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67 ABSTRACT

A method of scheduling jobs to be executed by a resource in
a computer system wherein the jobs are grouped in
“classes.” The job classes vying for the resource’s attention
are arranged in a hierarchy. Each job class has a time-

- function value that controls when the job class is selected by
the resource if processing time becomes available. Within a
particular level of the hierarchy, scheduling priorities are
defined by one or more time-based functions, each of which
may be constant or dynamically varying. When constant
time-based functions are used, each job class has a schedule
value that remains fixed with time. When dynamic time-
based functions are used, job class “time-function values”
are modified to alter the timing by which the job class(es)
acquire the resource.

1-13. 33 Claims, 7 Drawing Sheets
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1
COMPUTER RESOURCE PROPORTIONAL
UTTLIZATION AND RESPONSE TIME
SCHEDULING

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to scheduling
resources in a computer system.

2. Description of the Related Art

The general goal of resource scheduling is to order the use
of or access to the resource by tasks to meet a set of
system-level and/or user-level objectives. For example,
these objectives may include resource utilization objectives
among different types (i.e. classes) of tasks, satisfying
wait/response time objectives among different task classes,
providing predictable (i.e. low variance) performance within
and across task classes, allocating resources in a fair manner,
and favoring tasks with short resource usage/holding time
over tasks with long usage/holding time.

Many of these scheduling goals are often in conflict, thus
making resource scheduling a complex design problem.
Given this complexity, many scheduling algorithms bave
been designed to meet only a subset of the above objectives.
While these policies are typically effective within their
intended domains, they often have limited success, or they
do not perform well at all in system environments with
different requirements. Indeed, it is not unusual to find
systems in which the scheduling and dispatching parameters
must be manually adjusted in response to large changes in
customer workload. This requirement gives rise to undesir-
able complexity and overhead. Thus, in addition to support-
ing multiple diverse scheduling objectives, a principal
design challenge is to provide effective control over resource
allocation to achieve the desired performance requirements
for these simultaneous objectives.

The present invention addresses these problems.

SUMMARY OF THE INVENTION

It is a primary object of the invention to achieve propor-
tional usage and response time performance objectives for
the use of or the access to a resource within a unified and
integrated scheduling mechanism of a computer system.

It is a further object of the invention to provide both
“usage” and “response” mode scheduling of a computer
resource, for example, a processor, wherein one mode is
effected within the confines .of a job class that has been
constrained by the other mode.

It is still another object to allow for a system to dynami-
cally adjust to changes in workload requirements for a
resource without manual intervention.

It is another object of this invention to provide general,
flexible and adaptive control over resource allocation to
achieve diverse scheduling objectives and performance
requirements.

It is another object of the invention to schedule a resource
in a computer using a hierarchical scheme that supports the
combination of “usage” and “response” mode objectives in
a general and flexible manner, and to as many levels as
desired.

Another object of the invention is to schedule a resource
using general time-based functions that are driven by
resource utilization and response time objectives, an adap-
tive feedback mechanism, and a notion of resource requester
classes.
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It is yet another object of the invention to schedule a
computer resource for “classes™ of requests, wherein a class
consists of a group of requesters that have the same perfor-
mance objective in relation to other classes of requesters in
the system.

Still another object of the invention is to provide a job
class scheduler that includes a migration mechanism asso-
ciated with each class such that a given job that “taxes” the
resource is migrated to a lower priority job class upon
meeting a set of usage criteria.

A still further object is to use the unified and integrated
methodology of the invention to address and solve known
scheduling problems that have not been adequately solved
by the prior art.

According to the invention, resource scheduling is per-
formed for jobs in job classes within a unified framework
according to “time-functions.” Each job class has a “time-
function” associated with it, the value of which dynamically
controls when the job class is selected for scheduling as the
resource becomes available. A time-function can be any
function of “time” in the most general sense, such as a
formula that determines the certain values returned by the
function given values of a set of variables (or imput
parameters). The “time” parameter can be any measure of
time with respect to the resource and other resources that are
used to evaluate the per-class time-function value. In the
preferred operation, the time-functions can be based on a
general “usage” mode, in which the time parameter is any
measure of the use of the resource or set of resources by the
class, a general “response” mode, in which the time param-
eter is any measure of the waiting for the resource or set of
resources by the class, or any combination of such modes.
Any general order relation, or choice function, can then be
used to determine which class should be selected based on
the per-class time-fimction values. Example choice func-
tions include the maximum and minimum operator, but in
the preferred operation, the choice function is typically the
operator that chooses the minimum value among the time-
function values being considered. Once a job class is
selected for scheduling, a job within that class is provided to
the resource for execution.

According to another feature of the inventive scheduling
framework, the job classes vying for a resource’s attention
are arranged in a general “hierarchy.” The time-functions
associated with the classes of each level of the hierarchy
have the same “mode.” However, each mode is preferably of
equal and consistent viability. Moreover, the system admin-
istrator and/or user can arrange the job classes and the
time-function modes at each level in any manner desired,
and for as many levels as desired. For example, the top level
of the hierarchy may consist of several job classes among
which the resource is allocated to maintain a set of propor-
tional utilization goals. Each of these classes has a usage-
mode time-function associated with it that dynamically
controls which class is selected for scheduling when the
resource becomes available. At the next level of the
hierarchy, each of the top-level classes may comprisc several
subclasses among which the resource is allocated to main-
tain a set of response time objectives. Each of these sub-
classes has a response-mode time-function associated with it
that dynamically controls which subclass is selected for
scheduling when its parent class is selected at the top level
of the hierarchy. This hierarchical scheduling framework is
completely general and can be recursively defined to as
many levels as necessary/desired.

According to another feature of the invention, the collec-
tion of job classes at each level of the scheduling hierarchy
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can be partitioned into “groups” of job classes with the first
group having absolute priority over all other groups, in the
sense that job classes in other groups are not considered for
access to the resource unless all classes in the first group are
empty. The second job class group has absolute priority over
all other groups except the first job class group, and a similar
absolute priority ordering is defined for the remaining job
class groups. The time-functions for the classes in each
group have similar forms in the sense that they are either
constant (i.c they do not vary with “time”), or they vary
dynamically according to either “usage” or “respomse”
mode. For example, a first job class group may comprise
high-priority short system tasks, interactive work (wherein
only a small amount of resource usage occurs between
substantial idle periods), and jobs with real-time contraints
that have absolute priority over other classes of work.

