Brent O. Hatch (5715)

Mark F. James (5295)

HATCH, JAMES & DODGE, P.C.
10 West Broadway, Suite 400

Salt Lake City, Utah 84101
Telephone; (801) 363-6363
Facsimile: (801) 363-6666

Stephen N. Zack
Mark J. Heise

BOIES, SCHILLER & FLEXNER LLP

100 Southeast Second Street
Suite 2800

Miami, Florida 33131
Telephone: (305) 539-8400
Facsimile: (305) 539-1307

Attorneys for Plaintiff The SCO Group, Inc.

IN THE UNITED STATES DISTRICT COURT

DISTRICT OF UTAH

THE SCO GROUP, INC.,
a Delaware corporation,

Plaintiff,

VS.

INTERNATIONAL BUSINESS
MACHINES CORPORATION, a

New York corporation,

Defendant.

PLAINTIFF'S REVISED SUPPLEMENTAL
RESPONSE TO DEFENDANT’S

FIRST AND SECOND SET OF
INTERROGATORIES

Honorable Dale A. Kimball
Magistrate Judge Brooke C. Wells

Pursuant to Rule 33 of the Federal Rules of Civil Procedure, and this Court’s order dated
December 12, 2003, Plaintiff, The SCO Group, Inc. (“SCO”), hereby files this Revised Supplemental

Response to Interrogatories No. 1 through 9, 12 and 13.

GENERAL OBJECTIONS

SCO hereby incorporates by reference all of its General Objections set out in Plaintiff’s
Responses to Defendant’s First and Second Set of Interrogatories and First Request for the
Production of Documents (the “Plaintiff’s Responses”). All of SCO’s original General Objections
are incorporated into the following Specific Objections and Responses as if fully set forth therein.
Pursuant to the Federal Rules of Civil Procedure, SCO’s revised and supplemental responses to
IBM’s Interrogatories are made to the best of SCO’s present knowledge, information and belief. In
particular, these current responses are based on the evidence SCO has discovered independently and
based on information contained in IBM's limited production to date. Upon receiving complete
discovery from IBM, including all versions of AIX and Dynix/ptx, there undoubtedly will be further
evidence of IBM's contractual breaches and other violations of law. Accordingly, SCO reserves the

right to further supplement or amend its answers as discovery or further investigation may reveal.

SPECIFIC OBJECTIONS AND SUPPLEMENTAL RESPONSES TO INTERROGATORIES

INTERROGATORY NO. 1:

Please identify, with specificity (by product, file and line of code, where appropriate) all of the
alleged trade secrets and any confidential or proprietary information that plaintiff alleges or contends
IBM misappropriated or misused, including but not limited to as alleged in § 105 of the Complaint.

SUPPLEMENTAL RESPONSE TO INTERROGATORY NO. 1:

Subject to and without waiving its objections, Plaintiff supplements its response to this
Interrogatory No. 1 and states pursuant to their respective Software Agreements, Sublicensing
Agreements and related agreements (“Related Agreements”), which are attached to the Amended
Complaint, IBM and Sequent had certain contractual obligations and restrictions on their use of the
UNIX System V code that they licensed from AT&T, SCO’s predecessor. These restrictions, which
are more fully stated in the forgoing agreements, also restricted IBM and Sequent’s use of the
modifications they made to UNIX System V and derivative works of UNIX System V. IBM’s
version of UNIX is known as AIX and Sequent’s version of UNIX is known as Dynix/ptx. Based on
the forgoing agreements, IBM and Sequent agreed to restrictions on AIX and Dynix/ptx, including
that AIX and Dynix/ptx would be used solely for internal business purposes, that they would not
allow the use of AIX or Dynix/ptx for or by others, and that they would not transfer any part of
Dynix/ptx to parties who do not have a UNIX System V source code agreement with SCO. IBM and
Sequent also agreed that they would maintain all of AIX and Dynix/ptx in confidence. IBM breached

the terms of the agreements and thereby misused or misappropriated the confidential or proprietary or

trade secret information by transferring core portions of AIX and Dynix/ptx to Linux, as detailed
below (the “Protected Materials™).

Thus far, SCO has received limited production from IBM of some versions of Dynix/ptx for
comparison. Based on the limited software produced by IBM, SCO has identified direct copying by
IBM of entire files of Dynix/ptx source code as a patch to Linux 2.4.1-01. The first misuse of the
Protected Materials identified below is in Read Copy Update (“RCU”). RCU is a mechanism that
can significantly improve the performance and scalability of multi-processor systems by allowing
simultaneous access to data without the need for expensive and time consuming locking protocols.
Dynix/ptx/RCU structures and sequences were originally offered as a patch to the Linux 2.4 kernel
by IBM, with rather limited functionality inside Linux 2.4. However, in the development of Linux
version 2.6, the deployment of Dynix/ptx/RCU structures and sequences has spread into new uses
inside Linux, including networking, device drivers, list management, and directory access. This
demonstrates how improper contribution of a few hundred lines of change from Dynix/ptx has had a
massive impact on Linux kernel efficiency, particularly relating to multi-processor functionality and
processor memory synchronization.

For detailed comparison, compare the files of code contained in Table A below. The original
code in f)ym'x/ptx in Tab 1 is set against the files of code identified in Linux in Tab 5. Compare files
contained in Dynix/ptx Tab 2 against the files contained in Linux in Tab 6. Also compare files
contained in Tab 3 in Dynix/ptx against files contained in Linux in Tab 7. Compare files contained in
Tab 4 in Dynix/ptx against files contained in Tab 8 in Linux. Virtually the entire files identified in

the above tabs that originated in Dynix/ptx were published as a patch to Linux 2.4.1-01, with only

minimal changes. As a result, in this particular instance, SCO is only identifying the file names,

without additionally specifying the lines of code within each file.

