202

Brent O. Hatch (5715)

HATCH, JAMES & DODGE, PC
10 West Broadway, Suite 400
Salt Lake City, Utah 84101
Telephone: (801) 363-6363
Facsimile: (801) 363-6666

Stephen N. Zack (admitted pro hac vice)
Mark J. Heise (admitted pro hac vice)
BOIES, SCHILLER & FLEXNER LLP
Bank of America Tower — Suite 2800
100 Southeast Second Street

Miami, Florida 33131

Telephone: (305) 539-8400

Facsimile: (305) 539-1307

Attorneys for Plaintiff The SCO Group, Inc.

COPY

Robert Silver, Esq. (admitted pro hac vice)
BOIES, SCHILLER & FLEXNER LLP
333 Main Street

Armonk, New York 10504

Telephone: (914) 749-8200

Facsimile: (914) 749-8300

Frederick S. Frei (admitted pro hac vice)
Aldo Noto (admitted pro hac vice)

John K. Harrop (admitted pro hac vice)
ANDREWS KURTH LLP

1701 Pennsylvania Avenue, Ste. 300
Washington, DC 20006

Telephone: (202) 662-2700

Facsimile: (202) 662-2739

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF UTAH

THE SCO GROUP, INC.
Plaintiff/Counterclaim Defendant
vs.

INTERNATIONAL BUSINESS
MACHINES CORPORATION

Defendant/Counterclaim Plaintiff

DECLARATION OF SANDEEP
GUPTA IN SUPPORT OF SCO’S
OPPOSITION TO IBM’S MOTION
FOR PARTIAL SUMMARY
JUDGMENT

Case No. 2:03-CV-0294 DAK

Honorable Dale A. Kimball
Magistrate Judge Brooke C. Wells

DECLARATION OF SANDEEP GUPTA

My name is Sandeep Gupta and I am employed by The SCO Group, Inc. My
office is located at 430 Mountain Avenue, Murray Hill, NJ 07974. Unless
otherwise noted or evident from the context, this declaration is based on my
personal knowledge and information available to me from reliable sources. To
the best of my knowledge, information and belief, the facts set forth herei.n are
true and correct.

I submit this Declaration in support of the SCO’s Opposition to IBM’s Cross-
Motion for Partial Summary Judgment, in the lawsuit entitled The SCO Group,

Inc. v. IBM, Civil No. 2:03-CV-0294 DAK (D. Utah 2003).

In this declaration, I will explain why I believe that several routines and several
groupings of code for which SCO has copyright protection were copied into the
Linux operating system. Specifically, this declaration will (1) describe how the
Read-Copy-Update routine in Linux is substantially similar to a routine in
UNIX;; (2) describe how the user level synchronization (ULS) routines in Linux
are substantially similar to routines in UNIX; (3) describe how Linux version
2.4.20 contains code that is either an identical or substantially similar copy of
SCQO’s UNIX System V IPC code; (4) identify identical and substantially
similar copying of SCO’s copyrighted UNIX “header and interfaces” in Linux;
(5) describe how Linux version 2.6 coﬁtajns code that is an idcﬁtical copy of
SCO’s UNIX System V init (SYS V init) code; and (6) identify identical

copying of SCO’s UNIX Executable and Linking Format (ELF) code in Linux.

The declaration will discuss these topics of copyright infringement in the order

Just described. Although I am not an expert in copyright law, I believe these

topics either show copying of code or raise significant factual issues that need to

be explored further.

SCO claims ownership of copyrights to UNIX software, source code, object

code, programming tools, documentation related to UNIX operating system

technology, and derivative works thereof. These materials are covered by

numerous copyright registrations issued by the United States Copyright Office

(the “Copyright Registrations™). These registrations have been obtained by

SCO and its predecessors in interest and are owned by SCO. Included among

such registrations are:

TITLE » REG. NO. [REG. DATE
UNIX Operating System Edition 5 i
1 Land Instruction Manual TXu-510-028 03/25/92
UNIX Operating System Edition 6
2 |and Instruction Manual TXu-511-236 04/07/92
LINIX Operating System Edition 32V
3 {and Instruction Manual TXU-516-704 05/15/92
UNIX Operating System Edition 7
4 land Instruction Manual [TXu-516-705 05/15/92
5 [Operating System Utility Programs [TXu-301-868 11/25/87
6 JUNIXWARE 7.1.3 : [TX-5-787-679 06/11/03
7 |[UNIX SYSTEM V RELEASE 3.0 TX-5-750-270 07/07/03
8 |UNIX SYSTEM V RELEASE 3.1 TX-5-750-269 07/07/03
9 [UNIX SYSTEM V RELEASE 3.2 [TX-5-750-271 07/07/03
10 JUNIX SYSTEM V RELEASE 4.0 TX-5-776-217 07/16/03
11 JUNIX SYSTEM V RELEASE 4.1IES TX-5-705-356 06/30/03
12 JUNIX SYSTEM V RELEASE 4.2 TX-5-762-235 07/03/03
13 |UNIX SYSTEM V RELEASE 4.1 TX-5-762-234 07/03/03
14 [UNIX SYSTEM V RELEASE 3.2 'TX-5-750-268 07/09/03
15 JUNIX SYSTEM V RELEASE 4.2 MP TX 5-972-097 6/29/2004

Ibelieve that the Read-Copy-Update (“RCU”) routine in Linux version 2.6.5

and in patches to Linux (hereinafter referred to as Linux RCU) are substantially
similar to the RCU version in SCO’s copyrighted work, specifically UNIX
SVR4.2 MP. UNIX SVR4.2 MP is part of a registered copyright of SCO
entitled UNIX System V Release 4.2 MP (also known as 4.2 ES/MP)
(Registration No. TX 5-972-097).