In one preferred embodiment, it is preferably intended to
exploit the job class grouping primarily at the top level of the
hierarchy at any level or combination of levels of the
heirarchy. However, the present invention includes general
use of job class groups together with the scheduling
hierarchy, ’

Several adaptive feedback mechanisms are preferably a
feature of the inventive scheduling framework. One such
technique involves adaptively adjusting the time-functions
with changes in the resource utilization, mix of jobs or any
other trigger or event. Another technique involves migrating
Jjobs from one class to another in the hierarchy as usage of
the resource, or set of resources, exceeds limits specified by
a system administrator and/or a user, and then returning a job
fo its originating class if it becomes idle for a sufficiently
long period of time, as pre-specified by the system admin-
istrator or user.

The foregoing has outlined some of the more pertinent
objects and features of the present invention. These objects
should be construed to be merely illustrative of some of the
more prominent features and applications of the invention.
Many other beneficial results can be attained by applying the
disclosed invention in a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detailed Description of the Pre-
ferred Embodiment,

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings in which:

FIG. 1 is a representative hierarchy of job classes vying
for access to a given resource in a computer or computer
system;

FIG. 2 is an exemplary hierarchy wherein proportional
usage and response time allocations are supplied for a pair
of subgroups that include dynamically varying time-based
functions according to the present invention;

FIG. 3A illustrates the basic operation of the scheduler
mechanism of this invention with the mechanism supported
within the operating system of a computer;

FIG. 3B illustrates the basic operation of the scheduler
mechanism when the mechanism is supported as an adjunct
to the operating system;

FIG. 4 is a flowchart illustrating a Group Selection routine
of the scheduling mechanism;

FIG. § is a flowchart illustrating a Class Selection routine;
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FIG. 6 is a flowchart illustrating a Class Update routine;

FIG. 7 is a flowchart illustrating a Job Enter/Return
routine;

FIG. 8 is a flowchart illustrating a History Update routine;
and

FIGS. 9A-9B are graphs of illustrative usage and
response mode scheduling objectives showing how job
classes are scheduled according to the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

According to the present invention, a “class™ generally
consists of a group of requesters that have the same perfor-
mance objectives in relation to other classes of requesters in
the system. In some instances, a class has only one requester,
As used herein, a requester is often referred to as a “job,”
which is a work request vying for access to a resource in a
given scheduling interval. In other words, in the context of
a computer system, a job is analogous to a requester. Thus,
each “job class” typically has an associated number of jobs
desiring to access or “hold” the resource. Jobs may be
assigned to a given class by the system, by the user, or a
combination of both. Job classes, likewise, may be assigned
by the system or user. As used herein, a “job class” may
include one or more “jobs.”

In a representative embodiment, the resource is a proces-
sor of 2 computer or computer system. The processor, as is
well known, has a bounded number of computational cycles
per unit time. Many different “classes” of jobs desire access
to a processor. The present invention addresses the problem
of scheduling the processor for various classes of requests in
a way that maximizes its efficient use yet still meets a set of
system-level and/or user-level resource consumption objec-
tives.

According to the invention, consumption objectives are
generally of two types: usage and response. Neither usage
nor response mode is favored in the unified and integrated
method of the invention that is described below and, as will
be seen, this methodology has been designed to fully exploit
the functional advantages of each mode, and any desired
combination of these modes. The result is a very robust
scheduling mechanism that facilitates extremely “fine” con-
trol over resource scheduling. In “usage” mode, the resource
is proportionally allocated to job classes, or to a set of job
classes (in a multi-level implementation), based on a pro-
portional utilization (or “usage”™) objective defined for these
classes (or subclasses). In the preferred embodiment of the
invention, as will be seen, the proportional allocation is also
based on an accumulated utilization (in a history-based-
average sense) of the resource by each job class (or sub-
grouping of job classes). Thus, in the case of a single level
implementation involving a group of job classes, class 1 (for
example) may receives 60% of the resource whereas class 2
receives 40% of the resource. In “response” mode, the
resource is allocated fo job classes, or to a set of job
subclasses (in a2 multi-level implementation), to satisfy a
proportional response time objective defined for these
classes or to minimize a weighted sum of a function of the
response times for these classes. Thus, for example, this
objective may dictate that the mean response times of
classes 1, 2 and 3 are to be maintained in the ratio 3:2:1 (or
as close as is feasible). The particular proportional usage
objective or the proportional (or weighted sum) response
time objective(s) may be set by a user, by a system operator,
or by some other means (manual or autonomous).

The present invention may be implemented in a computer
or computer system, but this is not a requirement. As a
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representative example of how usage and responses can be
used, the following is illustrative.

For usage mode, a computer system often has a primary
core of work with some batch processing work that is to be
performed around the primary core. The problem often
encountered is that the batch work gets starved by the core
work, and this is not desired. Therefore, you might want to
ensure that the batch work gets at least 20% of the resource.
Another example is where two departments share the com-
puter and you want to proportionally allocate the resource
among the two departments in a non-equal and controllable
way. For response mode, it is often important in various
computer systems (e.g., transaction processing systems) to
control the mean and variance of response times among a set
of job classes. In this case, it can be important to have the
“priority” of a job in class “i” increase linearly with the time
it spends waiting for the resource. The slope of this linear
function depends upon the class and it is used to control the
response times that each class gets (in an absolute sense, or
relative to the other classes).