TABLE A
DynixV v4.6.1 Files Linux 2.4.1-01 files
kernel/sys/rclock.h (Tab 15 include/linux/rclock.h (Tab 5)
kernel/os/rclock.c (Tab 2) kernel/rclock.c (Tab 6)
kernel/sys/kma_defer.h (Tab 3) include/linux/kmemdef.h (Tab 7)
| kernel/os/kma_defer.c (Tab 4) kernel/kmemdef.c (Tab 8)

As stated, the entire files specified above show direct line-by-line copying of the files with the same
name in Dynix, with slight changes made to reflect some variations between the two operating
systems. By comparing the tabs correlating each file in Dynix against the corresponding patch for
Linux, the direct copying is apparent to the layperson’s eye. That the code in Linux comes from
Dynix/ptx is further confirmed by the commentary in the Linux patch that expressly states that it is
“[bjased on a Dynix/ptx implementation by Paul McKenney...” Mr. McKenney was formerly an
engineer at Sequent, and is now employed at IBM following IBM’s acquisition of Sequent. After the
first initial improper contribution of RCU by IBM, RCU persists as a functionality availeble in Linux,
is maintained by IBM (and thereafter others) and became more widespread in the Linux kernel (as

shown in Tab 9).

Lines of code from Dynix/ptx files, but less than the entire file, were also copied line-for-line
from DynixV v4.6.1 to Linux 2.4.1-01. Table B maps the line-for-line copied code from specified
lines in DynixV v4.6.1 to Linux 2.4.1-01, with the file name and file line number in each code base
identified appropriately. By comparing the tabs that correlate with each file in Dynix/ptx against the

corresponding file in Linux, the direct copying is again apparent to the untrained eye.

TABLE B
DynixV v4.6.1 Files and line #s Linux 2.4.1-01 files and line #s
kernel/os/kern_clock.c ~ 2028-2059 arch/i386/kernel/apic.c 25-28, 662-664,
(Tab 10) . (Tab 14) 676-684
kernel/os/kern_clock.c 2028-2059 kerneltimer.c (Tab 15) 26-29, 681-683,
(Tab 10) 688-697
kernel/i386/locore.s 1487-1497 arch/i386/kernel/entry.S 199-205
(Tab 11) (Tab 16)
kernel/i386/trap.c 1554-1563 arch/i386/kernel/traps.c 52-54,244-247,
(Tab 12) (Tab 17) 331-334, 542-545,

659-662, 718-721
kernel/i386/startup.c 2054 init/main.c (Tab 18) 30-33, 609-616
Tab 13)

In Table B, Tab 10 correlates Dynix/ptx code at lines 2028-2059 directly with copies of the
same Dynix/ptx code improperly copied into Linux, identified in Tab 14 at lines 25-28, 662-664,
676-684. Tab 10 also correlates the same Dynix/ptx code found at lines 2028-2059 with copies of the
same Dynix/ptx code improperly copied into Linux, identified in Tab 15 at lines 26-29, 681-683,
688-697. Tab 11 correlates Dynix/ptx code at lines 1487-1497 directly with copies of the same
Dynix/ptx code improperly copied into Linux, identified in Tab 16 at lines 199-205. Tab 12
correlates Dynix/ptx code at lines 1554-1563 directly with copies of the same Dyaix/ptx code

improperly copied into Linux, identified in Tab 17, lines 52-54, 244-247, 331-334, 542-545, 659-662,

718-721. Tab 13 correlates Dynix/ptx code at line 2054 improperly copied into Linux, identified in
Tab 18 at lines 30-33, 609-616. These are instances of direct, line for line copying of Dynix/ptx code
into the 2.4.1-01 version of Linux. Prior to this copying, Dynix/ptx had been held in confidence for
SCO pursuant to the Sequent Software Agreement.

The next table, Table C, shows an example of UNIX-based code structures and sequences in

Dynix/ptx/RCU that have been improperly copied into the newest version of Linux, 2.6.0.

TABLE C
Structure / Sequence | DynixV file(s) { Line #s | Linux 2.6.0 file(s) | Line #s
Register an RCU callback kernelsys/relock.h (Tab 1) 412 include/linux/rcupdate.h (Tab 20) 131-132
kermel/os/relock.c (Tab2) 503-613 kernel/rcupdate.c (Tab 21) 58-80
RCU Callback control kernel/sys/irclock.h (Tab 1) 217-228 include/limpc/reupdate.h (Tab 20) | 66-72
structure
RCU Callback lists kernel/sys/rclock.h (Tab 1) 238-24] include/linux/rcupdate.h (Tab 20) 87-108
kernel/i386/plocal.h 1517-1537 .
(Tab 19)
RCU Comparisen operators | kernel/sys/rclock.h (Tab 1) 300-312 include/linux/rcupdate.h (Tab 20} 75-85

The sequence that performs “Register an RCU callback” in DynixV v4.6.1 at line 412, (Tab
1) correlates to the same sequence improperly copied into, and used in Linux 2.6.0 at line 131-132
(Tab 20). The structure “RCU callback control” performed in Dynix/ptx at line 127-228 (Tab 2) was
properly copied into Linux 2.6, line: 72 (Tab 21). The sequence “RCU callback lists”
performed in Dynix/ptx at line 238-241 (Tab 1) and lines 1517-1537 (Tab 19) was improperly copied
into Linux 2.6.0 at lines 87-108 (Tab 20), The structure “RCU comparison operators” found in
Dynix/ptx at line 300-312 (Tab 1) was improperly copied into Linux 2.6.0 at lines 75-85 (Tab 20).
Again, these are structures and sequences that materially advance the enterprise performance of

Linux, and are based on the Protected Materials that Sequent had agreed to not disclose.

