Patent

=50 MHz

BUS_SPEED

SPEED???

CLOCK_

16 KB OF DATA

5,881,270

1
METHOD FOR FLEXIBLE SIMULATION
MODELING OF MULTI-COMPONENT
SYSTEMS USING A GLOBAL MAILBOX TO
FACILITATE COMMUNICATION BETWEEN
DISCRETE COMPONENT MODELS

This application is a continuation of pror U.S. Ser. No.
08/846,863, filed May 1, 1997.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to software tools
used to model the behavior of complex systems.

2. Description of the Related Art

Complex systems are typically built from many discrete
components. In a given field of interest, different systems
often utilize many of the same components. Computer
systems are a classic example. Such systems are designed
and built from many discrete system components including,
without limitation, processors, caches, memories, buses,
bridges, adapters and peripherals. Building and analyzing
models of such complex systems provides insight into the
behavior of such systems.

In the prior art, it is known to build models of a small
number of components of a given computer domain {e.g., a
network) and then to use such component models for the
purpose of analyzing or predicting the effects of individual
components on system performance. Such schemes,
however, are limited in their applicability to the particnlar
domain for which the component models are designed.
These known techniques do not afford a methodology or the
tools necessary to enable complete “end-to-end” system
modeling wherein 2 model may represent any complex
system from a small subsystem up to anm entire
multiprocessor/multicomputer network. Another prior art
approach is to model from a “system-centric” or top-down
approach, whereby particular components of a system con-
figuration are modeled with system-wide dependencies. In
the latter approach, individual system components are not
“isolated” from each other in the system model and thus are
interdependent. Individual component models are rarely
reusable to any significant extent in other system models.
Therefore, the usefulness of the overall system model is
limited to a specific subset of configurations.

There has been a long-felt need in the art to provide fully
“end-to-end” system models using individual system com-
ponent models or modules that are truly independent and
that may be seamlessly confiected in a building block
fashion. This invention is directed to solving this important
problem.

SUMMARY OF THE INVENTION

It is thus a primary object of the invention to provide a
method for dynamically building complex system models
from discrete, independent, reusable component models.

It is another primary object of this invention to connect
discrete, independent and reusable component models in a
dynamically-specified user configuration to facilitate, for
example, performance and reliability modeling.

It is still another primary object to provide a modeling
infrastructure allowing complex system models to be
dynamically constructed from a library of discrete,
independent, and reusable component models.

Another more general object of this invention is to
provide a flexible simulation modeling technique for multi-
component systems.

ki

(=3

15

45

60

2

Yet another general object is to build system models from
independent and reusable component modules.

Still another important object of this invention is to
provide a tool for fully end-to-end system modeling using a
modular approach fo modeling each system component.

It is another object of the invention to provide standard-
ized interface specifications for component models contrib-
uted to a library of such models and wherein multiple
components are selected in order to build and analyze a
multi-component system.

Another object is to allow component models to be
developed independently by third parties and then allowing
a user to select and connect a particular set of such models
into a desired configuration, wherein the connection occurs
only at run-time to thereby protect third party intellectual
property embedded in the component models.

It is a more general object to enhance simulation model-
ing techniques in order to reduce the time and expense
needed to develop new products.

These and other objects are provided in a system model-
ing infrastructure that enables a desired system configuration
model to represent any complex system, for example, from
a small subsystem up to an entire multiprocessor/
multicomputer network. The infrastructure provides the nec-
essary code and interfaces that, in effect, “glue” or bind
individual component models into a user-specified system
configuration on a component to component, subsystem to
subsystem, and system to system basis.

According to the invention, the infrastructure comprises a
library of discrete and reusable component models, a
System__Main module and a Global_Registry module. The
component models are independent, thereby preserving a
“building-block™ or object-oriented modeling methodology.
Each component preferably comprises an object file that is
not executable in and of itself. The System__Main module is
responsible for initializing the individual components and
connecting them in the desired configuration as specified by
the user. The Global _Registry module supports various data
structures visible to all components as well as certain
procedures (i.e. resources) for implementing control actions.
Preferably, all modules are compiled and linked together
into an executable at run-time to create the desired configu-
ration undergoiog analysis.

The infrastructure provides for runtime configuration
flexibility. Both the configuration of the individual compo-
nents and their interconnection is specified at runtime. AS
long as any required system component module is linked
into the executable file, the user is free to reconfigure the
components or their interconnection between simulation
runs. Moreover, because individual component models (in
the form of object files) may be linked into the executable
without source code, confidentiality of the actual workings
of a given component may be maintained. In effect, the
methodology facilitates “black-box” component modeling
with respect to any overall system model.