The use of time-functions unifies the support of diverse
scheduling objectives within a single scheduling method.
Which job class is selected for scheduling when the resource
becomes available is determined dynamically by the time-
function associated with each class at that epoch. Time-
functions can be any function of “time” in the most general
sense, where any measure of time with respect to the
resource and other resources can be used to evaluate the
time-function values (sometimes referred to as “TF value”).
As used in the preferred embodiment, but not resiricted to
this use, “time” is measured in two general ways. For
example, time is any measure of the use of the resource or
set of resources by the class of requesters (i.e. jobs), in which
case the time-function is said to be in “usage” mode, and/or
time is any measure of the waiting for the resource or set of
resources by the class of requesters, in which case the
time-function is said to be in “response” mode. Without loss
of generality, it is preferably assumed that the job class “i”
is favored over job class j, for i<j, under equal conditions; i.e
the time-function for class i yields a value greater than or
equal to the time-function for class j when both are given the
same set of input parameter values. Class i is referred to as
a “higher class” than class j and, conversely, class j is a
“lower class” than class 1.

In the preferred embodiment, job classes are arranged in
a hierarchy. FIG. 1 illustrates a general case of the hierar-
chical scheme 10. In this example, an entire group of job
classes 1 through K is partitioned into “N” different groups
(labeled 1-N), with each group having absolute priority over
the job classes in the next group in the hierarchy. Thus, a job
belonging to a class in group 2 can be executed only if there
are mo runable jobs from group 1 present in the system.
Similarly, jobs in group 2 have absolute priority over those
in group 3, and so on. In a representative system, job classes
in the highest priority group, namely group 1, are used to do
low level system work having high priority, such as oper-
ating system tasks. User level tasks (such as transaction
processing) have relatively lower priority and therefore
might be placed in group 2 (or perhaps lower). The lowest
priority tasks, such as those that absorb excess cycle time
(e.g., system back-up or other background processing) might
be relegated to the lowest group N.

According to the invention, each group has one or more
job classes associated therewith. Thus, as illustrated, group
1 has job classes 1 through L,, group 2 has job classes
{L+1} through {L,+1,} and so on through group N, which
has job classes {Ly+L,+. .. Ly +1} through {L;+... Ly}
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Moreover, as further illustrated in FIG. 1, a particular job
class may be recursively defined into subclasses to as many
levels as desired. Thus, job class i (whether response or
usage mode is selected) may have associated therewith
subclasses i, through iy, and a particular subclass i; may
likewise have associated therewith (whether response or
usage mode is selected) a still further set of subclasses, %,
through %, and so on. Thus, it is a feature of the present
invention to provide for each class ediry to be recursively
defined. This provides a significant advantage in allowing
much “finer” degree of scheduling control to meet a greater
variety of user/system performance objectives.

FIG. 1 also illustrates another advantageous feature of the
invention. In particular, the time-functions associated with
the job classes in each group in the hierarchy may be either
“constant” or “dynamic”. Thus, within each group, the order
in which job classes gain access to the resource is defined by
time-based functions, each of which may be constant or
dynamically varying according to some measure of time.
‘When constant time-based functions are used, each job class
has a time-function value that remains fixed with time.
‘When dynamically varying time-based functions are used,
the time-function value of a job class generally varies with
respect to some measure of time. The advantages of this
approach are described in detail below.

Further, associated with each set of classes or subclasses
or sub-subclasses, etc. (as the case may be) is a bit mask 12.
Each mask includes a bit (assigned a 0 or 1 value) associated
with a particular class, subclass or sub-subclass, etc. (as the
case may be). The bit provides an indication of whether the
respective class, subclass or sub-subclass, etc., is empty and
thus may be ignored during processing. This optimizes
several of the scheduler routines as will be seen below. As
an alternative to a bit mask, an array of pointers may be used.

Although not illustrated in detail in FIG. 1, each job
within a particular job class is also assigoed a job queue,
which maintains a set of jobs from the corresponding class
that are waiting to acquire the resource. The queue may be
in any convenient database construct, such as a linked list,

The hierarchy of groups, classes and subclasses presented
here represents a very powerful framework to organize jobs
such that jobs are scheduled to have access to resources to
meet their performance objectives. Job classifications, their
performance objectives, and thus the appropriate job class
hierarchy, are set by users or system administrators who
have the authorities and responsibilities to do so. With the
time-function history scheduling, the performance objec-
tives can be hierarchical and/or any combination of propor-
tional usage and response time in addition to the constant
time groups. A specific case of the hierarchy is illustrated in
FIG. 2. It should be appreciated that the hierarchy of FIG. 2
is exermplary and is shown merely to describe the inventive
features with respect to a particular example. It should not
be construed to limit the present invention to the particular
scheduling objective(s) illustrated.

In FIG. 2, three (3) job class groups A, B and C are
provided. At least some of the job classes in group B (for
reasons that will become evident) have subclasses associated
therewith as illustrated. Job classes in group A have asso-
ciated therewith “constant” time-based functions, which
leads to a fixed-priority scheme to differentiate among the
job classes therein. With constant time-functions, jobs in the
second class within the group are scheduled only if there are
no jobs in the first class of the group, jobs in the third class
within the group are scheduled only if there are no jobs in
the first and second class of the group, and so on. Within job

’
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class group A, there may be different types of tasks. Thus,
for example, there are short “system” tasks that need to be
given priority over all other tasks (perhaps with differences
in priority among different job classes). These tasks are
developed by those building the system in the first instance
and thus are “short system tasks” by definition and con-
struction. In addition, there are real-time user (as opposed to
system) tasks that are often next in line for access to the
resource. Such tasks are often scheduled according to a fixed
priority scheme after system tasks are handled but often
before other user tasks are handled. Job class group A may
further include interactive user tasks, which are defined as a
small amount of resource usage between relatively substan-
tial periods of idleness. There may be advantages to giving
these interactive tasks absolute priority over other user tasks
(which may, therefore, fall into job class group B as will be
discussed). The fixed priority scheme provided by constant
time-functions can support these (and other) scheduling
requirements of different types of tasks with respect of
resources of a computer or computer system.

Thus, within the context of job class group A in FIG. 2,
there are system tasks with priority over real-time tasks with
priority over interactive tasks, all of which are in the same
group. The fixed priority scheme (via the constant time-
functions) within the group is used to order the access of the
resource by the different types of tasks within the group.