A problem may occur in a multiprocessing computer environment when
multiple entities such as multiple processors ﬁttempt to access data in a shared
memory. For example, a user of the data, such as a “process” in the operating
system, may attempt to update a particular piece of data at the same time that
another process is attempting to read the same data. In this scenario, the process
attempting to read the data will see the data in a partially updated state, orin a
non-updated state, rather than in the updated state being supplied by the other
process. To address this situation, programmers have devised various
synchronization metﬁods that allow access to data by multiple processors at the
same time, and that maintain synchronization by directing all processes -- at the
appropriate time -- to the updated data.

RCU (Read-Copy-Update) is one of the methods used to synchronize access to
shared data in a multiprocessing environment.

Because RCU provides for synchroniz'ed_ access to shared datain a

multiprocessing environment, RCU provides substantial performance

enhancements to an operating system and is thus a very important part of any

multiprocessing operating system.

9. SCO’s version of RCU first appeared in UNIX SVR4.2 MP and is referred to
herein as UNIX RCU.

10. The Linux operating system includes a routine, Linux RCU, that is substantially
similar to UNIX RCU.

11. Specifically, Linux RCU and UNIX RCU perform the same five acts:

a. Allocating a new data structure of a certain size (this creates the space
for updating to be done while other processes continue to read the old
data structure);

b. Copying the contents of the old data structure to the new data structure
(this allows the process to update data while other processes continue to
read the old data structure);

c. Updating the new data structure;

d. Updating or redirecting a pointer to point to the new data structure (this
allows new processes to be steered to the updated data structure rather
than to the old data structure); and

e. Arranging for deferred deletion of the old data structure (deletion cannot
occur until all processes accessing the old data during updating have
finished accessing the data). |

12. There are several ways to synchronize data updating and sharing without using

the five acts just described. In other words, synchronizing access to shared data

13.

14.

15.

16.

in a multiprocessing environment can be expressed in ways other than the

expressions in UNIX RCU.

For example, synchronizing access to shared data can be expressed with mutual
exclusion locks (mutex). Mutual exclusion locks may be used to lock a data
location so that only one operating system process can have read/write access to
that data location at one time. If another operating system process néeds to
access the same data location, the second operating process has to wait until the
data location has been unlocked. Using mutual exclusion locks, access to
shared data is seriatim rather than simultaneous. Synchronizing access to
shared data can also be expressed with reader/writer locks. Using reader/writer
locks, multiple processes can acquire read access to a data location, but only
one process at a time can acquire write access to update that data location.
UNIX RCU and Linux RCU perform the same five acts in the same sequence,
and UNIX RCU and Linux RCU have the same structure and organization.
Each of the five acts of the UNIX RCU -- and of the Linux RCU -- routine is
expressed in one or a few lines of code.

The first act, “allocating a new data structure of a certain size,;’ is expressed in
UNIX RCU and Linux RCU by a single line of nearly identical code. From a
software programmer’s perspective, the UNIX RCU expression of the act of
allocating a new data structure has bet;n identically copied into Linux RCU. As
can be seen in attached Exhibit A, the Linux RCU code (column 4) for the first

act is nearly identical to the UNIX RCU code (column 1) for the first act.

17.

18.

The second act, “copying the contents of old data structure to the new data

structure,” is expressed in UNIX RCU by a single line of code. In Linux, that
line of code has been translated from the UNIX system to the Linux system by
using a subroutine call instead of the original structure copy -- a stylistic |
difference, but one which is functionally equivalent and therefore substantially
similar to UNIX RCU. From a software programmer’s perspective, the second
act has been directly translated from UNIX RCU into Linux RCU. See Exhibit
A, for a comparison of Linux RCU code (column 4) aJ-1d UNIX RCU code
(column 1) associated with the second act.

The third act, “updating a new data structure,” is substantially similar in Linux
RCU and UNIX RCU because both update the data structure by modifying data
structure fields. The RCU routine can be applied to different operating system
functions. As can be seen in Exhibit A, UNIX applies RCU to assist with the
implementation of the resource limits function (rlimits()), while the Linux RCU
routine is used to assist in the implementation of the grow array function
(grow_ary()). Because the RCU routine is used as part of the implementation of
different functions, the update act is slightly different in UNIX than in Linux.
In Linux, in the grow array function, the shared memory location is updated by
modifying to null the new fields of the shared memory, while in UNIX, in the
resource limits function, the shared mémpry location is updated by modifying

the old data.

19.

20.

21.

22.

23.