According to a preferred embodiment, a method of mod-
eling a system configuration makes use of a library of
discrete component models each conforming to a predefined
interface specification. The method begins by registering
each component model with a registry to generate a global
list of unique identifiers accessible to all discrete component
models. In response to user-selection of a system configu-
ration to be modeled, a first set of discrete component
models necessary to model the system configuration are
“selected.” A second set of discrete component models (that
are unnecessary to model the system configuration) are

5,881,270

3

“de-selected” to conserve system resources during the sub-
sequent run-time simulation. After verifying the availability
of the first set of component models and ensuring that the
selection and de-selection processes worked successfully,
the simulation is carried out. Preferably, communications
between models (and the various control routines) are based
upon a message-passing scheme using a global “mailbox” or
pool to which models post and/or retrieve messages.

The foregoing has outlined some of the more pertinent
objects and features of the present invention. These objects
should be construed to be merely illustrative of some of the
more prominent features and applications of the invention.
Many other beneficial resnlts can be attained by applying the
disclosed invention in a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detailed Description of the Pre-
ferred Embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings in which:

FIG. 1 is a block diagram of the system modeling infra-
structure of the present invention which includes a set of
discrete, independent, reusable component models that may
be combined into a dynamically-specified configuration;

FIG. 2 is a block diagram of a representative system
configuration using the set of discrete component models of
FIG. 1;

FIG. 3 illustrates a directed graph of the various object
files that comprise a library of component modules that are
linked together to generate an executable according to the
present invention;

FIG. 3A illustrates the user-specified configuration of
models selected from the library of FIG. 3.

FIG. 4 is a simplified block diagram illustrating registra-
tion of the various discrete component models according to
the present invention;

FIG. § is a simplified block diagram illustrating selection
of particular discrete component models for use in the
system configuration;

FIG. 6 is a block diagram illustrating de-selection of
particular discrete component models that are not necessary
for the system configuration;,

FIG. 7 is a block diagram illustrating a common role
assignment process of the present invention;

FIG. 8 is a block diagram illustrating how components
communicate with each other using a globally-visible mail-
box;

FIG. 9 is a block diagram illustrating a technique for
finalizing connections between neighbors and reducing the
number of redundant parameters among component models;
and

FIG. 10 is a block diagram illustrating synchronizing after

transfer across multiple discrete component models accord-
ing to the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a high level block diagram is
shown of the system modeling infrastructure 10 of the
present invention. As noted above, the infrastructure allows

45

50

55

60

65

4

complex system models to be dynamically constructed from
a library 12 of discrete, independent, reusable component
models 14a . . . 14n. Preferably, the component models are
designed and built free from inter-model dependencies (ie.
an individual component model does not rely on other
component models). In the exemplary embodiment, a sys-
tem model is a computer system, although it should be
appreciated that the principles of the present invention are
not limited to modeling or simulating computer-related
systems. Indeed, the methodology of the present invention
applies equally well to the modeling of any complex system,
whether physical or otherwise (including, for example, the
modeling of complex business operations). Thus, according
to the present invention, a user-specified system model may
comprise any connmected or connectable set of discrete,
independent component models (sometimes referred to as
“modules”), irrespective of any particular application.
Moreover, the infrastructure does not make use or exploit the
particular functionality of individual component modules;
thus, it is envisioned that such modules may (and often will)
be supplied from third parties to the user as compiled (but
non-executable) object files (to protect embedded intellec-
tual property).

One of ordinary skill will further appreciate that the
modeling infrastructure may be put to varying uses. For
example, the infrastructure may be used to assist in the
development and execution of performance evaluation
experiments to predict behavior characteristics of given
system configurations. It may also be used to create reli-
ability models into which faults may be injected to evaluate
system performance. These examples, of course, are merely
representative.

AS secen in FIG. 1, modeling infrastructure 10 also
includes a System_ Main component 16 and a Global _
Registry component 18. The System__Main component 16
receives the user-specified system configuration as an input
and selects the corresponding system component models for
a given simulation run. The Global__Registry component 18
comprises a number of control routines and data structures
that facilitate management of the individual component
models. According to the present invention, each component
model 14 conforms to a standard interface (defined by the
Global_Registry and its functionality) to facilitate initial-
ization of component modules (prior to a simulation run)
and inter-model communication (prior to and during a
simulation run).