A dynamically varying time-based function is preferably
associated with each job class in the second group B. In this
illustrative example, classes B.1 through B.L are subject to
a usage mode objective {40%, 20%, . . . 5%}, and the
individual classes B.1, B.2, . . . are subject to a response
mode objective. Thus, subclasses of B.1 have a response
mode objective {10:3: . . . 1} and subclasses of B.2 have a
response mode objective {8:4: . . . 1}. The individual
parameters of each objective (whether usage or response
mode) are, of course, individually selectable and, if desired,
dynamically adjustable. Aliernatively, such parameters may
be pre-assigned at some default value. Adjustment of the
parameter values comprising the particular objective may
occur upon a given event, upon the expiration of a certain
time, through use of an adaptive feedback that adjusts the
weights dynamically, through a knowledge-based expert
system, or via some other known techmique. Thus, for
example, one “event” might be temporal-based such as
arrival at a particular time of day; altematively, the event
may be load-based such as a trigger that sets a new objective
when a given threshold of system usage is reached.

Of course, the fact that usage mode is implemented at the
class level and response mode is implemented at the sub-
class level is merely illustrative. As noted above, neither
usage nor response mode is favored in the implementation.
Both are equally viable and available for any particular
dynamic time-function(s). In general, the per-class time-
functions may have any functional form. In the preferred
embodiment, the absolute value of each per-class time-
function is monotonically non-decreasing (meaning that the
time-function value at time “t” is always greater than or
equal to the time-function value at time ¢ for all ' greater
than f). This implies that (among other things), job assign-
ment from a given job class that has been provided access to
the resource preferably occurs on a first come, first serve
basis, as is desirable to provide predictable performance
within and across job classes. Any general choice function
can then be used to determine which job class within group
B should be selected based on the per-class time-function
values. Once a particular class is chosen, this procedure of
evaluating per-class time-function values and choosing a
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class based on these values is recursively applied through
the appropriate parts of the scheduling hierarchy.

" As also seen in FIG. 2, in the representative example,
another fixed-priority scheme is used for the job classes in
the third group C by assigning a constant time-based func-
tion with each class. The set of classes C is (primarily)
intended for system-level background work. A non-empty
set C can lead to starvation and otker system problems if it
is not employed carefully and correctly, and thus group C
generally is either disabled (by setting its size to 0) or only
used by tasks under the sponsorship of other tasks in groups
A or B. Groups A and/or C may be empty groups.

FIG. 2 thus illustrates how the scheduling mechanism
supports the combination of usage and response modes
within or across different hierarchical levels in a very
general and flexible manrer. For example, a user or the
system may select usage mode or response mode. Thus, in
a one-level implementation, a system value can be sct to
switch between either the usage mode or response mode. For
a two-level implementation, a system can schedule the
resource for classes of requests using usage (or response)
mode. Once a certain class is selected to receive the resource
next, the selection of a particular subclass within that class
can be based on response (or usage) mode. FIG. 2 shows the
multi-level implementation with job classes in group B
allocated via usage mode, with individual subclasses within
a job class alocated via response mode.

A migration mechanism may be associated with each job
class. In particular, a job of one class may be migrated to
another lower class upon its exceeding a set of criteria based
on the job’s use of resources. The distance of how far the
task is migrated is defined by a migration rate associated
with the job class. A class to which a job is initially assigned
is the “base class” for the job. Under certain circumstances,
a job class (and/or job) may be moved higher up the
hierarchy to a higher class. An example of this is set forth
below in addressing the problem of “priority inversion.”

Preferably, job classes in group B are considered only
when there is no ready work in group A, and group C is
considered only when there is no ready work in A and B.
This hierarchical scheme is used together with the migration
mechanism associated with each class, which drops a job to
a lower class (within or beyond its current group ) upon
exceeding the resonrce criteria associated with the class.
Thus, in one illustrative embodiment, a job enters group B
either because its base class is contained in B, or because the
job is (eventually) migrated into one of the job classes of
group B upon exceeding the migration criteria associated
with its group A classes. In this embodiment, jobs enter
classes in A and C because their base classes are in A and C,
respectively. In addition, preferably a job is returned to its
base class upon becoming idle for a substantial period of
time.

FIGS. 3A and 3B are simplified block diagrams of how
the scheduler mechanism operates within a computer or
computer system to provide a resource with jobs from the
job classes. In this example, resource 14 is the processor or
other processing element(s) of the system 40. Computer
system 40 includes an operating system 42 supported in
memory 44. In the embodiment of FIG. 3A, the scheduler
mechanism 46 (sometimes referred to as a dispatcher) is
implemented as an operating system utility. In the embodi-
ment of FIG. 3B, the scheduler is a software application
executed by the operating system 42. In either case, the
scheduler includes a job queune 48 associated with each job
class. The basic function of the scheduler mechanism is to
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obtain jobs from the job queues and provide them to the
resource for execution. As illustrated in the FIG. 3B
embodiment, the resource may include a wait queue 45 that
holds jobs scheduled for execution by the resource. The
scheduler mechanism obtains jobs from the job queues and
places them in the wait queue for execution by the resource.
The wait queue is not required in the FIG. 3A embodiment.

The various operational logic of the scheduling mecha-
nism are now described in the following preferred embodi-
ment. The Group Selection and Class Selection routines
(FIGS. 4-5) are used to assign the available resource to a job
from an appropriate job class or subclass within a selected
group. After a job from a particular class is selected in such
manner, the Update routine (FIG. 6) recalculates the
dynamic time-function value for the job class in preparation
for the next selection cycle. The History Update (FIG. 8)
routine calculates the time-function values and maintains
necessary data to ensure all the job classes would meet their
performance objectives (in contrast to a single job class
maneuver in the Update routine). The Job Enter/Return
routine (FIG. 7) provide a possible migration mechanism to
penalize jobs that use resources beyond the intended limits.