24,

The fourth act, “updating a pointer,” is substantially similar in UNIX RCU and
Linux RCU because both UNIX RCU and Linux RCU use pointers to indicate
the new updated data structure. In UNIX RCU two pointers are used, while in
Linux RCU a single pointer is used. See Exhibit A, for a comparison of Linux
RCU code (column 4) and UNIX RCU code (column 1) associated with the
fourth act.

The fifth act, “arranging for deferred deletion of the old data,” is achieved
somewhat differéntly in UNIX than in Linux. In UNIX RCU, the fifth act of
deferred deletion of the old data structure is achieved by setting flags for the old
data which are checked by the operating system at convenient times. If a flag
associated with an old data structure shows no current users, the old data
structure can be deleted.

In Linux RCU, in contrast, the fifth act of deferred deletion is achieved by a
callback function that is automatically called when no current users remain so
that the old data structure may be deleted.

Although the fifth act in Linux RCU and in UNIX RCU are expressed
differently, they both achieve deferred deletion of the old data structure.

In my opinion, Linux RCU is substantially similar to UNIX RCU, and appears
to be derived from UNIX RCU.

As represented to me, contributors to Llnux had access to UNIX RCU.
Showing access to UNIX RCU is a twb step process. First, UNIX RCU was

copied into Dynix, which is Sequent’s version of UNIX, and then UNIX RCU

25.

26.

was released from Dynix into Linux. Sequent Computer System, Inc.’s

(Sequent) software engineers could have accomplished the first step -- of
developing a Dynix RCU based on the UNIX RCU -- when they worked under
the Multiprocessor Software Cooperation Agreement (the “MP Agreement” —
Exhibit B) with Unix System Laboratories, Inc. (USL) engineers to develop the
UNIX version of RCU. The MP Agreement was sigﬁed in September of 1990.
USL is a predecessor of SCO.

Jack Slingwine and Paul McKenney are the credited authors of Dynix RCU, and
were both Sequent employees. At least Mr. Slingwine was involved in the
UNIX development work under the MP Agreement. At least Mr. Slingwine had
access to the UNIX RCU work because of his involvement in the UNIX
development work. I believe that Mr. Slingwine would have used that access to
UNIX development to review UNIX RCU because of his clear interest in RCU.
Regarding his clear interest in RCU, Mr. Slingwine and Mr. McKenney
authored a paper on RCU, “Read-Copy Update : Using Execution History To
Solve Concurrency Problems,” which refers to “work performed at Sequent.”
See Exhibit C. In this paper, Mr. Slingwine and Mr. McKenney thank (among
others) Brent Kingsbury, and Mr. Kingsbury was one of the authors of a design
document for UNIX which discusses, among other things, UNIX RCU.

As represented to me, evidence that ﬂ;e Sequent RCU work was performed
during the same time frame that the MP Agreement was operative is clear.

Specifically in that regard, the MP Agreement, signed in September 1990,

appears to terminate in November 1992. It took two years to develop UNIX

RCU under the MP Agreement, from late 1990 to late 1992. On July 19, 1993,
a patent application related to RCU entitled “Apparatus and Method for
Achieving Reduced Overhead Mutual Exclusion and Maintaining Coherency in
a Multiprocessor...” was filed listing Mr. Slingwine and Mr. McKenney as co-
inventors. The patent issued on August 19, 1995 as U.S. Patent No. 5,442,758
and lists Sequent as the assignee. See Exhibit D.

In sum, at least Mr. Slingwine (and perhaps Mr. McKenney) had access to
UNIX developments during the USL/Sequent collaboration under the MP
Agreement, win'ch included development of UNIX RCU, and both showed great
interest in RCU by filing a patent application (as co-inventors) relating to RCU
immediately after the MP Agreement collaboration.

Thus, I believe that UNIX RCU was copied into another version of UNIX
known as Dynix by engineers who worked for Sequent at the time and who later
worked for IBM when IBM acquired Sequent.

As far as the second step, IBM thereafter released Dynix, with a copied and
modified UNIX RCU in Dynix, into Linux. More specifically, the Dynix
version of RCU was used by IBM employee (and former Sequent employee)
Dipankar Sarma to create a software patch for placing a substantially similar |
version of RCU into Linux. Ibelieve -thz_at the first patch appears to be for Linux
version 2.4.1 and was contributed by Mr. Sarma. See Exhibit E. A paper

entitled “Read-Copy Update” also lists Mr. Sarma along with Mr. McKenney

10

30.

31

32.

33.

34.

35.

36.

and others as authors. See Exhibit F. Another patch was also provided to Linux

version 2.5.44 by IBM employee Mingming Cao. See Exhibit G. This patch
appears to be incorporated into the Linux version 2.6.

I will now describe the user level synchronization (ULS) routines that are used
for blocking and unblocking of processes. Ibelieve that the ULS routines for
blocking and unblocking of computer processes in Linux version 2.6 are
substantially similar to SCO’s ULS in UNIX SVR4.2 MP.

The ULS routines in Linux are commonly referred to as FUTEX (Fast User
Mutex), but will be called Linux ULS here.

The ULS routines in UNIX are sometimes referred to as usync, but will be
called UNIX ULS here.