The next table, Table D shows how IBM has released valuable proprietary methods related to

RCU functionality found in Dynix/ptx that have now been adapted across the newest release of

Linux, version 2.6.0 in a multitude of different ways. A sub-component of RCU is “force cache write

for memory consistency” found in Dynix/ptx at lines 331-358.

TABLE D
RCU Subcomponent | DynixV file(s) TLine #s | Linux 2.6.0 file(s) l Line #s
Force Cache write for kernel/sys/rclock.h (Tab 1) 331-358 include/asm-alpha/system.h 152-153,
memory consistency (Tab 22) 159, 164
include/asm-arm/system.h (Tab 23) 104, 228,
235
include/asm-arm26/system.h 197
(Tab 24)
include/asm-cris/system.h (Tab 25) 19,27, 32
include/asm-h8300/system.h 37, 102
(Tab 26)
include/asm-i386/system.h (Tab 27) 368-420,
434, 440
include/asm-ia64/system.h (Tab 28) 83, 89, 94
include/asm-m68k/system.h 80, 37
(Tab 29)
include/asm-m68knommu/system.h 105, 110
(Tab 30)
include/asm-mips/system.h (Tab 31) 145-197,
256,261
include/asm-parisc/system.h 134-135
(Tab 32)
include/asm-ppc/system.h (Tab 33) 24-25, 34,
43, 48
include/asm-ppc64/system.h 28-29, 38,
(Tab 34) 47, 52
include/asm-s390/system.h (Tab 35) 255,259
include/asm-sh/system.h (Tab 36) 80, 86, 91
include/asm-sparc/system.h (Tab 37) 281,287
include/asm-sparc64/system.h 86, 96, 101
(Tab 38)
include/asm-v8350/system.h (Tab 39) 70, 78
include/asm-x86_64/system.h 283, 288,
(Tab 40) 305

Thus, Dynix/ptx lines 331-358 maps in structure and sequence to Linux 2.6.0 files shown in Table D.
These include lines of the Linux 2.6.0 kemel as follows: lines 152-153, 159, 164 (Tab 22); lines 104,
228, 235 (Tab 23); line 197 (Tab 24); lines 19, 27, 32 (Tab 25); lines 97-102 (Tab 26); lines 368-420,
434, 440 (Tab 27); lines 83, 89, 94 (Tab 28); lines 80,87 (Tab 29); lines 105, 110 (Tab 30); lines
145-197, 256, 261 (Tab 31); lines 134-135 (Tab 32); lines 24-25, 34, 43, 48 (Tab 33); 28-29, 38, 47,
52 (Tab 34); lines 255, 259 (Tab 35); lines 80, 86, 91 (Tab 36); lines 281, 287 (Tab 37); lines 86, 96,
101 (Tab 38); lines 70, 78 (Tab 39); lines 283, 288, 305 (Tab 40). This is a good demonstration of
how the Protected Materials that were subject to the restrictions in the Software Agreements,
Sublicensing Agreements and Related Agreements have rapidly spread throughout Linux by the open
soufce development community, and underscores why IBM’s improper contributions to Linux are so
devastating to the value of proprietary UNIX technology. IBM is literally giving Protected Materials
to the open source development community so that Linux can be made suitable for enterprise use.
But for IBM’s wrongful actions in this regard, Linux would lag far behind SCO’s UnixWare in
functionality and acceptability for enterprise use on Intel processors.

As is demonstrated above, and in the following examples as well, IBM’s Linux plan has been
to release large blocks of proprietary source code and methods to open source, and to invite the entire
open source development community to access that code and those methods in their latest design
efforts for Linux. IBM has provided the valuable UNIX proprietary code and methods, and the
Protected Materials, to the open source development community. Open source developers have then
accessed the Protected Materials at will to design new creations in Linux based on the Protected
Materials. Another example of this problem is shown in the next table, Table E. Table E

demonstrates how use of the RCU method, which is subject to the restrictions of the Sequent

9

agreements and is prohibited from improper disclosure, has been improperly used in Linux far

beyond its original use in Dynix/ptx.

TABLE E

RCU Method

DynixV file(s) | Line #s

Linux 2.6.0 file(s)

| Line #s

RCU use

After IBM’s initial improper contribution
of RCU specifically identified above,
RCU became widespread In the Linux
kernel

These files use RCU functions and
macros — and if they are used, then the
RCU functionality is used, too. The
number of lines and number of files,
although substantial, is less significant
than the impact of the changes, which is
dramatic for networking, device drivers,
lists, and directory access.

net/core/netfilter.c (Tab 41)

73, 83, 357,
516-517,
548, 558,
575,612

net/core/dev.c (Tab 42)

239, 242,
238, 995-
996, 1027,
1580-1581,
1594, 1614,
2893

net/ipv4/ip_input.c (Tab 43)

220, 241,
266

net/ipv4/af_inet.c (Tab 44)

340-341,
375,430,
1012, 1040

net/ipvd/icmp.c (Tab 45)

707-712

net/ipvd/route.c (Tab 46)

227,231,
240, 243,
246, 282,
440, 446,
1004, 1008,
1026,
1037,1076,
1257, 1260,
1296, 1852,
1854, 1867,