FIG. 1 illustrates the various component modules as
“disconnected” or in a free associated state. This “library” of
modules or, more typically, some subset thereof, is then
“connected” into a system configuration for modeling a
given component, subsystem, system or other “abstraction.”
FIG. 2 represents a “connected” set of component models
that has been specified by a given user-supplied system
configuration to the System__Main component as discussed
above. This system configuration includes a User Process
20, a Device Driver 22, a Processor 24, a Host Bridge 26, a
Memory Controller 28, a PCI Bus 30, a Disk Adapter 32 and
several “instances” 34a-34¢ of a Disk Drive. Certain models
are shown to be in “contact™ with each other, which repre-
sents how the devices would actually interface in the system
configuration.

According to the invention, each of the component mod-
els are compiled into object files (e.g., “.0” files) that,
preferably are mot executable independently. Rather, these
object files (in other words, the component modules) reach
execution form only when linked with System_ Main.
Generally, and as illusirated in the directed graph of depen-

5,881,270

5

dency arcs in FIG. 3, the Global Regisiry processes are
compiled first, after which each component module gets
compiled into an object file (not executable). The entire
“set” becomes executable only after linking with System__
Main, which resolves all links to create a run-time “execut-
able” for a given simulation run. The actual linking process
is carried out by a linker, in a known manner. In this way, the
user need mot recompile the entire system configuration
model each time a new component model (namely, a new
object file) is created or an existing model is modified or
added into the system model. This “black box” technique
provides the further advantage of encapsulating the “func-
tionality” of the component model to thereby mask intel-
lectual property embedded in the component model. Of
course, the invention may be practiced using previously
compiled and linked executable modules stored in a class
library.

Thus, according to the preferred aspects of this invention,
each component model is compiled in conjunction with a set
of “global” routines (part of Global_Registry) and, as will
be described, controlled in conjunction with certain data
structures. These routines and data structures are now
described and illustrated in detail.

The infrastructure illustrated in FIG. 1 is preferably
implemented in software running on a computer having a
conventional input devices. These include a keyboard and a
display. A user specifies a system configuration in any
known manner, for example, by entering ASCII text data on
a menu or by entering data in a point and click method (via
a graphical user interface or GUI). The particular entry
technique does not matter to the invention. Thus, the simu-
lation session begins by having the user specify, in a very
simple text format or via a user-friendly GUI, the configu-
ration of the desired multi-component “system” model that
. is to be made up of some subset of the available component
models of the library arranged in a specific configuration.
The following is a representative user-selected system con-
figuration:

Bus_6xx 0

0 Generator_Disk_PIOs_Blue 0 S 0
1 Host_Bridge__ . . . 0so
Bus_6XX_ MX 0

0 Host_Bridge._ . . . 081
1PCL Bridge0S0
Bus_PCI 0

OPCI_Bridge _...0S1

1 Subsystem_ Disk_ Blue 0

2 Subsystem_Disk_ Blue 1

3 Subsystem_ Disk__Blue 2

4 Subsystem_Disk_ Blue 3

5 Subsystem_Disk__Blue 4

6 Subsystem_ Disk_ Blue 5

7 Subsystem_ Disk_ Blue 6

8 Subsystem_ Disk_ Blue 7

9 Subsystem_ Disk__Blue 8
10 Subsystem_ Disk_ Blue 9
11 Subsystem__Disk_ Blue 10

This illustrative system configuration thus includes a num-
ber of different components, several of which (e.g., the
Disk_ Blue subsystem) include multiple “instances.” FIG.
3Ais a graphical representation of this system configuration.

FIG. 4 illustrates a “registration” routine 40 that takes
place during initialization, i.c. before the user enters a
system configuration to be modeled. This global routine is
called by every component model as soon as the executable
is started. It takes as input the *name* of the component
model and returns (to the model) a unique (e.g., an incre-
mented integer) identifier. After each component model has

5

10

20

45

50

55

60

65

6

“registered” by calling this routine 40, the mapping of
component names to unique identifiers is made visible to all
components in the form of a global data structure or “reg-
istry” 45 maintained within Global__Registry. The registry
45 is thus a mapping of component model names (generally
for all the models in the library) to unique identifiers. This
process thus provides dynamic naming registration of pref-
erably all of the component models in the library.

It is now assumed that the user has specified a system
configuration to be modeled and that such coofiguration has
been input to System_ Main. When the executable is run,
System_ Main then executes several additional processes
which alert the specific component models that they are part
of the current “experiment.” These processes include a
“selection” routine, a “de-sclection” routine, a “common
component” routine and certain “verification” (or
validation) routines. Execution of these routines completes
the injtialization of the system configuration.