The main purpose of the ULS routines is to facilitate inter-process
synchronization by blocking and unblocking processes attempting to access
shared data.

Synchronization of user level processes accessing shared data is important to
prevent two processes from modifying the same data at the same time. The
blocking and unblocking of access to shared data by ULS allows only one
process at a time to use the shared data. ULS is a very significant piece of code
because it is a very important part of any operating system to synchronize
access by processes to shared data. |

SCO’s version of ULS first appeared in UNIX SVR4.2 MP,

Linux ULS and UNIX ULS include the same nine (9) acts:

11

a. Given a pointer to the process address space and a user virtual address,
acquire the pointer to the descriptor for the region within that process o

address space where the user virtual address is located; -

b. Check for shared versus private mappings;

c. From the region descriptor, acquire the pointer to the file system node;
d. Calculate the offset relafive to the beginning of the memory segment;
e. For blocking: Using the N-tuple consisting of the file system node and

offset acquired in acts ¢ and d, find or aflocate a waitqueue entry in the
hash table (for unblocking, skip from act d to act h);

f. Add the process to the list associated with the waitqueue entry;

g Block the process;

h. Using the N-tuple consisting of the file system node pointer and offset
acquired in acts ¢ and d, find the head of the queue of blocked processes;
and

i. Traverse the queue, unblock the processes, and count the number of

processes that are unblocked.

37. Six of the nine acts in Linux ULS and UNIX ULS are implemented

substantially similarly.

38. Each blocking sequence has seven (7) acts and each unblocking sequence has
six (6) acts. The first four (4) acts of the Linux ULS and UNIX ULS sequences
are the same as each other, and are the'same whether the routine is for blocking

or unblocking. The blocking sequence is listed in Exhibit H and the unblocking

12

39.

40.

41.

A2,

sequence is listed in Exhibit I. As can be seen in Exhibits H and I, there are

four common acts to begin, acts one (1) through four (4), and then acts five
though seven (5, 6, 7) are used to perform blocking, or acts eight (8) and nine
(9) are used to perform unblocking. Exhibit J shows the ULS symbols that are
used in both UNIX ULS and Linux ULS. A description of each symbol is also
provided in Exhibit J.

Each act in the Linux and UNIX ULS routines correspond to one or a just a few
lines of code and the acts are in effect the implementation of the routine.

For example, the first act “...acquire the pointer to the descriptor...” is
represented in UNIX ULS and Linux ULS by a single line of code that has been
translated from UNIX to Linux using different names for functions and
variables. See Exhibits H through J. From a software programmer’s
perspective, the expression of the act of finding the region descriptor has been
identically copied into Linux ULS.

The second act, “check for éhared versus private mappings” is an individual act
represented by a single line of code which is very similarly implemented in
Linux and UNIX.

The third act of “[f]rom the region descriptor, acquire the pointer to the file
system node” is implemented in a substantially similar way because both Linux
ULS and UNIX ULS have a region dc;scriptor and acquire the file system
pointer to the file system node from the region descriptor (in two lines of

substantially similar code).

13

43.

44,

45.

46.

47.

48.

49.

The fourth act is implemented substantially similar because both UNIX ULS

and Linux ULS in a few lines of code determine the offset in memory relative to
the beginning of the memory segment.

Act five “.. .find or allocate a waitque entry . . .” is implemented by both Linux
and UNIX in one line of substantially similar code.

Acteight “. .. find the head of the queue of blocked processes™ is implemented
in one UNIX line of code and two Linux lines of code which are substantially
similar.

Linux ULS is substantially similar to UNIX ULS since the nine acts are the

same and the specific implementation or expression of six of the nine acts is

_ substantially similar.

There are several ways to implement the blocking and unblocking for ULS.
Therefore, the result of ULS can be achieved in several other ways. One
example of a different implementation of ULS is IBM’s implementation in AIX.
Another alternative implerﬁentation of blocking and unblocking for ULS is the
Linux implementation that existed prior to Liﬁux copying the UNIX ULS
implementation. This alternative ULS implementation is described in the article
attached as Exhibit K. In this article, Rusty Russell, of IBM, describes how the
earlier Linux ULS implementation was improved by Jamie Lokier and Hugh
Dickins in the new Linux ULS implen-aeqtation.

While working on changing the Linux ULS, Mr. Lokier learned of the UNIX

ULS implementation, may have had access to it, and may have incorporated the

14

50.

51.

infringing code into Linux. Some evidence of this is the changelog to the

current Linux ULS code which designates Mr. Lokier as author of the Linux
ULS code. Mr. Lokier’s author’s notes in the changelog give special thanks to
Mr. Russell of IBM and to Hugh Dickins (a former SCO employee) for help
with the patch to the Linux ULS code which Mr. Lokier authored. I believe that
the collaboration between Jamie Lokier and Hugh Dickins to improve the Linux
ULS code benefited from access to and knowledge of the UNIX ULS
implementation.

I now turn to instances of copying in Linux of UNIX System V IPC routines.
Linux’s implementation of System V IPC in version 2.4.20 (hereinafter Linux
SysVIPC) contains code that is either an identical or a substantially similar copy
of the UNIX System V IPC routines (hereinafter UNIX System V IPC).