1077 1910
10717, 4Ll 7,

2221,2235,
2241, 2451,
2454, 2462,
2467

net/bridge/br_device.c (Tab 47)

79, 81

net/bridge/br_ioctl.c (Tab 48)

78,97, 159,
161,179

net/bridge/br stp.c (Tab 49)

43

set/bridge/br_private.h (Tab 50)

77

net/bridge/br_input.c (Tab 5I)

59, 61, 106,
117,135,
142, 151,
156

10

net/bridge/br_forward.c (Tab 52)

77-97, 120,
147, 151

net/bridge/br_if.c (Tab 53)

64, 72, 160,
269-270,
273

net/irda/irlan/irlan_common.c (Tab
54)

230, 275,
1083, 1113

net/irda/irlan/irlan_client.c (Tab 55)

172,182

net/ipvé/icmp.c (Tab 56)

532, 534,
537

net/ipvé6/af_inet6.c (Tab 57)

173-174,
208,271,
275, 279,
614, 640

net/ipv6/ip6_input.c (Tab 58)

155, 169,
197,201

net/302/psnap.c (Tab 59)

36, 58, 71,
136,151

net/decnet/dn_route.c (Tab 60)

149, 156,

1171, 1173,
1184, 1189,
1450, 1452,
1463, 1468,
1644, 1646,
1653, 1658,
1678, 1682,
1691, 1694,
1697, 1723

drivers/net/wireless/strip.c (Tab 61)

973, 983,
998, 1006,
2562

drivers/net/wan/lapbether.c (Tab 62)

70, 98, 118,
379, 395,
411,431

drivers/net/hamradio/bpqether.c
(Tab 63)

183, 225,
408, 437,
545, 560,
575,595

drivers/char/ipmifipmi_kcs_intf.c(Ta
b 64)

1203

arch/i386/oprofile/nmi_timer_int.c
(Tab 65)

41

include/linux/dcache.h (Tab 66)

96, 180

include/linux/list.h (Tab 67)

83-124, 152-
167, 367-
414,462-
477,487,
499-508

include/net/dst.h (Tab 68)

77

11

fe/dcache.c (Tab 69)

81, 986, 993,
1015, 1038,
1146, 1232,
1235

kemnel/module.c (Tab 70)

1738

ipc/util.c (Tab 71)

197, 282,
289, 349,
354, 459,
461,475,
478, 488,
497

init/main.c (Tab 72)

414

The next table, Table F, shows additional misuse by IBM of the RCU structures and

sequences embodied in Dynix/ptx.

TABLE F
RCU sub-component | DynixV file(s) | Line #s | Linux 2.6.0 file(s) Line #s
RCU read protect kernel/sys/rclock.h (Tab 1) 373-387 include/linux/rcupdate.h (Tab 20) 124-125
kernel/os/rclock.c (Tab2) 1758-1825
kemnel/os/rclock.c (Tab2) 503-613 kernel/rcupdate.c (Tab 21} 58-80
Existence of valid callbacks, | kernel/os/kern_clock.c 2028-2059 | include/linux/reupdate.h (Tab 20) 112-122
call "checker” (Tab 10) kernel/sched.c (Tab 73) 1364-1365
RCU "checker" (actually kernel/sys/rclock.h (Tab 1) 411,415 include/linux/reupdate.h (Tab 20) 128
processes callbacks) kernelfos/relock.c (Tab 2) 385468, kernel/rcupdate.c (Tab 21) §2-207
659-752,
1314-1494
RCU initialization kernel/sys/rclock.h (Tab 1) 414 include/linux/rcupdate.h (Tab 20) 127
kernelos/rclock.c (Tab2) 1222-1311 | kernel/rcupdate.c (Tab 21) 201-240
The RCU subcomponent identified as “RCU read protect” is found in Dynix/ptx at lines 373-

387 (Tab 1) and lines 1758-1825 (Tab 2). These have been improperly copied into Linux 2.6.0 at

lines 124-125 (Tab 20). The RCU subcomponent identified as “Existence of valid callbacks, call

checker” is found in Dynix/ptx at lines 2028-2059 (Tab 10). These have been improperly copied into

Linux 2.6.0 at lines 112-133 (Tab 20) and 1364-1365 (Tab 73). The RCU subcomponent known as

“RCU checker (actually processes callbacks)” is found in Dynix/ptx at lines 411, 415 (Tab 1); lines

12

385-468, 659-752, 1314-1494 (Tab 2). These have been improperly copied into Linux 2.6.0 at lines
82-207 (Tab 21). The RCU subcomponent known as “RCU initialization” is found in Dynix/ptx at
lines 414 (Tab 1) and lines 1222-1311 (Tab 2). These have been improperly copied into Linux 2.6.0
at lines 127 (Tab 20) and 201-240 (Tab 21).

An additional core technology transferred improperly by IBM to Linux from Dynix/ptx and
AIX is in asynchronous input/output (“AIO™) and scatter/gather I/O. Input/output (“I/O”) is the way
operating systems communicate with files and peripheral devices attached to the computer (such as a
standard printer or a network interface). Asynchronous and scatter/gather I/O are specialized
methods for I/O that have recently been included into Linux and, as discussed in detail below, are
beliéved to have originated in Dynix/ptx and/or AIX and therefore are part of the Protected Materials.

The Linux “patches” implementing AIO were provided by Badari Pulavarty, formerly a
Sequent employee, now an IBM employee. Improper transfer of AIO Protected Materials to Linux is
illustrated below in this comment from Linux 2.6.0, in the file fs/direct-io.c:

/*

* fs/direct-io.c
*

* Copyright (C) 2002, Linus Torvalds.
*

* 0 DIRECT
*

* 04Jul2002 akpm@zip.com.au

* Initial version

* 11Sep2002 janetinc@us.ibm.com

* added readv/writev support.