In particular, as illustrated in FIG. 5, a “first” set of
component models that are necessary for the specified
system configuration are said to be “selected.” On the
contrary, and as seen in FIG. 6, a “second” set of component
models that are unnecessary for the specified system con-
figuration are “de-selected” to ensure that such models do
not consume system resources (during the simulation). Each
of these processes is illustrated with representative examples
merely for discussion purposes. Thus, for example, in FIG.
5 it is assumed that the desired configuration for the given
experiment requires an RAID Disk Adapter #0 50, SCSI Bus
#0 52 and four (4) instances of HP C2247 Disk Drive #0
54a-54d. The “selection” process, in cffect, “wakes up”
each of these entities and informs them that they will be
included in the user-selected configuration. AS previously
noted, each such entity is preferably a discrete component
model built without dependencies on other entities to be
used in the system configuration. FIG. 6 illustrates the
corresponding de-selection process with respect to
SMART?2 Adapter 56, IPI-3 Bus 58 and DAT Tape Drive 60
(collectively, the second set of component models) being
de-selected.

Thus, as illustrated in FIG. 6, after selecting an arbitrary
number (the first set) of component models from the
“library” to build a complex system model of a specific
configuration, at least some (and preferably all) component
models not included are “de-selected” so they can release
any memory or other resources (e.g., threads) that will not
be needed for the current experiment. The de-selection
process code alerts the specific component models not
included that they are not needed for the current experiment.
Each such component then releases any resources (e.g.,
memory or threads) that will not be necessary for the current
experiment. This de-selection process thus improves the
efficiency of the simulation run.

Referring now to FIG. 7, the “common component”
process of the Global__Registry is now described. By way of
brief background, when a set of independent component
models that are to be used to create a multi-component (i.e.,
system) model, one or more of the component models may
take on a “common” role (e.g., main memory) at some fairly
high level degree of abstraction. For example, if there is a
DMA controller component model that expects to access
“main memory” for its activities, this model needs to know
what other component is taking on that role. If, however,
there are two or more potential memory controller compo-
nents in the “library” of component models, the DMA
controller component model does not know in advance
which one will be included in the desired system configu-

5,881,270

7

ration. The present invention addresses this problem by
having one of the component models take on the “common
role” to the exclusion of the other component models.

This is achieved as shown in FIG. 7. Continuing the
example above (but merely for illustrative purposes), it is
assumed that the desired configuration for the given experi-
ment includes the Snake Memory Controller 62 and the Frog
DMA Memory Controller 64. An alternate choice for the
memory controller would be the Gazelle Memory Controller
66. When one of the available memory controller component
models (e.g., controller 62) receives a message that it is
included in the currently desired configuration, it sets a
global variable “MAIN_ MEMORY”™ to iis unique ID as
specified in the registry 45. The DMA Controller 64 which
is also part of the currently-desired configuration, can access
that global variable to determine what component model is
taking on the “common” role of main memory. That con-
troller then uses the global variable MAIN_ MEMORY
during the actual run-time simulation.

Generalizing, according to the invention, a “subset” of
discrete component models that would have an identical role
(at some high level degree of abstraction) in a desired system
configuration are identified. One of the subset of discrete
components is then selected to assume the role to the
exclusion of the other members of the subset. That compo-
nent then globally identifies itself (by setting a global
variable maintained by Global_Registry) and assumes the
role. Other implementations of identifying components tak-
ing on common roles are possible, for example, such a
component could broadcast a message to other components
stating its intention.

Following selection, de-selection and common control
role assumption as illustrated in FIGS. 5-7, System_ Main
verifies that the system configuration is valid. Typically, this
verification involves several steps. Before describing those
steps, it is first necessary to describe another important data
structure implemented and maintained by Global__Registry,
which is referred to herein as a global mailbox or “pool.”
This concept is illustrated in FIG. 8.

‘When the component models have been selected from the
“library,” the independent models (i.e. their instances) need
to be able to communicate with each other both prior to (i.e.,
during initialization) and during the simulation. In order to
keep the component models independent of each other, this
communication must be enabled without any prior knowl-
edge of desired configuration of component model
instances. When the executable is rum, it reads in the
user-specified configuration as previously described. The
System__Main includes code to alert the specific component
models that they are part of the current experiment (through
the “selection” process) and to specify the particular “loca-
tion” of each instance of the component in the desired
configuration. Each instance of a component is directly
connected to ome or more instances of some component
model, namely, its immediate “neighbor(s).” Moreover, as
described above, during the registration process, each com-
ponent model linked into the final executable has a unique
address in the registry 45,

According to the invention, “neighbors” can communi-
cate with each other both before and during the actual
simulation by sending “messages” through a globally acces-
sible “mailbox” or pool 75. Each component watches for
messages addressed to its unique component address that are
placed in the global mailbox 75. The global mailbox is quite
advantageous as it provides a simple vehicle by which
independent component models may communicate with
each other. This obviates use of dedicated mailboxes for

10

15

20

30

35

40

45

50

55

60

65

8

each component. Preferably, the message format identifies
the specific instance of the component for which the mes-
sage is intended.