IPC stands for Inter-Process Communication. UNIX System V IPC is used to
communicate and synchronize between operating system processes on the same
machine in a multiprocessing environment. UNIX System V IPC consists of
three mechanisms: message queues, semaphores, and shared memory. In
addition, four header files are associated with UNIX System V IPC: <ipc.h>,
<sem.h>, <msg.h>, and <shm.h>. SCO’s version of IPC first appeared iﬁ
UNIX IH Release 4.1 in 1980, which was incorporated in all releases of UNIX
System V, including UNIX System V.Rcleasc 3.2 (hereinafter UNIX SVR3.2)

(Registration No. Tx 5-750-271 and Tx 5-750-268).

15

52.

53.

Linux SysVIPC is identical to, or substantially similar to, UNIX System V IPC

because (1) the organization of Linux SysVIPC is identical to UNIX System V
IPC, both consisting of three mechanisms: message queues, semaphore, and
shared memory; (2) the structure of each of the three IPC mechanisms is
identical — each IPC mechanism includes identical routines; and (3) three of the
four header files associated with Linux SysVIPC are substantially similar to
UNIX System V IPC, in that: a) the names of the four header files are identical
in Linux SysVIPC and UNIX System V IPC; and b) the code in three header
files of Linux SysVIPC is essentially identical to the code in the corresponding
header files of UNIX System V IPC.

With regard to the organization of Linux SysVIPC and UNIX System V IPC,
both consist of three mechanisms: message queues, semaphore, and shared
memory. There is no reason for the organization to be identical other than the
fact that Linux SysVIPC has been copied from UNIX System V IPC. In
addition, the structure of each of the three IPC mechanisms is identical.
Message queues in both Linux SysVIPC and UNIX System V IPC consist of
four routines: msgctl(), msgget(), msgrev(), and msgsnd(). Semaphores in both
Linux SysVIPC and UNIX System V IPC consist of three routines: semctl(),
semget(), and semop(). Shared memory in both Linux SysVIPC and UNIX
System V IPC consists of four routineg shmetl(), shmget(), shmdt(), and
shmat(). Again, the identical structure of each of the three IPC mechanisms

shows Linux’s copying of UNIX System V IPC.

16

54.

55.

In addition to the organization and the structure of the mechanisms, the header

files associated with Linux SysVIPC are substantially similar to the header files
associated with UNIX System V IPC. Both Linux SysVIPC and UNIX System
V IPC include the same four header files: <ipc.h>, <sem.h>, <msg.h>, and
<shm.h>.

With regard to these header files, evidence of identical copying can be seen by
comparing the code from three of the four UNIX System V IPC header files
with code in Linux, as shown in Tables 1 through 6 immediately below. Tables
1 through 6 show a portion of UNIX System V IPC header file code side-by-
side with a portion of Linux SysVIPC header file code, and show identical
copieé of the UNIX copyrighted code in Linux. The UNIX System V IPC
header file code comes from the three UNIX System V IPC header files: sem.h,
msg.h, and shm.h and from UNIX System V IPC tuning files master.d/sem,
master.d/msg, master.d/shm, which are associated with the header files sem.h,
msg.h, shm.h, respectively. Each tuning file specifies parameters to control the
operation of the corresponding header file. The Linux header file code comes
from the Linux version specified in the heading of each respective Table 1
through 6. In the code presented in Tables 1 through 6, the comments (the text
beginning with “/*” and ending with “*/”) and other irrelevant information have
been omitted for clarity. Also, in some cases, the code lines have been
reordered for convenience. The code with comments and other information can

be seen in the attached Exhibits L through T.

17

56.

TABLE 1

UNIX SVR3.2-sem.h

Linux-2.4.20-sem.h

struct sem *sem_base

struct sem *sem_base

struct seminfo { struct seminfo {
int semmap, int semmap;
semmni, int semmni;
semmns, int semmns;
semmnu, int semmnu;
semmsl, int semmsl;
semopm, int semopm;
semume, int semume;
semusz, int semusz;
semvmx, int semvmx;
semaem; int semaem;
}i }i
57.
TABLE 2
UNIX SVR3.2-master.d/sem Linux-2.4.20-sem.h
SEMMAP #$define SEMMAP
SEMMNI fdefine SEMMNI
SENMNS fdefine SEMMNS
SEMMNU $define SEMMNOU
SEMMSL #define SEMMSL
SEMOPM #define SEMOPM
SEMUME fdefine SEMUME
SEMVMX #define SEMVMX
SEMAEM $#define SEMAEM

18

58.

TABLE 3

UNIX SVR3.2-msg.h

Linux-2.4.20-msg.h

struct msginfo ({

int msgmap,
msgmax,
msgmnb,
msgmni,
msgssz,
msgtqgl;

ushort msgseq;

}i

struct msginfo {

int msgpool;

int msgmap;

int msgmax;

int msgmnb;

int msgmni;

int msgssz;

int msgtql;

unsigned short msgseqg;
}i

struct msg msg_first
struct msg msg_last
ushort msg_cbytes
struct msgbuf {

long mtype

char mtext (1]

struct msg msg_ first
struct msg msg_last
unsigned short msg cbytes
struct msgbuf {

long mtype

char mtext[1]

59.