* 290ct2002 akpm@zip.com.au

* rewrote bio_add_page() support.

* 300ct2002 pbadari@us.ibm.com

* added support for non-aligned I10.
* 06Novi002 pbadari@us.ibm.com

* added asynchronous 10 support.

13

* 21Jul2003 nathans@sgi.com

*
*/
(Emphasis added).

added IO completion notifier.

In October and November of 2002, Badari Pulavarty, formerly a Sequent employee, now an

IBM employee, added changes that allow for asynchronous I/O and non-aligned I/O to Linux. In

order to completely trace the Dynix/ptx transfer of AIO technology to Linux, SCO needs to obtain the

full production of source code from IBM. However, from examining v4.6.1 of Dynix/ptx, it is

apparent that Badari Pulavarty was an experienced Dynix kerne! programmer, based on the numerous

revisions to Dynix with which he is credited, including the following:

Dynix v4.6.1 file

Revisions credited to Badari

Jio/tibtest/tlbtest re.c

Revision 1.28

Jio/tlbtest/tibtest tout.c

Revision 1.18

Jio/fTAY fe.c Revision 1.111, Revision 1.110
Jkernel/debug/dinfo.c Revision 1.75
Jkernel/i386/mc_vmmac.h Revision 1.53
/kemel/i386/plocal.h Revision 1.144, Revision 1.143

/kernel/i386/vm boot.c

Revision 1.199

Jkernel/i386/vmpt_machdep.c

Revision 1.180, Revision 1.101

Jkernel/i386_space/param_space.c

Revision 1,207

Jkernel/os/heap kmem.c

Revision 1.128

J/kernel/os/init main.c

Revision 1.216

Jkernel/os/kern fork.c

Revision 1.253, Revision 1.250, Revision 1.245, Revision 1.238

J/kernel/os/kern exec.c

Revision 1.200, Revision 1.198, Revision 1.197, Revision 1.196

Jkernel/os/kemn_sig.c

PR Py

PRs 254728, 254503, SCN sarahwi 86, Reviewer: badari

Jkernel/os/mmap_ifchr.c

Revision 1.55

Jkernel/os/kermn_posix.c

Revision 1.43

/kernel/os/sys _process.c

Revision 1.267

Jkernel/os/vm sched.c

Revision 1.145, Revision 1.143, Revision 1.130, Revision 1.122

Jkernel/os/vm sched.c

Revision 1,121

/karnel/os/sys_vm.c

Revision 1.57

. .2mel/ostvfs bio.c

Revision 1.108, Revision 1.106, Revis.on .| 3

/kemnel/os/kern clock.c

Revision 1.168, Revision 1.165

J/kernel/os/vm_swap.c

Revision 1.163, Revision 1.156, Revision 1.153

Jkernel/os/vm drum.c

Revision 1.141, Revision 1.138

14

/kernel/os/vm_mem.c

Revision 1.216, Revision 1.215, Revision 1.211, Revision 1.210,
Revision 1.209, Revision 1.206, Revision 1.196, Revision 1.195,
Revision 1.194, Revision 1.192

Jkernel/os/vm_page.c

Revision 1.126, Revision 1.125

Jkernel/os/vm_page.c

Revision 1.122

/kernel/os/vin_pageout.c

Revision 1.100, Revision 1.97

Jkernel/os/vm_proc.c

Revision 1.118, Revision 1.117

Jkernel/os/vma sw.c

Revision 1,140

Jkernel/os/vm subr.c

Revision 1.88, Revision 1.86

Jkernel/os/vm_swp.c

Revision 1.151

Jkernel/os/mmap mfile.c

Revision 1.148, Revision 1.147, Revision 1.145, Revision 1.142

Jkernel/os/mmap_ifreg.c

Revision 1.146, Revision 1.144, Revision 1.143, Revision 1.142,
Revision 1.140, Revision 1.138, Revision 1,136 \

Jkernel/os/audit subr.c

Reviewers: dmo, badari

J/kemnel/os/mmap _anon.c

Revision 1.121, Revision 1.119, Revision 1.114, Revision 1.106

Jkermnel/os/vm_asops.c

Revision 1.210, Revision 1.203, Revision 1.196

Jkemel/os/vis dio.c

Revision 1.86, Revision 1.85

/kernel/os/kern_perf.c

Revision 1.63

J/kernel/os/kern daemon.c

Revision 1.43

Jkemel/os/kern_Iwp.c

Revision 1.95, Revision 1.92, Revision 1.88, Revision 1.85

J/kernel/os/kern_lwpdir.c

PR #254650, SCN sarahw163, reviewer : badari

Jkemel/os/lwrwsema.c

Revision 1.17

Jkernel/os/region.c

Revision 1.48, Revision 1.47, Revision 1.44, Revision 1.41, Revision

1.39

Jkernel/os/region_mem.c

Revision 1.57, Revision 1.56, Revision 1.53, Revision 1.51, Revision
1.49, Revision 1.48, Revision 1.45, Revision 1.44, Revision 1.42,
Revision 1.37, Revision 1.35, Revision 1.34, Revision 1.32