Messages are thus “addressed” using the umique per-
model identifiers obtained during the registration process.
Message-passing according to the invention may take place
using any of a pumber of different implementations
including, without limitation, calls to a router routine, wak-
ing up a dispatcher thread, placing data in memory locations
that are polled by the individual components (looking for
appropriately addressed messages), and the like. The global
mailbox approach facilitates the provision of a common
“Interface” among the discrete, independent component
models.

As previously noted, the invention also includes 2 mecha-
nism for determining whether one or more of the models
selected is missing from the “library.” This operation pref-
erably occurs after the user specifies the configuration of the
desired multi-component “system” model. In the preferred
embodiment, the process of “alerting” the specific compo-
nent models is done during the selection process via the
global mailbox of FIG. 8 and a message-passing technique.
Thereafter, 2 check is made to make sure that every such
message has been accepted by a component model. If
messages remain outstanding, this status may indicate that a
component model has not been included into the “library” or
that it has been incorrectly coded and cannot accept the
inclusion “messages.” In this simple way, component mod-
¢ls that are missing from the library are detected.

Alternatively, validation is effected by verifying that the
selection and/or de-selection process worked successfully.
In a preferred embodiment, this is achieved by testing to
determine that all component models pick up their messages
from the global mailbox 75 within a given period of time
before initiating the simulation run. If a particular compo-
nent mailbox has not picked up a message, this may indicate
that a given selection or de-selection did not work, and thus
an indication may be provided to the user. This validation
may be done separately or in combination with the library
checking routine. This completes the initialization.

The various run-time processes of the Global_Registry
and System_ Main are now described. According to the
present invention, a “map” of the configuration of compo-
pent model instances specified by the user is maintained.
This enables the infrastructure to communicate to each
instance its particular “view” of the overall system configu-
ration. AS previously described, during initialization,
System_ Main alerts the specific component models that
they are part of the current experiment and specifies the
particular “location” of each instance of each component
mode] in the desired configuration. When a component has
one or more instances in the desired configuration, it needs
to maintain a “map” of where each of its instances exist in
the interconnected set of discrete components. For every
instance specified in the desired configuration, the compo-
nent model maintains a data structure that specifies the next
step (which must be a neighboring component instance) in
the “path” to every other component instance in the desired
configuration.

For example, given the following configuration:

Host__Abstraction #1
|
PCI_Bus #1

|
SCSI_Adapter #1

5,881,270

9

-continued

!
SCSI_Bus #1
[-ScSI_pisk #1

{-—SCS[_Disk)
{»—SCSLDisk ®

the “map” for SCSI__Adapter #1 should contain the follow- 19
ing information:

Destination Next Step (Neighbor)
Host_Abstraction #1 PCI_Bus #1 15
PCI__Bus #1 PCI_Bus #1

SCSI_Bus #1 SCSI_Bus #1

SCSI_Disk #1 SCSI_Bus #1

SCSI_Disk #2 SCSI_Bus #1

SCSI_Disk #3 SCSI_Bus #1

20

In this way, each instance of each coraponent that is part of
the desired configuration has its own personal “map” for
initiating communications with any other component
instance in the desired configuration.

A simple lookup routine is provided in Global_Registry 25
and is used to access the data structure to determine the
appropriate “neighbor” with which to communicate given a
specific target component instance. To enhance efficient
usage of memory, this map may be “compressed” to reduce
its impact on overall simulation performance.

In particular, for large configurations, separately keeping
track of the path to every instance of every component in the
desired configuration is expensive in terms of memory. As
most components only have a small number (e.g., 1-16) of
neighbors, much of this information is repetitious. 35
Furthermore, it is often the case that the path (neighbor
component instance) from a given instance of one compo-
nent is the same for every instance of a second component.

In the example above, all three of the SDSI__Disk instances
are reached from SCSI__Adapter #1 via SCSI_Bus_#1. 49
Therefore, the data structure holding the “map” can be
compressed significantly by storing the “path” information
for ranges of component instances. The above example is
then compressed as follows:

30

45

Destination Next Step (Neighbor)

Host__Abstraction #1 thru #1 PCI_Bus #1
PCI_Bus #1 thru #1 PCI_Bus #1
SCSI_Bus #1 thru #11 SCSI_Bus #1 50

SCSI_Disk #1 thru #3 SCSI_Bus #1 <<<= =3 lines in ore

Given the typical hierarchical configuration of computer
system components, the number of “entries” in the “map” of
each component instance will often be only slightly larger 55
than the number of unique components in the desired
configuration (rather than the number of component
instances).