TABLE 4

UNIX SVR3.2-master.d/msg

Linux-2.4.20-msg.h

MSGMAP
MSGMAX
MSGMNB
MSGMNI
MSGSSZ
MSGTQL
MSGSEG

#define MSGMAP
#define MSGMAX
#define MSGMNB
#define MSGMNI
#define MSGSSZ
#define MSGTQL
#define MSGSEG

19

60.

TABLE §

UNIX SVR3.2-shm.h

linux-2.4.20-shm.h

struct shminfo {

struct shminfo {

int shmmax, int shmmx;
shmmin, int shmmin;
shmmni, int shmmni;
shmseg, int shmseg;
shmall; int shmall;
}: }:
#defineSHM_R 0400 #define SHM R 0400
#defineSHM W 0200 #define SHM W 0200
61.
TABLE 6

UNIX SVR3.2-master.d/shm

linux-2.4.20-shm.h

SHMMAX $define SHMMAX
SHMMIN #define SHMMIN
SHMMNI #define SHMMNI
SHMSEG #define SHMSEG
SHMALL $define SHMALL
62. SCO owns valid copyrights for UNIX System V IPC header file code. As can

be seen from Tables 1-6, SCO’s UNIX System V IPC header file code has been

identically copied into Linux. Slight variations in some of the terms are

insubstantial differences in programming. As to access, UNIX System V IPC
header file code was included in any system running a UNIX System V derived
operating system. Therefore, anyone having access to a system installed with

UNIX System V or one or more of its derivatives could have had access to

UNIX System V IPC header file code.

20

63.

64.

65.

66.

67.

68.

I will now describe certain UNIX System V headers and interfaces that are
copied either identically or substantially similarly in Linux.

Regarding access to this header and interface code, UNIX header and interface
source code is available in SCO-copyrighted documentation, such as manual
pages. These manual pages are published on the Internet with copyright
notices. Also, UNIX header and interface code is available to any entity having
a license to UNIX, or who can otherwise access the UNIX code.

A header file is a programming source file containing declarations of interfaces
that facilitate communication between different regular source files that
comprise the program. The interfaces can come from the program itself, or
from libraries. The libraries provide (define) the interfaces that are intended to
be used .elsewhere, typically in an application.

At least three header files &om UNIX System V: eti.h, form.h, and menu.h, are
completely and substantially copied into Linux.

Header eti.h in UNIX System V contains code that is identically copied into
Linux. Exhibit U shows that eti.h macro definitions are identically copied into
Linux. As can be seen from Exhibit U, the sequence of and values given the
macros are identical even though not essential parts of the code. The only
“difference” between the two code sets is that in Linux, the values of the macros
are enclosed in parenthesis, which is an ipconsequential change.

UNIX System V header file form.h includes code that is identically copied into

Linux. Exhibit V compares UNIX and Linux code for the form.h “PAGE” data

21

69.

70.

71.

structure. This comparison shows that Linux has the exact same four members
of the PAGE data structure as are present in UNIX, and no other members. The
only “difference” is that Linux uses a “short int” instead of a “plain int” for the
integer size of these four members. The term “‘short” refers to a 16-bit field and
“plain” refers to a 32-bit field. Furthermore, the comments are strikingly
similar.

The PAGE data structure is not named in é.ny documentation, and there is no
reason why Linux would need to express the PAGE data structure in the same
way as the PAGE data structure is expressed in UNIX.

As shown in Exhibit W, the form.h “FIELD” data structure is identically copied
from UNIX System V into Linux. The UNIX System V and Linux data
structures consist of the same member names (and no others) in the same order
and mostly with the same types. The only difference is the use of “short int”
instead of “plain int”, use of “void *” as a generic pointer-to-object instead of
the historic "char *" found in UNIX System V, and the “Field_Options” typedef
name instead of “OPTIONS”. These differences are insignificant.

Further, the UNIX System V form.h “FORM?” data structure is identically
copied into Linux. The UNIX System V and Linux data structures contain the
same member names (and no others) in the same order and the same (or
strongly related) types are declared. Any differences are trivial. Exhibit X
shows UNIX System V form.h file, lines 87 — 116 compared to Linux, lines 111

- 140.

22

72.

73.

74.

75.

Finally, as to the header and interface files, Exhibit Y shows that Linux includes

an identical copy of UNIX System V header file menu.h. As can be seen from
Exhibit Y, the Linux version of the menu.h header file uses exactly the same
hexadecimal values for the listed macros, with the only difference being that the
Linux version encloses the values in parentheses, an inconsequential difference.
I now turn to instances of copying in Linux of SCO’s copyrighted SYS V init
code. Linux version 2.6 contains code that is an identical copy of SYS V init
code.