FIG. 4 is a flowchart illustrating the Group Selection
routine. This process is used to select a particular group for
processing. It begins at step 50 by finding the first non-~
empty class in the hierarchy. To this end, the bit mask for the
hierarchy is searched and job classes associated with “0”
entries in the mask are ignored for processing efficiency. At
step 52, a test is performed to determine if a first non-empty
class has been found. If not, the routine exits at step 54. If
the outcome of the test at step 52 is positive, the routine
continues at step 56 to test whether the job class belongs to
a group having dynamic time-functions. If not, then the job
class belongs to a group having constant time-functions. In
the latter case, the routine continues with step 58 to select a
job from the class. This is preferably the job within that class
which has been waiting the longest to use the resource. The
routine then exits. If the outcome of the test at step 56 is
positive, the routine continues at step 60 to call a Class
Selection routine.

The Class Selection routine is illustrated in the flowchart
of FIG. 5. This routine is recursively applied to the hierarchy
as needed for the dynamic time-function groups. Since the
time-function values for each job class or subclass change
over time and at different proportional ratios, the Class
Selection routine compares all the time-function values of
all non-empty classes within a group before making the
selection. It begins at step 62 by initializing temporary
variables: “save_TF_valué” (to value TF[I]), “save__
class_index” (to value I) and current_ class__index (to value
I). At step 64, the current__class__index is incremented. The
routine then continues at step 66 to test whether all classes
have been evaluated. If not, a test is performed at step 68 to
determine if the class for the current__class_index is empty
(which, as noted above, can be done using the bit mask). If
the outcome of the test at step 68 is positive, the routine
cycles back to step 64 and increments the current_class
index. If the outcome of the test at step 68 is negative,
however, a test is performed at step 70 to determine whether
THcurrent_ classindex] is less than save__TF_value. If the
outcome of the test at step 70 is negative, the routine cycles
back to step 64 and the current_ class__index is incremented.
If, however, the outcome of the test at step 70 is positive, the
routine continues at step 72 and sets save_TF_ value=TF
[current_class_index] and save_ class index=current__
class__index and then returns to step 64. Alternatively, if the
outcome of the test at step 66 is positive, indicating that all

20

25

45

50

60

65

10

classes have been checked, the routine branches to step 74
to select a job from the job class of save_class__index. At
step 76, a test is then performed to determine if the job class
selected is associated with response mode objectives. If not,
the routine exits at step 78. If, however, the job class is
associated with response mode, a Class Update routine is
called at step 80.

The Class Update routine is illustrated in FIG. 6. This
routine “prepares” a next job in the class to be selected
during a next iteration. In the context of usage mode, step 80
is reached after adding the resource usage (from the job that
just finished executing) to a cumulative usage for the job.
Turning to the flowchart, the routine begins at step 82 by
testing whether the class at issue is in usage mode. If so, the
routine continues at step 84 to update cumulative usage by
last class i resource usage and setting TF[i] to a new value
using the following (equation (1)):

time-function-value=function (cumulative usage, weight)
where the weight for the job class is a parameter value in the
particular usage time objective. The above function ensures
that each job class will obtain its appropriate shares of
resource usage while the usage accumulations grow at
different rates. After step 84, the routine ends. If the outcome
of the test at step 82 is negative, however, the routine
continues at step 88 to set TF[1] using the following equation
(2) for the next job on the run queue for class i:

time-function-value=function (waiting time, weight)
where the waiting time reflects how long the job class has
been waiting for the resource and the weight for the job class
is a parameter determined by the response time objective.
After step 88, the routine exits.

FIG. 7 illustrates a Job Enter/Return routine that is used
to place a particular job in a job queue initially or following
its execution by the resource. The routine begins at step 90
to determine if the job of class_index has been idle longer
than some pre-defined idle__limit. If so, class_ index is set
equal to base__class in step 92. The job is then placed on the
job queue of class_index at step 94 and the routine ends. If
the outcome of the test at step 90 is negative, the routine
continues by testing at step 96 to determine whether job
cumulative resource usage is greater than a limit that is set
for jobs in the class. If not, the routine branches to step 94.
If, however, the outcome of the test at step 96 is positive, the
routine continues at step 98 and sets class_index equalto a
target migration class. The routine then continues with step
94 as previously described. Steps 92 and 98 thus implement
job migration across the hierarchy.

FIG. 8 illustrates a History Update routine that will
recalculate the time-function values for each job class that
has a dynamic time-function. This routine begins at step 100.
At step 102, a test is made to determine whether class i is
associated with usage mode. If so, the routine continues at
step 104 to apply an aging function (if necessary) to the
cumulative usage for class i. The routine then exils. An
example for the aging scheme is multiplying TE{i] by a
constant (less than 1). The aging function provides several
advantages. If a class of jobs has not been using the resource
for some period of time (e.g., the last 24 hours), it might
monopolize the resource in order to make up for “lost” time.
The aging function prevents such biasing.

Alternatively, if the outcome of the test at step 102 is
negative, then response mode is in effect. Then, the routine
continues at step 106, updating TF[i] using equation (2)
described above and the routine ends. At the end of this
routine, all the job classes in the response mode will have
their time-function values recalculated with respect to a new
scheduling epoch (thus, with new waiting time). The History
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Update routine can be used at every selection cycle.
However, this routine is used at a fixed ttme interval, which
is user/system definable. For efficiency reasons, the latter
approach is preferred.

It should be appreciated that equation (1) is thus executed
when the scheduler operates in usage mode (to allocate
according to a usage time objective) and that equation (2) is
executed when the scheduler operates in response mode (to
allocate according to a response objective). Within any
particular level (whether class, subclass, sub-subclass, etc.),
preferably only one type of mode (either response or usage)
is implemented. In usage mode, the time-function value for
each class is preferably determined by the accumulated
usage by all the jobs in the class. In response mode, the
time-function value is preferably determined by the waiting
time of the oldest job in the class. It should be noted that the
use of the “oldest” job follows directly from the use of
monotonically non-decreasing respomse mode time-
functions. If the time-functions were not non-decreasing,
then the time-function value for each class could be based on
the highest time-function value after evaluating all jobs in
the class. All such variations are within the scope of the
present invention.

it should be appreciated that, in usage mode, all time-
function values are positive and are moving “forward” in
time. The scheduler mechanism thus checks for “minimum”
values to meet the given utilization objective. Each time the
resource is used, the job class gets “charged” for it and jobs
move forward along the given time-function value curve. In
response mode, time-function values increase with time and
scheduling is typically based on selecting “maximum” val-
ues (i.e. highest time-function value jobs). For purposes of
a unified methodology, the present invention processes the
response mode time-function value curve with “negative™
weight (as will be secen below) such that, in effect, “mini-
mum” values are selected just as they are during usage
mode. This presents a “wnified” method and processing
scheme irrespective of whether usage or response mode is
involved.