Generalizing, the user-specified system configuration
identifies not only which component models are included in 60
the first set and how many instances of each component
model are required, but also how each instance in each
component model is “connected” to ome or more other
instances. In other words, the user-specified system configu-
ration contains the set of desired “connections” between all 65
instances of component models of the first set. Any two
component model instances that are “conuected” are able to

10

communicate with each other directly; any two instances
that are not “connected” only communicate through inter-
mediary component model instances. “Communication”
between component model instances refers to the passing of
information between instances. This information may be for
initjalization purposes (i.e. prior to a simulation run), or it
may represent activity occurring between component model
instances during the run itself.

According to the invention, a data structure is thus gen-
erated for each instance of a discrete component model. The
structure comprises a table of entries, with the number of
entries equal to the number of instances of all component
models of the first set (the selected set) a excluding the
instance of the component model for which the data struc-
ture has been created. Each instance of all component
models of the first set (excluding the instance of the com-
ponent model for which the data structure has been created)
thus will have a corresponding entry in the table. The table
enables appropriate communication between different
instances of component models in the set of models selected
to form the system configuration. Each entry is a potential
“target” of communication prior to or during a simulation
run. For entries corresponding to “connected” component
model instances, the entry identifies that same “connected”
component model and the instance number. This signifies
that the component model instance for which the data
structure was created may communicate directly with the
component model instance corresponding to the entry, since
they are “connected.” For entries comresponding to compo-
nent model instances that are not “connected,” the entry
identifies the appropriate “connected” component model
instance (if any) that will function as an intermediary to
enable communication with the component model instance
corresponding to the entry. Continuing the example above,
SCSI__Bus #1 acts as an intermediary for communication
between SCSI__Adapter #1 and the three (3) SCSI_Disks.

Compression is achieved by reducing the number of
entries in a component model instance’s data structure by
combining entries that contain similar information so that an
entry may correspond to a number of “target” component
model instances. In other words, instead of a one-to-one
relationship between entries and potential “targets” of com-
munication (i.e. other component model instances), a one-
to-many relationship may exist between entries and “tar-
ge "’

When running a simulation, there may be parameters that
are “shared” between separate components. For example, a
bus controller often runs its clock-at the same speed or some
multiple of the speed of the bus itself. Rather than having to
specify such parameters multiple times when configuring
independent component models, the infrastructure provides
a mechanism to specify this information once without add-
ing unnecessary dependencies between models. Before start-
ing the actual simulation run, each component instance may
communicate with its “neighbors” in order to obtain values
for parameters that have not been explicitly specified by the
user for the component model in question. Continuing the
above example, and as illustrated in FIG. 9, a Bus Controller
model instance receives information on its internal clock
speed by exchanging pre-simulation information with the
adjoining Bus model instance.

In a multi-component model with many instances, it is
often the case that the destination of a communication from
a given component model instance is often an adjoining
(“neighbor”) component model instance. Therefore, accord-
ing to the invention, the infrastructure provides yet another
mechanism to enable each component model to maintain

5,881,270

11

additional mapping information (in the form of another or
“second” data structure) about an adjoining component
model. Each component model builds its own personal map
of the entire configuration, so it may communicate with any
other component instance (using a valid series of “hops”
from one connected model instance to another). As most
communication typically occurs between neighbors, this
mechanism “caches” information associated with neighbor
component instances rather than looking such information
up in the complete “map” cach time. In addition, special
configuration information may be passed between neighbors
either before or during a simulation. The cache of neighbor
information can be augmented with such special configura-
tion information.

During run-time, and after transferring information
between components, it may be necessary to re-synchronize
the “clocks” of the individual models. This is especially the
case when the clock precision is not sufficient to capture the
full time value and the individual models have been given or
have calculated a “completion time” separately. This prob-
lem is addressed by providing a mechanism whereby one
model is given the power to issue “completion” messages to
all other models involved in the specific transfer (or at least
those requiring synchronization). The selection of a control-
ling component instance for a given transfer may be deter-
mined statically (i.e., before the simulation run) or dynami-
cally (e.g., when the transfer begins). Thus, as illustrated in
FIG. 10, although each model instance proceeds through the
transfer as though its clock is the correct clock, each
respective instance does not finalize the transfer until it
receives (or sends, in the case of a single controlling model)
a completion message.