SYS V init was accessible for copying because the manual pages defining SYS
V init features, for example init and inittab, are published as electronic
documents and are available to anyone with an Internet browser. These manual
pages, however, carry appropriate copyright notices. Using the manual pages, a
skilled programmer could copy the structure, sequence, and organization of
SYS V init routines. SYS V init and inittab were included in documentation
with each release of UNIX System V as manual pages init(1M) and inittab(4),
respectively. See Exhibits Z and AA. Also, SYS V init code is available to any
entity having a license to UNIX, or who can otherwise access the UNIX code.
SYS V init code is a general process spawner that, when executed, creates
processes from information stored in an inittab file. Init is the first user-level
process activated after the kernel comi)lgtes initialization during computer
system startup. Init then starts all subsequent processes on the computer

system. These processes include checking integrity of file systems, mounting

23

76.

77.

78.

79.

file systems, starting background processes to handle printing and networking,
and initiating user logins.

An example of identical copying from UNIX SYS V init into Linux can be seen
by comparing action keywords. Such a comparison is shown in Exhibit BB. As
can be seen from the UNIX SYS V init column, every action keyword in UNIX
SYS V init is identically copied into Linux.

I will now describe certain UNIX Executable and Linking Format (ELF) code
that is copied either identically or substantially similarly in Linux.

The ELF code is used for processing executables and object code. The ELF
code is found in elfh files in both UNIX and Linux. Tables 7 — 11 show ELF
code that is identical in UNIX and Linux. These elf.h files come from UNIX
System V, Release 4.2 MP (UNIX SVR4.2 MP) and Linux version 2.4.21,
respectively. In the code presented in Tables 7 - 11, comments (i.e., text
beginning with “/*” and ending with “*/”) and other irrelevant information have
been omitted for clarity. Also, in some cases, the code lines and/or code
sections have been reordered for convenience. The code withr comments and
other information can be seen in the attached Exhibits CC (UNIX code) and DD
(Linux code).

Table 7 below shows the side-by-side comparison between SCO’s ELF code

(UNIX elf.h) and the Linux elfh code (Linux — elf.h code).

24

80.

TABLE 7

UNIX - elf.h

Linux - elf.h

unsigned char

unsigned char

e ident[EI_NIDENT];

E1£32 Half
E1£32_Half
EL£32 Word
E1£32 Addr
E1f32 Off

E1f32_Off

E1£32 Word
E1f32 Half
E1f32 Half
E1£32 Half
E1£32_Half
E1£32 Half
E1f32 Half

} E1£32_Ehdr;

E1£32_Word
E1f32 Off

E1£32_Addr
E1f32 Addr
E1£32 Word
E1f32 Word
E1£32 Word
E1£f32 Word

e_type;

e machine;
e _version;
e_entry;
e_phoff;
e_shoff;

e _flags;

e _ehsize;

e phentsize;

e_phnum;

e shentsize;

e_shnum;
e_shstrndx;

p_type;
p_offset;
p_vaddr:
p_paddr;
p_filesz;
p_memsz;
p_flags;
p_align;

e _ident (EI_NIDENT];

#define
#define
#define
$define
#define
$define
#define
#define
#define
#define
#define
#define
#define

#define

#define

} E1£32_ Phdr;

SHT_NULL

SHT_PROGBITS

SHT SYMTAB
SHT_STRTAB
SHT RELA
SHT HASH
SHT_DYNAMIC
SHT NOTE
SHT_NOBITS
SHT REL
SHT_SHLIB
SHT_DYNSYM
SHT_NUM

SHT_LOUSER

0x80000000

SHT HIUSER

OxfEffELff

Yo dohhs whheE= o

b=
N = O

E1f32 Half e_type;
E1£32_Half e_machine;
E1£32 Word e_version;
E1f32 Addr e _entry;
E1£32_Off e_phoff;
E1£32 Off e shoff;
E1f32 Word e flags;
E1f32_Half e_ehsize;
E1£32_Half e phentsize;
E1f32 Half e_phnum;
E1f32 Half e_shentsize;
E1£f32 Half e_shnum;
E1£32 Half e_shstrndx;
} E1£32 Ehdr;

E1£32 Word p_type:
E1£32 Off p_offset;
E1f32 Addr p_vaddr;
E1f32 Addr p_paddr;
E1£32_Word p_filesz;
E1f32 Word p_memsz;
E1f32 Word p_flags;
E1£32 Word p_align;

} E1£32 Phdr;

#idefine SHT NULL 0
#define SHT PROGBITS 1
#define SHT SYMTAB 2
#define SHT_STRTAB 3
#define SHT RELA 4
#define SHT_HASH 5
#define SHT DYNAMIC 6
#define SHT NOTE 7
#define SHT NOBITS 8
#define SHT REL 9
#define SHT_SHLIB 10
#define SHT_DYNSYM 11
#define SHT_NUM 12
#define SHT_LOUSER
0x80000000

#define SHT HIUSER
OxfEfffEfff

25

UNIX - elf.h

Linux - elf.h

#define SHF WRITE
fdefine SHF_ALLOC
#define SHF EXECINSTR
fdefine SHF_MASKPROC
0x£0000000

#define SHN UNDEF
#define SHN LORESERVE

#define SHN_ABS
#define SHN COMMON
#define SHN HIRESERVE

0x1
0x2
0x4

0
0x££00

Oxfffl
Oxfff2
Oxffff

#idefine SHF WRITE
#define SHF_ALLOC
#define SHF_EXECINSTR
#define SHF MASKPROC
0x£0000000

#define SHEN_UNDEF
#define SHN LORESERVE

#define SHN_ABS
#define SHN_COMMON
#define SHN HIRESERVE

Ox1
Ox2
Ox4

0
0xff00

Ox£fffl
Oxfff2
Oxffff

TABLE 7 (cont.)