Thus, in usage mode, the scheduler checks for the mini-
mum value which identifies the class that is furthest away
from its proportional utilization objective relative to the
other classes at the time. In response mode, the scheduler
checks for the largest time-function value among all jobs in
the group; however, given non-decreasing functions, this
simplifies to finding the largest time-function value among
the oldest job in each class.

The following describes representative examples of
scheduling under usage-mode time-functions and response-
mode time-functions to illustrate these concepts. Consider
the case where a pair of job classes A:B (or subclasses, or
sub-subclasses, etc.) are scheduled according to a usage-
mode objective of {80:20}, ie class A is to receive 80% of
the resource and class B is to receive 20% of the resource
over a particular interval when both jobs are present. With
this objective, a representative “weight” for the usage-mode
time-function of class A (as described above with respect to
equation (1)) is {3} or {4} corresponding to a representa-
tive “weight” for the class B usage-mode time-function of
{4} or {1}. For the purposes of this simple example, assume
the cumulative usage for both classes is initially 0, the job
queue for both classes contains many jobs, and the process-
ing requirements of all jobs is 1 unit. According to the
preferred operation of the invention, the job class with the
“minimum” time-function value is always selected when-
ever a scheduling decision is made. Thus, when the resource
becomes available, the scheduler will select the first job
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from class A for processing, since higher classes are pref-
erably chosen to arbitrate ties. Upon completion, the time-
function value for class A will be updated to % (i.e O plus 1
unit multiplied by %). The next scheduling decision will
select the first job from class B for processing, since class
B’s time-function value is 0. Upon completion of this job,
the time-function value for class B will be updated to 1 (i.c
Oplus 1 unit multiplied by 1). Continuing in this manner, the
next four scheduling decisions will seléct a job from class A
(since ties are won by class A), resulting in a time-function
value of 1.25 (0.25 plus 4 units multiplied by %) for class A.
The next scheduling decision will select a job from class B,
resulting in a time-function value of 2 (1 plus 1 unit
multiplied by 1). This continues as long as there are jobs in
the job queue of both classes, subject to history updates. A
graph of this operation is shown in FIG. 9A.

For a representative example of scheduling under
response-mode time-functions, consider the case where
three job classes A:B:C (or subclasses, or sub-subclasses,
etc.) are scheduled according to per-class time-functions that
vary linearly with the amount of time a job in the class
spends waiting for the resource under a response-mode
objective of {4:2:1}, i.e the per-class time-function for a job
is simply the “weight” for its class multiplied by the amount
of time it has spent waiting in the job queue. For the
purposes of this simple example, assume that each job class
has a single job which immediately returns to its job queue
after receiving 1 unit of processing, and the waiting time of
all jobs is initially 0. To be consistent with the minimum
operator as the choice function, we consider the weights
{-4:-2:~1} for the classes A:B:C for the purposes of this
simple example. Since the time-function values are initially
all 0 (due to 0 waiting times), the scheduler will first select
the job from class A for processing, since higher classes are
preferably chosen in the case of ties. Upon completion at
time 1, the time-function values for classes A, B and C are
equal to 0, -2 and -1, respectively. Since the class 2
time-function value is now smallest, this results in the
selection of the class B job, and upon its completion at time
2, the time-function values for classes A, B and C are equal
to -4, 0 and -2, respectively. The job in class A is then
selected, and upon its completion at time 3, the per-class
time-function values are 0, =2, —3. This causes the job in
class 3 to be selected next, yielding time-function values of
—4, -4 and O when it completes at time 4. The operation of
the scheduler continues in this manner for this simple
example. A graph of this operation is shown in FIG. 9B.

In the preferred embodiment, the proportional time-
function values (namely, the usage or response mode objec-
tive parameters) for the job classes are adjustable. Thus, for
example, the vector of values is adjusted using an adaptive
feedback mechanism that “adapts” the values to changing
conditions. A “default” set of values would then be run when
total system utilization was at a given value (e.g., 100%);
when the total system utilization was reduced to a second
value (e.g., 75%, a new set of values would be run, and so
on. Alternatively, the values for the job classes may be
changed upon the occurrence of a particular event or time of
day, or these values may be optimized or otherwise adjusted
according to a knowledge base using an expert system. Yet
another alternative is to modify the values upon a given mix
of jobs. Again, all such variations are within the scope of the
present invention.

As previously noted, the present invention implements
other adaptive feedback mechanisms besides adaptively
adjusting the time-functions (or time-function parameters)
with changes in the utilization, the mix of jobs, etc. Thus, the



US 6,263,359 Bl

13

migration of jobs from one class to another in the hierarchy
as resource usage exceeds limits specified by the system
administrator and/or user, is another such mechanism,
Another such feedback mechanism involves returning to the
job’s base class upon not using the resource for some
pre-specified period of time. Another adaptive feedback
mechanism addresses the problem of “priority inversion.”

In particular, priority inversion is the situation where a
high time-function value requester is blocked from using the
current resource because it is also a requester for another
highly-contented resource that is held by a low time-
function value requester. This can be a serious problem as
the low value requester prevents the high time-function
requester from meeting its performance objective. This
problem is solved using the inventive framework by allow-
ing the low time-function requester to be placed in the class
of the high time-function value for the duration of holding
the other highly contented resource, after which the low
time-function requester is returned to its original job class.
This is an adaptive feedback mechanism.