For example, and as illustrated in FIG. 10, if a Disk
Adapter model instance 80 is sending 16 KB of data over a
PCI Bus model instance 82, and it knows that the current
transfer will complete at time 16.325273, it can “empty” its
buffers in a reasonable fashion until its clock reaches
16.325273, allowing other activities to make use of those
resources as appropriate. However, the instance does not
perform any completion processing (including, perhaps, the
release of the final byte of buffer space) until it receives a
message from the PCI Bus model instance 82 (the “control-
ling” model of this particular transfer) that the transfer is
complete. This helps to eliminate race conditions and
improves overall accuracy.

As noted above, in the preferred embodiment, the infra-
structure takes advantage of a message-passing scheme,
although this is not required. Individual component models
could communicate with each other during initialization and
run-time using, for example, broadcast methods. Message-
passing, which is the preferred approach, is accomplished
through the use of structured data packets and a global
message “mailbox” or pool. The method of execution within
the component modules is not covered by this invention, as
what occurs within a given module is not visible to other
components.

System component modules are designed to be
independent, thereby preserving the “building-block” mod-
eling methodology. The particular details of the system
component models are beyond the scope of the present
invention. The only exceptions to this primary rule are the
System__Main module, which is responsible for initializing
the individual components and connecting them in the
desired configuration, and the Global _Registry module,
whose various structures and resources are visible to all
components. All other modules compiled into the executable
may be included (or not) in the desired configuration or
configurations undergoing analysis.

20

25

35

40

4

50

55

60

65

12

The methodology encourages the creation of modules at
various levels of abstraction, although the user must also
take care to make sure that the individual components can
communicate appropriately for the chosen levels of abstrac-
tion. In addition to emulating discrete system components,
the individual modules may be designed as workload
generators, representing some abstraction of actual applica-
tion or system activity that generates “work” for the model
to perform. Component modules may also be designed to
represent abstractions, such as a Disk Subsystem model, or
a Host model that abstracts away the OS and application
processes or perhaps the processors and memory. This is
convenient for focusing on particular components (i.c.,
abstracting away the rest of the system), or for quick
estimates (e.g., when prototyping), or when resources do not
allow full-scale modeling of every component in the system.
Given that the time scale changes dramatically when tra-
versing the path from processor to secondary storage, mod-
eling efficiency will often require that one “end” or the other
of the system be abstracted to some degree.

The methodology of the present invention provides for
runtime configuration flexibility. Both the configuration of
the individual components and their interconnection is
specified at runtime. As long as any system component
module that may be required is linked into the executable
file, the user is free to reconfigure the components or their
interconnection between simulation runs. The invention
further envisions linking-in object files without source code.
This ensures confidentiality over the actual workings of a
given component while providing an excellent “black-box”
component model for inclusion in larger system models,
thereby protecting intellectual property rights.

AS noted above, the system modeling infrastructure is
implemented in software executable on a computer. A rep-
resentative computer is an IBM RISC System/6000 com-
puter (a reduced instruction set of so-called RISC-based
workstation) running the AIX (Advanced Interactive Execu-
tive Version 4.1 and above), or an Intel-based processor
system running the Windows NT or OS/2® operating sys-
tem. The computer includes a graphical user interface (GUT)
for management and administration including user-specified
entry of the desired system configuration(s). The various
models of the RISC-based computers are described in many
publications of the IBM Corporation, for example, RISC
System/6000, 7013 and 7016 POWERstation and POW-
ERserver Hardware Technical Reference, Order No. SA23-
2644-00. AIX OS is described in AIX Operating System
Technical Reference, published by IBM Corporation, First
Edition (November 1985), and other publications. While the
above platform is useful, any other suitable hardware/
operating system combinations may be used. Thus, for
example, suitable alternative machines include: an IBM-
compatible PC 486 or higher running Novell Unixware 2.0,
an AT&T 3000 series running AT& T UNIX SVR4 MP-RAS
Release 2.02 or greater, Data General AViiON series ruaning
DG/UX version 5.4R3.00 or greater, an HP9000/700 and
800 series running HP/UX 9.00 through HP/UX 9.05.
Motorola 88K series running SVR4 version R40V4.2, a Sun
SPARC series running Solaris 2.3 or 2.4, or a2 Sun SPARC
series ranning SunOS 4.1.2 or 4.1.3.