Jkernel/os/region_misc.c

Revision 1.19, Revision 1.18

Jkernel/sys/region.h

Revision 1.65, Revision 1.64, Revision 1.60, Revision 1.58, Revision
1.57

Jkernel/sys/swap.h

Revision 1.35

Jkernel/sys/region kstats.h

Revision 1.8

Jkernel/sys/mman.h

Revision 1.111, Revision 1.108

Jkernel/sys/aumacros.h

PR 238431; SCN gerrit716; Reviewers: dmo, badari

Jkernel/sys/ucontext.h PR 254872, SCN sarahw186, Reviewer badari

Jkemel/sys/buf.h Revision 1.61

Jkernel/sys/vin_extern.h Revision 1.121, Revision 1.120, Revision 1.117

Jkernel/sys/cmap.h Revision 1.61, Revision 1.60, Revision 1.58, Revision 1.56, Revision
1.55

Jkernel/sys/autetypes.h PR 251279; SCN timw369; Reviewer: badari

J/kemel/sys/region_misc.h Revision 1.7

Jkernel/sys/proc.h Revision 1.214

15

/kernel/sys/region_mem.h Revision 1.27, Revision 1.21, Revision 1.20, Revision 1.18
Jkemel/vm/vmdki.c Revision 1,179

Jkemel/vm/vin_ublock.c Revision 1.37

Jkernel/sci/sci_archdep.c reviewer - badari

Jkernel/proc/migrate.c Revision 1.146, Revision 1.145, Revision 1.136
Jkernel/scheduler/sched core.c Revision 1.265

Jkernel/scheduler/sched loadbal.c | Revision 1.3

/kemel/scheduler/sched_rung.c Revision 1.5

./shm/shm.c Revision 1.123

Jufs/ufs inode.c Revision 1.117

Jufs/ufs_vnodeops.c PR #254506, SCN sarahw189, reviewer : badari

The scope and type of changes indicate that Badari is a programmer who is intimately familiar
with the UNIX kernel, and has considerable experience with the Dynix kernel. More specifically, in
Dynix/ptx v4.6.1 a file named kernel/os/vfs_dio.c has the following comments attributed to Badari:

* Revision 1.86 1999/06/16 23:17:48 badari
* Revision 1.85 1999/05/03 23:41:53 badari

These comments are specific to fixing aspects of the asynchronous I/O implementation. More
significantly, the file vfs_dio.c in Dynix implements the "direct /O" subsystem, which is coupled to
implementation of asychroncus /O and scatter/gather. The file kernel/os/vfs_dio.c in Dynix/ptx
(“Virtual File System/Direct /O™) has direct relation to the file fs/direct_io.c in Linux 2.6.0. Based
on the forgoing, SCO has reason to believe that through Badari’s contributions to Linux, IBM
improperly transferred Protected Materials to Linux. Badari Pulavarti certainly was in a position to
contribute expertise (and apparently implementation) to the Linux kernel that most likely was gained
while working on Dynix/ptx. This belief is based, in part, on the observation that most of Badari's
contributions to Dynix are 1999/2000 while his contributions to Linux are dated 2002. Further
comments in newsgroups and Linux patches support our belief. To definitively trace the Dynix/ptx

transfer of AIO technology to Linux, SCO needs to cbtain the full production of source code from
16

IBM. In summary, key components of UNIX high-performance systems appear (based on Badari’s
own comments) to have been contributed to Linux by a programmer who had worked on the same
subsystem of Dynix/ptx 2 years earlier.

Further, improper transfer of scatter/gather 1/O Protected Materials to Linux is illustrated in
the same comments in the same Linux 2.6.0 file (fs/direct_io.c). The scatter/gather mechanism
“readv” and “writev” was contributed by Janet Morgan from IBM (janetinc@us.ibm.com). Ms.
Morgan has been identified by IBM as someone who has or had access to AIX source code. Through
Janet Morgan’s contributions to readv/writev in Linux, IBM improperly transferred Protected
Materials to Linux. Further comments in newsgroup discussions support our belief. In order to
completely trace the ATX transfer of scatter/gather technology to Linux, SCO needs to obtain the full
production of source code from IBM. In summary, another key component of UNIX high-
performance systems appears (based on Ms. Morgan’s own comments) to have been contributed to
Linux by a programmer who had access to the same subsystem of AIX.

IBM has also improperly contributed other core technologies found in IBM’s own derivative
work of UNIX known as AIX to Linux in violation of the IBM Related Agreements. As noted
earlier, IBM agreed in the Sofiware Agreement that it would use AIX solely for internal business
purposes, that it would not aliow the use of AIX for or by othets, and that it would not transfer any
part of AIX to parties who do not have a UNIX System V source code agreement with SCO. IBM
also agreed that it would maintain all of AIX in confidence, and that it would not adapt or allow its
contactors to adapt AIX for purposes of a creation of a new general operating system by a non-IBM
entity. IBM breached its promises to SCO in the Software Agreement, Sublicensing Agreement and
Related Agreements by transferring core portions of AIX to Linux.

17

Thus far, SCO has received no production whatsoever from IBM of AIX software.
Notwithstanding this fact, SCO has identified copying by IBM of files of AIX into Linux. One
instance of copying of AIX into Linux involves improper contribution by IBM to Linux 2.4 of the
AIX Journaling File System (“JFS”). The contribution of JFS was done in a series of “drops” of
AIX code identified as “reference files” inside Linux. The first such drop occurred on or about
February 2000, with multiple additions and significant follow-up work by IBM since that time to
adapt AIX/JFS for enterprise use inside Linux. These drops of reference files do not necessarily
become part of the source code in the Linux kernel, but rather are publié displays of the Protected
Materials so that anyone has access to them and can use them to construct a similar file in Linux.