As a concrete example of this mechanism, assume that
there are two resources, a CPU and a logical lock. The use
of CPU is scheduled using the time-function scheme. Job A
is in a job class with a higher proportional usage than job B’s
class. It is assumed job B holds the lock but its time-function
value is low in comparison to many other jobs in the system.
Job A has a time-function that entitles it to have the CPU
much earlier than job B, but job A is blocked from using the
CPU because of the lock held by job B. According to the
present invention, job B inherits the time-function of job A’s
class for accessing the CPU until job B releases the lock and
makes it available to job A. Job B is then returned to the job
class it was in before it was bumped up to the other class.
Known scheduling mechanisms do not have the capability of
solving the priority inversion problem in this unique way.

The scheduler of the invention is preferably run on a
computer, such as an IBM RISC System/6000 computer (a
reduced ‘instruction set of so-called RISC-based
workstation) running the ATX Operating System (Advarced
interactive Executive Version 4.1 and above), or an Intel-
based processor system running the Windows NT or OS/2®
operating system. The computer includes a graphical user
interface (GUI) for management and administration. The
various models of the RISC-based computers are described
in many publications of the IBM Corporation, for example,
RISC System/6000, 7013 and 7016 POWERstation and
POWERserver Hardware Technical Reference, Order No.
SA23-2644-00. AIX OS is described in AIX Operating
System Technical Reference, published by IBM
Corporation, First Edition (November 1985), and other
publications. While the above platform is useful, any other
suitable hardware/operating system combinations may be
used. Thus, for example, suitable alternative machines
include: an IBM-compatible PC 486 or higher running
Novell UnixWare 2.0, an AT&T 3000 series running AT&T
UNIX SVR4 MP-RAS Release 2.02 or greater, Data General
AViiON series running DG/UX version 5.4R3.00 or greater,
an HP9000/700 and 800 series running HP/UX 9.00 through
HP/UX 9.05. Motorola 88K series running SVR4 version
R40V4.2, a Sun SPARC series running Solaris 2.3 or 2.4, or
a Sun SPARC series running SunOS 4.1.2 or 4.1.3.

One of the preferred implementations of the invention is
an operating system utility, namely, a set of instructions
(program code) in a code module which may, for example,
be resident in the random access memory of the computer.
Until required by the computer, the set of instructions may
be stored in another computer memory, for example, in a
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hard disk drive, or in a removable memory such as an optical
disk (for eventual use in a CD ROM) or floppy disk (for
eventual use in a floppy disk drive), or downloaded via the
Internet or other computer network. Thus, the present inven-
tion may be implemented as a computer program product for
use in a computer. In addition, although the various methods
described are conveniently implemented in 2 general pur-
pose computer selectively activated or reconfigured by
software, one of ordinary skill in the art would also recog-
nize that such methods may be carried out in hardware, in
firmware, or in more specialized apparatus constructed to
perform the required method steps.

While the term “resource” has been used herein in relation
to a processor, it should be appreciated that this term should
be broadly construed to cover any physical or logical device
or component (whether hardware or software, or some
combination thereof) of a computer or computer system that
has some bounded capacity consumable at some given rate.
Thus, a “resource” as used herein may refer, for example, to
a processor (which operates at n cycles per second), a
memory (whose storage may be reclaimed at n bits per
second), a communications link (whose capacity may be
allocated as a function of size and time), a database, a lock,
etc. Moreover, one of ordinary skill in the art will appreciate
that the invention may be practiced in any type of computer
system environment including a uniprocessor system, a
system having a group of tightly-coupled processors, or in a
networked environment with a loose cluster of computers.
Moreover, the term “job” is not intended to limit the
invention to any particular operating system or environment.
A “job” is analogous or equivalent to a task, a process, an
execution thread, a requester or, in general, any “unit” or
work that consumes a resource.

The present invention provides significant advantages
over the prior art. Known resource scheduling mechanisms
do not provide an integrated framework under which both
usage and response mode scheduling may be implemented.
Even with respect to the respective modes, such known
schemes do not provide for the level of contro] available by
the dynamic time-based functional approach described
above. In addition, the present invention advantageously
exploits the concept of 2 job class “hierarchy” wherein at
one level, job classes are physically partitioned into groups
having absolute priority over each other and, at another
level, individual classes are logically partitioned into a
recursive array of subclasses. Likewise, subclasses may be
logically partitioned to an even finer extent. As above,
adaptive feedback mechanisms may be used to modify time
function values up and down the hierarchy in a dynamic
manner.

These and other features of the present invention enable
the integrated methodology of this invention to address and
solve known scheduling problems within a new framework.
As an example, one such problem is known as “priority
inversion.”

Summarizing, the present invention provides both pro-
rated resource utilization (usage mode) and pro-rated
resource response time (response mode) within a single
framework. The scheduling mechanism advantageously pro-
vides pro-rated resource response time within categories of
pro-rated resource utilization, or pro-rated resource utiliza-
tion within categories of pro-rated resource response time.
Thus, for example, in the case of usage mode, multiple
categories of work are allowed resource usage time in ratios
specified by the user or the system, such as different per-
centages for which the total equals 100 percent. Unused
cycles to which a category is entitled are allocated in
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proportion to the ratios specified by the user. In the case of
response mode, multiple categories of work are provided
resource response delays to achieve a general objective
function specified by the user or the system, such as mini-
mizing a weighted sum of a function of the per-class
response times or achieving mean response delays in pre-
defined ratios. Unused cycles to which a category is entitled
are allocated in proportion to the ratios specified by the user.

The scheduling mechanism of the present invention
makes it possible to control effectively the allocation of
resources in a general, flexible and adaptive manner. In
addition, various mechanisms are used to dynamically adjust
the per-class time-functions in response to changes in the
system workload so that the desired user or system objec-
tives are continuously satisfied. Similarly, diverse sets of
time-functions are employed during different periods of
system operation to achieve the desired scheduling objec-
tives over the comresponding time intervals.

Having thus described our invention, what we claim as
new and desire to secure by letters patent is set forth in the
following claims.

What is claimed is:

1. A method of scheduling jobs to be executed by a
resource in a computer system, comprising the steps of:

organizing the jobs into a hierarchy comprising groups of

job classes, wherein at least one group of job classes
includes at least one job class having a set of subclasses
associated therewith;

proportionally allocating the resource to the hierarchy

according to a usage objective;

proportionally allocating the resource to the hierarchy

according to a response objective; and

scheduling job classes for execution to satisfy an objec-

tive selected from the group of objectives consisting of
the usage objective, the response time objective and a
combination of the usage and response time objectives.