26

81. The data shown in Tables 8 -11 are additional examples of copying of UNIX

elf.h code in Linux.

82.
TABLE 8

UNIX ~ elf.h Linux - elf.h

‘ #define EI_MAGO 0 #define EI_MAGO 0

i #define EI_MAGl 1 #define EI_MAGI1 1

' #define EI_MAG2 2 #define EI_MAG2 2
#define EI_MAG3 3 #define EI MAG3 3
#define EI_CLASS 4 #define EI_CLASS 4
#define EI_DATA 5 #define EI_DATA 5
#define EI_VERSION 6 #define ET_VERSION 6
#define EI_PAD 7 #define EI_PAD 7
#define ELFMAGO 0x7f #define ELFMAGO 0x7f
#define ELFMAGL - B’ #define ELFMAG1 ‘EY
#define ELFMAG2 ‘L! #define ELFMAG2 ‘Lf
#define ELFMAG3 ‘FY #define ELFMAG3 A4
#define ELFMAG “\177ELF” | #define ELFMAG “\177ELF”
#define SELFMAG 4 #define SELFMAG 4
#define ELFCLASSNONE 0 #define ELFCLASSNONE 0
#define ELFCLASS32 1 #define ELFCLASS32 1
#define ELFCLASS64 2 #define ELFCLASS64 2
#define ELFCLASSNUM 3 #define ELFCLASSNUM 3

' #define ELFDATANONE 0 #define ELFDATANONE 0

' #define ELFDATA2LSB 1 #define ELFDATAZLSE 1
$#define ELFDATAZ2MSB 2 #define ELFDATA2MSB 2
#define EV_NONE 0 #define EV_NONE 0
#define EV_CURRENT 1 #define EV_CURRENT 1 |
#define EV NUM 2 #define EV NUM 2

27

83.

TABLE 9
UNIX - elf.h Linux - elf.h
E1f32 Word st_name; E1£32 Word st_name;
E1£32 Addr st_value; E1£32_ Addr st_value;
E1f32 Word st_size; E1£32_Word st_size;
unsigned char st_info; unsigned char st_info;
unsigned char st_other; unsigned char st_other;
E1f32 Half st_shndx; E1£32_Half st_shndx;
} E1£32 Sym; } E1£32 Sym;

84.

TABLE 10

UNIX - elf.h Linux - elf.h
#define STB LOCAL 0 #define STB_LOCAL 0
#define STB_GLOBAL 1 #define STB_GLOBAL 1
#define STB_WEAK 2 #define STB WEAK 2
#define STT NOTYPE 0 #define STT NOTYPE 0
$define STT OBJECT 1 #define STT OBJECT 1
#define STT_ FUNC 2 #define STT FUNC 2
#define STT_SECTION 3 #define STT_SECTION 3
#define STT FILE 4 #define STT FILE 4

85.

TABLE 11

UNIX ~ elf.h Linux - elf.h

E1f32 Addr r offset; E1f32 Addr r_offset;
E1f32 Word r_info; E1£32 Word r_info;

} E1£32_Rel: } E1f32_Rel;

E1£f32 Addr r_offset; E1£32 Addr r_offset;
E1£f32 Word r_info; E1f32 Word r_info;
E1£32_ Sword r_addend; E1£32_ Sword r_addend;
} E1£32 Rela; } E1£32 Rela;

28

As can be seen by looking at Tables 7-11, portions of the Linux elf.h code are
identical or at least substantially similar to portions of UNIX elf.h code.
Moreover, the portions of Linux that are direct copies of UNIX are the
meaningful, functional portions of the code (e.g., the data type (e.g.,

ELF32_Half) and member (e.g., ¢_type) names).

I declare under penalty of perjury that the foregoing is true and correct.

July F; 2004

Sandeep Gupta

CERTIFICATE OF SERVICE

Plaintiff, The SCO Group, hereby certifies that a true and correct copy of
DECLARATION IN SUPPORT OF SCO’S OPPOSITION TO IBM’S CROSS-MOTION
FOR PARTIAL SUMMARY JUDGMENT was served on Defendant International Business

Machines Corporation on the 9th day of July, 2004, as follows:

BY HAND DELIVERY:

Alan L. Sullivan, Esq.

Todd M. Shaughnessy, Esq.
Snell & Wilmer L.L.P.

15 West South Temple, Ste. 1200
Salt Lake City, Utah 84101-1004

Evan R. Chesler, Esq.

Cravath, Swaine & Moore LLP
825 Eighth Avenue

New York, NY 10019

Donald J. Rosenberg, Esq.
1133 Westchester Avenue
‘White Plains, New York 10604