The first drop contains (a) partially functioning port, or transfer, of JFS from AIX to Linux;
(b) a set of reference directories (named ref/) which contain the AIX reference version of AIX/JFS;
(c) AIX/JFS-related utility files used to maintain and upkeep AIX/JFS; and (d) a set of directories
(named directory ref_utils/) which contain the AIX reference version of utilities. Copies of AIX/JFS
files into Linux are shown in Table G, below. Table G compares a 1999 version of AIX currently in
SCO’s possession. Nevertheless, even this old version of AIX shows the following similarities,

demonstrating copying of code, structures and sequences.

TABLE G

AIX 9922A 43NIA File | Line #s Linux 2.2.12 ref/ File [Line #s
usr/include/jfs/inode.h (Tab 74) 16-37 include/linux/jfs/ref/ifs inode.h (Tab 76) 84-95, 126-138
kernel/sys/vnode.h (Tab 73) 109-133 include/linux/jfs/ref/ifs inode.h (Tab 76) 96-122
usr/include/jfs/inode.h (Tab 74) 3940 include/linux/jfs/ref/jfs inode.h (Tab 76) 189-90
usr/include/jfs/inode.h (Tab 74) 161-166 include/linux/jfs/ref/jfs inode.h (Tab 76) 414-421
ust/include/jfs/inode.h (Tab 74) 172-180 include/linux/jfe/ref/jfs inode.h (Tab 76) 37-48
usr/include/jfs/inode.h (Tab 74) 199-205 include/linux/ifs/ref/ifs inode,h (Tab 76) 52-59
usr/include/jfs/inode.h (Tab 74) 62-66 include/linux/jfs/ref/ifs inode.h (Tab 76) 286-290
ust/include/jfs/inode.h (Tab 74) 72-76 include/linux/jfs/ref/ifs _inode.h (Tab 76) 295-302
usr/include/{fs/inode.h (Tab 74) 83-158 include/linux/jfs/ref/jfs_inode.h (Tab 76) 322-411

18

Protected Materials from AIX appear in AIX 9922A 43NIA (hereafier referred to only as “AIX”) at
lines 16-37 (Tab 74) and have been improperly copied into Linux version 2.2.12 at lines 84-95, 126-
138 (Tab 75). Protected Materials from AIX at lines 109-133 (Tab 75) have been improperly copied
into Linux at lines 96-122 (Tab 76). Protected Materials from AIX gt lines 39-40 (Tab 74) have been
improperly copied into Linux at lines 189-90 (Tab 76). Protected Materials from AIX at lines 161-
166 (Tab 74) have been improperly copied into Linux at lines 414-421 (Tab 76). Protected Materials
from AIX at lines 172-180 (Tab 74) have been improperly copied to Linux at lines .37-48 (Tab 76).
Protected Materials from AIX at lines 199-205 (Tab 74) have been improperly copied to Linux at
lines 52-59 (Tab 76). Protected Materials from AIX at lines 62-66 (Tab 74) have been improperly
copied to Linux at lines 286-290 (Tab 76). Protected Materials from AIX at lines 72-76 (Tab 74)
have been improperly copied to Linux at lines 295-302 (Tab 76). Protected Materials from AIX at
lines 83-158 (Tab 74) have been copied improperly to Linux at lines 322-411 (Tab 76). These
transfers of AIX/JFS to Linux are in violation of the Related Agreements, and are an improper use of
AIX for adaptation to a general operating system in violation of the Related Agreements.

In addition, the.re are source code files of Protected Materials in JFS called “aixisms.h” which
demonstrate the AIX core nature of JFS, Linux files referencing AIX (by name in the commentary)

in the JFS drops identified in the AIX files and lines include those listed in Table H.

TABLE H
Files Lines
include/linux/jfs/ref/jfs_aixisms.h (Tab 77) 26-27, 32, 62, 193, 227, 248
include/linux/jfs/ref/jfs dirent.h (Tab 78) 55
include/linux/jfs/ref/jfs_inode.h (Tab 76) 76-77, 81, 95, 97
include/linux/jfs/ref/ifs 0s2.h (Tab 79) 33-34

19

fs/jfs/ref/jfs_dio.c (Tab 80) 333

fs/jfs/ref/jfs logmegr.c (Tab 81) 3134

These files were improperly transferred by IBM to Linux as part of IBM’s effort to transfer JES
capabilities from AIX to Linux. The files that include “AlXisms,” improperly transferred by IBM,
are included in Linux at lines 26-27, 32, 62, 193, 227, 248 (Tab 77); line 55 (Tab 78); lines 76-77, 81,
95, 97 (Tab 75); line 33-34 (Tab 79); line 333 (Tab 80) and line 3134 (Tab 81). At this time, there is
clear proof of IBM’s use of AIX in contributing JFS to Linux in violation of its contractual
obligations. The purpose of making these files available in Linux was to assist the open source
development community to use AIX/JFS to improve or perfect a Journaling File System for Linux.
By including the “AIXisms”, developers are able to see the original source cbde, see how JFS worked
in AIX, modify Linux code based on IBM’s significant expérience with JFS in AIX in enterprise
applications, and thereby gain the benefit of IBM’s nearly 20 years of UNIX programming in
adapting AIX/JFS for Linux. In Tab 80, for example, in the file marked f5/j/s/ref/jfs_dio.c (Tab 80) in
the table above, the entry in Linux, written by IBM, says “[o]n AIX we were able to do this in
dioIODone () function.” This represents a clear violation of IBM’s obligations to not transfer AIX to
contractors for adaptation for a general operating system.