2. The method as described in claim 1 wherein the usage
objective proportionally allocates the resource to job classes
within a given group.

3. The method as described in claim 2 wherein the
response objective proportionally allocates the resource to
subclasses within a particular job class of the job classes
with the given group.

4. The method as described in claim 1 wherein the
response objective proportionally allocates the resource to
job classes within a given group.

§. The method as described in claim 4 wherein the usage
objective proportionally allocates the resource to subclasses
within a particular job class of the job classes with the given
group.

6. The method as described in claim 1 wherein at least a
first group of job classes has a higher priority than a second
group of job classes.

7. The method as described in claim 6 wherein the first
group of job classes comprises job classes comprising short
system tasks, inferactive tasks and jobs with real-time con-
straints.

8. The method as described in claim 7 wherein each of the
job classes in the first group is associated with a constant
time-function.

9. The method as described in claim 7 wherein each of the
job classes in the second group of job classes is associated
with a dynamic time-function.

10. The method as described in claim 1 further including
the step of modifying the response time objective.

11. The method as described in claim 10 wherein the
response time objective is modified by adaptively adjusting
time-function values associated with ome or more job
classes.
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12. The method as described in claim 1 further including
the step of modifying the usage time objective.
13. The method as described in claim 12 wherein the
usage time objective is modified by adaptively adjusting
time-function values associated with one or more job
classes.
14. The method as described in claim 1 further including
the step of migrating a job between job classes of a group.
15. The method as described in claiin 14 further including
the step of returning the job to an originating job class if the
job does not access the resource within a given time.
16. A method of scheduling jobs to be executed by a
processor in a computer system, comprising the steps of:
organizing the jobs into a hierarchy comprising job
classes, wherein at least one job class has a set of
subclasses associated therewith; '

proportionally allocating the processor to the hierarchy
according to a usage objective;

proportionally allocating the processor to the hierarchy

according to a response objective; and

scheduling job classes for execution to satisfy an objec-

tive selected from the group of objectives consisting of
the usage objective, the response time objective and a
combination of the usage and response time objectives.

17. The method as described in claim 16 wherein the
usage objective proportionally allocates the processor to the
job classes.

18. The method as described in claim 17 wherein the
response objective proportionally allocates the processor to
subclasses within a particular job class.

19. The method as described in claim 16 wherein the
response objective proportionaily allocates the processor to
the job classes.

20. The method as described in claim 19 wherein the
usage objective proportionally allocates the processor to
subclasses within a particular job class. :

21. The method as described in claim 16 further including
the step of dynamically adjusting the response objective.

22. The method as described in claim 16 further including
the step of dynamically adjusting the usage objective.

23. The method as described in claim 16 furtber including
the step of selectively migrating a job between job classes.

24. The method as described in claim 23 further including
the step of selectively returning the job back to an originat-
ing job class if the job does not access the resource within
a given time.

25. A computer, comprising:

Pprocessor,

an operating system, and

a scheduler run by the operating system for scheduling

jobs to be executed by the processor, the scheduler

comprising:

means for organizing the jobs into a hierarchy com-
prising job classes, wherein at least one group of job
classes includes at least one job class having a set of
subclasses associated therewith;

means for proportionally allocating the processor to the
hierarchy according to a usage objective;

means for proportionally allocating the processor to the
hierarchy according to a response objective; and

means for scheduling jobs for execution to satisfy the
usage and response time objectives.

26. A computer program product in a computer-readable
medium, comprising:

means for organizing the jobs into a hierarchy comprising

job classes, wherein at least one group of job classes
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includes at least one job class having a set of subclasses
associated therewith; .

means for proportionally allocating the processor to the

hierarchy according to a usage objective;

means for proportionally allocating the processor to the

hierarchy according to a response objective; and
means for scheduling jobs for execution fo satisfy the
usage and response time objectives.

27. A method of scheduling jobs to be executed by a
resource in a computer system, comprising the steps of:

proportionally allocating the resource to a set of job

classes according to a response mode objective,
wherein each of the job classes has associated therewith
a monotonically non-increasing time-function value;
and

scheduling job classes for execution to satisfy the

response mode objective.

28. The method as described in claim 27 wherein the
time-function value for each job class is determined by a
waiting time of an oldest job in the job class and the job
classes are scheduled at each scheduling epoch by selecting
a given job class having a minimum time-function value.

29. A method of scheduling jobs to be executed by a
resource in a computer system, comprising the steps of:

proportionally allocating the resource to a set of job

classes according to a usage mode objective, wherein
each of the job classes has associated therewith a
monotonically non-decreasing time-function value;
and

scheduling job classes for execution to satisfy the usage

mode objective.

30. The method as described in claim 29 wherein the
time-function value for each job class is determined by an
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accumulated usage by all the jobs in the job class and the job
classes are scheduled at each scheduling epoch by selected
a given job class having a minimum time-function value.
31. A method of scheduling jobs to be executed by a
resource in a computer system, comprising the steps of:
proportionally allocating the resource to a set of job
classes according to a response mode objective,
wherein each of the job classes has associated therewith
a monotonically non-increasing time-function value;

proportionally allocating the resource to a set of job
classes according to a usage mode objective, wherein
each of the job classes has associated therewith a
monotonically non-decreasing time-function value;
and

scheduling job classes for execution to satisfy the

response mode objective, the usage mode objection, or
a combination of the response mode and usage mode
objectives.

32. The method as described in claim 31 wherein the
time-function value for each job class associated with the
response mode objective is determined by a waiting time of
an oldest job in the job class and the job classes are
scheduled at each scheduling epoch by selected a given job
class having 2 minimum time-function value.

33. The method as described in claim 31 wherein the
time-function value for each job class associated with the
usage mode objective is determined by an accumulated
usage by all the jobs in the job class and the job classes are
scheduled at each scheduling epoch by selected a given job
class having a minimum time-function value.
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