As the modeling infrastructure is preferably software, one
of the preferred implementations of the invention is as a set
of instructions (program code) in a code module resident in
the random access memory of the computer. Until required
by the computer, the set of instructions may be stored in
another computer memory, for example, in a hard disk drive,
or in a removable memory such as an optical disk (for
eventual use in a CD ROM) or floppy disk (for eventual use

5,881,270

13

in a floppy disk drive), or downloaded via the Internet or
other computer network. In addition, although the various
methods described are conveniently implemented in a gen-
eral purpose computer selectively activated or reconfigured
by software, one of ordinary skill in the art would also
recognize that such methods may be carried out in hardware,
in firmware, or in more specialized apparatus constructed to
perform the required method steps.
The present invention provides numerous advantages
over the prior art. An arbitrary number of component models
are linked into a single executable. Each component model
is uniquely identifiable (e.g., given a unique i.d., preferably
ap integer) in a manner that does not necessitate a recompile
every time a new component is added or an old component
is deleted. During run-time, individual components
“address” each other uniquely without imposing any depen-
dencies between models. Thus, for example, a component
model of a disk drive does not need to know the identifier of
the peripheral bus model that it will be “attached” to during
the run-time simulation. The independent component mod-
ules are connected to create more complex, multi-
component system models.
Having thus described our invention, what we claim as
new and desire to secure by letters patent is set forth in the
following claims:
What is claimed is:
1. A method of simulating a complex physical system
using a plurality of discrete component models each con-
forming to an interface specification, comprising the steps
of:
in response to user-selection of a system configuration to
be modeled, selecting a first set of discrete component
models necessary to model the system configuration;

establishing a global addressable data structure associated
with the set of discrete component models; and

during a simulation, posting messages to and receiving
messages from the global addressable data structure to
enable communications among the set of discrete com-
ponent models.

2. The method as described in claim 1 further including
the step of verifying selection of the discrete component
models prior to running the simulation.

3. The method as described in claim 2 wherein the step of
verifying determines whether the discrete component mod-
els of the first set have unopened messages in the global
addressable data structure.

4. The method as described in claim 1 further including
the step of de-selecting a second set of discrete component
models not necessary to model the system configuration
prior to running the simulation.

5. The method as described in claim 1 wherein each
discrete component model of the first set has a unique
address in the global addressable data structure.

6. The method as described in claim 5 wherein the unique
address is assigned to the discrete component model during
a registration process.

7. A method of simulating a complex physical system
using a plurality of discrete component models each con-
foffming to an interface specification, comprising the steps
of:

in response to user-selection of a system configuration to

be modeled, selecting a first set of discrete component
models necessary to model the system configuration
and de-selecting a second set of discrete component
models non necessary to model the system configura-
tion;

establishing a global mailbox associated with the first set

of discrete component models; and

during a simulation, posting messages to and receiving
messages from the global mailbox to enable commu-

10

20

50

55

60

65

14

nications among the set of discrete component models
of the first set.

8. The method as described in claim 7 wherein each
discrete component model of the first set has a unique
address in the global addressable data structure. N

9. The method as described in claim 8 wherein the unique
address is assigned to the discrete component model during
a registration process.

10. A computer program product in a computer-readable
medium for use in a computer fo simulate a complex system
using a set of discrete, independent component models each
conforming to a predefined interface, the computer program
product comprising:

means responsive to user-selection of a system configu~

ration to be modeled for selecting a set of discrete
component models necessary to model the system
configuration;

means for maintaining 2 global mailbox accessible to all

discrete component models of the set; and

means operative during a simulation for posting messages

to and receiving messages from the global mailbox to
enable the set of discrete component models to com-
municate with each other.

11. The computer program product as described in claim
10 further including means for assigning each discrete
component model an address in the global mailbox prior to
the simulation.

12. The computer program product as described in claim
10 further including means for. verifying selection of the
discrete component models prior to running the simulation.

13. The computer program product as described in claim
12 wherein the verifying means determines whether the
discrete component models of the first set have unopened
messages in the global mailbox.

14. A computer, comprising:

a processor;

an operating system; ‘

means for generating 2 complex system model using a

selected interconnected set of discrete, independent
component models each conforming to a predefined
interface; and

means for maintaining a global mailbox accessible to all

discrete, independent component models of the inter-
connected set; and

means, operative during a simulation, for posting mes-

sages to and receiving messages from the global mail-
box to enable the discrete component models to com-
municate with each other.

15. The computer as described in claim 14 further includ-
ing means for assigning each discrete component model an
address in the global mailbox prior to the simulation.

16. The computer as described in claim 14 further includ-
ing means for verifying selection of the discrete component
models prior to running the simulation.

17. The computer as described in claim 16 wherein the
verifying means determines whether the discrete component
models of the first set have unopened messages in the global
mailbox.

18. The computer as described in claim 14 wherein
connection instances of discrete component models com-
municate with each other using the global mailbox during
the simulation to exchange common parameters.

19. The computer as described in claim 14 wherein
connection instances of discrete component models com-
municate with each other using the global mailbox during
the simulation to verify compatibility.

¥ ¥ ¥ ¥ %