IBM’s decision to release AIX/JFS source code into reference files in Linux illustrates the
early pattern of IBM’s Linux development plan. Under that plan, IBM initially placed AIX/JFS into
files that (mostly) did not actually operate within Linux at the time of the source code drop. Rather,
the AIX/JFS files were simply placed in a separate, non-compiling, file that allowed open source
programmers to see and use UNIX/AIX development methods and code to improve Linux. JFS then,

became another source of UNIX protected technology transferred by IBM to assist in the growth of
20

enterprise Linux. In addition, IBM’s drop of JFS into Linux reference files contains references to the
UNIX-based header files, not otherwise found in Linux prior to IBM’s identified transfers, further
indicating that the source of this technology was AIX.

These reference files are listed in Table I below.

TABLE 1
AIX JFS Reference File in Linux Header file used
Include/linux/jfs/ref/jfs_dasdlim.h (Tab 82) | <net32/netcons.h>
<net32/neterr.h>
<net32/dasd.h>

Include/linux/jfs/ref/jfs_dinode.h (Tab 83) <gys/types.h>
<sys/mode.h>
<sys/time.h>
<gys/lock def.h>

Include/linux/jfs/ref/ifs lock.h (Tab 84) "mmph.h"
include/linux/jfs/ref/jfs superblock.h (Tab 85)| <sys/time.h>
fs/jfs/ref/ifs_bufmgr.c (Tab 86) "mmph.h"
fs/ifs/ref/jfs cachemgr.c (Tab 87) "mmph.h"
fs/jfs/ref/ifs dio.c (Tab 88) "mmph.h"
fs/jfs/ref/jfs_dnlc.c (Tab 89) "mmph.h"
fs/ifs/refljfs_dtree.c (Tab 90) "mmph.h"
fs/ifs/ref/ifs _ifs.c (Tab 91) "mmph.h"
fs/jfs/refljfs initl.c (Tab 92) <devemd.h>
fs/ifs/refljfs_inode.c (Tab 93) "mmph.h"
fs/jfs/refljfs_link.c (Tab 94) <sys/vnode.h>
<sys/errno.h>
fs/jfs/reflifs_ logmgr.c (Tab 95) "mmph.h"
fs/jfs/ref/jfs_mknod.c (Tab 96) <sys/vfs.h>

<gys/cred.h>
<sys/errno.h>

fs/jfs/ref/jfs readdir.c (Tab 97) "mmph.h"
fs/jfs/ref/jfs_readlink.c (Tab 98) <sys/file.h>
<sys/errno.h>
fe/ifs/ref/jfs_statfs.c (Tab 99) <sys/vfs.h>
<sys/statfs.h>
fs/ifs/ref/ifs_symlink.c (Tab 100) <sys/vfs.h>
<sys/uio.h>

21

<sys/file.h>
<gys/cred.h>
<sys/errno.h>
fs/jfs/ref/ifs txnmgr.c (Tab 101) "mmph.h"
fs/ifs/ref/selector.c (Tab 102) <seldesc.h>

The use of these header files provides exact sequences and direct code for use by Linux
programmers to copy into Linux when building a new journaling file system for Linux, which in this
case is clearly derived from, and based on, AIX/JFS. On information and belief, much of the C
source code contained in the files referenced by the above header files was also transferred
improperly by IBM to Linux. Without the later versions of AIX it is not possible to definitively make
this statement, but SCO expects to confirm this fact upon receipt of outstanding discovery requests
from IBM, including recent versions of AIX. In numerous files in the Linux JFS direstory (that is,
the directory of files that actually compiles into Linux, as opposed to the reference files which will
not compile under Linux), there are indications that the AIX source code has now been used by the
open source development community as a template for creation of the new journaling file system for
Linux improperly based on AIX/JFS. In addition to code similarities, there are also compiler

directives that serve as comments. For example, the code in the Linux file entitled

35 #include <linux/fs.h>

36 #include <linux/jfs/jfs_types.h>

37 #include <linux/jfs/jfs_filsys.h>

38 #include <linux/jfs/jfs_superblock.h>
39 #include <linux/jfs/jfs_imap.h>

40 #include <linux/jfs/jfs_debug.h>

42 #ifdef STILL_TO_PORT
43 #include "jfs_types.h"
44 #include "jfs filsys.h"

22

45 #include "jfs_lock.h"

46 #include "ifs_inode.h"

47 #include "jfs_bufmgr.h"

48 #include "jfs_superblock.h"
49 #include "jfs_imap.h"

50 #include "jfs_dmap.h"

51 #include "jfs_dnlc.h"

52 #include "jfs_proto.h"

53 #include "jfs_dasdlim.h"
54 #include "jfs_debug.h"

55 #endif /* _STILL_TO_PORT */ -

Lines 35-40 above use the header files specified and now actually compile and run Linux code based
on AIX/JFS. However, the next line, line 42, includes a compiler directive that also serves as

comments that instruct the programmer as follows:

“If the symbol STILL_TO_PORT is defined, then use the header
files until you see #endif /* STILL_TO_PORT */ (on line 55).

This comment tells the programmer how to work around AIX reference files that still will not
compile in Linux, while allowing the ones that now function with Linux to compile, and thereby
operate as the new Linux filing system based on AIX/JFS. This is the equivalent of telling a
programmer that “work here is yet to be done”, while at the same time providing a partially working
system. The commentary is not limited to inclusion of header files, but also includes actual code.
Wherever these comments are present, the non-ported code is identical to that in the AIX reference
files, and the ported code bears striking similarities to the original. Other places in Linux where this
partial-port commentary exists are set forth in Table J.

TABLE J

Linux 2.2.12 File Line #s
include/linux/jfs/ifs dmap.h (Tab 104) | 31-36, 291-329, 158-163

23

